51
|
Jiang H, Li R, Zhao M, Peng X, Sun M, Liu C, Liu G, Xue H. Toxic effects of combined exposure to cadmium and diclofenac on freshwater crayfish (Procambarus clarkii): Insights from antioxidant enzyme activity, histopathology, and gut microbiome. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106844. [PMID: 38295602 DOI: 10.1016/j.aquatox.2024.106844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
In recent years, excessive discharge of pollutants has led to increasing concentrations of cadmium (Cd) and diclofenac (DCF) in water; however, the toxicity mechanism of combined exposure of the two pollutants to aquatic animals has not been fully studied. Procambarus clarkii is an economically important aquatic species that is easily affected by Cd and DCF. This study examined the effects of combined exposure to Cd and DCF on the tissue accumulation, physiology, biochemistry, and gut microflora of P. clarkii. The results showed that Cd and DCF accumulated in tissues in the order of hepatopancreas > gill > intestine > muscle. The hepatopancreas and intestines were subjected to severe oxidative stress, with significantly increased antioxidant enzyme activity. Pathological examination revealed lumen expansion and epithelial vacuolisation in the hepatopancreas and damage to the villous capillaries and wall in the intestine. The co-exposure to Cadmium (Cd) and Diclofenac (DCF) disrupts the Firmicutes/Bacteroidetes (F/B) ratio, impairing the regular functioning of intestinal microbiota in carbon (C) and nitrogen (N) cycling. This disturbance consequently hinders the absorption and utilization of energy and nutrients in Procambarus clarkii. This study offers critical insights into the toxicological mechanisms underlying the combined effects of Cd and DCF, and suggests potential approaches to alleviate their adverse impacts on aquatic ecosystems.
Collapse
Affiliation(s)
- Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Runbo Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Muzi Zhao
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Xinran Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mengling Sun
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Chongwan Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China
| | - Hui Xue
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China; The Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, 210017, China.
| |
Collapse
|
52
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
53
|
Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, Khalid M. Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120170. [PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
Collapse
Affiliation(s)
- John Busayo Adeoye
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Yee Yong Tan
- Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Sarawak, Miri, 98009, Malaysia
| | - Tung Chiong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
| |
Collapse
|
54
|
Al-Sareji OJ, Grmasha RA, Meiczinger M, Al-Juboori RA, Somogyi V, Hashim KS. A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1032. [PMID: 38473504 DOI: 10.3390/ma17051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Due to the growing concerns about pharmaceutical contamination and its devastating impact on the economy and the health of humans and the environment, developing efficient approaches for removing such contaminants has become essential. Adsorption is a cost-effective technique for removing pollutants. Thus, in this work, banana peels as agro-industrial waste were utilized for synthesizing activated carbon for removing pharmaceuticals, namely amoxicillin and carbamazepine from different water matrices. The chemically activated carbon by phosphoric acid (H3PO4) was carbonized at temperatures 350 °C, 450 °C and 550 °C. The material was characterized by several techniques such as scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Boehm titration, point of zero charge (pHPZC), BET surface area (SBET), the proximate and ultimate analyses, X-ray powder diffraction (XRD), and thermos-gravimetric analysis (TGA). The SEM of banana peel activated carbon (BPAC) depicted a semi-regular and heterogeneous morphology, characterized by an abundance of pores with diverse forms and sizes. Boehm titration revealed an increase in the amounts of acidic groups by 0.711 mmol/g due to activation by H3PO4. FTIR recorded different peaks suggesting significant modifications in the spectroscopic characteristics of the BPAC surface due to the successful activation and adsorption of the pollutant molecules. The pHpzc of BPAC was calculated to be 5.005. The SBET surface area dramatically increased to 911.59 m2/g after the activation. The optimum conditions were 25 °C, a materials dosage of 1.2 g/L, a saturation time of 120 min, a pollutants mixture of 25 mg/L, and a pH of 5. Langmuir exhibits a slightly better fit than Freundlich with a low value of the residual sum of squares (SSE) and the data were better fitted to the pseudo-second-order kinetic. Furthermore, the efficacy of BPAC in eliminating pharmaceuticals from Milli Q water, lake water, and wastewater was successfully investigated over the seven cycles. The results of the present work highlighted a potential usage of agro-industrial waste in eliminating organic micropollutants while exhibiting sustainable management of this waste.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq
| | - Ruqayah Ali Grmasha
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq
- Research Group of Limnology, Center for Natural Science, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 Espoo, Finland
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 2ET, UK
- Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah 51001, Iraq
- Civil Engineering Department, Dijlah University College, Baghdad 00964, Iraq
| |
Collapse
|
55
|
Trognon J, Albasi C, Choubert JM. A critical review on the pathways of carbamazepine transformation products in oxidative wastewater treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169040. [PMID: 38061647 DOI: 10.1016/j.scitotenv.2023.169040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug, released in domestic and hospital wastewater, and one of the drugs most commonly detected in surface water. Conventional secondary processes do a very poor job of removing it (<25 %), but its concentrations are significantly reduced by polishing oxidation processes. However, there are still many unknowns regarding the transformation products generated and their fate. This review first presents the journey of CBZ and its transformation products (TPs) in wastewater, from human consumption to discharge in water bodies. It then goes on to detail the diversity of mechanisms responsible for CBZ degradation and the generation of multiple TPs, laying the emphasis on the different types of advanced oxidation processes (AOP). 135 TPs were reported and a map describing their formation/degradation pathways was drawn up. This work highlights the wide range of physicochemical properties and toxicity effects of TPs on aquatic organisms and provides information about TPs of interest for future research. Finally, this review concludes on the importance of quantifying TPs and of determining kinetic characteristics to produce more accurate reaction schemes and computer-based fate predictions.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
56
|
Medykowska M, Wiśniewska M, Szewczuk-Karpisz K, Galaburda M, Oranska O, Panek R. Green Synthesis and Efficient Adsorption: Na-X Zeolite vs. C/Mn/SiO 2 Composite for Heavy Metals Removal. MATERIALS (BASEL, SWITZERLAND) 2024; 17:954. [PMID: 38399203 PMCID: PMC10890564 DOI: 10.3390/ma17040954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
The studies aimed to test the adsorption capacity of two silica-enriched porous materials, synthetic Na-X zeolite and Mn-containing carbon composite, towards Pb(II) and Zn(II) ions in single and mixed systems and in the presence of diclofenac (DCF) and (or) poly(acrylic acid) (PAA). The synthetic zeolite was characterized by a well-developed surface area of 728 m2/g and a pore diameter of 1.73 nm, while the carbon composite exhibited 268 m2/g and 7.37 nm, respectively. Na-X was found to be more efficient than the carbon composite (75-212 mg/g) in adsorbing heavy metal ions in both single and bimetallic systems (322-333 mg/g). In turn, the C/Mn/SiO2 composite was more effective in removing Pb(II) ions from the systems that simultaneously contained DCF or PAA (480 and 476 mg/g, respectively). The Na-X zeolite demonstrated the greatest stability in all the systems studied. The highest stability was observed in the DCF + Pb(II) mixture, in contrast to the carbon composites where the stability was much lower. To evaluate the possibility of regeneration of the solids, HCl proved to be the best desorbent for heavy metal ions (efficiency of 99%). In general, both adsorbents offer promising potential for solving environmental problems.
Collapse
Affiliation(s)
- Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | | - Mariia Galaburda
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine; (M.G.); (O.O.)
- Department of Physicochemistry of Solid Surface, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Olena Oranska
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164 Kyiv, Ukraine; (M.G.); (O.O.)
| | - Rafał Panek
- Department of Building Materials Engineering and Geoengineering, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland;
| |
Collapse
|
57
|
Vardanyan A, Agback T, Golovko O, Diétre Q, Seisenbaeva GA. Natural Silicates Encapsulated Enzymes as Green Biocatalysts for Degradation of Pharmaceuticals. ACS ES&T WATER 2024; 4:751-760. [PMID: 38356929 PMCID: PMC10862536 DOI: 10.1021/acsestwater.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Biocatalytic degradation with the use of enzymes has gained great attention in the past few years due to its advantages of high efficiency and environmental friendliness. Novel, cost-effective, and green nanoadsorbents were produced in this study, using natural silicates as an enzyme host matrix for core-shell immobilization technique. With the natural silicate as a core and silica layer as a shell, it was possible to encapsulate two different enzymes: horseradish peroxidase (HRP) and laccase, for removal and degradation of three pharmaceuticals: diclofenac (DFC), carbamazepine (CBZ), and paracetamol (PC). The biocatalysts demonstrated high oxidation rates for the selected pollutants. In particular HRP immobilized fly ash and perlite degraded DFC and PC completely during 3 days of interaction and also showed high degradation rates for CBZ. Immobilized laccase was successful in PC degradation, where up to 70-80% degradation of the compounds with aromatic rings was reported by NMR measurements for a high drug concentration of 10 μg/mL. The immobilization method played a significant role in this process by providing stability and protection for the enzymes over 3 weeks. Furthermore, the enzymes acted differently in the three chosen supports due to their complex chemical composition, which could have an effect on the overall enzyme activity.
Collapse
Affiliation(s)
- Ani Vardanyan
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| | - Tatiana Agback
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| | - Oksana Golovko
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences,
P.O. Box 7050, Uppsala 75007, Sweden
| | - Quentin Diétre
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
58
|
Wu Z, Liu Y, Huang R, Huang W. Mechanistic investigation of the electricity and gallic acid synergistically accelerated Fe(III)/Fe(II) cycle for the degradation of carbamazepine. CHEMOSPHERE 2024; 349:140915. [PMID: 38070611 DOI: 10.1016/j.chemosphere.2023.140915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
This study investigated the application of a natural plant polyphenol, gallic acid (GA) to form complex with iron to promote the redox cycle of Fe(III)/Fe(II) under neutral initial pH conditions in the electrochemical (EC) system for activation of peroxymonosulfate (PMS) to efficiently degrade carbamazepine (CBZ). Results demonstrated that the synergistic effects of GA and EC significantly improved the removal efficiency, and the EC/GA/Fe(III)/PMS system effectively removed 100% of CBZ within a wide initial pH range of 3.0-7.0. The optimum stoichiometric ratio of GA to Fe(III) was found as 2:1. Investigations including quenching experiment, chemical probe analysis, and electron paramagnetic resonance (EPR) analysis were conducted to identify the primary reaction radicals as •OH, SO4•-, along with the 1O2 and Fe(IV). In the EC/GA/Fe(III)/PMS system, the synergistic effect of GA and electrochemistry led to a remarkable enhancement in the generation of •OH. Furthermore, the complexation reduction mechanism of GA and Fe(III) was proposed based on experimental and instrumental analyses, which demonstrated that the semi-quinone products of GA were the main substances promoting the Fe(III)/Fe(II) cycle. Mass spectrometry results showed that CBZ generated 27 byproducts during degradation, with formic acid as the main product of GA. The degradation efficiency of the EC/GA/Fe(III)/PMS system remained stable and excellent, exhibiting remarkable performance in the presence of various inorganic anions, including Cl- and NO3-, as well as naturally occurring organic compounds such as fulvic acid (FA). Overall results indicated that the EC/GA/Fe(III)/PMS system can be applied to effectively treat practical wastewater treatment without requirement of pH adjustment.
Collapse
Affiliation(s)
- Zijing Wu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Yang Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| |
Collapse
|
59
|
P A, S V, G S, M R. Sustainable development and analysis of a novel bio-derived (biochar) nanocomposite for the remediation of carbamazepine from aqueous solution. CHEMOSPHERE 2024; 347:140696. [PMID: 37977531 DOI: 10.1016/j.chemosphere.2023.140696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The presence of pharmaceutical compounds in aqueous environments has become a growing concern due to their potential adverse effects on ecosystems and human health. In this work, synthesis of a novel bio based nanocomposite using a biowaste, palm seed is employed for the preparation of biochar. The bio derived nanocomposite consist of polypyrrole (Ppy), graphene oxide (GO), and biochar, is employed for the Carbamazepine (CBZ) removal. The synthesized nanocomposite, Ppy-GO-Biochar, is characterized using various analytical techniques. The characterization results confirmed the successful synthesis of the Ppy-GO-Biochar nanocomposite with the desired morphology and structural properties. The effect of variables is investigated and the optimum conditions are found as: pH (7.8), adsorbent dosage (1.4 g/L), agitation speed (200 rpm) and temperature (39.5 °C). The results demonstrated that a removal efficiency of over 97.74% and uptake of 45.045 mg/g is achieved for CBZ. Furthermore, the CBZ removal followed pseudo-second-order, indicating chemisorption as the predominant mechanism. The CBZ sorption equilibrium is well represented by Langmuir and Freundlich isotherm. Thermodynamic results show that CBZ sorption is endothermic and spontaneous. Mechanism of CBZ sorption using the synthesized nanocomposite follows π-π interaction and electrostatic attraction. Molecular docking studies were also performed for the sorption of CBZ.
Collapse
Affiliation(s)
- Agilandeswari P
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India.
| | - Venkateshbabu S
- Department of Petroleum Engineering, JCT College of Engineering &Technology, Coimbatore, India
| | - Sarojini G
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering, Coimbatore, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, 608002, Tamilnadu, India
| |
Collapse
|
60
|
Micella I, Kroeze C, Bak MP, Strokal M. Causes of coastal waters pollution with nutrients, chemicals and plastics worldwide. MARINE POLLUTION BULLETIN 2024; 198:115902. [PMID: 38101060 DOI: 10.1016/j.marpolbul.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Worldwide, coastal waters contain pollutants such as nutrients, plastics, and chemicals. Rivers export those pollutants, but their sources are not well studied. Our study aims to quantify river exports of nutrients, chemicals, and plastics to coastal waters by source and sub-basin worldwide. We developed a new MARINA-Multi model for 10,226 sub-basins. The global modelled river export to seas is approximately 40,000 kton of nitrogen, 1,800 kton of phosphorous, 45 kton of microplastics, 490 kton of macroplastics, 400 ton of triclosan and 220 ton of diclofenac. Around three-quarters of these pollutants are transported to the Atlantic and Pacific oceans. Diffuse sources contribute by 95-100 % to nitrogen (agriculture) and macroplastics (mismanaged waste) in seas. Point sources (sewage) contribute by 40-95 % to phosphorus and microplastics in seas. Almost 45 % of global sub-basin areas are multi-pollutant hotspots hosting 89 % of the global population. Our findings could support strategies for reducing multiple pollutants in seas.
Collapse
Affiliation(s)
- Ilaria Micella
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands.
| | - Carolien Kroeze
- Environmental Systems Analysis Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Mirjam P Bak
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Maryna Strokal
- Water Systems and Global Change Group, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
61
|
Shamsudin MS, Taib MHA, Azha SF, Bonilla-Petriciolet A, Ismail S. Preparation and evaluation of a coated smectite clay-based material modified with epichlorohydrin-dimethylamine for the diclofenac removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124596-124609. [PMID: 35608765 DOI: 10.1007/s11356-022-20815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This study reports the analysis of diclofenac removal from aqueous solution using a novel adsorbent coating with amphoteric surface. This adsorbent coating was improved using a new amphoteric ratio to increase its performance for the removal of pharmaceuticals such as diclofenac. The adsorbent coating was formulated using acrylic polymer emulsion, smectite-based clay powder and epichlorohydrin-dimethylamine to obtain a layer form via the implementation of a facile synthesis method. In a previous study, this adsorbent coating was successful to remove cationic and anionic dyes. Therefore, this research aimed to further investigate and test its application in the removal of other emerging water pollutants like pharmaceuticals. SEM, EDX, and FTIR analyses were carried out for the characterization of this novel adsorbent. The effects of adsorbent composition, diclofenac concentration, temperature, and solution pH were studied and modeled. The best conditions to improve the diclofenac adsorption was 303 K and pH 3 where the adsorption capacity was 25.59 mg/g. Adsorption isotherms and kinetics were quantified and modeled, and the corresponding adsorption mechanism was also analyzed. Diclofenac adsorption with this novel material was exothermic and spontaneous. This alternative adsorbent is promising for diclofenac removal from industrial wastewater systems.
Collapse
Affiliation(s)
- Muhamad Sharafee Shamsudin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Muhammad Haziq Abdul Taib
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Syahida Farhan Azha
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | | | - Suzylawati Ismail
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
62
|
Yalin D, Craddock HA, Assouline S, Ben Mordechay E, Ben-Gal A, Bernstein N, Chaudhry RM, Chefetz B, Fatta-Kassinos D, Gawlik BM, Hamilton KA, Khalifa L, Kisekka I, Klapp I, Korach-Rechtman H, Kurtzman D, Levy GJ, Maffettone R, Malato S, Manaia CM, Manoli K, Moshe OF, Rimelman A, Rizzo L, Sedlak DL, Shnit-Orland M, Shtull-Trauring E, Tarchitzky J, Welch-White V, Williams C, McLain J, Cytryn E. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. WATER RESEARCH X 2023; 21:100203. [PMID: 38098886 PMCID: PMC10719582 DOI: 10.1016/j.wroa.2023.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.
Collapse
Affiliation(s)
- David Yalin
- A Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hillary A. Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Assouline
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Evyatar Ben Mordechay
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) – The Volcani Institute, Gilat Reseach Center, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Benny Chefetz
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Bernd M. Gawlik
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Kerry A. Hamilton
- The School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Isaya Kisekka
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - Iftach Klapp
- Institute of Agricultural engineering, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Daniel Kurtzman
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Guy J. Levy
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Roberta Maffettone
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Sixto Malato
- CIEMAT-Plataforma Solar de Almería, Ctra. Sen´es km 4, 04200 Tabernas, Almería, Spain
| | - Célia M. Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Kyriakos Manoli
- NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Orah F. Moshe
- Department of Soil Conservation, Soil Erosion Research Center, Ministry of Agriculture, Rishon LeZion, Israel
| | - Andrew Rimelman
- PG Environmental. 1113 Washington Avenue, Suite 200. Golden, CO 80401, USA
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - David L. Sedlak
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Maya Shnit-Orland
- Extension Service, Ministry of Agriculture and Rural Development, Israel
| | - Eliav Shtull-Trauring
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Jorge Tarchitzky
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Clinton Williams
- US Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, USA
| | - Jean McLain
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
63
|
Van Nguyen T, Bořík A, Sims JL, Kouba A, Žlábek V, Koubová A. Toxicological effects of diclofenac on signal crayfish (Pacifastacus leniusculus) as related to weakly acidic and basic water pH. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106777. [PMID: 38035650 DOI: 10.1016/j.aquatox.2023.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The widespread use and continuous discharge of pharmaceuticals to environmental waters can lead to potential toxicity to aquatic biota. Pharmaceuticals and their metabolites are often complex organic and environmentally persistent compounds that are bioactive at low doses. This study aimed to investigate the effects of diclofenac (DCF) on the antioxidant defence system and neurotoxicity biomarkers in signal crayfish (Pacifastacus leniusculus) under weakly acidic and basic conditions. Crayfish were exposed to 200 µg/L of DCF at pH 6 and 8 for 96 h and subsequently underwent the depuration phase for 96 h. Gills, hepatopancreas, and muscle were sampled after the exposure and depuration phases to assess the toxicological biomarker responses of DCF in crayfish by evaluating lipid peroxidation (LPO) levels, activities of antioxidant enzymes and acetylcholinesterase. After the exposure phase, the hemolymph DCF concentration was detected one order higher at pH 6 than at pH 8. The DCF was subsequently fully eliminated from the hemolymph during the depuration phase. Our results showed that DCF caused alteration in the activities of six of the seven tested biomarkers in at least one crayfish tissue. Although exposure to DCF caused imbalances in the detoxification system on multiple tissue levels, it was regenerated to a balanced state after the depuration phase. Integrated biomarker response (IBRv2) showed that the highest toxicological response to DCF exposure was elicited in the gills, whereas the hepatopancreas was the highest-responding tissue after the depuration phase. Exposure to DCF at pH 6 caused higher toxicological effects than at pH 8; however, crayfish antioxidant mechanisms recovered more quickly at pH 6 than at pH 8 after the depuration phase. Our results showed that water pH influenced the toxicological effects of DCF, an ionisable compound in crayfish.
Collapse
Affiliation(s)
- Tuyen Van Nguyen
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Jaylen L Sims
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic; Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Vladimír Žlábek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Anna Koubová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic.
| |
Collapse
|
64
|
Baratange C, Baali H, Gaillet V, Bonnard I, Delahaut L, Gaillard JC, Grandjean D, Sayen S, Gallorini A, Le Bris N, Renault D, Breider F, Loizeau JL, Armengaud J, Cosio C. Bioaccumulation and molecular effects of carbamazepine and methylmercury co-exposure in males of Dreissena polymorpha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165379. [PMID: 37423277 DOI: 10.1016/j.scitotenv.2023.165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 μg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 μg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Hugo Baali
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze Cedex, France
| | - Dominique Grandjean
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, Central Environmental Laboratory, Station 2, 1015 Lausanne, Switzerland
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex, 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Nathalie Le Bris
- Université de Rennes, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - David Renault
- Université de Rennes, CNRS, EcoBio (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, Central Environmental Laboratory, Station 2, 1015 Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze Cedex, France
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO), BP 1039, F-51687 Reims Cedex, France.
| |
Collapse
|
65
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
66
|
Parveen N, Alqahtani FO, Alsulaim GM, Alsharif SA, Alnahdi KM, Alali HA, Ahmad MM, Ansari SA. Emerging Mesoporous Polyacrylamide/Gelatin-Iron Lanthanum Oxide Nanohybrids towards the Antibiotic Drugs Removal from the Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2835. [PMID: 37947681 PMCID: PMC10649728 DOI: 10.3390/nano13212835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The polyacrylamide/gelatin-iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that provided the information regarding the crystalline behavior, surface area, and pore size. The response surface methodology was utilized for the statistical observation of diclofenac (DF) adsorption from the wastewater. The adsorption capacity (qe, mg/g) of P-G-ILO nanohybrid was higher (254, 256, and 258 mg/g) than the ILO nanoparticle (239, 234, and 233 mg/g). The Freundlich isotherm model was the best fitted, as it gives the higher values of correlation coefficient (R2 = 0.982, 0.991 and 0.981) and lower value of standard error of estimate (SEE = 6.30, 4.42 and 6.52), which suggested the multilayered adsorption of DF over the designed P-G-ILO nanohybrid and followed the pseudo second order kinetic model (PSO kinetic model) adsorption. The thermodynamic study reveals that adsorption was spontaneous and endothermic in nature and randomness onto the P-G-ILO nanohybrids surface increases after the DF adsorption. The mechanism of adsorption of DF demonstrated that the adsorption was mainly due to the electrostatic interaction, hydrogen bonding, and dipole interaction. P-G-ILO nanohybrid was reusable for up to five adsorption/desorption cycles.
Collapse
Affiliation(s)
- Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia; (F.O.A.); (G.M.A.)
| | - Fatimah Othman Alqahtani
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia; (F.O.A.); (G.M.A.)
| | - Ghayah M. Alsulaim
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia; (F.O.A.); (G.M.A.)
| | - Shada A. Alsharif
- University College of Umlij, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Kholoud M. Alnahdi
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hasna Abdullah Alali
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia; (H.A.A.); (M.M.A.)
| | - Mohamad M. Ahmad
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia; (H.A.A.); (M.M.A.)
- Department of Physics, Faculty of Science, The New Valley University, El-Kharga 72511, Egypt
| | - Sajid Ali Ansari
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, P.O. Box 400, Hofuf 31982, Saudi Arabia; (H.A.A.); (M.M.A.)
| |
Collapse
|
67
|
Bangia S, Bangia R, Daverey A. Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1344. [PMID: 37857877 DOI: 10.1007/s10661-023-11858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
The existence of pharmaceutically active compounds (PhACs) in the water is a major concern for environmentalists due to their deleterious effects on living organisms even at minuscule concentrations. This review focuses on PhACs such as analgesics and anti-inflammatory compounds, which are massively excreted in urine and account for the majority of pharmaceutical pollution. Furthermore, other PhACs such as anti-epileptics, beta-blockers and antibiotics are discussed because they also contribute significantly to pharmaceutical pollution in the aquatic environment. This review is divided into two parts. In the first part, different classes of PhACs and their fate in the wastewater environment are presented. In the second part, recent advances in the removal of PhACs by conventional wastewater treatment plants, including membrane bioreactors (MBRs), activated carbon adsorption and bench-scale studies concerning a broad range of advanced oxidation processes (AOPs) that render practical and appropriate strategies for the complete mineralization and degradation of pharmaceutical drugs, are reviewed. This review indicates that drugs like diclofenac, naproxen, paracetamol and aspirin are removed efficiently by conventional systems. Activated carbon adsorption is suitable for the removal of diclofenac and carbamazepine, whereas AOPs are leading water treatment strategies for the effective removal of reviewed PhACs.
Collapse
Affiliation(s)
- Saulab Bangia
- Hamburg University of Technology, 21073, Hamburg, Germany
| | - Riya Bangia
- Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
68
|
Liu LY, Liu GS, Niu SM, Liu H, Cui MH, Wang AJ. Atomic hydrogen-mediated enhanced electrocatalytic hydrodehalogenation on Pd@MXene electrodes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132113. [PMID: 37487329 DOI: 10.1016/j.jhazmat.2023.132113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In this study, a Pd@MXene catalyst was synthesized to enhance the electrocatalytic hydrodehalogenation (ECH) of emerging halogenated organic pollutants (HOPs) by improving the dispersibility, catalytic activity, and stability of palladium (Pd). The average size of Pd nanoparticles (NPs) was reduced to 3.62 ± 0.34 nm with a more intensive peak of Pd (111), which facilitated atomic hydrogen (H*) production. The Pd@MX/CC electrode demonstrated superior ECH activity for diclofenac (DCF) degradation, with a reaction rate constant (kobs) 2.48 times higher than that of Pd/CC (without MXene). The satisfactory ECH performance of Pd@MX/CC remained consistent within a wide range of initial DCF concentrations (5-100 mg/L), and no significant ECH attenuation was observed even after up to 10 batches. Furthermore, the high activity of Pd@MX/CC was also observed in the ECH of other halogenated organic pollutants (levofloxacin, tetrabromobisphenol A, and diatrizoate). Density functional theory (DFT) calculations revealed that electronic configuration modulation of the Pd@MXene catalyst optimized binging energies to H* , DCF, and dechlorinated products, thereby enhancing the ECH efficiency of DCF.
Collapse
Affiliation(s)
- Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Shuai Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
69
|
Zare M, Bussemaker MJ, Serna-Galvis EA, Torres-Palma RA, Lee J. Impact of sonication power on the degradation of paracetamol under single- and dual-frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 99:106564. [PMID: 37632980 PMCID: PMC10474498 DOI: 10.1016/j.ultsonch.2023.106564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
The effects of sonication power on the ultrasonic cavitation and sonochemistry as well as the degradation of paracetamol were studied and compared for single- and dual-frequency sonoreactors. For the single-frequency sonication, a 500 kHz plate transducer was employed, with three different calorimetric powers of 8.4, 16.7 and 27.9±3.9 W. For the dual-frequency sonication, the plate transducer was perpendicularly coupled with a low-frequency 20 kHz ultrasonic horn, and three calorimetric powers of 27.9, 33.4, 44.6±3.9 W were studied. At all the studied powers, dual-frequency sonication led to a synergistic effect in the degradation of paracetamol, though varying the power of the horn did not affect the degradation rate. A comparison of the degradation data versus the yield of oxidants as well as the overall intensities of sonoluminescence and sonochemiluminescence suggested the degradation is by the action of oxidants near the surface of the bubbles as the major reaction mechanism. Despite the enhancement observed for the degradation, dual-frequency sonication had no significant effect on the yield of either of the oxidants, regardless of the applied power to the horn. In contrast, dual-frequency sonication decreased the overall sonoluminescence and sonochemiluminescence intensities at all powers studied, suggesting that the application of dual-frequency sonication reduces the size of cavitation bubbles. Normal distribution function analysis confirmed dual-frequency sonication resulted in smaller sonoluminescing bubbles, hence the reduction in the sonoluminescence intensity. The increase in degradation rate under DFUS is attributed to the increase in the transfer of paracetamol from the bulk towards the bubbles. As a result, the availability of the pollutant molecules in the vicinity of the bubbles to react with HO• would increase and consequently, the degradation rate would enhance under DFUS.
Collapse
Affiliation(s)
- Mehrdad Zare
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Madeleine J Bussemaker
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia; Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 # 52-21, Medellín, Colombia
| | - Judy Lee
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
70
|
Noori E, Eris S, Omidi F, Asadi A. Hybrid approaches based on hydrodynamic cavitation, peroxymonosulfate and UVC irradiation for treatment of organic pollutants: fractal like kinetics, modeling and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85835-85849. [PMID: 37393590 DOI: 10.1007/s11356-023-28492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Hydrodynamic cavitation (HC) was emerged as one of the most potential technologies for industrial-scale wastewater or water treatment. In this work, a combined system of HC, peroxymonosulfate (PMS) and UVC irradiation (HC - PMS - UVC) was constructed for effective degradation of carbamazepine. The effect of several experimental parameters and conditions on the carbamazepine degradation was considered. The results show that the degradation and mineralization rates increases with an increase in the inlet pressure from 1.3 to 4.3 bars. The rates of carbamazepine degradation with the combined processes of HC - PMS - UVC, HC - PMS, HC - UVC, and UVC - PMS were 73%, 67%, 40% and 31%, respectively. Under the optimal conditions of reactor, the carbamazepine degradation and mineralization rates were 73% with 59%, respectively. The kinetics of carbamazepine degradation was studied applying a fractal-like approach. So, a new model was proposed by combining first order kinetics model and fractal-like concept. The obtained results show that the proposed fractal-like model gives a better performance compared with traditional first order kinetics model. It has been demonstrated that the HC - PMS - UVC process is a potential treatment method to destroy pharmaceutical pollutants from water and wastewater sources.
Collapse
Affiliation(s)
- Elham Noori
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Setareh Eris
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Anvar Asadi
- Department of Environmental Health Engineering, School of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
71
|
Antiñolo Bermúdez L, Martínez Sánchez EM, Leyva Díaz JC, Muñio Martínez MDM, Poyatos Capilla JM, Martín Pascual J. Impacts of Organic Emerging Contaminants (Erythromycin, Ibuprofen, and Diclofenac) on the Performance of a Membrane Bioreactor Treating Urban Wastewater: A Heterotrophic Kinetic Investigation. MEMBRANES 2023; 13:697. [PMID: 37623758 PMCID: PMC10456289 DOI: 10.3390/membranes13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The occurrence of emerging organic contaminants, such as pharmaceuticals, is a growing global concern. In this research, for a membrane bioreactor (MBR) laboratory plant operating at a hydraulic retention time (HRT) of 24 h, fed with real urban wastewater, the heterotrophic biomass behaviour was analysed for two concentrations of erythromycin, ibuprofen, and diclofenac. The concentrations studied for the first phase were erythromycin 0.576 mg L-1, ibuprofen 0.056 mg L-1, and diclofenac 0.948 mg L-1. For Phase 2, the concentrations were increased to erythromycin 1.440 mg L-1, ibuprofen 0.140 mg L-1, and diclofenac 2.370 mg L-1. Heterotrophic biomass was affected and inhibited by the presence of pharmaceutical compounds in both phases. The system response to low concentrations of pharmaceutical compounds occurred in the initial phase of plant doping. Under these operating conditions, there was a gradual decrease in the concentration of mixed liquor suspended solids and the removal of chemical oxygen demand of the system, as it was not able to absorb the effect produced by the pharmaceutical compounds added in both phases.
Collapse
Affiliation(s)
- Laura Antiñolo Bermúdez
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | - Elena María Martínez Sánchez
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | - Juan Carlos Leyva Díaz
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | | | - Jose Manuel Poyatos Capilla
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| | - Jaime Martín Pascual
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain; (L.A.B.); (E.M.M.S.); (J.C.L.D.); (J.M.P.C.)
| |
Collapse
|
72
|
Al-Sareji OJ, Meiczinger M, Al-Juboori RA, Grmasha RA, Andredaki M, Somogyi V, Idowu IA, Stenger-Kovács C, Jakab M, Lengyel E, Hashim KS. Efficient removal of pharmaceutical contaminants from water and wastewater using immobilized laccase on activated carbon derived from pomegranate peels. Sci Rep 2023; 13:11933. [PMID: 37488185 PMCID: PMC10366155 DOI: 10.1038/s41598-023-38821-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023] Open
Abstract
In this study, pomegranate peels (PPs) as an abundant fruit processing waste was used to produce cost-effective, eco-friendly, and high-quality activated carbon. The produced carbon (fossil free activated carbon) was used for immobilizing laccase to remove a range of emerging pollutants namely diclofenac, amoxicillin, carbamazepine, and ciprofloxacin from water and wastewater. The loaded activated carbon by laccase (LMPPs) and the unloaded one (MPPs) were characterized using advanced surface chemistry analysis techniques. MPPs was found to have a porous structure with a large surface area and an abundance of acidic functional groups. Laccase immobilization reduced surface area but added active degradation sites. The optimal immobilization parameters were determined as pH 4, 35 °C, and a laccase concentration of 2.5 mg/mL resulting in a 69.8% immobilization yield. The adsorption of the emerging pollutant onto MPPs is best characterized as a spontaneous endothermic process that adheres to the Langmuir isotherm and first-order kinetics. Using synergistic adsorption and enzymatic degradation, the target pollutants (50 mg/L) were eliminated in 2 h. In both water types, LMPPs outperformed MPPs. This study shows that pomegranate peels can effectively be harnessed as an enzyme carrier and adsorbent for the removal of emerging pollutants even from a complex sample matrix. The removal of contaminants from wastewater lasted five cycles, whereas it continued up to six cycles for water.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary.
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon, Iraq.
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, Aalto, P.O. Box 15200, 00076, Espoo, Finland
| | - Ruqayah Ali Grmasha
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Babylon, Iraq
- Research Group of Limnology, Faculty of Engineering, Center for Natural Science, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
| | - Manolia Andredaki
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém, 8200, Hungary
| | - Ibijoke A Idowu
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
| | - Csilla Stenger-Kovács
- Research Group of Limnology, Faculty of Engineering, Center for Natural Science, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
- ELKH-PE Limnoecology Research Group, Egyetem utca 10, Veszprém, 8200, Hungary
| | - Miklós Jakab
- Department of Materials Sciences and Engineering, Research Centre of Engineering Sciences, University of Pannonia, P.O. Box 158, Veszprém, 8201, Hungary
| | - Edina Lengyel
- Research Group of Limnology, Faculty of Engineering, Center for Natural Science, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
- ELKH-PE Limnoecology Research Group, Egyetem utca 10, Veszprém, 8200, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK
- Department of Environmental Engineering, College of Engineering, University of Babylon, Al-Hillah, Babylon, Iraq
| |
Collapse
|
73
|
Medykowska M, Wiśniewska M, Chibowski S. Fly Ash-Based Na-X Zeolite Application in Separation Process of Bovine Serum Albumin from Aqueous Solution in the Presence of Organic Substances with Anionic Character. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5201. [PMID: 37512475 PMCID: PMC10383924 DOI: 10.3390/ma16145201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
The main purpose of the investigations was to explore the protein adsorption on porous materials, as well as to identify the mechanisms of protein attachment without and with other common environmental contaminants, such as drugs, polymers or surfactants. This study applied the Na-X zeolite for the adsorption of bovine serum albumin (BSA) from solutions with various pH values. Electrophoretic mobility measurements and potentiometric titrations were conducted in systems containing both protein and/or PAA (poly(acrylic acid) polymer/DCF (diclofenac) drug/SDS (sodium dodecyl sulfate) surfactant to investigate the protein binding mechanisms in the complex adsorbate systems. In addition, aggregate size and stability measurements were performed in the investigated systems. Based on the research results, it was possible to conclude that the protein adsorbed most preferably on the zeolite surface at a pH value close to its isoelectric point (pI) (102.15 mg/g), and protein adsorption was the lowest in the solutions with strongly alkaline (29.61 mg/g) or acidic (77.45 mg/g) pH values. Thus, the examined zeolitic material can be considered an effective adsorbent for protein removal from an aqueous solution.
Collapse
Affiliation(s)
- Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Stanisław Chibowski
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
74
|
Hernández Martínez SA, Melchor-Martínez EM, González-González RB, Sosa-Hernández JE, Araújo RG, Rodríguez-Hernández JA, Barceló D, Parra-Saldívar R, Iqbal HMN. Environmental concerns and bioaccumulation of psychiatric drugs in water bodies - Conventional versus biocatalytic systems of mitigation. ENVIRONMENTAL RESEARCH 2023; 229:115892. [PMID: 37084948 PMCID: PMC10114359 DOI: 10.1016/j.envres.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.
Collapse
Affiliation(s)
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDEA-CSIC, Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Cientific i Tecnològic de la Universitat de Girona, Edifici H(2)O, Girona, Spain; Sustainability Cluster, School of Engineering UPES, Dehradun, India
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, 64849, Mexico.
| |
Collapse
|
75
|
Alharbi OA, Jarvis E, Galani A, Thomaidis NS, Nika MC, Chapman DV. Assessment of selected pharmaceuticals in Riyadh wastewater treatment plants, Saudi Arabia: Mass loadings, seasonal variations, removal efficiency and environmental risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163284. [PMID: 37031940 DOI: 10.1016/j.scitotenv.2023.163284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023]
Abstract
Despite increasing interest in pharmaceutical emissions worldwide, studies of environmental contamination with pharmaceuticals arising from wastewater discharges in Saudi Arabia are scarce. Therefore, this study examined occurrence, mass loads and removal efficiency for 15 pharmaceuticals and one metabolite (oxypurinol) from different therapeutic classes in three wastewater treatment plants (WWTPs), in Riyadh city in Saudi Arabia. A total of 144 samples were collected from the influents and effluents between March 2018 and July 2019 and analyzed using Solid Phase Extraction followed by triple quadrupole LC-MS/MS. The average concentrations in the influents and effluents were generally higher than their corresponding concentrations found either in previous Saudi Arabian or global studies. The four most dominant compounds in the influent were acetaminophen, ciprofloxacin, caffeine, and diclofenac, with caffeine and acetaminophen having the highest concentrations ranging between 943 and 2282 μg/L. Metformin and ciprofloxacin were the most frequently detected compounds in the effluents at concentrations as high as 33.2 μg/L. Ciprofloxacin had the highest mass load in the effluents of all three WWTPs, ranging between 0.20 and 20.7 mg/day/1000 inhabitants for different WWTPs. The overall average removal efficiency was estimated high (≥80), with no significant different (p > 0.05) between the treatment technology applied. Acetaminophen and caffeine were almost completely eliminated in all three WWTPs. The samples collected in the cold season generally had higher levels of detected compounds than those from the warm seasons, particularly for NSAID and antibiotic compounds. The estimated environmental risk from pharmaceutical compounds in the studied effluents was mostly low, except for antibiotic compounds. Thus, antibiotics should be considered for future monitoring programmes of the aquatic environment in Saudi Arabia.
Collapse
Affiliation(s)
- Obaid A Alharbi
- Water Management & Treatment Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia; School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland.
| | - Edward Jarvis
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Deborah V Chapman
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Ireland; Environmental Research Institute, University College Cork, T23 XE10, Ireland
| |
Collapse
|
76
|
Hawkins C, Foster G, Glaberman S. Chemical prioritization of pharmaceuticals and personal care products in an urban tributary of the Potomac River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163514. [PMID: 37068687 DOI: 10.1016/j.scitotenv.2023.163514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are incredibly diverse in terms of chemical structures, physicochemical properties, and modes of action, making their environmental impacts challenging to assess. New chemical prioritization methodologies have emerged that compare contaminant monitoring concentrations to multiple toxicity data sources, including whole organism and high-throughput data, to develop a list of "high priority" chemicals requiring further study. We applied such an approach to assess PPCPs in Hunting Creek, an urban tributary of the Potomac River near Washington, DC, which has experienced extensive human population growth. We estimated potential risks of 99 PPCPs from surface water and sediment collected upstream and downstream of a major wastewater treatment plant (WWTP), nearby combined sewer overflows (CSO), and in the adjacent Potomac River. The greatest potential risks to the aquatic ecosystem occurred near WWTP and CSO outfalls, but risk levels rapidly dropped below thresholds of concern - established by previous chemical prioritization studies - in the Potomac mainstem. These results suggest that urban tributaries, rather than larger rivers, are important to monitor because their lower or intermittent flow may not adequately dilute contaminants of concern. Common psychotropics, such as fluoxetine and venlafaxine, presented the highest potential risks, with toxicity quotients often > 10 in surface water and > 1000 in sediment, indicating the need for further field studies. Several ubiquitous chemicals such as caffeine and carbamazepine also exceeded thresholds of concern throughout our study area and point to specific neurotoxic and endocrine modes of action that warrant further investigation. Since many "high priority" chemicals in our analysis have also triggered concerns in other areas around the world, better coordination is needed among environmental monitoring programs to improve global chemical prioritization efforts.
Collapse
Affiliation(s)
- Cheyenne Hawkins
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA
| | - Gregory Foster
- George Mason University, Department of Chemistry and Biochemistry, Fairfax, VA, USA
| | - Scott Glaberman
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA.
| |
Collapse
|
77
|
Novikov MV, Snytnikova OA, Fedunov RG, Yanshole VV, Grivin VP, Plyusnin VF, Xu J, Pozdnyakov IP. A new view on the mechanism of UV photodegradation of the tricyclic antidepressant carbamazepine in aqueous solutions. CHEMOSPHERE 2023; 329:138652. [PMID: 37040836 DOI: 10.1016/j.chemosphere.2023.138652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Mechanism of direct UV photolysis of the tricyclic antidepressant carbamazepine (CBZ) at neutral pH was revealed by a combination of nanosecond laser flash photolysis, steady-state photolysis combined with high resolution LC-MS and DFT quantum-chemical calculations. The detection of short-lived intermediates and the detailed identification of final products were performed for the first time. The quantum yield of CBZ photodegradation (282 nm) is about 0.1% and 0.18% in air-equilibrated and argon-saturated solutions. The primary stage is photoionization with the formation of CBZ cation radical followed by a rapid nucleophilic attack by a solvent molecule. The primary photoproducts are 10-oxo-9-hydro-carbamazepine, 9-formylacridine-10(9H)-carboxamide (a result of ring contraction) and various isomers of hydroxylated CBZ. Prolonged irradiation results to accumulation of acridine derivatives, which should lead to an increase of the toxicity of photolyzed CBZ solutions. The obtained results may be important for understanding the fate of tricyclic antidepressants in processes of UVC disinfection and in natural waters under action of sunlight.
Collapse
Affiliation(s)
- Mikhail V Novikov
- Novosibirsk State University, 630090, 2 Pirogova Str., Novosibirsk, Russian Federation; Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, 3 Institutskaya Str., Novosibirsk, Russian Federation
| | - Olga A Snytnikova
- Novosibirsk State University, 630090, 2 Pirogova Str., Novosibirsk, Russian Federation; International Tomography Center SB RAS, 630090, 3a Institutskaya Str., Novosibirsk, Russian Federation
| | - Roman G Fedunov
- Novosibirsk State University, 630090, 2 Pirogova Str., Novosibirsk, Russian Federation; Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, 3 Institutskaya Str., Novosibirsk, Russian Federation
| | - Vadim V Yanshole
- Novosibirsk State University, 630090, 2 Pirogova Str., Novosibirsk, Russian Federation; International Tomography Center SB RAS, 630090, 3a Institutskaya Str., Novosibirsk, Russian Federation
| | - Vyacheslav P Grivin
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, 3 Institutskaya Str., Novosibirsk, Russian Federation
| | - Victor F Plyusnin
- Novosibirsk State University, 630090, 2 Pirogova Str., Novosibirsk, Russian Federation; Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, 3 Institutskaya Str., Novosibirsk, Russian Federation
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, 430072, Wuhan, PR China
| | - Ivan P Pozdnyakov
- Novosibirsk State University, 630090, 2 Pirogova Str., Novosibirsk, Russian Federation; Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090, 3 Institutskaya Str., Novosibirsk, Russian Federation.
| |
Collapse
|
78
|
Ercoli L, Rossetto R, Di Giorgi S, Raffaelli A, Nuti M, Pellegrino E. Effective bioremediation of clarithromycin and diclofenac in wastewater by microbes and Arundo donax L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:77193-77209. [PMID: 37249765 PMCID: PMC10300175 DOI: 10.1007/s11356-023-27660-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
Bioremediation of pharmaceuticals has gained large research efforts, but there is still a need to improve the performance of bioremediation systems by selecting effective organisms. In this study, we characterized the capability to remove clarithromycin (CLA) and diclofenac (DCF) by the bacterium Streptomyces rochei, and the fungi Phanerochaete chrysosporium and Trametes versicolor. The macrolide antibiotic CLA and the non-steroid anti-inflammatory DCF were selected because these are two of the most frequently detected drugs in water bodies. Growth and content of the PhCs and a DCF metabolite (MET) by the energy crop Arundo donax L. were also evaluated under hydroponic conditions. The removal rate (RR) by S. rochei increased from 24 to 40% at 10 and 100 µg CLA L-1, respectively, averaged over incubation times. At 144 h, the RR by P. chrysosporium was 84%, while by T. versicolor was 70 and 45% at 10 and 100 CLA µg L-1. The RR by S. rochei did not exceed 30% at 1 mg DCF L-1 and reached 60% at 10 mg DCF L-1, whereas approached 95% and 63% by P. chrysosporium and T. versicolor, respectively, at both doses. Root biomass and length of A. donax were strongly affected at 100 µg CLA L-1. CLA concentration in roots and shoots increased with the increase of the dose and translocation factor (TF) was about 1. DCF severely affected both shoot fresh weight and root length at the highest dose and concentration in roots and shoots increased with the increase of the dose. DCF concentrations were 16-19 times higher in roots than in shoots, and TF was about 0.1. MET was detected only in roots and its proportion over the parent compound decreased with the increase of the DCF dose. This study highlights the potential contribution of A. donax and the tested microbial inoculants for improving the effectiveness of bioremediation systems for CLA and DCF removal.
Collapse
Affiliation(s)
- Laura Ercoli
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Piazza Martiri Della Liberta 33, 56127, Pisa, Italy
| | - Rudy Rossetto
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Piazza Martiri Della Liberta 33, 56127, Pisa, Italy
| | - Sabrina Di Giorgi
- Ministero Della Salute, Direzione Generale per l'Igiene e la Sicurezza degli Alimenti e della Nutrizione, Rome, Italy
| | - Andrea Raffaelli
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Piazza Martiri Della Liberta 33, 56127, Pisa, Italy
| | - Marco Nuti
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Piazza Martiri Della Liberta 33, 56127, Pisa, Italy
| | - Elisa Pellegrino
- Crop Science Research Center (CSRC), Scuola Superiore Sant'Anna, Piazza Martiri Della Liberta 33, 56127, Pisa, Italy.
| |
Collapse
|
79
|
Santariová M, Zadinová K, Vostrá-Vydrová H, Kolářová MF, Kurhan S, Chaloupková H. Effect of Environmental Concentration of Carbamazepine on the Behaviour and Gene Expression of Laboratory Rats. Animals (Basel) 2023; 13:2097. [PMID: 37443892 DOI: 10.3390/ani13132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carbamazepine (CBZ), an effective drug for epilepsy and other neurological diseases, and its metabolites are one of the most frequently detected substances in the aquatic environment. Although these are doses of very low concentrations, chronic exposure to them can affect the physiological processes of living organisms. This experiment may clarify if carbamazepine, under an environmental and a therapeutic concentration, can affect the behaviour of higher vertebrates, especially mammals, and gene expressions of Ugt1a6 and Ugt1a7 in the brain compared to the control group without exposure to CBZ. Three groups of thirteen rats were randomly formed, and each group was treated either with carbamazepine 12 mg/kg (therapeutic), carbamazepine 0.1 mg/kg (environmental), or by 10% DMSO solution (control). The memory, anxiety, and social behaviour of the rats were assessed by the test Elevated Plus Maze, the novel object recognition test, and the social chamber paradigm. After testing, they were euthanised and brain tissue samples were collected and analysed for mRNA expression of Ugt1a6 and Ugt1a7 genes. The tests did not show significant differences in the behaviour of the rats between the groups. However, there were significant changes at the gene expression level of Ugt1a7.
Collapse
Affiliation(s)
- Milena Santariová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Kateřina Zadinová
- Department of Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Hana Vostrá-Vydrová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Martina Frühauf Kolářová
- Department of Veterinary Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Sebnem Kurhan
- Department of Food Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Helena Chaloupková
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
80
|
Al-Ghoul NE, Albarghouti GA, Qandeel RG. Activated carbon-based pomegranate peels as an efficient removal method for carbamazepine. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:821. [PMID: 37291096 DOI: 10.1007/s10661-023-11393-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Pharmaceutical products found in wastewater and various water systems have become an environmental concern. Various processes were developed to remove various pharmaceuticals, including adsorption processes utilizing activated carbon adsorbents derived from agricultural wastes. The present study investigates the removal of carbamazepine (CBZ) from aqueous solutions by activated carbon (AC) derived from pomegranate peels (PGPs). The prepared AC was characterized by FTIR. The adsorption kinetics of CBZ on AC-PGPs was well represented by the pseudo-second-order kinetic model. Moreover, the data were well explained by Freundlich and Langmuir isotherm models. The effect of various parameters (including pH, temperature, CBZ concentration, the adsorbent dosage, and contact time) on the efficiency of CBZ removal by AC-PGPs was studied. The CBZ removal efficiency was not affected by changes in pH values but was slightly enhanced at the outset of the adsorption experiment with increasing temperature. The highest percentage removal efficiency was 98.0% at 23 °C when the optimum adsorbent dose was determined as 400.0 mg and the CBZ initial concentration was 20.0 mg L-1. The general and potential applicability of this method is presented by using available agricultural wastes as a low-cost source of AC and as an efficient removal method of pharmaceuticals from aqueous solutions.
Collapse
Affiliation(s)
- Nihal Esam Al-Ghoul
- Department of Chemistry, Faculty of Science, Birzeit University, Birzeit, PO 14, Ramallah, Palestine
| | - Ghassan Awad Albarghouti
- Department of Chemistry, Faculty of Science, Birzeit University, Birzeit, PO 14, Ramallah, Palestine.
| | - Rozan Ghaneam Qandeel
- Department of Chemistry, Faculty of Science, Birzeit University, Birzeit, PO 14, Ramallah, Palestine
| |
Collapse
|
81
|
Wang YF, Cai TG, Liu ZL, Cui HL, Zhu D, Qiao M. A new insight into the potential drivers of antibiotic resistance gene enrichment in the collembolan gut association with antibiotic and non-antibiotic agents. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131133. [PMID: 36889073 DOI: 10.1016/j.jhazmat.2023.131133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Effects of non-antibiotic pharmaceuticals on antibiotic resistance genes (ARGs) in soil ecosystem are still unclear. In this study, we explored the microbial community and ARGs variations in the gut of the model soil collembolan Folsomia candida following soil antiepileptic drug carbamazepine (CBZ) contamination, while comparing with antibiotic erythromycin (ETM) exposure. Results showed that, CBZ and ETM all significantly influenced ARGs diversity and composition in the soil and collembolan gut, increasing the relative abundance of ARGs. However, unlike ETM, which influences ARGs via bacterial communities, exposure to CBZ may have primarily facilitated enrichment of ARGs in gut through mobile genetic elements (MGEs). Although soil CBZ contamination did not pose an effect on the gut fungal community of collembolans, it increased the relative abundance of animal fungal pathogens contained therein. Soil ETM and CBZ exposure both significantly increased the relative abundance of Gammaproteobacteria in the collembolan gut, which may be used to indicate soil contamination. Together, our results provide a fresh perspective for the potential drivers of non-antibiotic drugs on ARG changes based on the actual soil environment, revealing the potential ecological risk of CBZ on soil ecosystems involving ARGs dissemination and pathogens enrichment.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
82
|
Ding T, Huang X, Wei L, Li J. Size-dependent effect of microplastics on toxicity and fate of diclofenac in two algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131071. [PMID: 36889078 DOI: 10.1016/j.jhazmat.2023.131071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are frequently detected in natural waters and usually acted as vectors for other pollutants, leading to possible threats to aquatic organisms. This study investigated the impact of polystyrene MPs (PS MPs) with different diameters on two algae Phaeodactylum tricornutum and Euglena sp., and the combined toxicity of PS MPs and diclofenac (DCF) in two algae was also studied. Significant inhibition of P. tricornutum was observed after 1 d exposure of 0.03 µm MPs at 1 mg L-1, whereas the decreased growth rate of Euglena sp. was recovered after 2 d exposure. However, their toxicity decreased in the presence of MPs with larger diameters. The oxidative stress contributed a major for the size-dependent toxicity of PS MPs in P. tricornutum, while in Euglena sp. the toxicity was mainly caused by a combination of oxidative damage and hetero-aggregation. Also, PS MPs alleviated the toxicity of DCF in P. tricornutum and the DCF toxicity continually decreased as their diameter increased, whereas the DCF at environmentally concentration could weaken the toxicity of MPs in Euglena sp. Moreover, the Euglena sp. revealed a higher removal for DCF, especially in the presence of MPs, but the higher accumulation and bioaccumulation factors (BCFs) indicated a possible ecological risk in natural waters. The present study explored discrepancy on the size-dependent toxicity and removal of MPs associated with DCF in two algae, providing valuable data for risk assessment and pollution control of MPs associated with DCF.
Collapse
Affiliation(s)
- Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaotong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Liyan Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
83
|
Pronschinske MA, Corsi SR, Hockings C. Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques. PLoS One 2023; 18:e0286571. [PMID: 37267346 DOI: 10.1371/journal.pone.0286571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
In an investigation of pharmaceutical contamination in the Lac du Flambeau Chain of Lakes (hereafter referred to as "the Chain"), few contaminants were detected; only eight pharmaceuticals and one pesticide were identified among the 110 pharmaceuticals and other organic contaminants monitored in surface water samples. This study, conducted in cooperation with the Lac du Flambeau Tribe's Water Resource Program, investigated these organic contaminants and potential biological effects in channels connecting lakes throughout the Chain, including the Moss Lake Outlet site, adjacent to the wastewater treatment plant lagoon. Of the 6 sites monitored and 24 samples analyzed, sample concentrations and contaminant detection frequencies were greatest at the Moss Lake Outlet site; however, the concentrations and detection frequencies of this study were comparable to other pharmaceutical investigations in basins with similar characteristics. Because established water-quality benchmarks do not exist for the pharmaceuticals detected in this study, alternative screening-level water-quality benchmarks, developed using two U.S. Environmental Protection Agency toxicological resources (ToxCast database and ECOTOX knowledgebase), were used to estimate potential biological effects associated with the observed contaminant concentrations. Two contaminants (caffeine and thiabendazole) exceeded the prioritization threshold according to ToxCast alternative benchmarks, and four contaminants (acetaminophen, atrazine, caffeine, and carbamazepine) exceeded the prioritization threshold according to ECOTOX alternative benchmarks. Atrazine, an herbicide, was the most frequently detected contaminant (79% of samples), and it exhibited the strongest potential for biological effects due to its high estimated potency. Insufficient toxicological information within ToxCast and ECOTOX for gabapentin and methocarbamol (which had the two greatest concentrations in this study) precluded alternative benchmark development. This data gap presents unknown potential environmental impacts. Future research examining the biological effects elicited by these two contaminants as well as the others detected in this study would further elucidate the ecological relevance of the water chemistry results generated though this investigation.
Collapse
Affiliation(s)
- Matthew A Pronschinske
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin, United States of America
| | - Steven R Corsi
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin, United States of America
| | - Celeste Hockings
- Water Resource Program, Lac du Flambeau Band of Lake Superior Chippewa Indians, Lac du Flambeau, Wisconsin, United States of America
| |
Collapse
|
84
|
Kasonga TK, Kamika I, Ngole-Jeme VM. Ligninolytic enzyme activity and removal efficiency of pharmaceuticals in a water matrix by fungus Rhizopus sp. Isolated from cassava. ENVIRONMENTAL TECHNOLOGY 2023; 44:2157-2170. [PMID: 35018877 DOI: 10.1080/09593330.2021.2024885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/15/2021] [Indexed: 05/30/2023]
Abstract
Residual amounts of pharmaceutical compounds (PhCs) and by-products are continually released into surface water with effluents from conventional wastewater treatment plants (WWTPs). This study evaluated the ability of fungal isolate to remove selected PhCs [carbamazepine (CBZ), diclofenac (DCF) and ibuprofen (IBP)] from wastewater. The fungus used was Rhizopus sp. which was isolated from tuberous roots of cassava (Manihot esculenta). The isolate exhibited an important removal efficiency up to 100% and this was linked to ligninolytic enzymatic activity for lignin peroxidase (15.29 ± 2.69U/L) and manganese peroxidase (85.22 ± 4.26U/L), except laccase. This activity was optimum on day 9 of treatment. PhC metabolites were identified during the experiment revealing the existence of a biotransformation process catalysed by the isolated fungus. The disappearance of PhCs was attributed to their biosorption and biotransformation. However, it was not possible to establish a relationship between the ligninolytic enzymatic activity and the removal efficiency, which leads to the conclusion that there are other fungal metabolites which also play an important role in the biotransformation and biodegradation of the selected PhCs.
Collapse
Affiliation(s)
- Teddy Kabeya Kasonga
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| | - Ilunga Kamika
- Institute for Nanotechnology and Water Sustainability; School of Science; College of Science, Engineering and Technology, University of South Africa, Roodepoort, South Africa
| | - Veronica M Ngole-Jeme
- Department of Environmental Sciences, School of Environmental Science, College of Agriculture and Environmental Sciences, Faculty of Sciences, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
85
|
Li X, Xue X, Jia J, Zou X, Guan Y, Zhu L, Wang Z. Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121457. [PMID: 36958653 DOI: 10.1016/j.envpol.2023.121457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Overuse of antimicrobial agents are generally considered to be a key factor in the occurrence of antibiotic resistance bacteria (ARB). Nevertheless, it is unclear whether ARB can be induced by non-antibiotic chemicals such as nonsteroidal anti-inflammatory drug (NSAID). Thus, the objective of this study is to investigate whether NSAID diclofenac (DCF) promote the emergence of antibiotic resistance in Escherichia coli K12 MG1655. Our results suggested that DCF induced the occurrence of ARB which showed hereditary stability of resistance. Meanwhile, gene variation was identified on chromosome of the ARB, and DCF can cause bacterial oxidative stress and SOS response. Subsequently, transcriptional levels of antioxidant (soxS, sodA, sodC, gor, katG, ahpF) and SOS (recA, lexA, uvrA, uvrB, ruvA, ruvB, dinB, umuC, polB) system-related genes were enhanced. However, the expression of related genes cannot be increased in high-dosage treatment compared with low-dosage samples because of cytotoxicity and cellular damage. Simultaneously, high-dosage DCF decreased the mutation frequency but enhanced the resistance of mutants. Our findings expand our knowledge of the promoting effect on the emergence of ARB caused by DCF. More attention and regulations should be given to these potential ecological and health risks for widespread DCF.
Collapse
Affiliation(s)
- Xiangju Li
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Xue Xue
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Jia Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaocui Zou
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Yongjing Guan
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Zaizhao Wang
- Department of Aquaculture, College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
86
|
Ahmad FA. The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon 2023; 9:e16449. [PMID: 37292321 PMCID: PMC10245173 DOI: 10.1016/j.heliyon.2023.e16449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The occurrence of residual pharmaceuticals in the aquatic environment poses major toxicological impacts and adds to the increasing pressure on water resources. Many countries are already suffering from water scarcity, and with the burdening costs of water and wastewater treatment, the race towards innovative sustainable strategies for pharmaceutical remediation is ongoing. Out of the available treatment methods, adsorption proved to be a promising, environmentally friendly technique, particularly when efficient waste-based adsorbents are produced from agricultural residues, thus maximizing the value of wastes, minimizing production costs, and saving natural resources from depletion. Among the residual pharmaceuticals, ibuprofen and carbamazepine are heavily consumed and highly occurring in the environment. This paper aims to review the most recent literature on the application of agro-waste-based adsorbents as sustainable alternatives for the removal of ibuprofen and carbamazepine from contaminated waters. Highlights on the major mechanisms implicated in the adsorption of ibuprofen and carbamazepine are presented, and light is shed on multiple operational parameters that hold a key role in the adsorption process. This review also highlights the effects of different production parameters on adsorption efficiency and discusses many limitations currently encountered. Finally, an analysis is included to compare the efficiency of agro-waste-based adsorbents relative to other green and synthetic adsorbents.
Collapse
|
87
|
Upadhyay SK, Rani N, Kumar V, Mythili R, Jain D. A review on simultaneous heavy metal removal and organo-contaminants degradation by potential microbes: Current findings and future outlook. Microbiol Res 2023; 273:127419. [PMID: 37276759 DOI: 10.1016/j.micres.2023.127419] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Industrial processes result in the production of heavy metals, dyes, pesticides, polyaromatic hydrocarbons (PAHs), pharmaceuticals, micropollutants, and PFAS (per- and polyfluorinated substances). Heavy metals are currently a significant problem in drinking water and other natural water bodies, including soil, which has an adverse impact on the environment as a whole. The heavy metal is highly poisonous, carcinogenic, mutagenic, and teratogenic to humans as well as other animals. Multiple polluted sites, including terrestrial and aquatic ecosystems, have been observed to co-occur with heavy metals and organo-pollutants. Pesticides and heavy metals can be degraded and removed concurrently from various metals and pesticide-contaminated matrixes due to microbial processes that include a variety of bacteria, both aerobic and anaerobic, as well as fungi. Numerous studies have examined the removal of heavy metals and organic-pollutants from different types of systems, but none of them have addressed the removal of these co-occurring heavy metals and organic pollutants and the use of microbes to do so. Therefore, the main focus of this review is on the recent developments in the concurrent microbial degradation of organo-pollutants and heavy metal removal. The limitations related to the simultaneous removal and degradation of heavy metals and organo-pollutant pollutants have also been taken into account.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India.
| | - Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Vinay Kumar
- Divisional Forest Office, Social Forestry Division Fatehpur, Uttar Pradesh, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College, Chennai 600077, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| |
Collapse
|
88
|
Zhang Y, Chen Z, Shi Y, Ma Q, Mao H, Li Y, Wang H, Zhang Y. Revealing the sorption mechanisms of carbamazepine on pristine and aged microplastics with extended DLVO theory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162480. [PMID: 36858211 DOI: 10.1016/j.scitotenv.2023.162480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The co-occurrence of microplastics (MPs) and organic contaminants in aquatic environment can complexify their environmental fate via sorption interactions, especially when the properties of MPs can even vary due to the aging effect. Thus, quantitatively clarifying the sorption mechanisms is required to understand their environmental impacts. This study selected popularly occurring carbamazepine (CBZ) and four types of MPs as model systems, including polyethylene, polyvinyl chloride, polyethylene terephthalate and polystyrene in their pristine and aged forms, to investigate the sorption isotherms, kinetics, and desorption. The variation of MPs during the aging process were analyzed with scanning electron microscopy, contact angle, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. It was found that the aging process elevated the sorption capacity and intensified the desorption hysteresis of CBZ on MPs via increasing the surface roughness, decreasing the particle size, and altering the surficial chemistry of all MPs. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was innovatively applied hereby to calculate the interfacial free energies and revealed that the hydrophobic interaction was significantly lessened after aging for all MPs with the slightly enhanced van der Waals interaction. Then the total interfacial free energies were dropped down for all MPs, which resulted in their declined specific sorption capacity. This work reveals the sorption mechanisms of CBZ on pristine and aged MPs with XDLVO and provides a useful reference to study the sorption of other neutral organics onto MPs.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zihao Chen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yuexiao Shi
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Qing Ma
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Haoran Mao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hao Wang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| |
Collapse
|
89
|
Huang W, Huang Y, Tang B, Fu Y, Guo C, Zhang J. Electrochemical oxidation of carbamazepine in water using enhanced blue TiO 2 nanotube arrays anode on porous titanium substrate. CHEMOSPHERE 2023; 322:138193. [PMID: 36812998 DOI: 10.1016/j.chemosphere.2023.138193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, a blue TiO2 nanotube arrays anode on porous titanium substrate (Ti-porous/blue TiO2 NTA) was successfully fabricated by facile anodization and in situ reduction, and was used to investigate the electrochemical oxidation of carbamazepine (CBZ) in aqueous solution. The surface morphology and crystalline phase of the fabricated anode were characterized by SEM, XRD, Raman spectroscopy and XPS, and the electrochemical analysis confirmed that blue TiO2 NTA on Ti-porous substrate had larger electroactive surface area, better electrochemical performance and higher ⋅OH generation ability than that on Ti-plate substrate. The removal efficiency of 20 mg L-1 CBZ in 0.05 M Na2SO4 solution reached 99.75% at 8 mA cm-2 after 60 min electrochemical oxidation, and the rate constant was 0.101 min-1 with low energy consumption. EPR analysis and free radical sacrificing experiments showed that ⋅OH played a key role in the electrochemical oxidation. The possible oxidation pathways of CBZ were proposed through the identification of degradation products, and the main reactions may involve deamidization, oxidization, hydroxylation and ring-opening. Compared with Ti-plate/blue TiO2 NTA anode, Ti-porous/blue TiO2 NTA anode displayed excellent stability and reusability, and is promising to be used in the electrochemical oxidation of CBZ in wastewater.
Collapse
Affiliation(s)
- Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Yue Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environment Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing Engineering Technology Research Center of Import and Export Food Safety, Chongqing, 400020, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Chunhui Guo
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
90
|
Yang J, Zhang H, Tian K, Zhang Y, Zhang J. Novel lanthanum-iron oxide nanoparticles alleviate the inhibition of anaerobic digestion by carbamazepine through adsorption and bioaugmentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117975. [PMID: 37084648 DOI: 10.1016/j.jenvman.2023.117975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Several reports have shown that pharmaceuticals and personal care products (PPCPs) have some negative effects on anaerobic digestion (AD), yet there are no convenient and efficient strategies for mitigating the adverse influences. The typical PPCPs of carbamazepine have a strong negative effect on lactic acid AD process. Therefore, in this work, novel lanthanum-iron oxide (LaFeO3) nanoparticles (NPs) were used for adsorption and bioaugmentation to weak the negative effects of carbamazepine. The adsorption removal of carbamazepine increased from 0 to 44.30% as the dosage of LaFeO3 NPs was increased from 0 to 200 mg/L, providing the necessary prerequisites for bioaugmentation. Adsorption reduced the probability of direct contact between carbamazepine and anaerobes, partly alleviating the inhibition of carbamazepine on microbes. The highest methane (CH4) yield induced by LaFeO3 NPs (25 mg/L) was 226.09 mL/g lactic acid, increasing by 30.06% compared to the control yield with a recovery to 89.09% of the normal CH4 yield. Despite the ability of LaFeO3 NPs to restore normal AD performance, the biodegradation rate of carbamazepine remained below 10% due to its anti-biodegradability. Bioaugmentation was primarily reflected in the enhanced bioavailability of dissolved organic matter, while the intracellular LaFeO3 NPs promoted coenzyme F420 activity through binding to humic substances. Under the mediation of LaFeO3, a direct interspecies electron transfer system with Longilinea and Methanosaeta as functional bacteria was successfully constructed and the corresponding electron transfer rate was accelerated from 0.021 s-1 to 0.033 s-1. LaFeO3 NPs eventually recovered AD performance under carbamazepine stress in an adsorption and bioaugmentation manner.
Collapse
Affiliation(s)
- Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Huiwen Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Yun Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|
91
|
Antiñolo Bermúdez L, Martín-Luis A, Leyva Díaz JC, Muñío Martínez MDM, Poyatos Capilla JM. Kinetic Effects of Ciprofloxacin, Carbamazepine, and Bisphenol on Biomass in Membrane Bioreactor System at Low Temperatures to Treat Urban Wastewater. MEMBRANES 2023; 13:419. [PMID: 37103846 PMCID: PMC10145681 DOI: 10.3390/membranes13040419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
This study analysed the kinetic results in the presence and absence of micropollutants (bisphenol A, carbamazepine, ciprofloxacin, and the mixture of the three compounds) obtained with respirometric tests with mixed liquor and heterotrophic biomass in a membrane bioreactor (MBR) working for two different hydraulic retention times (12-18 h) and under low-temperature conditions (5-8 °C). Independently of the temperature, the organic substrate was biodegraded faster over a longer hydraulic retention time (HRT) with similar doping, which was probably due to the longer contact time between the substrate and microorganisms within the bioreactor. However, low values of temperature negatively affected the net heterotrophic biomass growth rate, with reductions from 35.03 to 43.66% in phase 1 (12 h HRT) and from 37.18 to 42.77% in phase 2 (18 h HRT). The combined effect of the pharmaceuticals did not worsen the biomass yield compared with the effects caused individually.
Collapse
Affiliation(s)
- Laura Antiñolo Bermúdez
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Antonio Martín-Luis
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Juan Carlos Leyva Díaz
- Department of Civil Engineering, Institute of Water Research, University of Granada, 18071 Granada, Spain
| | | | | |
Collapse
|
92
|
Benítez-Rico A, Pérez-Martínez A, Muñóz-López BI, Martino-Roaro L, Alegría-Baños JA, Vergara-Castañeda A, Islas-García A. Medical Household Waste as a Potential Environmental Hazard: An Ecological and Epidemiological Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5366. [PMID: 37047980 PMCID: PMC10094346 DOI: 10.3390/ijerph20075366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Nowadays, the contamination caused by emerging pollutants is a global concern due to the lack of scientific evidence to demonstrate the risk or toxicity to humans due to the presence of pharmaceutical residues in the environment. This study aimed to identify and describe the disposal practices of unused and unwanted medications, as well as to analyze and identify the most frequent drugs determined on water bodies adjacent to the biggest urban population in Mexico. A two-phase study with an epidemiological and an ecological assessment was performed. The epidemiological phase was carried out with a descriptive cross-sectional study among citizens from Mexico City and the metropolitan area using an electronic survey applied to 719 subjects aimed to assess practices in which pharmaceutical products are disposed. The ecological phase included a review of scientific reports. The results show that nearly 83.5% of those surveyed use inappropriate practices for disposal medicines, the main ones are through the municipal dump or directly in the drain. The ecological approach was carried out by a systematic literature review of original reports published between 2013 to 2023; information about the class of drugs, active substance, environmental compartments, location, and concentration was extracted and presented. Fifty-one different types of pharmaceutical residues were detected in wastewater in Mexico City in the last decade. The results of this study can contribute to the application of public policies for waste management authorities to mitigate the socio-environmental risks due to the inappropriate disposal of medicines.
Collapse
Affiliation(s)
- Adriana Benítez-Rico
- Grupo de Investigación Desarrollo e Innovación en Ingeniería de Procesos y Nuevos Materiales, Vicerrectoría de Investigación, Universidad La Salle México, Mexico City 06140, Mexico;
| | - Arizbeth Pérez-Martínez
- Grupo de Investigación Desarrollo e Innovación en Ciencia y Tecnología Ambiental Aplicada, Vicerrectoría de Investigación, Universidad La Salle México, Mexico City 06140, Mexico; (A.P.-M.); (A.I.-G.)
| | - Bryan Isaac Muñóz-López
- Programa de Maestría en Farmacología Clínica, Facultad de Ciencias Químicas, Universidad La Salle México, Mexico City 06140, Mexico;
- Grupo de Investigación Desarrollo e Innovación en Promoción y Educación para la Salud y Alimentación, Vicerrectoría de Investigación, Universidad La Salle México, Mexico City 06140, Mexico;
| | - Laura Martino-Roaro
- Campus Ciudad de México, Centro Universitario Incarnate Word, Mexico City 03100, Mexico;
| | - Jorge Adan Alegría-Baños
- Grupo de Investigación Desarrollo e Innovación en Promoción y Educación para la Salud y Alimentación, Vicerrectoría de Investigación, Universidad La Salle México, Mexico City 06140, Mexico;
- Centro Oncológico Médica Sur, Mexico City 14050, Mexico
| | - Arely Vergara-Castañeda
- Grupo de Investigación Desarrollo e Innovación en Promoción y Educación para la Salud y Alimentación, Vicerrectoría de Investigación, Universidad La Salle México, Mexico City 06140, Mexico;
| | - Alejandro Islas-García
- Grupo de Investigación Desarrollo e Innovación en Ciencia y Tecnología Ambiental Aplicada, Vicerrectoría de Investigación, Universidad La Salle México, Mexico City 06140, Mexico; (A.P.-M.); (A.I.-G.)
| |
Collapse
|
93
|
Duarte JAP, Ribeiro AKN, de Carvalho P, Bortolini JC, Ostroski IC. Emerging contaminants in the aquatic environment: phytoplankton structure in the presence of sulfamethoxazole and diclofenac. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46604-46617. [PMID: 36719587 PMCID: PMC9888349 DOI: 10.1007/s11356-023-25589-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Chemicals from anthropogenic activities such as domestic sewage, pesticide leaching, and improper chemical disposal have caused groundwater contamination. The presence of these emerging contaminants in the aquatic environment can change water quality and biota composition. Thus, this study investigates the effect of two emerging contaminants, anti-inflammatory drug diclofenac (DCF) and antibiotic sulfamethoxazole (SMX), on the aquatic environment, evaluating the phytoplankton community structure. A microcosm experiment was conducted with 16 sampling units, each one with 500 mL of water sample containing phytoplankton exposed to these drugs at different concentrations (0.1, 0.5, and 1.0 mg L-1). The experiment lasted 15 days, and samples were collected on days 0, 3, 5, 7, and 14 to evaluate the phytoplankton community, the concentrations of the drugs, and the nutrients in the samples. Six phytoplankton groups were identified, and diatoms and green algae were the most diverse and abundant groups. For the entire community, we identified differences between the days of the experiment, varying in the diversity and density of organisms, but not between the concentrations of the two drugs. Evaluating the groups separately, we identified differences in the abundance of cyanobacteria for the treatment with diclofenac and desmids for the treatment with sulfamethoxazole. We demonstrated that the presence of pharmaceuticals in freshwater ecosystems can somehow affect the phytoplankton community, especially the diversity and abundance of cyanobacteria and desmids. Therefore, our study indicates the importance of evaluating the presence of pharmaceuticals in freshwater ecosystems and their influence on aquatic organisms, as well as pharmaceuticals may be changing the structure of the aquatic environment.
Collapse
Affiliation(s)
| | | | - Priscilla de Carvalho
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, 74690-900, Brazil
| | | | | |
Collapse
|
94
|
Jing J, Wang X, Zhou M. Electro-enhanced activation of peroxymonosulfate by a novel perovskite-Ti 4O 7 composite anode with ultra-high efficiency and low energy consumption: The generation and dominant role of singlet oxygen. WATER RESEARCH 2023; 232:119682. [PMID: 36746031 DOI: 10.1016/j.watres.2023.119682] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Traditional free radicals-dominated electrochemical advanced oxidation processes (EAOPs) and sulfate radical-based advanced oxidation processes (SR-AOPs) are limited by pH dependence and weak reusability, respectively. To overcome these shortcomings, electro-enhanced activation of peroxymonosulfate (PMS) on a novel perovskite-Ti4O7 composite anode (E-PTi-PMS system) was proposed. It achieved an ultra-efficient removal rate (k = 0.467 min-1) of carbamazepine (CBZ), approximately 36 and 8 times of the E-PTi and PTi-PMS systems. Singlet oxygen (1O2) played a dominant role in the E-PTi-PMS system and transformed from SO4•-, O2•-, •OH and oxygen vacancy (Vo••). The electric field expedited the decomposition and utilization of PMS, promoting the generation of radicals and expanding the formation pathway of 1O2. The E-PTi-PMS system presented superiorities over wide pH (3-10) and less dosage of PMS (1 mM), expanding the pH adaptability and reducing the cost of EAOPs. Simultaneously, the excellent reusability (30 cycles) solved the bottleneck of recycling catalysts in SR-AOPs via an ultra-low energy (0.025 kWh/m3-log). This work provides a promising alternative towards high-efficiency and low-cost treatment of polluted waters.
Collapse
Affiliation(s)
- Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
95
|
Xie CT, Tan ML, Li YW, Chen QL, Shen YJ, Liu ZH. Chronic exposure to environmentally relevant concentrations of carbamazepine interferes with anxiety response of adult female zebrafish through GABA /5-HT pathway and HPI axis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109574. [PMID: 36781090 DOI: 10.1016/j.cbpc.2023.109574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Carbamazepine (CBZ) is one of the widely distributed pharmaceutical residues in aquatic environments, yet few researches have addressed its chronic effect on the anxiety of fish, and the mechanisms possibly involved remained elusive. In this study, adult female zebrafish (Danio rerio) were exposed to environmental relevant concentrations of CBZ (CBZ-low, 10 μg/L; CBZ-high, 100 μg/L) for 28 days. After exposure, CBZ-high didn't affect the anxiety of fish. However, the onset time to the higher half of the tank was delayed and the total duration in the lower half of the tank was increased in CBZ-low fish, suggesting an increased anxiety. Further investigation indicated that CBZ-low significantly decreased the gamma-aminobutyric acid (GABA) level in the brain, while increased the serotonin (5-HT) level in the brain and cortisol level in plasma. Accordingly, the mRNA levels of genes in GABA (gad2, abat, gabrb2, gabrg2, gria1a and slc12a2) pathway and HPI (crha, actha, pc1 and pc2) axis were also altered. Despite the upregulation of tph2 was consistent with increased 5-HT level in the brain, significantly downregulated htr1aa and htr1b may indicate attenuated 5-HT potency. Although CBZ-high significantly reduced GABA level in the brain and increased cortisol level in plasma, the effects were dramatically alleviated than that of CBZ-low. Consistently, the expression of genes in HPI (crha, actha, pc1 and pc2) axis and GABA (gad2 and abat) pathway were also altered by CBZ-high, probably due to inconspicuous anxiety response of CBZ-high. Briefly, our data suggested that low concentration of CBZ disrupted zebrafish anxiety by interfering with neurotransmission and endocrine system, thereby bringing about adverse ecological consequences.
Collapse
Affiliation(s)
- Cheng-Ting Xie
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mei-Ling Tan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
96
|
Wang Y, Chen Y, Chen Y, Luo W, Liu Y. Induction of clastogenesis and gene mutations by carbamazepine (at its therapeutically effective serum levels) in mammalian cells and the dependence on human CYP2B6 enzyme activity. Arch Toxicol 2023; 97:1753-1764. [PMID: 36995427 DOI: 10.1007/s00204-023-03489-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Carbamazepine (CBZ, an antiepileptic) is metabolized by multiple CYP enzymes to its epoxide and hydroxides; however, whether it is genotoxic remains unclear. In this study, molecular docking (CBZ to CYPs) and cytogenotoxic toxicity assays were employed to investigate the activation of CBZ for mutagenic effects, in various mammalian cell models. Docking results indicated that CBZ was valid as a substrate of human CYP2B6 and 2E1, while not for CYP1A1, 1A2, 1B1 or 3A4. In the Chinese hamster (V79) cell line and its derivatives genetically engineered for the expression of human CYP1A1, 1A2, 1B1, 2E1 or 3A4 CBZ (2.5 ~ 40 μM) did not induce micronucleus, while in human CYP2B6-expressing cells CBZ significantly induced micronucleus formation. In a human hepatoma C3A cell line, which endogenously expressed CYP2B6 twofold higher than in HepG2 cells, CBZ induced micronucleus potently, which was blocked by 1-aminobenzotriazole (inhibitor of CYPs) and ticlopidine (specific CYP2B6 inhibitor). In HepG2 cells CBZ did not induce micronucleus; however, pretreatment of the cells with CICTO (CYP2B6 inducer) led to micronucleus formation by CBZ, while rifampicin (CYP3A4 inducer) or PCB126 (CYP1A inducer) did not change the negative results. Immunofluorescent assay showed that CBZ selectively induced centromere-free micronucleus. Moreover, CBZ induced double-strand DNA breaks (γ-H2AX elevation, by Western blot) and PIG-A gene mutations (by flowcytometry) in C3A (threshold being 5 μM, lower than its therapeutic serum concentrations, 17 ~ 51 μM), with no effects in HepG2 cells. Clearly, CBZ may induce clastogenesis and gene mutations at its therapeutic concentrations, human CYP2B6 being a major activating enzyme.
Collapse
|
97
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
98
|
Nozaki K, Tanoue R, Kunisue T, Tue NM, Fujii S, Sudo N, Isobe T, Nakayama K, Sudaryanto A, Subramanian A, Bulbule KA, Parthasarathy P, Tuyen LH, Viet PH, Kondo M, Tanabe S, Nomiyama K. Pharmaceuticals and personal care products (PPCPs) in surface water and fish from three Asian countries: Species-specific bioaccumulation and potential ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161258. [PMID: 36587684 DOI: 10.1016/j.scitotenv.2022.161258] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In Asian developing countries, undeveloped and ineffective sewer systems are causing surface water pollution by a lot of contaminants, especially pharmaceuticals and personal care products (PPCPs). Therefore, the risks for freshwater fauna need to be assessed. The present study aimed at: i) elucidating the contamination status; ii) evaluating the bioaccumulation; and iii) assessing the potential risks of PPCP residues in surface water and freshwater fish from three Asian countries. We measured 43 PPCPs in the plasma of several fish species as well as ambient water samples collected from India (Chennai and Bengaluru), Indonesia (Jakarta and Tangerang), and Vietnam (Hanoi and Hoa Binh). In addition, the validity of the existing fish blood-water partitioning model based solely on the lipophilicity of chemicals is assessed for ionizable and readily metabolizable PPCPs. When comparing bioaccumulation factors calculated from the PPCP concentrations measured in the fish and water (BAFmeasured) with bioconcentration factors predicted from their pH-dependent octanol-water partition coefficient (BCFpredicted), close values (within an order of magnitude) were observed for 58-91 % of the detected compounds. Nevertheless, up to 110 times higher plasma BAFmeasured than the BCFpredicted were found for the antihistamine chlorpheniramine in tilapia but not in other fish species. The plasma BAFmeasured values of the compound were significantly different in the three fish species (tilapia > carp > catfish), possibly due to species-specific differences in toxicokinetics (e.g., plasma protein binding and hepatic metabolism). Results of potential risk evaluation based on the PPCP concentrations measured in the fish plasma suggested that chlorpheniramine, triclosan, haloperidol, triclocarban, diclofenac, and diphenhydramine can pose potential adverse effects on wild fish. Results of potential risk evaluation based on the PPCP concentrations measured in the surface water indicated high ecological risks of carbamazepine, sulfamethoxazole, erythromycin, and triclosan on Asian freshwater ecosystems.
Collapse
Affiliation(s)
- Kazusa Nozaki
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Sadahiko Fujii
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nao Sudo
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Tomohiko Isobe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305 8506, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Building 820, Puspiptek Serpong, South Tangerang, Banten, Indonesia
| | - Annamalai Subramanian
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Keshav A Bulbule
- KLE Society's S. Nijalingappa College, 2nd Block, Rajajinagar, Bangaluru 560 010, India
| | - Peethambaram Parthasarathy
- E-Parisaraa Pvt. Ltd., Plot No. 30-P3, Karnataka Industrial Area Development Board, Dobaspet Industrial Area, Bengaluru 562 111, India
| | - Le Huu Tuyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi 759 6595, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| |
Collapse
|
99
|
Asghar A, Hammad M, Kerpen K, Niemann F, Al-Kamal AK, Segets D, Wiggers H, Schmidt TC. Ozonation of carbamazepine in the presence of sulfur-dopped graphene: Effect of process parameters and formation of main transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161079. [PMID: 36565888 DOI: 10.1016/j.scitotenv.2022.161079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The stability of graphene structure in sulfur-doped graphene catalyst is demonstrated to be a key aspect during the ozonation process. Enhancing the stability of the sulfur-doped graphene structure is therefore important to improve its catalytic activity during the ozonation process. However, this has remained a challenge so far. Therefore, we adopted a low-energy microwave plasma technique to synthesize a high purity sulfur-doped graphene (S ⎯ Gr) catalyst for the ozonation process. The effect of S ⎯ Gr in the ozonation process was tested using carbamazepine (CBZ; 0.05 mM) as a probe compound. A complete CBZ removal was obtained at an ozone concentration of 0.08 mM while in comparison with single O3, ∼1.5 and 2.5 times decrease in the formation of the two important intermediate transformation products i.e., BQM (1-(2-benzaldehyde) - 4-hydroxy (1H, 3H)-quinazoline-2-one) and BQD (1-(2-benzaldehyde) - (1H, 3H)-quinazoline-2, 4-dione) was observed. Radical scavenging experiments confirmed the formation of HO. The XPS results showed that the activity of S ⎯ Gr towards the formation of HO was positively related to S-bearing carbon atoms at the edge of the graphene structure. Therefore, the addition of S ⎯ Gr is directly linked with the formation of HO, which further contributed to the improved elimination of intermediate transformation products. With a low sulfur loss of 1 %, the microwave plasma synthesized S ⎯ Gr catalyst remained stable during ozonation, implying its feasibility in practical application.
Collapse
Affiliation(s)
- Anam Asghar
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Mohaned Hammad
- Institute for Combustion and Gas Dynamics - Particle Science and Technology (IVG-PST), University of Duisburg-Essen, Duisburg, Germany
| | - Klaus Kerpen
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Felix Niemann
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Ahmed K Al-Kamal
- Institute for Combustion and Gas Dynamics - Reactive Fluids (IVG-RF), University of Duisburg-Essen, Duisburg, Germany
| | - Doris Segets
- Institute for Combustion and Gas Dynamics - Particle Science and Technology (IVG-PST), University of Duisburg-Essen, Duisburg, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Hartmut Wiggers
- Institute for Combustion and Gas Dynamics - Reactive Fluids (IVG-RF), University of Duisburg-Essen, Duisburg, Germany; Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141 Essen, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
100
|
Badiger SM, Nidheesh PV. Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:1329-1348. [PMID: 37001152 DOI: 10.2166/wst.2023.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, biochar (BC) has been increasingly used as a catalyst for the degradation of 'emerging pollutants' (EPs). Pharmaceuticals and personal care products (PPCPs), which come under 'EPs', can be harmful to the aquatic ecosystem despite being present in very low concentrations (ng/L-μg/L). Advanced oxidation processes (AOPs), which produce sulfate radical (SR-AOPs), show a great potential to degrade PPCPs effectively from wastewater. It is mainly due to the higher stability, long half-lives and better non-selectivity of SO4• - compared with AOPs with •OH generation. Furthermore, research focus is now given on AOPs coupled with BC-supported catalyst to enhance the degradation of PPCPs because of quicker generation of radicals (•OH, SO4•-) by the activation of persulfate (PS) and peroxymonosulfate (PMS). This article sheds light on the catalytic ability of BC after its physical and chemical modifications such as acid/alkali treatment and metal doping. The role of persistent free radicals (PFRs) in the BC for effective removal of PPCPs has been elaborated. Its potential applications in synthetic as well as real wastewater have also been discussed.
Collapse
Affiliation(s)
- Sourabh M Badiger
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India E-mail: ; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|