51
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
52
|
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency of phagocyte function due to defective NADPH oxidase (phox). Compared with the common types of CYBB/gp91phox, NCF1/p47phox, and CYBA/p22phox deficiency, NCF4/p40phox deficiency is a mild and atypical form of CGD without invasive bacterial or fungal infections. It can be diagnosed using serum-opsonized E.coli as a stimulus in dihydrorhodamine (DHR) assay. Patients with CYBC1/Eros deficiency, a new and rare form of CGD, present as loss of respiratory burst and gp91phox expression in phagocytes. Neutrophils from patients with CGD are deficient in neutrophil extracellular traps (NETosis), autophagy, and apoptosis. The hyper-activation of NF-ĸB and inflammasome in CGD phagocytes also lead to long-lasting production of pro-inflammatory cytokines and inflammatory manifestations, such as granuloma formation and inflammatory bowel disease-like colitis. Patients with CGD and X-linked female carriers also have a higher incidence of autoimmune diseases. The implementation of antimicrobial, anti-fungal, and interferon-γ prophylaxis has greatly improved overall survival. Residual NADPH oxidase activity is significantly associated with disease severity and the chance of survival of the patient. New therapeutic approaches using immunomodulators for CGD-related inflammatory manifestations are under investigation, including pioglitazone, tamoxifen, and rapamycin. Hematopoietic stem cell transplantation (HSCT) is the curative treatment. Outcomes of HSCT have improved substantially over the last decade with overall survival more than 84-90%, but there are debates about designing optimal conditioning protocols using myeloablative or reduced-intensity regimens. The gene therapy for X-linked CGD using hematopoietic stem and progenitor cells transduced ex vivo by lentiviral vector encoding the human gp91phox gene demonstrated persistence of adequate oxidase-positive neutrophils in a small number of patients. Gene therapy using genome-editing technology such as CRISPR/Cas9 nucleases is a promising approach for patients with CGD in the future.
Collapse
Affiliation(s)
- Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
53
|
Nocella C, Cammisotto V, Bartimoccia S, Castellani V, Loffredo L, Pastori D, Pignatelli P, Sanguigni V, Violi F, Carnevale R. A novel role of MMP2 in regulating platelet NOX2 activation. Free Radic Biol Med 2020; 152:355-362. [PMID: 32268176 DOI: 10.1016/j.freeradbiomed.2020.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
NOX2 has a key role for cellular production of reactive oxidant species (ROS) and although the mechanism of its activation is well known, little is known about its regulation. Metallo-proteinases (MMPs) regulate numerous protein activities both in physiological and pathological conditions but their interplay with NOX2 and ROS formation is still unclear. We performed experimental studies in human platelets and polymorphonuclear leukocytes (PMNs) to investigate the interplay of MMP2 with NOX2 activity. In collagen-stimulated platelets and in PMA-stimulated PMNs from healthy subjects, an immediate burst of ROS was detected at 10 min to then decline at 20 min. Coincidentally, sNOX2-dp, a split-off product of NOX2, increased and peaked at 10 min. ROS production was persistent whereas sNOX2dp is not released in cells treated with MMP2 inhibitor compared to other MMPs inhibitors. Western blot analysis showed the highest MMP2 expression on the cell membrane 10 min after stimulation. Moreover, the co-immunoprecipitation assay confirms the interaction between MMP2 and NOX2 that formed an active immuno-complex. Treating cells with NOX2ds-tat, an inhibitor of NADPH oxidase, significantly reduced ROS formation, sNOX2-dp, MMP2 expression and MMP2-NOX2-complex, which were all restored if cells were added with H2O2. The study provides the first evidence that MMP2 has a key role in blunting platelet NOX2 activity and eventually ROS formation.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161, Rome, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Valentina Castellani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy; Mediterranea, Cardiocentro, 80122, Napoli, Italy
| | - Valerio Sanguigni
- Department of Internal Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Violi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Italy; Mediterranea, Cardiocentro, 80122, Napoli, Italy
| | - Roberto Carnevale
- Mediterranea, Cardiocentro, 80122, Napoli, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100, Latina, Italy.
| |
Collapse
|
54
|
Tavakoli M, Hedayati MT, Mirhendi H, Nouripour-Sisakht S, Hedayati N, Saghafi F, Mamishi S. The first rare and fatal case of invasive aspergillosis of spinal cord due to Aspergillus nidulans in an Iranian child with chronic granulomatosis disease: review of literature. Curr Med Mycol 2020; 6:55-60. [PMID: 32420510 PMCID: PMC7217256 DOI: 10.18502/cmm.6.1.2551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: Invasive aspergillosis (IA) of the central nervous system (CNS) is a devastating complication which is rarely reported in immunocompromised children. In this case presentation, we reported a rare and fatal IA with spinal cord involvement in a 10-year-old child with X-linked chronic granulomatosis disease (CGD). Case report: The child had a previous history of pulmonary tuberculosis. A cervical spine X-ray revealed the involvement of cervical vertebrae (T4/T5) and ribs causing spinal cord compression and epidural abscess. The patient underwent a decompressive laminectomy and mass removal. The histopathology and culture results suggested IA. Despite the aggressive and prolonged therapy, he died within one year. Aspergillus nidulans was identified as the causative agent based on morphological and molecular studies. Conclusion: This synopsis represents the aggressive behavior of infection caused by A. nidulans in the CGD patient.
Collapse
Affiliation(s)
- Mahin Tavakoli
- Student Research Committee, Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hossein Mirhendi
- Department of Medical Mycology and Parasitology, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Newsha Hedayati
- Student Research Committee, Invasive Fungi Research Center, Sari, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Setareh Mamishi
- Department of Infectious Diseases, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
55
|
Nakamura-Utsunomiya A, Tsumura M, Okada S, Kawaguchi H, Kobayashi M. Downregulation of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) in a co-culture system with human stimulated X-linked CGD neutrophils. PLoS One 2020; 15:e0230665. [PMID: 32251485 PMCID: PMC7135077 DOI: 10.1371/journal.pone.0230665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes in patients with chronic granulomatous disease (CGD) do not generate reactive oxidative species (ROS), whereas nitric oxide (NO) production is increased in response to the calcium ionophore A23187 in CGD phagocytes compared with healthy phagocytes. Recently, patients with X-linked CGD (X-CGD) have been reported to show higher flow-mediated dilation, suggesting that endothelial cell function is affected by NO production from phagocytes. We studied NOS3 and EDN1 mRNA and protein expression in human umbilical vein endothelial cells (HUVECs) in a co-culture system with neutrophils from X-CGD patients. HUVECs were co-cultured for 30 minutes with human neutrophils from X-CGD or healthy participants in response to A23187 without cell-to-cell contact. The expression of NOS3 and EDN1 mRNA in HUVECs was quantified by real-time polymerase chain reaction. Moreover, we demonstrated the protein expression of eNOS, ET-1, and NFκB p65, including phosphorylation at Ser1177 of eNOS and Ser536 of NFκB p65. Neutrophils from X-CGD patients showed significantly higher NO and lower H2O2 production in response to A23187 than healthy neutrophils in vitro. Compared with healthy neutrophils, X-CGD neutrophils under A23187 stimulation exhibited significantly increased NO and decreased H2O2, and promoted downregulated NOS3 and EDN1 expression in HUVECs. The total expression and phosphorylation at Ser1177 of eNOS and ET-1 expression were significantly decreased in HUVECs co-cultures with stimulated X-CGD neutrophils. Also, phosphorylation at Ser536 of NFκB p65 were significantly decreased. In conclusions, eNOS and ET-1 significantly down-regulated in co-culture with stimulated X-CGD neutrophils through their excessive NO and the lack of ROS production. These findings suggest that ROS generated from neutrophils may mediate arterial tone affecting eNOS and ET-1 expression via their NO and ROS production.
Collapse
Affiliation(s)
- Akari Nakamura-Utsunomiya
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroshi Kawaguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
56
|
Allogeneic hematopoietic stem cell transplantation using unrelated cord blood or unmanipulated haploidentical donors is effective in pediatric chronic granulomatous disease with inflammatory complications and severe infection. Bone Marrow Transplant 2020; 55:1875-1878. [PMID: 32203262 DOI: 10.1038/s41409-020-0864-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/15/2023]
|
57
|
Blancas-Galicia L, Santos-Chávez E, Deswarte C, Mignac Q, Medina-Vera I, León-Lara X, Roynard M, Scheffler-Mendoza SC, Rioja-Valencia R, Alvirde-Ayala A, Lugo Reyes SO, Staines-Boone T, García-Campos J, Saucedo-Ramírez OJ, Del-Río_Navarro BE, Zamora-Chávez A, López-Larios A, García-Pavón-Osorio S, Melgoza-Arcos E, Canseco-Raymundo MR, Mogica-Martínez D, Venancio-Hernández M, Pacheco-Rosas D, Pedraza-Sánchez S, Guevara-Cruz M, Saracho-Weber F, Gámez-González B, Wakida-Kuzunoki G, Morán-Mendoza AR, Macías-Robles AP, Ramírez-Rivera R, Vargas-Camaño E, Zarate-Hernández C, Gómez-Tello H, Ramírez-Sánchez E, Ruíz-Hernández F, Ramos-López D, Acuña-Martínez H, García-Cruz ML, Román-Jiménez MG, González-Villarreal MG, Álvarez-Cardona A, Llamas-Guillén BA, Cuellar-Rodríguez J, Olaya-Vargas A, Ramírez-Uribe N, Boisson-Dupuis S, Casanova JL, Espinosa-Rosales FJ, Serafín-López J, Yamazaki-Nakashimada M, Espinosa-Padilla S, Bustamante J. Genetic, Immunological, and Clinical Features of the First Mexican Cohort of Patients with Chronic Granulomatous Disease. J Clin Immunol 2020; 40:475-493. [DOI: 10.1007/s10875-020-00750-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
|
58
|
Robles-Marhuenda A, Álvarez-Troncoso J, Rodríguez-Pena R, Busca-Arenzana C, López-Granados E, Arnalich-Fernández F. Chronic granulomatous disease: Single-center Spanish experience. Clin Immunol 2020; 211:108323. [DOI: 10.1016/j.clim.2019.108323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/07/2019] [Indexed: 11/15/2022]
|
59
|
El-Mokhtar MA, Salama EH, Fahmy EM, Mohamed ME. "Clinical Aspects of Chronic Granulomatous Disease in Upper Egypt". Immunol Invest 2020; 50:139-151. [PMID: 31965875 DOI: 10.1080/08820139.2020.1713144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare inherited primary immunodeficiency disorder that affects phagocytes and is characterized by a marked increased susceptibility to severe bacterial and fungal infections. We aimed to describe the clinical presentations of pediatric patients with CGD in Upper Egypt and to identify the defective component of NADPH oxidase. Pediatric patients diagnosed with CGD within one year from January 2018 to January 2019 were enrolled in the study. Patient history, clinical and laboratory investigations were carried out, including nitroblue tetrazolium test and flow cytometry DHR analysis. Infectious microorganisms were isolated from infected sites to identify the causative agents and their resistance profile. A total of 15 patients were diagnosed with CGD. Failure to thrive and lymphadenopathy were the most common presentations. The median age of clinical onset was 1.17 years of age. The most common gene mutations were observed in the CYBA gene. All cases showed pulmonary infections followed by abscesses. Staphylococcus aureus and Klebsiella pneumoniae were the most frequently isolated bacterial pathogens, Aspergillus spp and Candida spp were isolated from fungal infections. 4/15 (26.7%) children died due to severe serious infections. We concluded that CGD is common in Upper Egypt, and we recommend raising the awareness and testing for CGD in pediatric patients with recurrent or persistent infections, especially those with a familiar history of similar manifestations to avoid delays in proper diagnosis and deterioration of cases. Abbreviations: CGD: chronic granulomatous disease; XL: X-linked; AR: autosomal recessive.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Eman H Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Eman Mohamed Fahmy
- Department of Pediatrics, Faculty of Medicine, Sohag University , Sohag, Egypt
| | - Mona Embarek Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
60
|
Pulvirenti F, Sangerardi M, Plebani A, Soresina A, Finocchi A, Pignata C, Cirillo E, Trizzino A, Aiuti A, Migliavacca M, Locatelli F, Bertaina A, Naviglio S, Carrabba M, De Carli M, Barbaro MGF, Gattorno M, Quinti I, Martire B. Health-Related Quality of Life and Emotional Difficulties in Chronic Granulomatous Disease: Data on Adult and Pediatric Patients from Italian Network for Primary Immunodeficiency (IPINet). J Clin Immunol 2019; 40:289-298. [PMID: 31863244 DOI: 10.1007/s10875-019-00725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/24/2019] [Indexed: 02/02/2023]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by life-threatening infections, inflammation, and autoimmunity with an impact on health-related quality of life (HRQoL). Few data are available for children, whereas no study has been conducted in adults. Here, we investigated HRQoL and emotional functioning of 19 children and 28 adults enrolled in Italian registry for CGD. PEDsQL and SDQ were used for children and their caregivers, and adults completed the SF-12 questionnaire. Mean scores were compared with norms and with patients affected by chronic diseases. Comparisons were made for CGD patients who underwent or not hematopoietic stem cell transplantation (HSCT). When compared with norms, CGD children exhibited higher difficulties in social/school areas, peer relationship, and conduct/emotional problems (< 5 years of age), as scored by proxies. Differently, CGD adults reported higher difficulties both in mental and physical area than norms. Only for children, clinical status had a damaging effect on psychosocial and school dimensions, whereas age had a negative impact on social areas. No significant difference was observed between patients treated or not with HSCT. When compared with patients affected by chronic diseases, CGD children and adults both displayed fewer physical disabilities. Differently, in mental scale adults scored lower than those with rheumatology diseases and had similar impairment in comparison with patients with diabetes mellitus and cancer. This study emphasized the impact of CGD on HRQoL since infancy and its decline in adulthood, with emotional difficulties occurring early. HRQoL impairment should be considered in clinical picture of CGD and pro-actively assessed and managed by clinicians.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Department of Infective diseases and Internal Medicine, Unit of Primary Immunodeficiencies in adults, Policlinico Umberto I, Rome, Italy
| | - Maria Sangerardi
- Pediatric Clinic, Policlinico Giovanni XXIII Hospital, Bari, Italy
| | - Alessandro Plebani
- Department of Pediatrics, ASST Spedali Civili of Brescia, Unit of Pediatric Immunology, Brescia, Italy
| | - Annarosa Soresina
- Department of Pediatrics, ASST Spedali Civili of Brescia, Unit of Pediatric Immunology, Brescia, Italy
| | - Andrea Finocchi
- Department of Pediatrics, Unit of Immune and Infectious Diseases, Children's Hospital Bambino Gesù, Rome, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences Pediatric Section, Federico II University, Naples, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences Pediatric Section, Federico II University, Naples, Italy
| | - Antonino Trizzino
- Pediatric Hematology and Oncology Unit, Oncology Department, ARNAS Hospitals Civico, Di Cristina e Benfratelli, Palermo, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Vita-Salute San Raffaele University, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Vita-Salute San Raffaele University, Milan, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alice Bertaina
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Samuele Naviglio
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco De Carli
- Second Unif of Internal Medicine, University Hospital Santa Maria della Misericordia, Udine, Italy
| | | | | | - Isabella Quinti
- Department of Infective diseases and Internal Medicine, Unit of Primary Immunodeficiencies in adults, Policlinico Umberto I, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, RM, Italy
| | - Baldassarre Martire
- Unit of Pediatric Haemato-Oncology, Policlinico Giovanni XXIII Hospital, University of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
61
|
Hui X, Liu D, Wang W, Hou J, Ying W, Zhou Q, Yao H, Sun J, Wang X. Low-Dose Pioglitazone does not Increase ROS Production in Chronic Granulomatous Disease Patients with Severe Infection. J Clin Immunol 2019; 40:131-137. [PMID: 31745699 DOI: 10.1007/s10875-019-00719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE We sought to further investigate the efficacy and safety of pioglitazone for chronic granulomatous disease (CGD) patients with severe infection. METHODS CGD patients with severe infection were enrolled and treated with pioglitazone for 90 days. The degree of improvement in infection and the changes of dihydrorhodamine-123 (DHR) were used to evaluate the efficacy of pioglitazone. The adverse reaction of pioglitazone was also investigated. RESULTS We planned to enroll 30 patients at first in the study. However, the study was terminated due to negative results from all 3 enrolled patients. The 3 patients were diagnosed with CGD by clinical characteristics, DHR analysis, and genetics analysis. Mutations were CYBB (c.177C>A; p.C59X) in P1, CYBB (c.1498G>T; p.D500Y) in P2, and NCF2 (c.137T>G; p.M46R) in P3, respectively. The age of onset of the 3 patients was within 2 years after birth. The most common sites of infection were lung, lymph node, skin, and soft tissue, which were experienced in all 3 patients. The age of administration with pioglitazone was 5.2 years, 16 years and 11.1 years, respectively. The 3 patients experienced no improvement in severity of infection and stimulation index of the DHR did not also improve after receiving pioglitazone 10, 45 and 90 days, respectively. No drug-related adverse reaction was found during the period of pioglitazone. CONCLUSIONS Low dose of pioglitazone did not improve the severity of infection and production of ROS in CGD patients with severe infection.
Collapse
Affiliation(s)
- Xiaoying Hui
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
62
|
Clinical and Molecular Features of Chronic Granulomatous Disease in Mainland China and a XL-CGD Female Infant Patient After Prenatal Diagnosis. J Clin Immunol 2019; 39:762-775. [PMID: 31456102 DOI: 10.1007/s10875-019-00680-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is the most common phagocyte defect disease. Here, we describe 114 CGD patients in our center and report a rare female infant with XL-CGD to provide a better understanding of diagnosis, treatment, and prenatal diagnosis of CGD. METHOD Patients were diagnosed by DHR-1,2,3 flow cytometry assays and gene analysis. X chromosome inactivation analysis and gp91phox protein test were used for a female infant with XL-CGD. RESULTS XL-CGD accounts for the majority of cases in China and results in higher susceptibility to some infections than AR-CGD. The DHR assay can help diagnose CGD quickly, and atypical results should be combined with clinical manifestations, genetic analysis, and regular follow-up. For prenatal diagnosis, both gDNA and cDNA genotypes of amniotic fluid cells should be identified, and cord blood DHR assays should be performed to identify female XL-CGD patients.
Collapse
|
63
|
Kim TH, Lee HC, Kim JH, Hewawaduge CY, Chathuranga K, Chathuranga WAG, Ekanayaka P, Wijerathne HMSM, Kim CJ, Kim E, Lee JS. Fas-associated factor 1 mediates NADPH oxidase-induced reactive oxygen species production and proinflammatory responses in macrophages against Listeria infection. PLoS Pathog 2019; 15:e1008004. [PMID: 31412082 PMCID: PMC6709923 DOI: 10.1371/journal.ppat.1008004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/26/2019] [Accepted: 07/27/2019] [Indexed: 11/29/2022] Open
Abstract
Fas-associated factor 1 is a death-promoting protein that induces apoptosis by interacting with the Fas receptor. Until now, FAF1 was reported to interact potentially with diverse proteins and to function as a negative and/or positive regulator of several cellular possesses. However, the role of FAF1 in defense against bacterial infection remains unclear. Here, we show that FAF1 plays a pivotal role in activating NADPH oxidase in macrophages during Listeria monocytogenes infection. Upon infection by L. monocytogenes, FAF1 interacts with p67phox (an activator of the NADPH oxidase complex), thereby facilitating its stabilization and increasing the activity of NADPH oxidase. Consequently, knockdown or ectopic expression of FAF1 had a marked effect on production of ROS, proinflammatory cytokines, and antibacterial activity, in macrophages upon stimulation of TLR2 or after infection with L. monocytogenes. Consistent with this, FAF1gt/gt mice, which are knocked down in FAF1, showed weaker inflammatory responses than wild-type mice; these weaker responses led to increased replication of L. monocytogenes. Collectively, these findings suggest that FAF1 positively regulates NADPH oxidase-mediated ROS production and antibacterial defenses. Phagocytic NADPH oxidase plays a pivotal role in generating reactive oxygen species (ROS) and in defense against bacterial infections such as L. monocytogenes. ROS eliminate phagocytosed bacteria directly and are implicated in transduction of signals that mediate inflammatory responses. Here, we show that the apoptotic protein FAF1 regulates ROS production in macrophages by regulating phagocytic NADPH oxidase activity upon infection by L. monocytogenes. FAF1 interacts directly with and stabilizes p67phox, a regulatory protein of the phagocytic NADPH oxidase complex, to induce ROS production during L. monocytogenes infection. Production of ROS leads to release of proinflammatory cytokines, chemokines and, ultimately, to bacterial clearance. Interestingly, FAF1gt/gt mice deficient in FAF1 expression exhibit weakened inflammatory responses and are thus more vulnerable to bacterial infection than FAF1+/+ mice. This study reveals that FAF1 is a crucial regulator that induces inflammatory responses to bacterial infection via ROS production.
Collapse
Affiliation(s)
- Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Cheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - C. Y. Hewawaduge
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | | | - Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - H. M. S. M. Wijerathne
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eunhee Kim
- College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
64
|
Anjani G, Vignesh P, Joshi V, Shandilya JK, Bhattarai D, Sharma J, Rawat A. Recent advances in chronic granulomatous disease. Genes Dis 2019; 7:84-92. [PMID: 32181279 PMCID: PMC7063432 DOI: 10.1016/j.gendis.2019.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 12/02/2022] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited defect of phagocyte function due to defective NADPH oxidase. Patients with CGD are not able to effectively clear the infections because of the defect in the phagocyte production of oxygen free radicals and are prone to recurrent bacterial and fungal infections. Inflammatory complications are also noted in CGD such as colitis, non-infective granulomas causing gastrointestinal or urinary tract obstruction, hemophagocytic lymphohistiocytosis, and arthritis. Studies on toll-like receptor pathways and neutrophil extracellular traps in CGD have shed light on the role of NADPH oxidase in the innate immunity and pathogenesis of infections in CGD. Some reports also indicate a reduction of memory B cells and defective production of functional antibodies in CGD. Though the exact mechanisms for non-infective inflammatory complications in CGD are not yet clear, studies on efferocytosis and defective autophagy with inflammasome activation have made a substantial contribution to our understanding of the pathogenesis of inflammation in CGD. We also discuss the clinical and molecular features of p40phox defects and a newer genetic defect, EROS. Clinical phenotypes of X-linked carriers of CYBB are also discussed.
Collapse
Affiliation(s)
| | - Pandiarajan Vignesh
- Corresponding author. Pediatric Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India. Fax: +91 172 2744401.
| | | | | | | | | | | |
Collapse
|
65
|
Yonkof JR, Gupta A, Fu P, Garabedian E, Dalal J. Role of Allogeneic Hematopoietic Stem Cell Transplant for Chronic Granulomatous Disease (CGD): a Report of the United States Immunodeficiency Network. J Clin Immunol 2019; 39:448-458. [DOI: 10.1007/s10875-019-00635-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
|
66
|
Dinauer MC. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood 2019; 133:2130-2139. [PMID: 30898864 PMCID: PMC6524563 DOI: 10.1182/blood-2018-11-844563] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies affecting the function of neutrophils and other phagocytic leukocytes are notable for an increased susceptibility to bacterial and fungal infections as a result of impaired leukocyte recruitment, ingestion, and/or killing of microbes. The underlying molecular defects can also impact other innate immune responses to infectious and inflammatory stimuli, leading to inflammatory and autoimmune complications that are not always directly related to infection. This review will provide an update on congenital disorders affecting neutrophil function in which a combination of host defense and inflammatory complications are prominent, including nicotinamide dinucleotide phosphate oxidase defects in chronic granulomatous disease and β2 integrin defects in leukocyte adhesion deficiency.
Collapse
Affiliation(s)
- Mary C Dinauer
- Department of Pediatrics and Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
67
|
Guery R, Pilmis B, Dunogue B, Blanche S, Lortholary O, Lanternier F. Non-Aspergillus Fungal Infections in Chronic Granulomatous Disease. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00339-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Gao LW, Yin QQ, Tong YJ, Gui JG, Liu XY, Feng XL, Yin J, Liu J, Guo Y, Yao Y, Xu BP, He JX, Shen KL, Lau YL, Jiang ZF. Clinical and genetic characteristics of Chinese pediatric patients with chronic granulomatous disease. Pediatr Allergy Immunol 2019; 30:378-386. [PMID: 30716179 PMCID: PMC6850071 DOI: 10.1111/pai.13033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a rare disease in China, and very little large-scale studies have been conducted to date. We aimed to investigate the clinical and genetic features of CGD in Chinese pediatric patients. METHODS Pediatric patients with CGD from Beijing Children's Hospital, Capital Medical University, China, were enrolled from January 2006 to December 2016. RESULTS A total of 159 pediatric patients with CGD were enrolled. The median age of clinical onset was 1.4 months, and 73% (116/159) had clinical onset symptoms before the 1 year of age. The most common site of invasion was the lungs. The lymph nodes, liver, and skin were more frequently invaded in X-linked (XL) CGD patients than in autosomal recessive (AR) CGD patients (P < 0.05). Approximately 64% (92/144) of the pediatric patients suffered from abnormal response to BCG vaccination. The most frequent pathogens were Aspergillus and Mycobacterium tuberculosis. Gene analysis indicated that 132 cases (89%, 132/147) harbored CYBB pathogenic variants, 7 (5%, 7/147) carried CYBA pathogenic variants, 4 (3%, 4/147) had NCF1 pathogenic variants, and 4 (3%, 4/147) had NCF2 pathogenic variants. The overall mortality rate in this study was 43%, particularly the patients were males, with CYBB mutant and did not receive HSCT treatment. CONCLUSIONS Chronic granulomatous disease is a rare disease affecting Chinese children; however, it is often diagnosed at a later age, and thus, the mortality rate is relatively high. The prevalence and the severity of disease in XL-CGD are higher than AR-CGD.
Collapse
Affiliation(s)
- Li-Wei Gao
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Qing-Qin Yin
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yue-Juan Tong
- National Center for Children's Health, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jin-Gang Gui
- National Center for Children's Health, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiu-Yun Liu
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Xue-Li Feng
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Ju Yin
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Jun Liu
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yan Guo
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yao Yao
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Bao-Ping Xu
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Jian-Xin He
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Kun-Ling Shen
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yu-Lung Lau
- Department of Pediatrics, Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Zai-Fang Jiang
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| |
Collapse
|
69
|
Masud S, Prajsnar TK, Torraca V, Lamers GE, Benning M, Van Der Vaart M, Meijer AH. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy 2019; 15:796-812. [PMID: 30676840 PMCID: PMC6526873 DOI: 10.1080/15548627.2019.1569297] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 11/08/2022] Open
Abstract
Innate immune defense against intracellular pathogens, like Salmonella, relies heavily on the autophagy machinery of the host. This response is studied intensively in epithelial cells, the target of Salmonella during gastrointestinal infections. However, little is known of the role that autophagy plays in macrophages, the predominant carriers of this pathogen during systemic disease. Here we utilize a zebrafish embryo model to study the interaction of S. enterica serovar Typhimurium with the macroautophagy/autophagy machinery of macrophages in vivo. We show that phagocytosis of live but not heat-killed Salmonella triggers recruitment of the autophagy marker GFP-Lc3 in a variety of patterns labeling tight or spacious bacteria-containing compartments, also revealed by electron microscopy. Neutrophils display similar GFP-Lc3 associations, but genetic modulation of the neutrophil/macrophage balance and ablation experiments show that macrophages are critical for the defense response. Deficiency of atg5 reduces GFP-Lc3 recruitment and impairs host resistance, in contrast to atg13 deficiency, indicating that Lc3-Salmonella association at this stage is independent of the autophagy preinitiation complex and that macrophages target Salmonella by Lc3-associated phagocytosis (LAP). In agreement, GFP-Lc3 recruitment and host resistance are impaired by deficiency of Rubcn/Rubicon, known as a negative regulator of canonical autophagy and an inducer of LAP. We also found strict dependency on NADPH oxidase, another essential factor for LAP. Both Rubcn and NADPH oxidase are required to activate a Salmonella biosensor for reactive oxygen species inside infected macrophages. These results identify LAP as the major host protective autophagy-related pathway responsible for macrophage defense against Salmonella during systemic infection. Abbreviations: ATG: autophagy related gene; BECN1: Beclin 1; CFU: colony forming units; CYBA/P22PHOX: cytochrome b-245, alpha chain; CYBB/NOX2: cytochrome b-245 beta chain; dpf: days post fertilization; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hfp: hours post fertilization; hpi: hours post infection; IRF8: interferon regulatory factor 8; Lcp1/L-plastin: lymphocyte cytosolic protein 1; LAP: LC3-associated phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1A/1B-light chain 3; mCherry: red fluorescent protein; mpeg1: macrophage expressed gene 1; mpx: myeloid specific peroxidase; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; NCF4/P40PHOX: neutrophil cytosolic factor 4; NTR-mCherry: nitroreductase-mCherry fusion; PTU: phenylthiourea; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB-1 inducible coiled coin 1; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; RUBCN/RUBICON: RUN and cysteine rich domain containing BECN1-interacting protein; SCV: Salmonella-containing vacuole; S. Typhimurium/S.T: Salmonella enterica serovar Typhimurium; TEM: transmission electron microscopy; Tg: transgenic; TSA: tyramide signal amplification; ULK1/2: unc-51-like autophagy activating kinase 1/2; UVRAG: UVRAG: UV radiation resistance associated; wt: wild type.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Gerda E.M. Lamers
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Marianne Benning
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
70
|
Tajik S, Badalzadeh M, Fazlollahi MR, Houshmand M, Bazargan N, Movahedi M, Mahlouji Rad M, Mahdaviani SA, Mamishi S, Khotaei GT, Mansouri D, Zandieh F, Pourpak Z. Genetic and molecular findings of 38 Iranian patients with chronic granulomatous disease caused by p47-phox defect. Scand J Immunol 2019; 90:e12767. [PMID: 30963593 DOI: 10.1111/sji.12767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 01/16/2023]
Abstract
One of the components of NADPH oxidase is p47-phox, encoded by NCF1 gene. This study aims to find new genetic changes and clinical features in 38 Iranian patients with autosomal recessive chronic granulomatous disease (AR-CGD) caused by NCF1 gene defect. Patients who had abnormal NBT and DHR-1,2,3 assay with loss of p47-phox in Western blotting were included in this study. After recording demographic and clinical data, PCR amplification was performed followed by direct sequencing for all exons and exon-intron boundaries. The most common form of CGD in Iran was AR-CGD due to consanguinity marriages. Among patients with AR-CGD, NCF1 deficiency was found to be more common than other forms. Cutaneous involvements (53%), pulmonary infections (50%) and lymphadenopathy (29%) were more prevalent than other clinical manifestations of CGD. Mutation analysis of NCF1 gene identified five different mutations. Homozygous delta GT deletion (c.75_76delGT) was the most frequent mutation and was detected in more than 63% of families. Six families had a nonsense mutation in exon 7 (c.579G > A). Two novel mutations were found in exon 4 in two families, including a missense mutation (c.328C > T) and a nine-nucleotide deletion (c.331_339delTGTCCCCAC). Genetic detection of these mutations may result in early diagnosis and prevention of possible complications of the disease. This could be useful for timely decision-making for haematopoietic stem cell transplantation and for carrier detection as well as prenatal diagnosis of next children in the affected families. Our findings might help to predict outcomes, raise awareness and help effective treatment in these patients.
Collapse
Affiliation(s)
- Shaghayegh Tajik
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Nasrin Bazargan
- Department of Pediatrics, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Movahedi
- Department of Immunology and Allergy, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahlouji Rad
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Department of Infectious Diseases, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghamar Taj Khotaei
- Department of Infectious Diseases, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- National Research Institute of Tuberculosis and Lung Disease, Masih Daneshvari University Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariborz Zandieh
- Department of Asthma, Allergy and Immunology, Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Li T, Zhou X, Ling Y, Jiang N, Ai J, Wu J, Chen J, Chen L, Qian X, Liu X, Xi X, Xia L, Fan X, Lu S, Zhang WH. Genetic and Clinical Profiles of Disseminated Bacillus Calmette-Guérin Disease and Chronic Granulomatous Disease in China. Front Immunol 2019; 10:73. [PMID: 30761141 PMCID: PMC6361786 DOI: 10.3389/fimmu.2019.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Disseminated Bacillus Calmette-Guérin disease (D-BCG) in children with chronic granulomatous disease (CGD) can be fatal, while its clinical characteristics remain unclear because both diseases are extremely rare. The patients with CGD receive BCG vaccination, because BCG vaccination is usually performed within 24 h after delivery in China. Methods: We prospectively followed-up Chinese patients with CGD who developed D-BCG to characterize their clinical and genetic characteristics. The diagnoses were based on the patients' clinical, genetic, and microbiological characteristics. Results: Between September 2009 and September 2016, we identified 23 patients with CGD who developed D-BCG. Their overall 10-year survival rate was 34%. We created a simple dissemination score to evaluate the number of infected organ systems and the survival probabilities after 8 years were 62 and 17% among patients with simple dissemination scores of ≤3 and >3, respectively (p = 0.0424). Survival was not significantly associated with the CGD stimulation index or interferon-γ treatment. Eight patients underwent umbilical cord blood transplantation and 5 of them were successfully treated. The genetic analyses found mutations in CYBB (19 patients), CYBA (1 patient), NCF1 (1 patient), and NCF2 (1 patient). We identified 6 novel highly likely pathogenic mutations, including 4 mutations in CYBB and 2 mutations in NCF1. Conclusions: D-BCG is a deadly complication of CGD. The extent of BCG spreading is strongly associated with clinical outcomes, and hematopoietic stem cell transplantation may be a therapeutic option for this condition.
Collapse
Affiliation(s)
- Tao Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xian Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Medical Microbiology and Parasitology, Fudan University, Shanghai, China
| | - Xiaowen Qian
- Children's Hospital of Fudan University, Shanghai, China
| | - Xuhui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiuhong Xi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuihua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen-Hong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
72
|
Kutukculer N, Aykut A, Karaca NE, Durmaz A, Aksu G, Genel F, Pariltay E, Cogulu Ö, Azarsız E. Chronic granulamatous disease: Two decades of experience from a paediatric immunology unit in a country with high rate of consangineous marriages. Scand J Immunol 2019; 89:e12737. [DOI: 10.1111/sji.12737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Necil Kutukculer
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| | - Ayca Aykut
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Neslihan E. Karaca
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| | - Asude Durmaz
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Guzide Aksu
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| | - Ferah Genel
- Department of Pediatric Allergy and Immunology; Dr Behcet Uz Children Training and Research Hospital; Izmir Turkey
| | - Erhan Pariltay
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Özgür Cogulu
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Elif Azarsız
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| |
Collapse
|
73
|
Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front Pediatr 2019; 7:295. [PMID: 31440487 PMCID: PMC6694735 DOI: 10.3389/fped.2019.00295] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiencies (PID) are disorders that for the most part result from mutations in genes involved in immune host defense and immunoregulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy. Most PID are due to genetic defects that are intrinsic to hematopoietic cells. Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells (HSC) represents a rational therapeutic approach. Full or partial ablation of the recipient's marrow with chemotherapy is often used to allow stable engraftment of donor-derived HSCs, and serotherapy may be added to the conditioning regimen to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially, hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe combined immunodeficiency (SCID) as the only available curative treatment. It was a challenging procedure, associated with elevated rates of morbidity and mortality. Overtime, outcome of HSCT for PID has significantly improved due to availability of high-resolution HLA typing, increased use of alternative donors and new stem cell sources, development of less toxic, reduced-intensity conditioning (RIC) regimens, and cellular engineering techniques for graft manipulation. Early identification of infants affected by SCID, prior to infectious complication, through newborn screening (NBS) programs and prompt genetic diagnosis with Next Generation Sequencing (NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT has been applied to treat a broader range of PID, including disorders of immune dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes associated with PID makes it difficult to define a universal transplant regimen. As such, integration of knowledge between immunologists and transplant specialists is necessary for the development of innovative transplant protocols and to monitor their results during follow-up. Despite the improved outcome observed after HSCT, patients with severe forms of PID still face significant challenges of short and long-term transplant-related complications. To address this issue, novel HSCT strategies are being implemented aiming to improve both survival and long-term quality of life. This article will discuss the current status and latest developments in HSCT for PID, and present data regarding approach and outcome of HSCT in recently described PID, including disorders associated with immune dysregulation.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
74
|
Lutzkanin K, McKeone DJ, Greiner R, Andreae DA. A Novel Mutation in Chronic Granulomatous Disease: Treating the Family, Not Just the Patient. Front Pediatr 2019; 7:107. [PMID: 30984725 PMCID: PMC6447646 DOI: 10.3389/fped.2019.00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Chronic Granulomatous Disease (CGD) is caused by genetic defects in the phagocyte NADPH oxidase leading to potentially severe infections with catalase positive micro-organisms. With the innate immune system being affected this disease usually presents before the age of 5 years with infections involving the skin, lung, liver or lymphnodes. Infections with specific catalase positive organisms, especially Burkholderia cepacia, Serratia, Nocardia and Chromobacterium violaceum prompt a workup for CGD in affected patients. In addition, a family history of CGD also warrants testing. The pattern of inheritance of CGD varies across geographic regions of the world and societies, with X-linked inheritance being most prevalent in the United States and Europe. Affected patients require life-long therapy with prophylactic antibiotics, antifungals, and possibly interferon-gamma. Hematopoietic Stem Cell Transplantation is the only curative therapy known to date. Identification, diagnosis and management of patients with CGD usually involves a multi-specialty team including Pediatrics, Immunology, Infectious Diseases, Hematology/Oncology and often also Pulmonology and GI/Hepatology. Frequent follow up is paramount for good outcomes; infections have to be recognized and treated promptly and often preemptively. This is challenging for most patients and their families but presents a significant barrier for patients with limited access to care, limited resources or other challenging social situations. This case report describes the difficulties of managing a family with a novel mutation and multiple affected family members in different custody arrangements. It highlights the importance of close contact and communication with the family in deciding on management and treatment options. Educating the family and patient is critical to avoid complications of the disease and allow shared decision making that ultimately leads to better outcomes.
Collapse
Affiliation(s)
- Kristen Lutzkanin
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Daniel J McKeone
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Robert Greiner
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Doerthe Adriana Andreae
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
75
|
Abstract
Chronic granulomatous disease is a clinical condition that stems from inactivating mutations in NOX2 and its auxiliary proteins. Together, these proteins form the phagocyte NADPH oxidase enzyme that generates superoxide. Superoxide (O2ċ-) and its reduced product hydrogen peroxide (H2O2) give rise to several additional reactive oxygen species (ROS), which together are necessary for adequate killing of pathogens. Thus, CGD patients, with a phagocyte NADPH oxidase that is not properly functioning, suffer from recurrent, life-threatening infections with certain bacteria, fungi, and yeasts. Here, I give a short survey of the genetic mutations that underlie CGD, the effect of these mutations on the activity of the leukocyte NADPH oxidase, the clinical symptoms of CGD patients, and the treatment options for these patients.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
76
|
de Albuquerque JAT, Lima AM, de Oliveira Junior EB, Ishizuka EK, Aragão-Filho WC, Bengala Zurro N, Mayumi Chiba S, Fernandes FR, Condino-Neto A. A Novel Mutation in the NCF2 Gene in a CGD Patient With Chronic Recurrent Pneumopathy. Front Pediatr 2019; 7:391. [PMID: 31612120 PMCID: PMC6776604 DOI: 10.3389/fped.2019.00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited, genetically heterogeneous disease characterized by defective phagocytic cell microbicidal function, leading to increased susceptibility to bacterial and fungal infections. CGD is caused by mutations in components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, which is responsible for reactive oxygen species production during phagocytosis. Mutations in the neutrophil cytosolic factor 2 (NCF2) gene account for <5% of all cases. Here, we report a case of a 2-year-old female with persistent recurrent pneumopathy, even under trimethoprim-sulfamethoxazole (TMP-SMX) and itraconazole prophylaxis combined with IFNγ treatment. Genetic analysis revealed a novel homozygous mutation in NCF2, sequence depletion in a splicing region (c.256_257+2delAAGT NM_000433), leading to a K86Ifs*2 residue change in the p67-phox protein.
Collapse
Affiliation(s)
| | | | - Edgar Borges de Oliveira Junior
- Immunogenic Inc, São Paulo, Brazil.,PENSI Institute - Jose Luiz Egydio Setubal Foundation, Sabará Hospital, São Paulo, Brazil
| | | | | | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sônia Mayumi Chiba
- Sabará Hospital, São Paulo, Brazil.,Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
77
|
Ambruso DR, Hauk PJ. Primary Immunodeficiency and Other Diseases With Immune Dysregulation. KENDIG'S DISORDERS OF THE RESPIRATORY TRACT IN CHILDREN 2019:909-922.e5. [DOI: 10.1016/b978-0-323-44887-1.00063-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
78
|
Abstract
PURPOSE OF REVIEW Chronic granulomatous disease (CGD) is a primary immunodeficiency, with a defect of phagocytes in killing specific pathogens. CGD is characterized by severe recurrent bacterial and fungal infections and dysregulated inflammatory response. Since its first description as fatal disease about 60 years ago, a significant improvement in outcome has been achieved in the last 20 years. The purpose of this review is to framework recent advances in CGD immunopathogenesis, management of disease manifestation and cure of CGD patients. RECENT FINDINGS For years, CGD is a known cause of life-threatening infections and excessive inflammation. The cause and the management of inflammatory reactions, however, have not been clarified, and the range of clinical presentation is growing with corresponding novel therapeutic interventions. Recent work focuses on the best outcome of hematopoietic stem cell transplantation (HSCT) and gene therapy for the cure of CGD patients, more specifically, those with X-linked and p47 mutations. SUMMARY The genetics and phenotype of CGD is well characterized; however, the underlying mechanisms, the treatment of its inflammatory manifestations and the cure of CGD is under further investigation.
Collapse
|
79
|
Characterization of 4 New Mutations in the CYBB Gene in 10 Iranian Families With X-linked Chronic Granulomatous Disease. J Pediatr Hematol Oncol 2018; 40:e268-e272. [PMID: 29702544 DOI: 10.1097/mph.0000000000001189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited disease of the innate immune system that results from defects in 1 of the 5 subunits of nicotinamide adenine dinucleotide phosphate oxidase complex and leads to life-threatening infections with granuloma formation. During 3 years of study, we recognized 10 male patients with X-linked CGD from a tertiary referral center for immune deficiencies in Iran. The CGD patients were diagnosed according to clinical features and biochemical tests, including nitroblue tetrazolium and dihydrorhodamine-1, 2, 3 tests, performed on patients and their mothers. In all patients, Western blot analysis showed a gp91 phenotype. Mutation screening by single strand conformation polymorphism and multiplex ligation-dependent probe amplification analysis of the CYBB gene encoding gp91, followed by sequencing, showed 9 different mutations, 4 of them novel as far as we know.
Collapse
|
80
|
X-Linked Chronic Granulomatous Disease: Initial Presentation with Intracranial Hemorrhage from Vitamin K Deficiency in Infant. Case Rep Pediatr 2018; 2018:7041204. [PMID: 30034904 PMCID: PMC6035845 DOI: 10.1155/2018/7041204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/28/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Vitamin K deficiency bleeding (VKDB) is a life-threatening condition and can be found in children as early as neonatal period with early onset intracranial hemorrhage (ICH). Here, we reported a 1-year-old boy who initially presented with intracranial hemorrhage secondary to vitamin K deficiency since 3 months of age and later found to have XL-CGD which was complicated by malabsorption due to severe vaccine-associated mycobacterial disease.
Collapse
|
81
|
Schwenkenbecher P, Neyazi A, Donnerstag F, Ringshausen FC, Jacobs R, Stoll M, Kirschner P, Länger FP, Valizada E, Gingele S, Wegner F, Sühs KW, Stangel M, Skripuletz T. Chronic Granulomatous Disease First Diagnosed in Adulthood Presenting With Spinal Cord Infection. Front Immunol 2018; 9:1258. [PMID: 29915596 PMCID: PMC5994559 DOI: 10.3389/fimmu.2018.01258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a rare genetic immunodeficiency, which is characterized by recurrent severe bacterial and fungal infections caused by a defect in phagocytic cells due to loss of superoxide production. The disease usually manifests within the first years of life. Early diagnosis allows therapeutic intervention to improve the limited life expectancy. Nevertheless, only half of the patients exceed the age of 25. Here, we present the case of a 41-year old female patient who presented with an extensive spinal cord infection and atypical pneumonia mimicking tuberculosis. The medical history with recurrent granulomatous infections and microbiological findings with multiple unusual opportunistic pathogens was the key to the diagnosis of CGD, which is exceptionally rare first diagnosed in patients in the fifth decade of life. The late diagnosis in this case was likely due to the lack of knowledge of the disease by the treating teams before but not because the patient did not have typical CGD infections along her life. The extensive progressive developing granulomas in our patient with fatal outcome raise the question of early immunosuppressive therapy in addition to anti-infectious treatment. We recommend appropriate CGD diagnostics in adult patients with unclear granulomatous diseases of the nervous system.
Collapse
Affiliation(s)
| | - Alexandra Neyazi
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Frank Donnerstag
- Institute for Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Felix C Ringshausen
- Department of Respiratory Medicine, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Matthias Stoll
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Philip Kirschner
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | - Emil Valizada
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
82
|
Henrickson SE, Jongco AM, Thomsen KF, Garabedian EK, Thomsen IP. Noninfectious Manifestations and Complications of Chronic Granulomatous Disease. J Pediatric Infect Dis Soc 2018; 7:S18-S24. [PMID: 29746679 PMCID: PMC5946858 DOI: 10.1093/jpids/piy014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chronic granulomatous disease (CGD), a primary immunodeficiency characterized by a deficient neutrophil oxidative burst and the inadequate killing of microbes, is well known to cause a significantly increased risk of invasive infection. However, infectious complications are not the sole manifestations of CGD; substantial additional morbidity is driven by noninfectious complications also. These complications can include, for example, a wide range of inflammatory diseases that affect the gastrointestinal tract, lung, skin, and genitourinary tract and overt autoimmune disease. These diseases can occur at any age and are especially problematic in adolescents and adults with CGD. Many of these noninfectious complications present a highly challenging therapeutic conundrum, wherein immunosuppression must be balanced against an already markedly increased risk of invasive fungal and bacterial infections. In this review, the myriad noninfectious complications of CGD are discussed, as are important gaps in our understanding of these processes, which warrant further investigation.
Collapse
Affiliation(s)
- Sarah E Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Pennsylvania
| | - Artemio M Jongco
- Institute for Immunology, University of Pennsylvania, Philadelphia,Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, New York
| | - Kelly F Thomsen
- Division of Gastroenterology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elizabeth K Garabedian
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Isaac P Thomsen
- Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, Tennessee,Correspondence: I. P. Thomsen, MD, MSCI, Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, D-7235 MCN1161 21st Avenue South, Nashville, TN 37232-2581 ()
| |
Collapse
|
83
|
Bennett N, Maglione PJ, Wright BL, Zerbe C. Infectious Complications in Patients With Chronic Granulomatous Disease. J Pediatric Infect Dis Soc 2018; 7:S12-S17. [PMID: 29746678 PMCID: PMC5985728 DOI: 10.1093/jpids/piy013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicholas Bennett
- Division of Pediatric Infectious Diseases and Immunology, Connecticut Children’s Medical Center, Hartford
| | - Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin L Wright
- Mayo Clinic Arizona, Scottsdale,Phoenix Children’s Hospital, Phoenix, Arizona
| | - Christa Zerbe
- The National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland,Correspondence: Christa S. Zerbe, MD, The National Institute of Allergy and Infectious Diseases, The National Institutes of Health, 10 Center Drive Rm 12C110, Bethesda, MD 20892 ()
| |
Collapse
|
84
|
Yanir AD, Hanson IC, Shearer WT, Noroski LM, Forbes LR, Seeborg FO, Nicholas S, Chinn I, Orange JS, Rider NL, Leung KS, Naik S, Carrum G, Sasa G, Hegde M, Omer BA, Ahmed N, Allen CE, Khaled Y, Wu MF, Liu H, Gottschalk SM, Heslop HE, Brenner MK, Krance RA, Martinez CA. High Incidence of Autoimmune Disease after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease. Biol Blood Marrow Transplant 2018; 24:1643-1650. [PMID: 29630926 DOI: 10.1016/j.bbmt.2018.03.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/31/2018] [Indexed: 12/24/2022]
Abstract
There is a lack of consensus regarding the role and method of hematopoietic stem cell transplantation (HSCT) on patients with chronic granulomatous disease (CGD). Long-term follow-up after HSCT in these patient population is essential to know its potential complications and decide who will benefit the most from HSCT. We report the outcome of HSCT and long-term follow-up in 24 patients with CGD, transplanted in our center from either related (n = 6) or unrelated (n = 18) donors, over a 12-year period (2003 to 2015), using high-dose alemtuzumab in the preparative regimen. We evaluated the incidence and timing of adverse events and potential risk factors. We described in detailed the novel finding of increased autoimmunity after HSCT in patients with CGD. At a median follow-up of 1460 days, 22 patients were full donor chimeras, and 2 patients had stable mixed chimerism. All assessable patients showed normalization of their neutrophil oxidative burst test. None of the patients developed grades II to IV acute graft-versus-host disease, and no patient had chronic graft-versus-host disease. Twelve of 24 patients developed 17 autoimmune diseases (ADs). Severe ADs (cytopenia and neuropathy) occurred exclusively in the unrelated donor setting and mainly in the first year after HSCT, whereas thyroid AD occurred in the related donor setting as well and more than 3 years after HSCT. Two patients died due to infectious complications after developing autoimmune cytopenias. One additional patient suffered severe brain injury. The remaining 21 patients have long-term Lansky scores ≥ 80. The outcome of HSCT from unrelated donors is comparable with related donors but might carry an increased risk of developing severe AD. A lower dose of alemtuzumab may reduce this risk and should be tested in further studies.
Collapse
Affiliation(s)
- Asaf D Yanir
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Imelda C Hanson
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - William T Shearer
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Lenora M Noroski
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Lisa R Forbes
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Feliz O Seeborg
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Sarah Nicholas
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Ivan Chinn
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Jordan S Orange
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Nicholas L Rider
- Section of Immunology Allergy and Rheumatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Kathryn S Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Swati Naik
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Ghadir Sasa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Bilal A Omer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Carl E Allen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Yassine Khaled
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Meng-Fen Wu
- The Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Hao Liu
- The Division of Biostatistics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Stephen M Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center and Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
85
|
Zhou Q, Hui X, Ying W, Hou J, Wang W, Liu D, Wang Y, Yu Y, Wang J, Sun J, Zhang Q, Wang X. A Cohort of 169 Chronic Granulomatous Disease Patients Exposed to BCG Vaccination: a Retrospective Study from a Single Center in Shanghai, China (2004-2017). J Clin Immunol 2018; 38:260-272. [PMID: 29560547 DOI: 10.1007/s10875-018-0486-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Clinical diagnosis and treatment for chronic granulomatous disease (CGD) have advanced greatly in recent years. However, CGD patients in China have unique clinical features and infection spectrums, which are challenging to their caretakers. Here, we summarized the clinical characteristics, genetic features, treatment, and prognosis of CGD in a single center in Shanghai. METHODS One hundred sixty-nine CGD patients were recruited between January 2004 and May 2017 based on clinical diagnosis. Electronic medical charts were reviewed to collect clinical data. RESULTS Among the 169 patients recruited, CYBB mutations were identified in 150 cases, whereas CYBA mutations were identified in 7 cases, NCF1 in 5, and NCF2 in 7. The medium age at onset was 1 month (interquartile range 1-3). The medium age at diagnosis was 8 months (interquartile range 3-19). The most common infection sites were the lung (95.9%), lymph node (58.5%), skin (45.4%), intestinal (43.1%), and perianal (38.5%). Bacillus Calmette-Guérin (BCG) infections were common (59.2%). In addition, other non-infectious complications were also common, including anemia (55.4%) and impaired liver functions (34.6%). Thirty-one patients received stem cell transplantation. By the end of this study, 83/131 patients survived. CONCLUSIONS Similar to other non-consanguineous populations, X-linked CGD accounted for the majority of the cases in China. However, BCG infections were a clinical challenge unique to China. In addition, severe infections were the major cause of death and the overall mortality was still high in China.
Collapse
Affiliation(s)
- Qinhua Zhou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ying Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yeheng Yu
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jingyi Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Xiaochuan Wang
- Department of Allergy and Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
86
|
Beghin A, Comini M, Soresina A, Imberti L, Zucchi M, Plebani A, Montanelli A, Porta F, Lanfranchi A. Chronic Granulomatous Disease in children: a single center experience. Clin Immunol 2018; 188:12-19. [DOI: 10.1016/j.clim.2017.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
|
87
|
Wolach B, Gavrieli R, de Boer M, van Leeuwen K, Wolach O, Grisaru-Soen G, Broides A, Etzioni A, Somech R, Roos D. Analysis of Chronic Granulomatous Disease in the Kavkazi Population in Israel Reveals Phenotypic Heterogeneity in Patients with the Same NCF1 mutation (c.579G>A). J Clin Immunol 2018; 38:193-203. [PMID: 29411231 DOI: 10.1007/s10875-018-0475-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/03/2018] [Indexed: 02/05/2023]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an innate immune deficiency disorder of phagocytes, resulting from mutations in the components of the NADPH oxidase complex that impair the synthesis of oxygen radicals, thus rendering patients susceptible to recurrent infections and excessive hyperinflammatory responses. The most common autosomal recessive form of CGD is p47phox deficiency, which is often clinically milder than the more common X-linked recessive form. Here, we report data on genetics, clinical and biochemical findings in 17 CGD patients of Kavkazi origin with the nonsense mutation c.579G>A in the NCF1 gene, leading to p47phox deficiency. METHODS Diagnosis was based on detailed clinical evaluation, respiratory burst activity by cytochrome c reduction and dihydrorhodamine-1,2,3 (DHR) assay by flow cytometry, expression of p47phox by immunoblotting and molecular confirmation by DNA sequence analysis. RESULTS Twelve male and five female patients with median age at onset of 2.5 years (range 1 day to 9 years) were included in the study. The present cohort displays an encouraging 88% overall long-term survival, with median follow-up of 17 years. Clinical manifestations varied from mild to severe expression of the disease. Correlation between genotype and phenotype is unpredictable, although the Kavkazi patients were more severely affected than other patients with p47phox deficiency. CONCLUSIONS Kavkazi CGD patients harbor a common genetic mutation that is associated with a heterogeneous clinical phenotype. Early diagnosis and proper clinical management in an experienced phagocytic leukocyte center is imperative to ensure favorable patient outcome. New treatment strategies are ongoing, but results are not yet conclusive.
Collapse
Affiliation(s)
- Baruch Wolach
- Pediatric Hematology Clinic and the Laboratory for Leukocyte Function, Meir Medical Center, 59 Tchernichovsky St., 44281 Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ronit Gavrieli
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Laboratory for Leukocyte Function, Meir Medical Center, Kfar Saba, Israel
| | - Martin de Boer
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ofir Wolach
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petach Tikva, Israel
| | - Galia Grisaru-Soen
- Pediatric Infectious Diseases Unit, Dana Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Arnon Broides
- Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amos Etzioni
- Meyer Children's Hospital and Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Immunology Service, Department of Pediatrics, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
88
|
Martire B, Azzari C, Badolato R, Canessa C, Cirillo E, Gallo V, Graziani S, Lorenzini T, Milito C, Panza R, Moschese V. Vaccination in immunocompromised host: Recommendations of Italian Primary Immunodeficiency Network Centers (IPINET). Vaccine 2018; 36:3541-3554. [PMID: 29426658 DOI: 10.1016/j.vaccine.2018.01.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/29/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Infectious complications are a major cause of morbidity and mortality in patients with primary or secondary immunodeficiency. Prevention of infectious diseases by vaccines is among the most effective healthcare measures mainly for these subjects. However immunocompromised people vary in their degree of immunosuppression and susceptibility to infection and, therefore, represent a heterogeneous population with regard to immunization. To date there is no well- established evidence for use of vaccines in immunodeficient patients, and indications are not clearly defined even in high-quality reviews and in most of the guidelines prepared to provide recommendations for the active vaccination of immunocompromised hosts. The aim of this document is to issue recommendations based on published literature and the collective experience of the Italian primary immunodeficiency centers, about how and when vaccines can be used in immunocompromised patients, in order to facilitate physician decisions and to ensure the best immune protection with the lowest risk to the health of the patient.
Collapse
Affiliation(s)
- Baldassarre Martire
- Paediatric Hematology Oncology Unit, "Policlinico-Giovanni XXII" Hospital, University of Bari, Italy.
| | - Chiara Azzari
- Pediatric Immunology Unit "Anna Meyer" Hospital University of Florence, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Clementina Canessa
- Pediatric Immunology Unit "Anna Meyer" Hospital University of Florence, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric section, Federico II University, Naples, Italy
| | - Vera Gallo
- Department of Translational Medical Sciences, Pediatric section, Federico II University, Naples, Italy
| | - Simona Graziani
- Paediatric Allergology and Immunology Unit, Policlinico Tor Vergata, University of Rome Tor, Vergata, Italy
| | - Tiziana Lorenzini
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Raffaella Panza
- Paediatric Hematology Oncology Unit, "Policlinico-Giovanni XXII" Hospital, University of Bari, Italy
| | - Viviana Moschese
- Paediatric Allergology and Immunology Unit, Policlinico Tor Vergata, University of Rome Tor, Vergata, Italy
| | | |
Collapse
|
89
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
90
|
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by defects in any of the five subunits of the NADPH oxidase complex responsible for the respiratory burst in phagocytic leukocytes. Patients with CGD are at increased risk of life-threatening infections with catalase-positive bacteria and fungi and inflammatory complications such as CGD colitis. The implementation of routine antimicrobial prophylaxis and the advent of azole antifungals has considerably improved overall survival. Nevertheless, life expectancy remains decreased compared to the general population. Inflammatory complications are a significant contributor to morbidity in CGD, and they are often refractory to standard therapies. At present, hematopoietic stem cell transplantation (HCT) is the only curative treatment, and transplantation outcomes have improved over the last few decades with overall survival rates now > 90% in children less than 14 years of age. However, there remains debate as to the optimal conditioning regimen, and there is question as to how to manage adolescent and adult patients. The current evidence suggests that myeloablative conditioning results is more durable myeloid engraftment but with increased toxicity and high rates of graft-versus-host disease. In recent years, gene therapy has been proposed as an alternative to HCT for patients without an HLA-matched donor. However, results to date have not been encouraging. with negligible long-term engraftment of gene-corrected hematopoietic stem cells and reports of myelodysplastic syndrome due to insertional mutagenesis. Multicenter trials are currently underway in the United States and Europe using a SIN-lentiviral vector under the control of a myeloid-specific promoter, and, should the trials be successful, gene therapy may be a viable option for patients with CGD in the future.
Collapse
Affiliation(s)
- Danielle E Arnold
- Children's Hospital of Philadelphia, Wood Center, Rm 3301, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Jennifer R Heimall
- Children's Hospital of Philadelphia, Wood Center, Rm 3301, 3401 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
91
|
Yáñez L, Lama P, Rivacoba C, Zamorano J, Marinovic MA. [Primary immunodeficiencies in seriously ill children: Report of 3 clinical cases]. ACTA ACUST UNITED AC 2017; 88:136-141. [PMID: 28288231 DOI: 10.1016/j.rchipe.2016.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/25/2016] [Indexed: 10/20/2022]
Abstract
Primary immunodeficiency diseases (PID) are congenital disorders secondary to an impaired immune response. Infections, autoimmune disorders, atopy, and lymphoproliferative syndromes are commonly associated with this disorder. OBJECTIVE To present and discuss 3 infants diagnosed with PID. CLINICAL CASES The cases are presented of three patients with PID diagnosed during their first admission to a Paediatric Intensive Critical Care Unit. The first patient, a 4-month-old infant affected by a severe pneumonia, and was diagnosed as a Severe Combined Immunodeficiency Disease. The second patient was an 8-month-old infant with Candida lusitaniae mesenteric adenitis, and diagnosed with a Chronic Granulomatous Disease. The last patient, a 6-month-old infant presented with ecthyma gangrenosum and X-linked agammaglobulinaemia. CONCLUSION PID should be suspected when an infectious disease does not responde to the appropriate therapy within the expected period. An update of each disease is presented.
Collapse
Affiliation(s)
- Leticia Yáñez
- Unidad de Paciente Crítico Pediátrico, Clínica Santa María, Santiago, Chile
| | - Pamela Lama
- Unidad de Paciente Crítico Pediátrico, Clínica Santa María, Santiago, Chile
| | - Carolina Rivacoba
- Unidad de Paciente Crítico Pediátrico, Clínica Santa María, Santiago, Chile
| | - Juanita Zamorano
- Unidad de Paciente Crítico Pediátrico, Clínica Santa María, Santiago, Chile
| | | |
Collapse
|
92
|
King J, Pana ZD, Lehrnbecher T, Steinbach WJ, Warris A. Recognition and Clinical Presentation of Invasive Fungal Disease in Neonates and Children. J Pediatric Infect Dis Soc 2017; 6:S12-S21. [PMID: 28927201 PMCID: PMC5907856 DOI: 10.1093/jpids/pix053] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive fungal diseases (IFDs) are devastating opportunistic infections that result in significant morbidity and death in a broad range of pediatric patients, particularly those with a compromised immune system. Recognizing them can be difficult, because nonspecific clinical signs and symptoms or isolated fever are frequently the only presenting features. Therefore, a high index of clinical suspicion is necessary in patients at increased risk of IFD, which requires knowledge of the pediatric patient population at risk, additional predisposing factors within this population, and the clinical signs and symptoms of IFD. With this review, we aim to summarize current knowledge regarding the recognition and clinical presentation of IFD in neonates and children.
Collapse
Affiliation(s)
- Jill King
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, and the Royal Aberdeen Children’s Hospital, United Kingdom
| | - Zoi-Dorothea Pana
- Hospital Epidemiology and Infection Control, Division of Infectious Diseases, Johns Hopkins Hospital, Baltimore, Maryland
| | - Thomas Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; and
| | - William J Steinbach
- Division of Pediatric Infectious Diseases, Department of Pediatrics, and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Adilia Warris
- Aberdeen Fungal Group, Medical Research Council Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, and the Royal Aberdeen Children’s Hospital, United Kingdom
| |
Collapse
|
93
|
Thomas DC. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol Lett 2017; 192:88-96. [PMID: 28864335 DOI: 10.1016/j.imlet.2017.08.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
When exposed to certain stimuli, phagocytes (including neutrophils, macrophages and eosinophils) undergo marked changes in the way they handle oxygen. Firstly, their rate of oxygen uptake increases greatly. This is accompanied by (i) the production of large amounts of superoxide and hydrogen peroxide and (ii) the metabolism of large quantities of glucose through the hexose monophosphate shunt. We now know that the oxygen used is not for respiration but for the production of powerful microbiocidal agents downstream of the initial production of superoxide. Concomitantly, glucose is oxidised through the hexose monophosphate shunt to re-generate the NADPH that has been consumed through the reduction of molecular oxygen to generate superoxide. This phagocyte respiratory burst is generated by an NADPH oxidase multi-protein complex that has a catalytic core consisting of membrane-bound gp91phox (CYBB) and p22phox (CYBA) sub-units and cytosolic components p47phox (NCF1), p67phox (NCF2) and p40phox (NCF4). Finally, another cytosolic component, the small G-protein Rac (Rac2 in neutrophils and Rac1 in macrophages) is also required for full activation. The importance of the complex in host defence is underlined by chronic granulomatous disease, a severe life-limiting immunodeficiency caused by mutations in the genes encoding the individual subunits. In this review, I will discuss the experimental evidence that underlies our knowledge of the respiratory burst, outlining how elegant biochemical analysis, coupled with study of patients deficient in the various subunits has helped elucidate the function of this essential part of innate immunity. I will also discuss some exciting recent studies that shed new light on how the abundance of the various components is controlled. Finally, I will explore the emerging role of reactive oxygen species such as superoxide and hydrogen peroxide in the pathogenesis of major human diseases including auto-inflammatory diseases.
Collapse
Affiliation(s)
- David C Thomas
- Department of Medicine, University of Cambridge, University of Cambridge School of Clinical Medicine, Box 157, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
94
|
Abstract
A number of recent advances have been made in the epidemiology and treatment of chronic granulomatous disease. Several reports from developing regions describe the presentations and progress of local populations, highlighting complications due to Bacillus Calmette-Guérin vaccination. A number of new reports describe complications of chronic granulomatous disease in adult patients, as more survivors reach adulthood. The complications experienced by X-linked carriers are particularly highlighted in three new reports, confirming that infection and inflammatory or autoimmune conditions are more common and severe than previously recognised. Finally, definitive treatment with haematopoietic stem cell transplantation and gene therapy is reviewed.
Collapse
Affiliation(s)
- Andrew Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, UK.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
95
|
Albuquerque AS, Fernandes SM, Tendeiro R, Cheynier R, Lucas M, Silva SL, Victorino RMM, Sousa AE. Major CD4 T-Cell Depletion and Immune Senescence in a Patient with Chronic Granulomatous Disease. Front Immunol 2017; 8:543. [PMID: 28553289 PMCID: PMC5425576 DOI: 10.3389/fimmu.2017.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic granulomatous disease (CGD) results from primary defects in phagocytic reactive oxygen species (ROS) production. T-cell evaluation is usually neglected during patients’ follow-up, although T-cell depletion has been reported in CGD through unknown mechanisms. We describe here a 36-year-old patient with X-linked CGD with severe CD4 T-cell depletion <200 CD4 T-cells/μl, providing insights into the mechanisms that underlie T-cell loss in the context of oxidative burst defects. In addition to the typical infections, the patient featured a progressive T-cell loss associated with persistent lymphocyte activation, expansion of interleukin (IL)-17-producing CD4 T-cells, and impaired thymic activity, leading to a reduced replenishment of the T-cell pool. A relative CD4 depletion was also found at the gut mucosal level, although no bias to IL-17-production was documented. This immunological pattern of exhaustion of immune resources favors prompt, potentially curative, therapeutic interventions in CGD patients, namely, stem-cell transplantation or gene therapy. Moreover, this clinical case raises new research questions on the interplay of ROS production and T-cell homeostasis and immune senescence.
Collapse
Affiliation(s)
- Adriana S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal
| | - Susana M Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Tendeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Margarida Lucas
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal.,Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rui M M Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal.,Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal
| |
Collapse
|
96
|
Heshmatnia J, Marjani M, Mahdaviani SA, Adimi P, Pourabdollah M, Tabarsi P, Mahdavi F, Jamaati H, Adcock IM, Garssen J, Velayati A, Mansouri D, Mortaz E. Paecilomyces formosus Infection in an Adult Patient with Undiagnosed Chronic Granulomatous Disease. J Clin Immunol 2017; 37:342-346. [DOI: 10.1007/s10875-017-0395-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
97
|
Williams D, Kadaria D, Sodhi A, Fox R, Williams G, Threlkeld S. Chronic Granulomatous Disease Presenting as Aspergillus Fumigatus Pneumonia in a Previously Healthy Young Woman. AMERICAN JOURNAL OF CASE REPORTS 2017; 18:351-354. [PMID: 28377567 PMCID: PMC5388307 DOI: 10.12659/ajcr.902764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic Granulomatous Disease (CGD) is a rare immunodeficiency disease caused by a genetic defect in the NADPH (nicotinamide adenine dinucleotide phosphate) oxidase enzyme, resulting in increased susceptibility to bacterial and fungal infections. The inheritance can be X-linked or autosomal recessive. Patients usually present with repeated infections early in life. We present an unusual case of a 23-year-old patient diagnosed with CGD. CASE REPORT A 23-year-old white woman with no previous history of recurrent infections presented with complaints of fever, shortness of breath, and diffuse myalgia. She had been treated twice for similar complaints recently, but without resolution. She was febrile, tachypneic, tachycardic, and hypoxic at presentation. Physical examination revealed diffuse inspiratory rales. Laboratory results showed leukocytosis. Her initial chest X-ray and CT chest showed reticular nodular interstitial lung disease pattern. Despite being on broad-spectrum antibiotics for 5 days, she continued to require supplemental oxygen and continued to be tachypneic, with minimal activity. Initial diagnostic tests, including bronchoscopy with biopsy and lavage, did not reveal a diagnosis. She then underwent a video-assisted thoracoscopic surgery (VATS) lung biopsy. The biopsy slides showed suppurative granulomatous inflammation affecting greater than 50% of the parenchymal lung surface. Fungal hyphae consistent with Aspergillus were present in those granulomas. A diagnosis of CGD was made and she was started on Voriconazole. She improved with treatment. Her neutrophil burst test showed negative burst on stimulation, indicating phagocytic dysfunction consistent with CGD. Autosomal recessive CGD was confirmed by genetic testing. CONCLUSIONS CGD can present in adulthood without any previous symptoms and signs. Clinicians should consider this disease in patients presenting with recurrent or non-resolving infections. Timely treatment and prophylaxis has been shown to reduce serious infections as well as mortality in these patients.
Collapse
Affiliation(s)
- David Williams
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dipen Kadaria
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amik Sodhi
- Department of Pulmonary, Critical Care, and Sleep Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Roy Fox
- Department of Pulmonary Critical Care, Baptist Memorial Health Care, Memphis, TN, USA
| | - Glenn Williams
- Department of Pulmonary Critical Care, Baptist Memorial Health Care, Memphis, TN, USA
| | - Stephen Threlkeld
- Department of Infectious Disease, Baptist Memorial Health Care, Memphis, TN, USA
| |
Collapse
|
98
|
Rawat A, Vignesh P, Sharma A, Shandilya JK, Sharma M, Suri D, Gupta A, Gautam V, Ray P, Rudramurthy SM, Chakrabarti A, Imai K, Nonoyama S, Ohara O, Lau YL, Singh S. Infection Profile in Chronic Granulomatous Disease: a 23-Year Experience from a Tertiary Care Center in North India. J Clin Immunol 2017; 37:319-328. [PMID: 28332028 DOI: 10.1007/s10875-017-0382-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/03/2017] [Indexed: 02/03/2023]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an inherited phagocytic disorder characterized by recurrent infections with usually catalase-positive organisms. Infections in CGD from developing countries are expected to be different from those in the Western countries. We report the profile of infections in children diagnosed with CGD from a tertiary care center in North India. METHODOLOGY Case records of children diagnosed with CGD at Pediatric Immunodeficiency Clinic, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India, from August 1993 to April 2016 (23 years) were analyzed. RESULTS Thirty-eight children were diagnosed to have CGD. Median follow-up of patients was 2 years (interquartile range 0.75, 6.0). Staphylococcus aureus and Pseudomonas spp. were the two most common causative bacteria isolated. Aspergillus was the most common fungus isolated. The most common organ involved was the lung (94.7%). Liver abscesses were identified in 5 patients (13.2%), and 20 (52.6%) patients had lymphadenitis. Infections with Pseudomonas spp. were high in our cohort (15.7%) compared to the other studies. Infections with some unusual organisms (e.g., Fusarium dimerium and Chryseobacterium gleum) were also seen in our cohort. Children with X-linked CGD presented earlier and also had a greater number of infections as compared to autosomal recessive CGD. CONCLUSIONS Various socioeconomic factors coupled with the lack of awareness and paucity of readily available diagnostic facilities for primary immunodeficiencies accounted for a late clinical presentation with severe infections and increased mortality (28.9%) in our cohort. However, mortality was similar in X-linked and autosomal recessive CGD as was the number of fungal infections. The incidence of infections and mortality was significantly lower after initiation of antibacterial and antifungal prophylaxis.
Collapse
Affiliation(s)
- Amit Rawat
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India.
| | - Pandiarajan Vignesh
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Avinash Sharma
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Jitendra K Shandilya
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Madhubala Sharma
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Deepti Suri
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Anju Gupta
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Vikas Gautam
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Pallab Ray
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Osamu Ohara
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yu L Lau
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Surjit Singh
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigargh, 160012, India
| |
Collapse
|
99
|
Zhou L, Dong LJ, Gao ZY, Yu XJ, Lu DP. Haploidentical hematopoietic stem cell transplantation for a case with X-linked chronic granulomatous disease. Pediatr Transplant 2017; 21. [PMID: 27885760 DOI: 10.1111/petr.12861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
CGD is a rare primary immunodeficiency with high mortality rates when treated conventionally, especially for the X-chromosome-linked form. HSCT is the only curative therapy for CGD; however, haploidentical transplantation in CGD is rare. Here, we report a case of X-linked CGD treated successfully by haploidentical HSCT. The patient showed a positive result with full donor chimerism, good quality of life, and the absence of recurrent infectious diseases at follow-up (68 months). Thus, haploidentical HSCT may serve as an acceptable treatment approach for patients who have CGD, but no HLA-matched related or unrelated donor.
Collapse
Affiliation(s)
- Ling Zhou
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Shanghai Dao-Pei Hospital, Shanghai, China
| | | | | | | | - Dao-Pei Lu
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.,Shanghai Dao-Pei Hospital, Shanghai, China
| |
Collapse
|
100
|
Clinical Features and Genetic Analysis of 48 Patients with Chronic Granulomatous Disease in a Single Center Study from Shanghai, China (2005-2015): New Studies and a Literature Review. J Immunol Res 2017; 2017:8745254. [PMID: 28251166 PMCID: PMC5303869 DOI: 10.1155/2017/8745254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/27/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chronic Granulomatous Disease (CGD) is a rare inherited primary immunodeficiency, which is characterized by recurrent infections due to defective phagocyte NADPH oxidase enzyme. Nowadays, little is known about Chinese CGD patients. Here we report 48 CGD patients in our single center study, which is the largest cohort study from Mainland China. The ratio of male to female was 11 : 1. The mean onset age was 0.29 years old, and 52% patients had an onset within the 1st month of life. The mean diagnosis age was 2.24 years old. 11 patients (23%) had died with an average age of 2.91 years old. 13 patients (28%) had positive family histories. The most prevalent infectious sites were the lungs (77%), followed by gastrointestinal tract (54%), lymph nodes (50%), and skin (46%). In addition, septicopyemia, thrush, and hepatosplenomegaly were also commonly observed, accounting for 23%, 23%, and 40% of the cases. Lesions due to BCG vaccination occurred in more than half of the patients. X-linked CGD due to CYBB gene mutations accounted for 75% of the cases, and 11 of them were novel mutations. Autosomal recessive inheritance accounted for 6% patients, including 1 patient with CYBA, 1 with NCF1, and 1 with NCF2 gene mutations.
Collapse
|