51
|
Dąbek B, Dybiec J, Frąk W, Fularski P, Lisińska W, Radzioch E, Młynarska E, Rysz J, Franczyk B. Novel Therapeutic Approaches in the Management of Chronic Kidney Disease. Biomedicines 2023; 11:2746. [PMID: 37893119 PMCID: PMC10604464 DOI: 10.3390/biomedicines11102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a progressive and incurable disease that impairs kidney function. Its prevalence is estimated to affect up to 800 million individuals within the general population, and patients with diabetes and hypertension are particularly at risk. This disorder disrupts the physiological mechanisms of the body, including water and electrolyte balance, blood pressure regulation, the excretion of toxins, and vitamin D metabolism. Consequently, patients are exposed to risks such as hyperkalemia, hyperphosphatemia, metabolic acidosis, and blood pressure abnormalities. These risks can be reduced by implementing appropriate diagnostic methods, followed by non-pharmacological (such as physical activity, dietary, and lifestyle adjustment) and pharmacological strategies after diagnosis. Selecting the appropriate diet and suitable pharmacological treatment is imperative in maintaining kidney function as long as possible. Drugs such as finerenone, canakinumab, and pentoxifylline hold promise for improved outcomes among CKD patients. When these interventions prove insufficient, renal replacement therapy becomes essential. This is particularly critical in preserving residual renal function while awaiting renal transplantation or for patients deemed ineligible for such a procedure. The aim of this study is to present the current state of knowledge and recent advances, providing novel insights into the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Bartłomiej Dąbek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Radzioch
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
52
|
Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease-A Retrospective Single-Arm Case Series Study. J Clin Med 2023; 12:6341. [PMID: 37834985 PMCID: PMC10573882 DOI: 10.3390/jcm12196341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Treatment with sodium-glucose cotransporter-2 (SGLT2) inhibitors may have pleiotropic and beneficial effects in terms of ameliorating of risk factors for the progression of autosomal dominant polycystic kidney disease (ADPKD). However, there is insufficient evidence regarding the use of these drugs in patients with ADPKD, as they were excluded from several clinical trials conducted to explore kidney protection provided by SGLT2 inhibitors. This retrospective single-arm case series study was performed to investigate the effects of dapagliflozin, a selective SGLT2 inhibitor administered at 10 mg/day, on changes in height-adjusted kidney volume (htTKV) and estimated glomerular filtration rate (eGFR) in ADPKD patients. During a period of 102 ± 20 days (range 70-156 days), eGFR was decreased from 47.9 (39.7-56.9) to 40.8 (33.7-44.5) mL/min/1.73 m2 (p < 0.001), while htTKV was increased from 599 (423-707) to 617 (446-827) mL/m (p = 0.002) (n = 20). The annual increase in htTKV rate was significantly promoted, and urinary phosphate change was found to be correlated with the change in htTKV (rs = 0.575, p = 0.020). In the examined patients, eGFR was decreased and htTKV increased during short-term administration of dapagliflozin. To confirm the possibility of the effects of dapagliflozin on ADPKD, additional interventional studies are required.
Collapse
Affiliation(s)
- Fumiyuki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Hideki Uedono
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
| | - Katsuhito Mori
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (F.M.); (H.U.); (A.T.); (M.E.)
- Department of Nephrology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan;
| |
Collapse
|
53
|
Pellegrini H, Sharpe EH, Liu G, Nishiuchi E, Doerr N, Kipp KR, Chin T, Schimmel MF, Weimbs T. Cleavage fragments of the C-terminal tail of polycystin-1 are regulated by oxidative stress and induce mitochondrial dysfunction. J Biol Chem 2023; 299:105158. [PMID: 37579949 PMCID: PMC10502374 DOI: 10.1016/j.jbc.2023.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.
Collapse
Affiliation(s)
- Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Elizabeth H Sharpe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Guangyi Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA; Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Eiko Nishiuchi
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin R Kipp
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tiffany Chin
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Margaret F Schimmel
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
54
|
Sedaka R, Huang J, Yamaguchi S, Lovelady C, Hsu JS, Shinde S, Kasztan M, Crossman DK, Saigusa T. Accelerated cystogenesis by dietary protein load is dependent on, but not initiated by kidney macrophages. Front Med (Lausanne) 2023; 10:1173674. [PMID: 37538309 PMCID: PMC10394241 DOI: 10.3389/fmed.2023.1173674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Background Disease severity of autosomal dominant polycystic kidney disease (ADPKD) is influenced by diet. Dietary protein, a recognized cyst-accelerating factor, is catabolized into amino acids (AA) and delivered to the kidney leading to renal hypertrophy. Injury-induced hypertrophic signaling in ADPKD results in increased macrophage (MФ) activation and inflammation followed by cyst growth. We hypothesize that the cystogenesis-prompting effects of HP diet are caused by increased delivery of specific AA to the kidney, ultimately stimulating MФs to promote cyst progression. Methods Pkd1flox/flox mice with and without Cre (CAGG-ER) were given tamoxifen to induce global gene deletion (Pkd1KO). Pkd1KO mice were fed either a low (LP; 6%), normal (NP; 18%), or high (HP; 60%) protein diet for 1 week (early) or 6 weeks (chronic). Mice were then euthanized and tissues were used for histology, immunofluorescence and various biochemical assays. One week fed kidney tissue was cell sorted to isolate tubular epithelial cells for RNA sequencing. Results Chronic dietary protein load in Pkd1KO mice increased kidney weight, number of kidney infiltrating and resident MФs, chemokines, cytokines and cystic index compared to LP diet fed mice. Accelerated cyst growth induced by chronic HP were attenuated by liposomal clodronate-mediated MФ depletion. Early HP diet fed Pkd1KO mice had larger cystic kidneys compared to NP or LP fed counterparts, but without increases in the number of kidney MФs, cytokines, or markers of tubular injury. RNA sequencing of tubular epithelial cells in HP compared to NP or LP diet group revealed increased expression of sodium-glutamine transporter Snat3, chloride channel Clcnka, and gluconeogenesis marker Pepck1, accompanied by increased excretion of urinary ammonia, a byproduct of glutamine. Early glutamine supplementation in Pkd1KO mice lead to kidney hypertrophy. Conclusion Chronic dietary protein load-induced renal hypertrophy and accelerated cyst growth in Pkd1KO mice is dependent on both infiltrating and resident MФ recruitment and subsequent inflammatory response. Early cyst expansion by HP diet, however, is relient on increased delivery of glutamine to kidney epithelial cells, driving downstream metabolic changes prior to inflammatory provocation.
Collapse
Affiliation(s)
- Randee Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shinobu Yamaguchi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Caleb Lovelady
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jung-Shan Hsu
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sejal Shinde
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Malgorzata Kasztan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Takamitsu Saigusa
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
55
|
Pimentel-Suarez LI, Soto-Mota A. Evaluation of the safety and tolerability of exogenous ketosis induced by orally administered free beta-hydroxybutyrate in healthy adult subjects. BMJ Nutr Prev Health 2023; 6:122-126. [PMID: 38618543 PMCID: PMC11009516 DOI: 10.1136/bmjnph-2023-000672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/08/2023] [Indexed: 04/16/2024] Open
Abstract
Beta-hydroxybutyrate (D-BHB) is a metabolite with intrinsic signalling activity that has gained attention as a potentially clinically useful supplement. There are available supplements for inducing ketosis: ketone salts, ketone esters and medium-chain triglycerides. Even when all of them raise D-BHB in the blood and all are safe and well tolerated, they significantly differ in their safety profile, their palatability and their price. A fourth and potentially interesting option is to use biologically identical D-BHB, which it is already commercially available in the USA (American Ketone) and Greater China (MedPHA). However, its safety and tolerability had not yet been documented in the scientific literature. We evaluated the safety and tolerability of orally administered free D-BHB in a gender and age-balanced sample of 24 asymptomatic and overtly healthy adults. No participant showed acid-base abnormalities or electrolyte abnormalities. Secondary symptoms were reported after only 6.2% of all drink takes and none of the reports described the symptom as 'severe'. The most frequently reported secondary effects (19/720 or 2.6%) were gastrointestinal discomfort, headache (7/720 or 1%) and loss of appetite (7/720 or 1%). No correlation between weight-adjusted dose and frequency of secondary symptoms was observed. Free D-BHB was a safe and well-tolerated intervention for inducing sustained exogenous ketosis. Being bioidentical, salt-free and lacking intermediate metabolites, this form of supplementation could have a larger safety spectrum than salt or alcohol-based exogenous ketones. More research is warranted to assess its clinical efficacy in those clinical scenarios in which achieving ketosis rapidly could be beneficial.
Collapse
Affiliation(s)
- Lisa Isabel Pimentel-Suarez
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico, Mexico
- School of Medicine, Tecnologico de Monterrey - Campus Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico, Mexico
- School of Medicine, Tecnologico de Monterrey - Campus Ciudad de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
56
|
Oehm S, Steinke K, Schmidt J, Arjune S, Todorova P, Heinrich Lindemann C, Wöstmann F, Meyer F, Siedek F, Weimbs T, Müller RU, Grundmann F. RESET-PKD: a pilot trial on short-term ketogenic interventions in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2023; 38:1623-1635. [PMID: 36423335 PMCID: PMC10435930 DOI: 10.1093/ndt/gfac311] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Ketogenic dietary interventions (KDI) have been shown to be effective in animal models of polycystic kidney disease (PKD), but data from clinical trials are lacking. METHODS Ten autosomal dominant PKD (ADPKD) patients with rapid disease progression were enrolled at visit V1 and initially maintained a carbohydrate-rich diet. At V2, patients entered one of the two KDI arms: a 3-day water fast (WF) or a 14-day ketogenic diet (KD). At V3, they resumed their normal diet for 3-6 weeks until V4. At each visit, magnetic resonance imaging kidney and liver volumetry was performed. Ketone bodies were evaluated to assess metabolic efficacy and questionnaires were used to determine feasibility. RESULTS All participants [KD n = 5, WF n = 5; age 39.8 ± 11.6 years; estimated glomerular filtration rate 82 ± 23.5 mL/min/1.73 m2; total kidney volume (TKV) 2224 ± 1156 mL] were classified as Mayo Class 1C-1E. Acetone levels in breath and beta-hydroxybutyrate (BHB) blood levels increased in both study arms (V1 to V2 average acetone: 2.7 ± 1.2 p.p.m., V2 to V3: 22.8 ± 11.9 p.p.m., P = .0006; V1 to V2 average BHB: 0.22 ± 0.08 mmol/L, V2 to V3: 1.88 ± 0.93 mmol/L, P = .0008). Nine of 10 patients reached a ketogenic state and 9/10 evaluated KDIs as feasible. TKV did not change during this trial. However, we found a significant impact on total liver volume (ΔTLV V2 to V3: -7.7%, P = .01), mediated by changes in its non-cystic fraction. CONCLUSIONS RESET-PKD demonstrates that short-term KDIs potently induce ketogenesis and are feasible for ADPKD patients in daily life. While TLV quickly changed upon the onset of ketogenesis, changes in TKV may require longer-term interventions.
Collapse
Affiliation(s)
- Simon Oehm
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Konstantin Steinke
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Johannes Schmidt
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Sita Arjune
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Polina Todorova
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Christoph Heinrich Lindemann
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Fabian Wöstmann
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| | - Franziska Meyer
- University of Cologne, Faculty of Medicine and University Hospital, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Florian Siedek
- University of Cologne, Faculty of Medicine and University Hospital, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Thomas Weimbs
- Department of Molecular, Cellular and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Roman-Ulrich Müller
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- University of Cologne, Faculty of Medicine and University Hospital, Department 2 of Internal Medicine and Center for Molecular Medicine, Cologne, Germany
| |
Collapse
|
57
|
Rothé B, Fortier S, Gagnieux C, Schmuziger C, Constam DB. Antagonistic interactions among structured domains in the multivalent Bicc1-ANKS3-ANKS6 protein network govern phase transitioning of target mRNAs. iScience 2023; 26:106855. [PMID: 37275520 PMCID: PMC10232731 DOI: 10.1016/j.isci.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
The growing number of diseases linked to aberrant phase transitioning of ribonucleoproteins highlights the need to uncover how the interplay between multivalent protein and RNA interactions is regulated. Cytoplasmic granules of the RNA binding protein Bicaudal-C (Bicc1) are regulated by the ciliopathy proteins ankyrin (ANK) and sterile alpha motif (SAM) domain-containing ANKS3 and ANKS6, but whether and how target mRNAs are affected is unknown. Here, we show that head-to-tail polymers of Bicc1 nucleated by its SAM domain are interconnected by K homology (KH) domains in a protein meshwork that mediates liquid-to-gel transitioning of client transcripts. Moreover, while the dispersion of these granules by ANKS3 concomitantly released bound mRNAs, co-recruitment of ANKS6 by ANKS3 reinstated Bicc1 condensation and ribonucleoparticle assembly. RNA-independent Bicc1 polymerization and its dual regulation by ANKS3 and ANKS6 represent a new mechanism to couple the reversible immobilization of client mRNAs to controlled protein phase transitioning between distinct metastable states.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Simon Fortier
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Céline Schmuziger
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| | - Daniel B. Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|
58
|
Capelli I, Lerario S, Aiello V, Provenzano M, Di Costanzo R, Squadrani A, Vella A, Vicennati V, Poli C, La Manna G, Baraldi O. Diet and Physical Activity in Adult Dominant Polycystic Kidney Disease: A Review of the Literature. Nutrients 2023; 15:2621. [PMID: 37299584 PMCID: PMC10255338 DOI: 10.3390/nu15112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Autosomal polycystic kidney disease is the most common inherited kidney disease determining 5% of all end-stage kidney disease. The only therapy approved for this condition is Tolvaptan, which, with its aquaretic effect, has a strong effect on patients' daily life. Recently, the literature has been enriched with new works that analyze possible non-pharmacological therapeutic strategies to slow cysts' enlargement and chronic kidney disease progression. Among them, dietary schemes reducing carbohydrate intake and inducing ketoses have been demonstrated to have efficacy in several pre-clinical and clinical studies. A ketogenic diet, calorie restriction, intermittent fasting, and time-restricted feeding can reduce aerobic glycolysis and inhibit the mTOR pathway, producing a reduction in cyst cell proliferation, a reduction in kidney volume, and helping to preserve kidney function. ADPKD's burden of disease has an impact on patients' quality of life, and the possibility to play sports or carry out physical exercise can help people in everyday life. The multisystemic character of the disease, especially cardiovascular involvement, needs to be carefully evaluated to establish the quality and quantity of physical activity that patients can safely carry out.
Collapse
Affiliation(s)
- Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Sarah Lerario
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Valeria Aiello
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Michele Provenzano
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Roberta Di Costanzo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Andrea Squadrani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Anna Vella
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Valentina Vicennati
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Carolina Poli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
- Sviluppo Professionale e Implementazione della Ricerca nelle Professioni Sanitarie, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (A.S.); (V.V.); (C.P.)
| | - Olga Baraldi
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (I.C.); (S.L.); (V.A.); (M.P.); (R.D.C.); (A.V.); (O.B.)
| |
Collapse
|
59
|
Zhou JX, Torres VE. Autosomal Dominant Polycystic Kidney Disease Therapies on the Horizon. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:245-260. [PMID: 37088527 DOI: 10.1053/j.akdh.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.
Collapse
|
60
|
Steele CN, Nowak KL. Nonpharmacological Management of Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:220-227. [PMID: 37088524 PMCID: PMC10353837 DOI: 10.1053/j.akdh.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease is a slowly progressive, lifelong disease characterized by continuous development and enlargement of kidney cysts. Thus, nonpharmacological interventions are crucial in disease management and have the potential for a large clinical impact as standalone interventions or in conjunction with pharmacological therapies. Current potential strategies regarding nonpharmacological management of autosomal dominant polycystic kidney disease include nonpharmacological management of blood pressure, calorie restriction, weight loss or weight management, enhanced hydration, limiting caffeine, dietary sodium restriction, protein restriction or altering the type of protein intake, phosphorus restriction, and reducing net acid load. This brief review discusses the available evidence, including cell culture, animal, epidemiological, and clinical studies, regarding the utility of such strategies in the nonpharmacological management of autosomal dominant polycystic kidney disease. We assert that lifestyle modification strategies should be a critical aspect of the treatment of autosomal dominant polycystic kidney disease, while further trial and mechanistic evidence continue to become available.
Collapse
Affiliation(s)
- Cortney N Steele
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO.
| |
Collapse
|
61
|
Tomita I, Tsuruta H, Yasuda-Yamahara M, Yamahara K, Kuwagata S, Tanaka-Sasaki Y, Chin-Kanasaki M, Fujita Y, Nishi E, Katagiri H, Maegawa H, Kume S. Ketone bodies: A double-edged sword for mammalian life span. Aging Cell 2023:e13833. [PMID: 37060184 DOI: 10.1111/acel.13833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023] Open
Abstract
Accumulating evidence suggests health benefits of ketone bodies, and especially for longevity. However, the precise role of endogenous ketogenesis in mammalian life span, and the safety and efficacy of the long-term exogenous supplementation of ketone bodies remain unclear. In the present study, we show that a deficiency in endogenous ketogenesis, induced by whole-body Hmgcs2 deletion, shortens life span in mice, and that this is prevented by daily ketone body supplementation using a diet containing 1,3-butanediol, a precursor of β-hydroxybutyrate. Furthermore, feeding the 1,3-butanediol-containing diet from early in life increases midlife mortality in normal mice, but in aged mice it extends life span and prevents the high mortality associated with atherosclerosis in ApoE-deficient mice. By contrast, an ad libitum low-carbohydrate ketogenic diet markedly increases mortality. In conclusion, endogenous ketogenesis affects mammalian survival, and ketone body supplementation may represent a double-edged sword with respect to survival, depending on the method of administration and health status.
Collapse
Affiliation(s)
- Issei Tomita
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Yukihiro Fujita
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Tsukinowa-cho, Seta, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
62
|
Hu X, Qiu Y, Cao R, Xu C, Lu C, Wang Z, Yang J. Ketogenic Diet Alleviates Renal Interstitial Fibrosis in UUO Mice by Regulating Macrophage Proliferation. J Nutr Biochem 2023; 118:109335. [PMID: 37023933 DOI: 10.1016/j.jnutbio.2023.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
The ketogenic diet (KD), a high-fat and extremely low-carbohydrate dietary regimen, has long been acknowledged as a highly beneficial dietary therapy for the treatment of intractable epilepsy throughout the last decade. Because of its significant therapeutic potential for a variety of ailments, KD is increasingly attracting study interest. In renal fibrosis, KD has received little attention. This study aimed to determine whether KD protects against renal fibrosis in unilateral ureteral obstruction (UUO) models and the possible mechanisms. The ketogenic diet, according to our findings, reduces UUO-induced kidney injury and fibrosis in mice. KD dramatically decreased the number of F4/80+macrophages in kidneys. Next, immunofluorescence results revealed a reduction in the number of F4/80+Ki67+macrophages in the KD group. Furthermore, our study evaluated the impact of β-hydroxybutyric acid (β-OHB) in RAW246.7 macrophages in vitro. We found that β-OHB inhibits macrophage proliferation. Mechanistically, β-OHB inhibits macrophage proliferation may be via the FFAR3-AKT pathway. Collectively, our study indicated that KD ameliorates UUO-induced renal fibrosis by regulating macrophage proliferation. KD may be an effective therapy method for renal fibrosis due to its protective impact against the disorder.
Collapse
Affiliation(s)
- Xiaofan Hu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
63
|
Onuchic L, Padovano V, Schena G, Rajendran V, Dong K, Shi X, Pandya R, Rai V, Gresko NP, Ahmed O, Lam TT, Wang W, Shen H, Somlo S, Caplan MJ. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nat Commun 2023; 14:1790. [PMID: 36997516 PMCID: PMC10063565 DOI: 10.1038/s41467-023-37449-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent potentially lethal monogenic disorder. Mutations in the PKD1 gene, which encodes polycystin-1 (PC1), account for approximately 78% of cases. PC1 is a large 462-kDa protein that undergoes cleavage in its N and C-terminal domains. C-terminal cleavage produces fragments that translocate to mitochondria. We show that transgenic expression of a protein corresponding to the final 200 amino acid (aa) residues of PC1 in two Pkd1-KO orthologous murine models of ADPKD suppresses cystic phenotype and preserves renal function. This suppression depends upon an interaction between the C-terminal tail of PC1 and the mitochondrial enzyme Nicotinamide Nucleotide Transhydrogenase (NNT). This interaction modulates tubular/cyst cell proliferation, the metabolic profile, mitochondrial function, and the redox state. Together, these results suggest that a short fragment of PC1 is sufficient to suppress cystic phenotype and open the door to the exploration of gene therapy strategies for ADPKD.
Collapse
Affiliation(s)
- Laura Onuchic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Valeria Padovano
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Giorgia Schena
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Vanathy Rajendran
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ke Dong
- Department of Internal Medicine and Division of Nephrology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Xiaojian Shi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Raj Pandya
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Victoria Rai
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Nikolay P Gresko
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Omair Ahmed
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06510, USA
- Keck Mass Spectrometry & Proteomics Resource, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Weiwei Wang
- Keck Mass Spectrometry & Proteomics Resource, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Hongying Shen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Stefan Somlo
- Department of Internal Medicine and Division of Nephrology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
64
|
Lambert K, Gardos R, Coolican H, Pickel L, Sung HK, Wang AYM, Ong AC. Diet and Polycystic Kidney Disease: Nutrients, Foods, Dietary Patterns, and Implications for Practice. Semin Nephrol 2023; 43:151405. [PMID: 37542985 DOI: 10.1016/j.semnephrol.2023.151405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Polycystic kidney disease (PKD) is a chronic, progressive hereditary condition characterized by abnormal development and growth of cysts in the kidneys and other organs. There is increasing interest in exploring whether dietary modifications may prevent or slow the disease course in people with PKD. Although vasopressin-receptor agonists have emerged as a novel drug treatment in advancing care for people with PKD, several recent landmark trials and clinical discoveries also have provided new insights into potential dietary-related therapeutic strategies. In this review, we summarize the current evidence pertaining to nutrients, foods, dietary patterns, cyst growth, and progression of PKD. We also describe existing evidence-based dietary care for people with PKD and outline the potential implications for advancing evidence-based dietary interventions. Semin Nephrol 43:x-xx © 2023 Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Kelly Lambert
- Nutrition and Dietetics, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, New South Wales, Australia.
| | | | | | - Lauren Pickel
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela Yee-Moon Wang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, SAR, China
| | - Albert Cm Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
65
|
Chen Y, Wu J, Yu D, Liu M. Plant or Animal-Based or PLADO Diets: Which Should Chronic Kidney Disease Patients Choose? J Ren Nutr 2023; 33:228-235. [PMID: 35809890 DOI: 10.1053/j.jrn.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/09/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Nutrition therapy is the cornerstone treatment for chronic kidney disease (CKD). Although much attention has been given to dietary protein intake in CKD patients, many findings now demonstrate that the type of dietary protein intake may be more critical for CKD patients. In protein bioavailability and malnutrition prevention, many physicians recommend that CKD patients adhere to a low protein diet and restrict their plant foods, such as vegetables, fruits, and soybeans. However, nephrologists should not ignore the potential benefits of plant foods for CKD patients. It is not advisable to restrict the intake of plant foods in the later stage of CKD simply to prevent the development of hyperkalemia and malnutrition. This article highlights the benefits and possible problems of a plant-dominant low protein diet (PLADO) diet, defined as an LPD with dietary protein intake of 0.6-0.8 g/kg/day with at least 50% plant-based source for CKD patients. We hope to provide new opinions for clinical work and CKD patients.
Collapse
Affiliation(s)
- Ye Chen
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinlan Wu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Yu
- Department of Clinical Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Maodong Liu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
66
|
Steidl ME, Nigro EA, Nielsen AK, Pagliarini R, Cassina L, Lampis M, Podrini C, Chiaravalli M, Mannella V, Distefano G, Yang M, Aslanyan M, Musco G, Roepman R, Frezza C, Boletta A. Primary cilia sense glutamine availability and respond via asparagine synthetase. Nat Metab 2023; 5:385-397. [PMID: 36879119 PMCID: PMC10042734 DOI: 10.1038/s42255-023-00754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Depriving cells of nutrients triggers an energetic crisis, which is resolved by metabolic rewiring and organelle reorganization. Primary cilia are microtubule-based organelles at the cell surface, capable of integrating multiple metabolic and signalling cues, but their precise sensory function is not fully understood. Here we show that primary cilia respond to nutrient availability and adjust their length via glutamine-mediated anaplerosis facilitated by asparagine synthetase (ASNS). Nutrient deprivation causes cilia elongation, mediated by reduced mitochondrial function, ATP availability and AMPK activation independently of mTORC1. Of note, glutamine removal and replenishment is necessary and sufficient to induce ciliary elongation or retraction, respectively, under nutrient stress conditions both in vivo and in vitro by restoring mitochondrial anaplerosis via ASNS-dependent glutamate generation. Ift88-mutant cells lacking cilia show reduced glutamine-dependent mitochondrial anaplerosis during metabolic stress, due to reduced expression and activity of ASNS at the base of cilia. Our data indicate a role for cilia in responding to, and possibly sensing, cellular glutamine levels via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Maria Elena Steidl
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa A Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Anne Kallehauge Nielsen
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cassina
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lampis
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Center for Omics Sciences, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ming Yang
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Mariam Aslanyan
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
67
|
Ayele GM, Atalay RT, Mamo RT, Hussien S, Nigussie B, Fissha A, Michael MB. Is Losing Weight Worth Losing Your Kidney: Keto Diet Resulting in Renal Failure. Cureus 2023; 15:e36546. [PMID: 37095796 PMCID: PMC10121483 DOI: 10.7759/cureus.36546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 04/26/2023] Open
Abstract
Keto diet is defined as a high-fat, adequate-protein, and low-carbohydrate nutrition which forces the body to burn fats and use an alternative metabolic fuel resource by stimulating endogenous ketone production. The standard range of ketones in ketosis is up to 3.00mmol/L, and anything beyond this level can result in serious medical conditions. This diet's most common and easily reversible consequences are constipation, low-grade acidosis, hypoglycemia, kidney stones, and increased lipid in the blood. We present a case of a 36-year-old female who presented with pre-renal azotemia after starting a keto diet regimen.
Collapse
Affiliation(s)
- Girma M Ayele
- Internal Medicine, Howard University Hospital, Washington D.C., USA
| | | | - Ruth T Mamo
- General Medicine, Nordic Medical Center, Addis Ababa, ETH
| | - Siham Hussien
- Internal Medicine, University of Maryland Midtown Campus, Baltimore, USA
| | | | - Abel Fissha
- Internal Medicine, International Cardiovascular and Medical Center (iCMC) Hospital, Addis Ababa, ETH
| | - Miriam B Michael
- Internal Medicine, Howard University Hospital, Washington D.C., USA
- Internal Medicine, University of Maryland, Baltimore, USA
| |
Collapse
|
68
|
Wang AYM. Introduction: Advances in Nutrition Management in Chronic Kidney Disease. Semin Nephrol 2023; 43:151445. [PMID: 37871488 DOI: 10.1016/j.semnephrol.2023.151445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Affiliation(s)
- Angela Yee-Moon Wang
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
69
|
Joshi S, Kalantar-Zadeh K, Chauveau P, Carrero JJ. Risks and Benefits of Different Dietary Patterns in CKD. Am J Kidney Dis 2023; 81:352-360. [PMID: 36682903 DOI: 10.1053/j.ajkd.2022.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
Food has the potential to cause and exacerbate many lifestyle diseases. Or it can be used to prevent and treat illnesses like primary hypertension, the metabolic syndrome, and insulin resistance. In parallel, there is also a growing body of evidence of the role of diet in the treatment of kidney disease and its ensuing complications. Popular diets for this purpose have included low-carbohydrate diets, including the ketogenic diet, and higher carbohydrate diets like Mediterranean diets and other plant-based dietary patterns. Low-carbohydrate diets have not shown harm in patients with kidney disease and may benefit a select few. Mediterranean diets have an established record of cardioprotective benefits but also may be beneficial for the kidney. Intermittent fasting has benefits for metabolic health, but limited research exists on the risk or benefit for patients with kidney disease. Plant-based diets, especially those that are lower in protein, may slow kidney disease progression, mitigate uremia, and delay dialysis initiation. Although each dietary pattern has its unique pros and cons, most healthful dietary patterns favor the inclusion of whole, unprocessed foods, preferably from plant-based sources. In this perspective, we discuss the risks and benefits of major popular diets to help guide health care professionals in treating patients with kidney disease.
Collapse
Affiliation(s)
- Shivam Joshi
- Department of Medicine, Grossman School of Medicine, New York University, New York, New York; Department of Medicine, NYC Health + Hospitals/Bellevue, New York, New York.
| | | | | | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
70
|
Abstract
The sodium-glucose cotransporter 2 (SGLT2) inhibitors have become an integral part of clinical practice guidelines to slow the progression of CKD in patients with and without diabetes mellitus. Although initially developed as antihyperglycemic drugs, their effect on the kidney is multifactorial resulting from profuse glycosuria and natriuresis consequent to their primary site of action. Hemodynamic and metabolic changes ensue that mediate kidney-protective effects, including ( 1 ) decreased workload of proximal tubular cells and prevention of aberrant increases in glycolysis, contributing to a decreased risk of AKI; ( 2 ) lowering of intraglomerular pressure by activating tubular glomerular feedback and reductions in BP and tissue sodium content; ( 3 ) initiation of nutrient-sensing pathways reminiscent of starvation activating ketogenesis, increased autophagy, and restoration of carbon flow through the mitochondria without production of reactive oxygen species; ( 4 ) body weight loss without a reduction in basal metabolic rate due to increases in nonshivering thermogenesis; and ( 5 ) favorable changes in quantity and characteristics of perirenal fat leading to decreased release of adipokines, which adversely affect the glomerular capillary and signal increased sympathetic outflow. Additionally, these drugs stimulate phosphate and magnesium reabsorption and increase uric acid excretion. Familiarity with kidney-specific mechanisms of action, potential changes in kidney function, and/or alterations in electrolytes and volume status, which are induced by these widely prescribed drugs, will facilitate usage in the patients for whom they are indicated.
Collapse
Affiliation(s)
- Biff F. Palmer
- Division of Nephrology, Department of Medicine, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Deborah J. Clegg
- Internal Medicine, Texas Tech Health Sciences Center, El Paso, Texas
| |
Collapse
|
71
|
Song X, Leonhard WN, Kanhai AA, Steinberg GR, Pei Y, Peters DJM. Preclinical evaluation of tolvaptan and salsalate combination therapy in a Pkd1-mouse model. Front Mol Biosci 2023; 10:1058825. [PMID: 36743216 PMCID: PMC9893022 DOI: 10.3389/fmolb.2023.1058825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disorder and an important cause of end stage renal disease (ESRD). Tolvaptan (a V2R antagonist) is the first disease modifier drug for treatment of ADPKD, but also causes severe polyuria. AMPK activators have been shown to attenuate cystic kidney disease. Methods: In this study, we tested the efficacy of the combined administration of salsalate (a direct AMPK activator) and tolvaptan using clinically relevant doses in an adult-onset conditional Pkd1 knock-out (KO) mouse model. Results: Compared to untreated Pkd1 mutant mice, the therapeutic effects of salsalate were similar to that of tolvaptan. The combined treatment tended to be more effective than individual drugs used alone, and was associated with improved kidney survival (p < 0.0001) and reduced kidney weight to body weight ratio (p < 0.0001), cystic index (p < 0.001) and blood urea levels (p < 0.001) compared to untreated animals, although the difference between combination and single treatments was not statistically significant. Gene expression profiling and protein expression and phosphorylation analyses support the mild beneficial effects of co-treatment, and showed that tolvaptan and salsalate cooperatively attenuated kidney injury, cell proliferation, cell cycle progression, inflammation and fibrosis, and improving mitochondrial health, and cellular antioxidant response. Conclusion: These data suggest that salsalate-tolvaptan combination, if confirmed in clinical testing, might represent a promising therapeutic strategy in the treatment of ADPKD.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Anish A. Kanhai
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, ON, Canada,*Correspondence: York Pei, ; Dorien J. M. Peters,
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: York Pei, ; Dorien J. M. Peters,
| |
Collapse
|
72
|
Nguyen DT, Kleczko EK, Dwivedi N, Monaghan MLT, Gitomer BY, Chonchol MB, Clambey ET, Nemenoff RA, Klawitter J, Hopp K. The tryptophan-metabolizing enzyme indoleamine 2,3-dioxygenase 1 regulates polycystic kidney disease progression. JCI Insight 2023; 8:e154773. [PMID: 36422996 PMCID: PMC9870090 DOI: 10.1172/jci.insight.154773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic nephropathy, is characterized by phenotypic variability that exceeds genic effects. Dysregulated metabolism and immune cell function are key disease modifiers. The tryptophan metabolites, kynurenines, produced through indoleamine 2,3-dioxygenase 1 (IDO1), are known immunomodulators. Here, we study the role of tryptophan metabolism in PKD using an orthologous disease model (C57BL/6J Pkd1RC/RC). We found elevated kynurenine and IDO1 levels in Pkd1RC/RC kidneys versus wild type. Further, IDO1 levels were increased in ADPKD cell lines. Genetic Ido1 loss in Pkd1RC/RC animals resulted in reduced PKD severity, as measured by cystic index and percentage kidney weight normalized to body weight. Consistent with an immunomodulatory role of kynurenines, Pkd1RC/RC;Ido1-/- mice presented with significant changes in the cystic immune microenvironment (CME) versus controls. Kidney macrophage numbers decreased and CD8+ T cell numbers increased, both known PKD modulators. Also, pharmacological IDO1 inhibition in Pkd1RC/RC mice and kidney-specific Pkd2-knockout mice with rapidly progressive PKD resulted in less severe PKD versus controls, with changes in the CME similar to those in the genetic model. Our data suggest that tryptophan metabolism is dysregulated in ADPKD and that its inhibition results in changes to the CME and slows disease progression, making IDO1 a therapeutic target for ADPKD.
Collapse
Affiliation(s)
- Dustin T. Nguyen
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Emily K. Kleczko
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Nidhi Dwivedi
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | | - Michel B. Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension
- Consortium for Fibrosis Research and Translation, and
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension
- Consortium for Fibrosis Research and Translation, and
| | - Jelena Klawitter
- Department of Medicine, Division of Renal Diseases and Hypertension
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension
- Consortium for Fibrosis Research and Translation, and
| |
Collapse
|
73
|
Paradigm shift in lifestyle modification for solitary kidney after donor nephrectomy. Curr Opin Nephrol Hypertens 2023; 32:67-75. [PMID: 36444664 DOI: 10.1097/mnh.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Living donor kidney transplantation potentially leads to long-term complications including chronic kidney disease, end-stage kidney disease, elevated blood pressure, and pregnancy-associated hypertension. Given living donors generally do not have underlying medical conditions, lifestyle modifications, particularly dietary interventions may prevent those complications and improve their health outcomes. RECENT FINDINGS Glomerular hyperfiltration occurs as physiologic adaptation during an initial postdonor nephrectomy period. In the long-term, these adaptations may become pathologic consequences resulting from hyperfiltration-mediated kidney injury and ultimately secondary focal segmental glomerulosclerosis in the solitary kidney. Dietary interventions to slow a decline in kidney function include low protein intake of <0.8 g/kg/day and low sodium consumption of 2-4 g/day as well as certain health dietary patterns. There is no evidence regarding the quantity and quality of protein that can be recommended for living kidney donors and the same for sodium. Plant Dominant (PLADO) diets, Dietary Approaches to Stop Hypertension (DASH), Mediterranean, and vegetarian diets may be favorable for living kidney donors with solitary kidney but the evidence is still lacking. SUMMARY Although dietary interventions may provide benefits and kidney health for living kidney donors, further studies including clinical trials are required to incorporate them into clinical practice guidelines.
Collapse
|
74
|
Qiu Y, Hu X, Xu C, Lu C, Cao R, Xie Y, Yang J. Ketogenic diet alleviates renal fibrosis in mice by enhancing fatty acid oxidation through the free fatty acid receptor 3 pathway. Front Nutr 2023; 10:1127845. [PMID: 37032786 PMCID: PMC10081144 DOI: 10.3389/fnut.2023.1127845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The ketogenic diet (KD), as a dietary intervention, has gained importance in the treatment of solid organ structural remodeling, but its role in renal fibrosis has not been explored. Methods Male C57BL/6 mice were fed a normal diet or a KD for 6 weeks prior to unilateral ureteral obstruction (UUO), a well-established in vivo model of renal fibrosis in rodents. Seven days after UUO, serum and kidney samples were collected. Serum β-hydroxybutyrate (β-OHB) concentrations and renal fibrosis were assessed. NRK52E cells were treated with TGFβ1, a fibrosis-inducing cytokine, and with or without β-OHB, a ketone body metabolized by KD, to investigate the mechanism underlying renal fibrosis. Results KD significantly enhanced serum β-OHB levels in mice. Histological analysis revealed that KD alleviated structural destruction and fibrosis in obstructed kidneys and reduced the expression of the fibrosis protein markers α-SMA, Col1a1, and Col3a1. Expression of the rate-limiting enzymes involved in fatty acid oxidation (FAO), Cpt1a and Acox1, significantly decreased after UUO and were upregulated by KD. However, the protective effect of KD was abolished by etomoxir (a Cpt1a inhibitor). Besides, our study observed that KD significantly suppressed UUO-induced macrophage infiltration and the expression of IL-6 in the obstructive kidneys. In NRK52E cells, fibrosis-related signaling was increased by TGFβ1 and reduced by β-OHB. β-OHB treatment restored the impaired expression of Cpt1a. The effect of β-OHB was blocked by siRNA targeting free fatty acid receptor 3 (FFAR3), suggesting that β-OHB might function through the FFAR3-dependent pathway. Discussion Our results highlight that KD attenuates UUO-induced renal fibrosis by enhancing FAO via the FFAR3-dependent pathway, which provides a promising dietary therapy for renal fibrosis.
Collapse
|
75
|
Bakaj I, Pocai A. Metabolism-based approaches for autosomal dominant polycystic kidney disease. Front Mol Biosci 2023; 10:1126055. [PMID: 36876046 PMCID: PMC9980902 DOI: 10.3389/fmolb.2023.1126055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) leads to end stage kidney disease (ESKD) through the development and expansion of multiple cysts throughout the kidney parenchyma. An increase in cyclic adenosine monophosphate (cAMP) plays an important role in generating and maintaining fluid-filled cysts because cAMP activates protein kinase A (PKA) and stimulates epithelial chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR). A vasopressin V2 receptor antagonist, Tolvaptan, was recently approved for the treatment of ADPKD patients at high risk of progression. However additional treatments are urgently needed due to the poor tolerability, the unfavorable safety profile, and the high cost of Tolvaptan. In ADPKD kidneys, alterations of multiple metabolic pathways termed metabolic reprogramming has been consistently reported to support the growth of rapidly proliferating cystic cells. Published data suggest that upregulated mTOR and c-Myc repress oxidative metabolism while enhancing glycolytic flux and lactic acid production. mTOR and c-Myc are activated by PKA/MEK/ERK signaling so it is possible that cAMPK/PKA signaling will be upstream regulators of metabolic reprogramming. Novel therapeutics opportunities targeting metabolic reprogramming may avoid or minimize the side effects that are dose limiting in the clinic and improve on the efficacy observed in human ADPKD with Tolvaptan.
Collapse
Affiliation(s)
- Ivona Bakaj
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| | - Alessandro Pocai
- Cardiovascular and Metabolism, Janssen Research and Development, Spring House, PA, United States
| |
Collapse
|
76
|
Lekka E, Kokanovic A, Mosole S, Civenni G, Schmidli S, Laski A, Ghidini A, Iyer P, Berk C, Behera A, Catapano CV, Hall J. Pharmacological inhibition of Lin28 promotes ketogenesis and restores lipid homeostasis in models of non-alcoholic fatty liver disease. Nat Commun 2022; 13:7940. [PMID: 36572670 PMCID: PMC9792516 DOI: 10.1038/s41467-022-35481-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Lin28 RNA-binding proteins are stem-cell factors that play key roles in development. Lin28 suppresses the biogenesis of let-7 microRNAs and regulates mRNA translation. Notably, let-7 inhibits Lin28, establishing a double-negative feedback loop. The Lin28/let-7 axis resides at the interface of metabolic reprogramming and oncogenesis and is therefore a potential target for several diseases. In this study, we use compound-C1632, a drug-like Lin28 inhibitor, and show that the Lin28/let-7 axis regulates the balance between ketogenesis and lipogenesis in liver cells. Hence, Lin28 inhibition activates synthesis and secretion of ketone bodies whilst suppressing lipogenesis. This occurs at least partly via let-7-mediated inhibition of nuclear receptor co-repressor 1, which releases ketogenesis gene expression mediated by peroxisome proliferator-activated receptor-alpha. In this way, small-molecule Lin28 inhibition protects against lipid accumulation in multiple cellular and male mouse models of hepatic steatosis. Overall, this study highlights Lin28 inhibitors as candidates for the treatment of hepatic disorders of abnormal lipid deposition.
Collapse
Affiliation(s)
- Evangelia Lekka
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kokanovic
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Simone Mosole
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Gianluca Civenni
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Sandro Schmidli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alice Ghidini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pavithra Iyer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christian Berk
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alok Behera
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics, Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), Bellinzona, Switzerland.
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
77
|
Quiroga B, Torra R. Dietary Aspects and Drug-Related Side Effects in Autosomal Dominant Polycystic Kidney Disease Progression. Nutrients 2022; 14:4651. [PMID: 36364911 PMCID: PMC9658114 DOI: 10.3390/nu14214651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease. In the absence of targeted therapies, it invariably progresses to advanced chronic kidney disease. To date, the only approved treatment is tolvaptan, a vasopressin V2 receptor antagonist that has been demonstrated to reduce cyst growth and attenuate the decline in kidney function. However, it has various side effects, the most frequent of which is aquaresis, leading to a significant discontinuation rate. The strategies proposed to combat aquaresis include the use of thiazides or metformin and a reduction in the dietary osmotic load. Beyond the prescription of tolvaptan, which is limited to those with a rapid and progressive decline in kidney function, dietary interventions have been suggested to protect against disease progression. Moderate sodium restriction, moderate protein intake (up to 0.8 g/kg/day), avoidance of being overweight, and increased water consumption are recommended in ADPKD guidelines, though all with low-grade evidence. The aim of the present review is to critically summarize the evidence on the effect of dietary modification on ADPKD and to offer some strategies to mitigate the adverse aquaretic effects of tolvaptan.
Collapse
Affiliation(s)
- Borja Quiroga
- Nephrology Department, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Roser Torra
- Inherited Kidney Disorders, Department of Nephrology, Fundació Puigvert, Institut d’Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
78
|
Abstract
BACKGROUND Renal innate immune cell accumulation and inflammation are associated with hypertension. Time restricted feeding (TRF) has been reported to decrease inflammation and blood pressure. Whether TRF can decrease blood pressure by decreasing renal innate immune cells in hypertension is unknown. METHODS AND RESULTS We determined whether TRF can decrease blood pressure in two separate mouse models of hypertension, N(G)-nitro-L-arginine methyl ester hydrochloride-induced hypertension (LHTN) and salt-sensitive hypertension (SSHTN). Once hypertension was established after 2 days, TRF (12-h food/12-h no food) for 4 weeks significantly decreased systolic blood pressure in both LHTN and SSHTN mice despite no differences in the amount of food eaten or body weight between groups. Activated macrophages and dendritic cells in the kidneys of both LHTN and SSHTN mice were decreased significantly in mice that underwent TRF. This was associated with an improvement in kidney function (decreased serum creatinine, decreased fractional excretion of sodium, and increased creatinine clearance) which achieved significance in LHTN mice and trended towards improvement in SSHTN mice. CONCLUSIONS Our findings demonstrate that TRF can significantly decrease renal innate immune cells and blood pressure in two mouse models of hypertension.
Collapse
|
79
|
Cecchini AL, Biscetti F, Rando MM, Nardella E, Pecorini G, Eraso LH, Dimuzio PJ, Gasbarrini A, Massetti M, Flex A. Dietary Risk Factors and Eating Behaviors in Peripheral Arterial Disease (PAD). Int J Mol Sci 2022; 23:10814. [PMID: 36142725 PMCID: PMC9504787 DOI: 10.3390/ijms231810814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary risk factors play a fundamental role in the prevention and progression of atherosclerosis and PAD (Peripheral Arterial Disease). The impact of nutrition, however, defined as the process of taking in food and using it for growth, metabolism and repair, remains undefined with regard to PAD. This article describes the interplay between nutrition and the development/progression of PAD. We reviewed 688 articles, including key articles, narrative and systematic reviews, meta-analyses and clinical studies. We analyzed the interaction between nutrition and PAD predictors, and subsequently created four descriptive tables to summarize the relationship between PAD, dietary risk factors and outcomes. We comprehensively reviewed the role of well-studied diets (Mediterranean, vegetarian/vegan, low-carbohydrate ketogenic and intermittent fasting diet) and prevalent eating behaviors (emotional and binge eating, night eating and sleeping disorders, anorexia, bulimia, skipping meals, home cooking and fast/ultra-processed food consumption) on the traditional risk factors of PAD. Moreover, we analyzed the interplay between PAD and nutritional status, nutrients, dietary patterns and eating habits. Dietary patterns and eating disorders affect the development and progression of PAD, as well as its disabling complications including major adverse cardiovascular events (MACE) and major adverse limb events (MALE). Nutrition and dietary risk factor modification are important targets to reduce the risk of PAD as well as the subsequent development of MACE and MALE.
Collapse
Affiliation(s)
- Andrea Leonardo Cecchini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Elisabetta Nardella
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giovanni Pecorini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Luis H. Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paul J. Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Gasbarrini
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimo Massetti
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Andrea Flex
- Internal Medicine, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
80
|
Zhou T, Cheng X, He Y, Xie Y, Xu F, Xu Y, Huang W. Function and mechanism of histone β-hydroxybutyrylation in health and disease. Front Immunol 2022; 13:981285. [PMID: 36172354 PMCID: PMC9511043 DOI: 10.3389/fimmu.2022.981285] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Histone post-translational modifications (HPTMs) are essential epigenetic mechanisms that affect chromatin-associated nuclear processes without altering the DNA sequence. With the application of mass spectrometry-based proteomics, novel histone lysine acylation, such as propionylation, butyrylation, crotonylation, malonylation, succinylation, glutarylation, and lactoylation have been successively discovered. The emerging diversity of the lysine acylation landscape prompted us to investigate the function and mechanism of these novel HPTMs in health and disease. Recently, it has been reported that β-hydroxybutyrate (BHB), the main component of the ketone body, has various protective roles beyond alternative fuel provision during starvation. Histone lysine β-hydroxybutyrylation (Kbhb) is a novel HPTMs identified by mass spectrometry, which regulates gene transcription in response to carbohydrate restriction or elevated BHB levels in vivo and vitro. Recent studies have shown that histone Kbhb is strongly associated with the pathogenesis of metabolic cardiovascular diseases, kidney diseases, tumors, neuropsychiatric disorders, and metabolic diseases suggesting it has different functions from histone acetylation and methylation. This review focuses on the writers, erasers, sites, and underlying functions of histone Kbhb, providing a glimpse into their complex regulation mechanism.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xi Cheng
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yanqiu He
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yumei Xie
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Fangyuan Xu
- Department of Rehabilitation, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Wei Huang, ; Yong Xu,
| | - Wei Huang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolism, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
- *Correspondence: Wei Huang, ; Yong Xu,
| |
Collapse
|
81
|
Wang W, Silva LM, Wang HH, Kavanaugh MA, Pottorf TS, Allard BA, Jacobs DT, Dong R, Cornelius JT, Chaturvedi A, Swenson-Fields KI, Fields TA, Pritchard MT, Sharma M, Slawson C, Wallace DP, Calvet JP, Tran PV. Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular- and maturation-dependent manner. Kidney Int 2022; 102:577-591. [PMID: 35644283 PMCID: PMC9398994 DOI: 10.1016/j.kint.2022.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked β-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rouchen Dong
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph T Cornelius
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aakriti Chaturvedi
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katherine I Swenson-Fields
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Pharmacology, Toxicology and Therapeutics, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
82
|
Dang L, Cao X, Zhang T, Sun Y, Tian S, Gong T, Xiong H, Cao P, Li Y, Yu S, Yang L, Zhang L, Liu T, Zhang K, Liang J, Chen Y. Nuclear Condensation of CDYL Links Histone Crotonylation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1708-1725. [PMID: 35918147 PMCID: PMC9529191 DOI: 10.1681/asn.2021111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Emerging evidence indicates that epigenetic modulation of gene expression plays a key role in the progression of autosomal dominant polycystic kidney disease (ADPKD). However, the molecular basis for how the altered epigenome modulates transcriptional responses, and thereby disease progression in ADPKD, remains largely unknown. METHODS Kidneys from control and ADPKD mice were examined for the expression of CDYL and histone acylations. CDYL expression and its correlation with disease severity were analyzed in a cohort of patients with ADPKD. Cdyl transgenic mice were crossed with Pkd1 knockout mice to explore CDYL's role in ADPKD progression. Integrated cistromic and transcriptomic analyses were performed to identify direct CDYL target genes. High-sensitivity mass spectrometry analyses were undertaken to characterize CDYL-regulated histone lysine crotonylations (Kcr). Biochemical analysis and zebrafish models were used for investigating CDYL phase separation. RESULTS CDYL was downregulated in ADPKD kidneys, accompanied by an increase of histone Kcr. Genetic overexpression of Cdyl reduced histone Kcr and slowed cyst growth. We identified CDYL-regulated cyst-associated genes, whose downregulation depended on CDYL-mediated suppression of histone Kcr. CDYL assembled nuclear condensates through liquid-liquid phase separation in cultured kidney epithelial cells and in normal kidney tissues. The phase-separating capacity of CDYL was required for efficient suppression of locus-specific histone Kcr, of expression of its target genes, and of cyst growth. CONCLUSIONS These results elucidate a mechanism by which CDYL nuclear condensation links histone Kcr to transcriptional responses and cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xinyi Cao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tianye Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yongzhan Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianyu Gong
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Hui Xiong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peipei Cao
- Department of Pathology, Nankai University School of Medicine, Tianjin, China
| | - Yuhao Li
- Department of Pathology, Nankai University School of Medicine, Tianjin, China
| | - Shengqiang Yu
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Li Yang
- Renal Division, Peking University First Hospital; Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education of China, Beijing, China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jing Liang
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
83
|
Dachy A, Decuypere JP, Vennekens R, Jouret F, Mekahli D. Is autosomal dominant polycystic kidney disease an early sweet disease? Pediatr Nephrol 2022; 37:1945-1955. [PMID: 34988697 DOI: 10.1007/s00467-021-05406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
The clinical course of autosomal dominant polycystic kidney disease (ADPKD) starts in childhood. Evidence of the beneficial impact of early nephron-protective strategies and lifestyle modifications on ADPKD prognosis is accumulating. Recent studies have described the association of overweight and obesity with rapid disease progression in adults with ADPKD. Moreover, defective glucose metabolism and metabolic reprogramming have been reported in distinct ADPKD models highlighting these pathways as potential therapeutic targets in ADPKD. Several "metabolic" approaches are currently under evaluation in adults, including ketogenic diet, food restriction, and metformin therapy. No data are available on the impact of these approaches in childhood thus far. Yet, according to World Health Organization (WHO), we are currently facing a childhood obesity crisis with an increased prevalence of overweight/obesity in the pediatric population associated with a cardio-metabolic risk profile. The present review summarizes the knowledge about the role of glucose metabolism in the pathophysiology of ADPKD and underscores the possible harm of overweight and obesity in ADPKD especially in terms of long-term cardiovascular outcomes and renal prognosis.
Collapse
Affiliation(s)
- Angélique Dachy
- PKD Research Group, GPURE, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pediatrics, ULiège Academic Hospital, Liège, Belgium.,Laboratory of Translational Research in Nephrology (LTRN), GIGA Cardiovascular Sciences, ULiège, Liège, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, GPURE, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - François Jouret
- Laboratory of Translational Research in Nephrology (LTRN), GIGA Cardiovascular Sciences, ULiège, Liège, Belgium.,Division of Nephrology, Department of Internal Medicine, ULiège Academic Hospital, Liège, Belgium
| | - Djalila Mekahli
- PKD Research Group, GPURE, Department of Development and Regeneration, KU Leuven, Leuven, Belgium. .,Department of Pediatric Nephrology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
84
|
Restoration of atypical protein kinase C ζ function in autosomal dominant polycystic kidney disease ameliorates disease progression. Proc Natl Acad Sci U S A 2022; 119:e2121267119. [PMID: 35867829 PMCID: PMC9335328 DOI: 10.1073/pnas.2121267119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects more than 500,000 individuals in the United States alone. In most cases, ADPKD is caused by a loss-of-function mutation in the PKD1 gene, which encodes polycystin-1 (PC1). Previous studies reported that PC1 interacts with atypical protein kinase C (aPKC). Here we show that PC1 binds to the ζ isoform of aPKC (PKCζ) and identify two PKCζ phosphorylation sites on PC1's C-terminal tail. PKCζ expression is down-regulated in patients with ADPKD and orthologous and nonorthologous PKD mouse models. We find that the US Food and Drug Administration-approved drug FTY720 restores PKCζ expression in in vitro and in vivo models of polycystic kidney disease (PKD) and this correlates with ameliorated disease progression in multiple PKD mouse models. Importantly, we show that FTY720 treatment is less effective in PKCζ null versions of these PKD mouse models, elucidating a PKCζ-specific mechanism of action that includes inhibiting STAT3 activity and cyst-lining cell proliferation. Taken together, our results reveal that PKCζ down-regulation is a hallmark of PKD and that its stabilization by FTY720 may represent a therapeutic approach to the treat the disease.
Collapse
|
85
|
Stasi A, Cosola C, Caggiano G, Cimmarusti MT, Palieri R, Acquaviva PM, Rana G, Gesualdo L. Obesity-Related Chronic Kidney Disease: Principal Mechanisms and New Approaches in Nutritional Management. Front Nutr 2022; 9:925619. [PMID: 35811945 PMCID: PMC9263700 DOI: 10.3389/fnut.2022.925619] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of our era and its incidence is supposed to increase by more than 30% by 2030. It is commonly defined as a chronic and metabolic disease with an excessive accumulation of body fat in relation to fat-free mass, both in terms of quantity and distribution at specific points on the body. The effects of obesity have an important impact on different clinical areas, particularly endocrinology, cardiology, and nephrology. Indeed, increased rates of obesity have been associated with increased risk of cardiovascular disease (CVD), cancer, type 2 diabetes (T2D), dyslipidemia, hypertension, renal diseases, and neurocognitive impairment. Obesity-related chronic kidney disease (CKD) has been ascribed to intrarenal fat accumulation along the proximal tubule, glomeruli, renal sinus, and around the kidney capsule, and to hemodynamic changes with hyperfiltration, albuminuria, and impaired glomerular filtration rate. In addition, hypertension, dyslipidemia, and diabetes, which arise as a consequence of overweight, contribute to amplifying renal dysfunction in both the native and transplanted kidney. Overall, several mechanisms are closely related to the onset and progression of CKD in the general population, including changes in renal hemodynamics, neurohumoral pathways, renal adiposity, local and systemic inflammation, dysbiosis of microbiota, insulin resistance, and fibrotic process. Unfortunately, there are no clinical practice guidelines for the management of patients with obesity-related CKD. Therefore, dietary management is based on the clinical practice guidelines for the nutritional care of adults with CKD, developed and published by the National Kidney Foundation, Kidney Disease Outcome Quality Initiative and common recommendations for the healthy population. Optimal nutritional management of these patients should follow the guidelines of the Mediterranean diet, which is known to be associated with a lower incidence of CVD and beneficial effects on chronic diseases such as diabetes, obesity, and cognitive health. Mediterranean-style diets are often unsuccessful in promoting efficient weight loss, especially in patients with altered glucose metabolism. For this purpose, this review also discusses the use of non-classical weight loss approaches in CKD, including intermittent fasting and ketogenic diet to contrast the onset and progression of obesity-related CKD.
Collapse
|
86
|
Ong ACM, Torra R. Can ketogenic dietary interventions slow disease progression in ADPKD: what we know and what we don't. Clin Kidney J 2022; 15:1034-1036. [PMID: 35664267 PMCID: PMC9155227 DOI: 10.1093/ckj/sfac103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease leading to kidney failure. To date, there is no cure for the disease although there is one approved disease-modifying therapy: tolvaptan. In this context, a common question that ADPKD patients ask in clinical practice is whether there is anything they can do to slow their disease by modifying their diet or lifestyle. Recent evidence from experimental PKD models has shown the potential benefits of caloric restriction, high water intake and especially ketogenic diets in preserving kidney function. Whether these benefits are translatable to humans remains unknown. In this issue of CKJ, Strubl et al. report results of a self-enrolled survey of autosomal dominant polycystic kidney disease (ADPKD) patients who have self-administered a ketogenic diet [1]. These results provide interesting insights into the tolerability, potential benefits and harms of such an intervention that could inform a future clinical trial.
Collapse
Affiliation(s)
- Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roser Torra
- Inherited Kidney Disorders, Department of Nephrology, Fundació Puigvert, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
87
|
Koehler FC, Fu CY, Späth MR, Hoyer-Allo KJR, Bohl K, Göbel H, Lackmann JW, Grundmann F, Osterholt T, Gloistein C, Steiner JD, Antebi A, Benzing T, Schermer B, Schwarz G, Burst V, Müller RU. A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Transl Res 2022; 244:32-46. [PMID: 35189406 DOI: 10.1016/j.trsl.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/28/2023]
Abstract
Caloric Restriction (CR) extends lifespan and augments cellular stress-resistance from yeast to primates, making CR an attractive strategy for organ protection in the clinic. Translation of CR to patients is complex, due to problems regarding adherence, feasibility, and safety concerns in frail patients. Novel tailored dietary regimens, which modulate the dietary composition of macro- and micronutrients rather than reducing calorie intake promise similar protective effects and increased translatability. However, a direct head-to-head comparison to identify the most potent approach for organ protection, as well as overlapping metabolic consequences have not been performed. We systematically analyzed six dietary preconditioning protocols - fasting mimicking diet (FMD), ketogenic diet (KD), dietary restriction of branched chained amino acids (BCAA), two dietary regimens restricting sulfur-containing amino acids (SR80/100) and CR - in a rodent model of renal ischemia-reperfusion injury (IRI) to quantify diet-induced resilience in kidneys. Of the administered diets, FMD, SR80/100 and CR efficiently protect from kidney damage after IRI. Interestingly, these approaches show overlapping changes in oxidative and hydrogen sulfide (H2S)-dependent cysteine catabolism as a potential common mechanism of organ protection.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Chun-Yu Fu
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Osterholt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Claas Gloistein
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Joachim D Steiner
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
88
|
Kundu S, Hossain KS, Moni A, Zahan MS, Rahman MM, Uddin MJ. Potentials of ketogenic diet against chronic kidney diseases: pharmacological insights and therapeutic prospects. Mol Biol Rep 2022; 49:9749-9758. [PMID: 35441940 DOI: 10.1007/s11033-022-07460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a worldwide public health concern. Nutritional interventions become a primary concern in managing various diseases, including CKD. Ketogenic diets (KD) are a popular diet and an increasingly used diet for weight loss. MAIN BODY With the increasing cases of CKD, KD has been proposed as a treatment by many scientists. Several studies have shown that KD can slow down the progression rate of renal abnormalities. Also, this diet is regarded as a safe route for managing CKD. CKD is generally associated with increased inflammation, oxidative stress, fibrosis, autophagy dysfunction, and mitochondrial dysfunction, while all of these can be attenuated by KD. The protective effect of KD is mainly mediated through inhibition of ROS, NF-κB, and p62 signaling. CONCLUSIONS It is suggested that KD could be considered a new strategy for managing and treating CKD more carefully. This review explores the potential of KD on CKD and the mechanism involved in KD-mediated kidney protection.
Collapse
Affiliation(s)
- Sushmita Kundu
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | | | - Akhi Moni
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Sarwar Zahan
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh. .,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
89
|
Palmer BF, Clegg DJ. Metabolic Flexibility and Its Impact on Health Outcomes. Mayo Clin Proc 2022; 97:761-776. [PMID: 35287953 DOI: 10.1016/j.mayocp.2022.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023]
Abstract
A metabolically flexible state exists when there is a rapid switch between glucose and fatty acids during the transition between the fed and fasting state. This flexibility in fuel choice serves to prevent hyperglycemia following a meal and simultaneously ensures an adequate amount of blood glucose is available for delivery to the brain and exclusively glycolytic tissues during fasting. The modern era is characterized by chronic overnutrition in which a mixture of fuels is delivered to the mitochondria in an unabated manner thereby uncoupling the feast and famine situation. The continuous influx of fuel leads to accumulation of reducing equivalents in the mitochondria and an increase in the mitochondrial membrane potential. These changes create a microenvironment fostering the generation of reactive oxygen species and other metabolites leading to deleterious protein modification, cell injury, and ultimately clinical disease. Insulin resistance may also play a primary role in this deleterious effect. The imbalance between mitochondrial energy delivery and use is made worse with a sedentary lifestyle. Maneuvers that restore energy balance across the mitochondria activate pathways that remove or repair damaged molecules and restore the plasticity characteristic of normal energy metabolism. Readily available strategies to maintain energy balance across the mitochondria include exercise, various forms of caloric restriction, administration of sodium-glucose cotransporter-2 inhibitors, cold exposure, and hypobaric hypoxia.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
90
|
Ziegler WH, Lüdiger S, Hassan F, Georgiadis ME, Swolana K, Khera A, Mertens A, Franke D, Wohlgemuth K, Dahmer-Heath M, König J, Dafinger C, Liebau MC, Cetiner M, Bergmann C, Soetje B, Haffner D. Primary URECs: a source to better understand the pathology of renal tubular epithelia in pediatric hereditary cystic kidney diseases. Orphanet J Rare Dis 2022; 17:122. [PMID: 35264234 PMCID: PMC8905910 DOI: 10.1186/s13023-022-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background In pediatric hereditary cystic kidney diseases, epithelial cell defects mostly result from rare, autosomal recessively inherited pathogenic variants in genes encoding proteins of the cilia-centrosome complex. Consequences of individual gene variants on epithelial function are often difficult to predict and can furthermore depend on the patient’s genetic background. Here, we studied urine-derived renal tubular epithelial cells (URECs) from genetically determined, pediatric cohorts of different hereditary cystic kidney diseases, comprising autosomal recessive polycystic kidney disease, nephronophthisis (NPH) and the Bardet Biedl syndrome (BBS). UREC characteristics and behavior in epithelial function-related 3D cell culture were compared in order to identify gene and variant-specific properties and to determine aspects of epithelial (cell) dysfunction. Results UREC preparations from patients (19) and healthy controls (39) were studied in a qualitative and quantitative manner using primary cells cultured for up-to 21 days. In patients with biallelic pathogenic variants in PKHD1 or NPHP genes, we were able to receive satisfactory amounts of URECs of reproducible quality. In BBS patients, UREC yield was lower and more dependent on the individual genotype. In contrast, in UREC preparations derived from healthy controls, no predictable and satisfactory outcome could be established. Considering cell proliferation, tubular origin and epithelial properties in 2D/3D culture conditions, we observed distinct and reproducible epithelial properties of URECs. In particular, the cells from patients carrying PKHD1 variants were characterized by a high incidence of defective morphogenesis of monolayered spheroids—a property proposed to be suitable for corrective intervention. Furthermore, we explored different ways to generate reference cell lines for both—patients and healthy controls—in order to eliminate restrictions in cell number and availability of primary URECs. Conclusions Ex vivo 3D cell culture of primary URECs represents a valuable, non-invasive source to evaluate epithelial cell function in kidney diseases and as such helps to elucidate the functional consequences of rare genetic disorders. In combination with genetically defined control cell lines to be generated in the future, the cultivation of primary URECs could become a relevant tool for testing personalized treatment of epithelial dysfunction in patients with hereditary cystic kidney disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02265-1.
Collapse
Affiliation(s)
- Wolfgang H Ziegler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
| | - Sarah Lüdiger
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Fatima Hassan
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Margarita E Georgiadis
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Kathrin Swolana
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Amrit Khera
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Arne Mertens
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Doris Franke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Kai Wohlgemuth
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Rare Diseases, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Rare Diseases, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Metin Cetiner
- Department of Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Medizinische Genetik Mainz, Mainz, Germany
| | - Birga Soetje
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
91
|
Steele C, Nowak K. Obesity, Weight Loss, Lifestyle Interventions, and Autosomal Dominant Polycystic Kidney Disease. KIDNEY AND DIALYSIS 2022; 2:106-122. [PMID: 35350649 PMCID: PMC8959086 DOI: 10.3390/kidneydial2010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Obesity remains a growing public health concern in industrialized countries around the world. The prevalence of obesity has also continued to rise in those with chronic kidney disease. Epidemiological data suggests those with overweight and obesity, measured by body mass index, have an increased risk for rapid kidney disease progression. Autosomal dominant polycystic kidney disease causes growth and proliferation of kidney cysts resulting in a reduction in kidney function in the majority of adults. An accumulation of adipose tissue may further exacerbate the metabolic defects that have been associated with ADPKD by affecting various cell signaling pathways. Lifestyle interventions inducing weight loss might help delay disease progression by reducing adipose tissue and systematic inflammation. Further research is needed to determine the mechanistic influence of adipose tissue on disease progression.
Collapse
Affiliation(s)
- Cortney Steele
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Kristen Nowak
- Division of Renal Diseases and Hypertension, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
92
|
Pickel L, Iliuta IA, Scholey J, Pei Y, Sung HK. Dietary Interventions in Autosomal Dominant Polycystic Kidney Disease. Adv Nutr 2022; 13:652-666. [PMID: 34755831 PMCID: PMC8970828 DOI: 10.1093/advances/nmab131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive growth of renal cysts, leading to the loss of functional nephrons. Recommendations for individuals with ADPKD to maintain a healthy diet and lifestyle are largely similar to those for the general population. However, recent evidence from preclinical models suggests that more tightly specified dietary regimens, including caloric restriction, intermittent fasting, and ketogenic diets, hold promise to slow disease progression, and the results of ongoing human clinical trials are eagerly awaited. These dietary interventions directly influence nutrient signaling and substrate availability in the cystic kidney, while also conferring systemic metabolic benefits. The present review focuses on the importance of local and systemic metabolism in ADPKD and summarizes current evidence for dietary interventions to slow disease progression and improve quality of life.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ioan-Andrei Iliuta
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - James Scholey
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - York Pei
- Division of Nephrology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
93
|
Amaral AG, da Silva CCC, Serna JDC, Honorato-Sampaio K, Freitas JA, Duarte-Neto AN, Bloise AC, Cassina L, Yoshinaga MY, Chaves-Filho AB, Qian F, Miyamoto S, Boletta A, Bordin S, Kowaltowski AJ, Onuchic LF. Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166371. [PMID: 35218894 DOI: 10.1016/j.bbadis.2022.166371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Cardiovascular manifestations account for marked morbi-mortality in autosomal dominant polycystic kidney disease (ADPKD). Pkd1- and Pkd2-deficient mice develop cardiac dysfunction, however the underlying mechanisms remain largely unclear. It is unknown whether impairment of polycystin-1 cleavage at the G-protein-coupled receptor proteolysis site, a significant ADPKD mutational mechanism, is involved in this process. We analyzed the impact of polycystin-1 cleavage on heart metabolism using Pkd1V/V mice, a model unable to cleave this protein and with early cardiac dysfunction. Pkd1V/V hearts showed lower levels of glucose and amino acids and higher lipid levels than wild-types, as well as downregulation of p-AMPK, p-ACCβ, CPT1B-Cpt1b, Ppara, Nppa and Acta1. These findings suggested decreased fatty acid β-oxidation, which was confirmed by lower oxygen consumption by Pkd1V/V isolated mitochondria using palmitoyl-CoA. Pkd1V/V hearts also presented increased oxygen consumption in response to glucose, suggesting that alternative substrates may be used to generate energy. Pkd1V/V hearts displayed a higher density of decreased-size mitochondria, a finding associated with lower MFN1, Parkin and BNIP3 expression. These derangements were correlated with increased apoptosis and inflammation but not hypertrophy. Notably, Pkd1V/V neonate cardiomyocytes also displayed shifts in oxygen consumption and p-AMPK downregulation, suggesting that, at least partially, the metabolic alterations are not induced by kidney dysfunction. Our findings reveal that disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice, expanding the understanding of heart dysfunction associated with Pkd1 deficiency and likely with human ADPKD.
Collapse
Affiliation(s)
- Andressa G Amaral
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Camille C C da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Julian D C Serna
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Kinulpe Honorato-Sampaio
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG 31270901, Brazil
| | - Jéssica A Freitas
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Amaro N Duarte-Neto
- Disciplina de Emergências Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil
| | - Antonio C Bloise
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Laura Cassina
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Silvana Bordin
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508000, Brazil
| | - Luiz F Onuchic
- Disciplinas de Nefrologia e Medicina Molecular, Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil.
| |
Collapse
|
94
|
ADULT DOMINANT POLYCYSTIC KIDNEY DISEASE: A PROTOTYPICAL DISEASE FOR PHARMANUTRITION INTERVENTIONS. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
95
|
Hopp K, Catenacci VA, Dwivedi N, Kline TL, Wang W, You Z, Nguyen DT, Bing K, Poudyal B, Johnson GC, Jackman MR, Miller M, Steele CN, Serkova NJ, MacLean PS, Nemenoff RA, Gitomer B, Chonchol M, Nowak KL. Weight loss and cystic disease progression in autosomal dominant polycystic kidney disease. iScience 2022; 25:103697. [PMID: 35059607 PMCID: PMC8760407 DOI: 10.1016/j.isci.2021.103697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Progression of autosomal dominant polycystic kidney disease (ADPKD) is modified by metabolic defects and obesity. Indeed, reduced food intake slows cyst growth in preclinical rodent studies. Here, we demonstrate the feasibility of daily caloric restriction (DCR) and intermittent fasting (IMF) in a cohort of overweight or obese patients with ADPKD. Clinically significant weight loss occurred with both DCR and IMF; however, weight loss was greater and adherence and tolerability were better with DCR. Further, slowed kidney growth correlated with body weight and visceral adiposity loss independent of dietary regimen. Similarly, we compared the therapeutic efficacy of DCR, IMF, and time restricted feeding (TRF) using an orthologous ADPKD mouse model. Only ADPKD animals on DCR lost significant weight and showed slowed cyst growth compared to ad libitum, IMF, or TRF feeding. Collectively, this supports therapeutic feasibility of caloric restriction in ADPKD, with potential efficacy benefits driven by weight loss.
Collapse
Affiliation(s)
- Katharina Hopp
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Corresponding author
| | - Victoria A. Catenacci
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nidhi Dwivedi
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Timothy L. Kline
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55901, USA
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Wei Wang
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhiying You
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dustin T. Nguyen
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen Bing
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bhavya Poudyal
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55901, USA
| | - Ginger C. Johnson
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew R. Jackman
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marsha Miller
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cortney N. Steele
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie J. Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paul S. MacLean
- Department of Medicine, Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Raphael A. Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Berenice Gitomer
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michel Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristen L. Nowak
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Corresponding author
| |
Collapse
|
96
|
dos Santos Dutra A, Rodrigues FG, da Rocha DR, Vendramini LC, de Matos ACC, Heilberg IP. Increased Body Fat and Organic Acid Anions Production Are Associated with Larger Kidney Size in ADPKD. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:152. [PMID: 35208476 PMCID: PMC8875309 DOI: 10.3390/medicina58020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives: A high body mass index (BMI) is associated with the progression of autosomal dominant polycystic kidney disease (ADPKD). However, body fat (BF), which is another adiposity marker, has not yet been studied. Excessive weight may promote elevation in the endogenous synthesis of organic acid (OA) anions. Accordingly, we aimed to investigate the possible association of the aforementioned markers with kidney volume and renal function in patients with ADPKD. Materials and Methods: We conducted a retrospective cohort study of adult ADPKD outpatients involving clinical, serum, and urinary laboratorial data and body composition assessments retrieved from their medical records. BF was estimated by skinfold thickness (mm) on the non-dominant arm and was considered as normal or high for each sex. Total kidney volume (TKV) and height-adjusted volume (htTKV) were measured by magnetic resonance imaging. The annual estimated glomerular filtration rate (eGFR) slope was analyzed during a median follow-up time of 6 (5.0-7.0) years to calculate rapid progression (decline in renal function ≥2.5 mL/min/year over 5 years). Results: A total of 104 patients were included (41.9 ± 11.9 years old, 38.5% men), with 62.5% of the patients classified as high BF. The High BF group presented higher levels of OA, glycosylated hemoglobin (HbA1c), C-reactive protein (CRP), 24 h urinary sodium (UNa), and htTKV, and lower eGFR than those with a normal BF. In the multivariate linear regression, the associated variables with TKV were high BF, OA and BMI (std. β 0.47, p < 0.05; std. β 0.36, p = 0.001; std. β 0.25, p = 0.01, respectively). In the binary logistic regression, when adjusted for potential confounders, UNa was the only parameter associated with an increased risk of eGFR decline ≥2.5 mL/min/year (OR 1.02, 95% CI 1.01-1.03, p = 0.02). Conclusions: Increased body fat and endogenous production of organic acid anions are associated with larger kidney size in ADPKD but not with a decline in renal function.
Collapse
Affiliation(s)
- Adriana dos Santos Dutra
- Nutrition Post Graduation Program, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.d.S.D.); (F.G.R.)
| | - Fernanda Guedes Rodrigues
- Nutrition Post Graduation Program, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.d.S.D.); (F.G.R.)
| | - Daniel Ribeiro da Rocha
- Nephrology Division, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (D.R.d.R.); (L.C.V.); (A.C.C.d.M.)
| | - Larissa Collis Vendramini
- Nephrology Division, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (D.R.d.R.); (L.C.V.); (A.C.C.d.M.)
| | | | - Ita Pfeferman Heilberg
- Nutrition Post Graduation Program, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.d.S.D.); (F.G.R.)
- Nephrology Division, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (D.R.d.R.); (L.C.V.); (A.C.C.d.M.)
| |
Collapse
|
97
|
Rojas-Morales P, León-Contreras JC, Sánchez-Tapia M, Silva-Palacios A, Cano-Martínez A, González-Reyes S, Jiménez-Osorio AS, Hernández-Pando R, Osorio-Alonso H, Sánchez-Lozada LG, Tovar AR, Pedraza-Chaverri J, Tapia E. A ketogenic diet attenuates acute and chronic ischemic kidney injury and reduces markers of oxidative stress and inflammation. Life Sci 2022; 289:120227. [PMID: 34921866 DOI: 10.1016/j.lfs.2021.120227] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.
Collapse
Affiliation(s)
- Pedro Rojas-Morales
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico; Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan Carlos León-Contreras
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Susana González-Reyes
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda, La Concepción S/N, Carretera Pachuca Actopan, San Agustín Tlaxiaca 42060, Hidalgo, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico.
| |
Collapse
|
98
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
99
|
Xie J, Zhong F, Guo Z, Li X, Wang J, Gao Z, Chang B, Yang J. Hyperinsulinemia impairs the metabolic switch to ketone body utilization in proximal renal tubular epithelial cells under energy crisis via the inhibition of the SIRT3/SMCT1 pathway. Front Endocrinol (Lausanne) 2022; 13:960835. [PMID: 36237185 PMCID: PMC9551351 DOI: 10.3389/fendo.2022.960835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To investigate the effects and mechanism of hyperinsulinemia on the metabolic switch to β-hydroxybutyrate (BHB) absorption and utilization under a starvation or hypoxic environment in proximal tubular epithelial cells. METHODS A high-fat diet-induced hyperinsulinemia model in ZDF rats was used to test the expression of key enzymes/proteins of ketone body metabolism in the kidney. Notably, 12-week-old renal tubule SMCT1 specific knockout mice (SMCT1 flox/floxCre+) and control mice (SMCT1 flox/floxCre-) were used to confirm the roles of SMCT1 in kidney protection under starvation. The changes of key enzymes/proteins of energy metabolism, mitochondrial function, and albumin endocytosis in HK2 cells under low glucose/hypoxic environments with or without 50 ng/mL insulin were studied. Silent information regulation 2 homolog 3 (SIRT3) was overexpressed to evaluate the effect of hyperinsulinemia on the metabolic switch to BHB absorption and utilization through the SIRT3/SMCT1 pathway in HK2 cells. RESULTS In ZDF rats, the expression of HMGCS2 increased, the SMCT1 expression decreased, while SCOT remained unchanged. In renal tubule SMCT1 gene-specific knockout mice, starvation for 48 h induced an increase in the levels of urine retinol-binding protein, N-acetyl-β-glucosaminidase, and transferrin, which reflected tubular damages. In HK2 cells under an environment of starvation and hypoxia, the levels of key enzymes related to fatty acid oxidation and ketone body metabolism were increased, whereas glucose glycolysis did not change. The addition of 2 mmol/l BHB improved ATP production, mitochondrial biosynthesis, and endocytic albumin function, while cell apoptosis was reduced in HK2 cells. The addition of 50 ng/ml insulin resulted in the decreased expression of SMCT1 along with an impaired mitochondrial function, decreased ATP production, and increased apoptosis. The overexpression of SIRT3 or SMCT1 reversed these alterations induced by a high level of insulin both in low-glucose and hypoxic environments. CONCLUSIONS The increased absorption and utilization of BHB is part of the metabolic flexibility of renal tubular epithelial cells under starvation and hypoxic environments, which exhibits a protective effect on renal tubular epithelial cells by improving the mitochondrial function and cell survival. Moreover, hyperinsulinemia inhibits the absorption of BHB through the inhibition of the SIRT3/SMCT1 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juhong Yang
- *Correspondence: Juhong Yang, ; Baocheng Chang,
| |
Collapse
|
100
|
Pastor-Soler NM, Li H, Pham J, Rivera D, Ho PY, Mancino V, Saitta B, Hallows KR. Metformin improves relevant disease parameters in an autosomal dominant polycystic kidney disease mouse model. Am J Physiol Renal Physiol 2022; 322:F27-F41. [PMID: 34806449 DOI: 10.1152/ajprenal.00298.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in the polycystin 1 (PKD1) or polycystin 2 genes, presents with progressive development of kidney cysts and eventual end-stage kidney disease with limited treatment options. Previous work has shown that metformin reduces cyst growth in rapid ADPKD mouse models via inhibition of cystic fibrosis transmembrane conductance regulator-mediated fluid secretion, mammalian target of rapamycin, and cAMP pathways. The present study importantly tested the effectiveness of metformin as a therapy for ADPKD in a more clinically relevant Pkd1RC/RC mouse model, homozygous for the R3277C knockin point mutation in the Pkd1 gene. This mutation causes ADPKD in humans. Pkd1RC/RC male and female mice, which have a slow progression to end-stage kidney disease, received metformin (300 mg/kg/day in drinking water vs. water alone) from 3 to 9 or 12 mo of age. As previously reported, Pkd1RC/RC females had a more severe disease phenotype as compared with males. Metformin treatment reduced the ratio of total kidney weight-to-body weight relative to age-matched and sex-matched untreated controls at both 9 and 12 mo and reduced the cystic index in females at 9 mo. Metformin also increased glomerular filtration rate, lowered systolic blood pressure, improved anemia, and lowered blood urea nitrogen levels relative to controls in both sexes. Moreover, metformin reduced gene expression of key inflammatory markers and both gene and protein expression of kidney injury marker-1 and cyclin-dependent kinase-1 versus untreated controls. Altogether, these findings suggest several beneficial effects of metformin in this highly relevant slowly progressive ADPKD mouse model, which may help inform new ADPKD therapies in patients.NEW & NOTEWORTHY Metformin treatment improved ADPKD disease severity in a relevant, slowly progressive ADPKD mouse model that recapitulates a PKD-associated PKD1 mutation. Relative to controls, metformin reduced kidney weight/body weight, cystic index and BUN levels, while improving GFR, blood pressure and anemia. Metformin also reduced key inflammatory and injury markers, along with cell proliferation markers. These findings suggest several beneficial effects of metformin in this ADPKD mouse model, which may help inform new ADPKD therapies in patients.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Disease Models, Animal
- Disease Progression
- Female
- Genetic Predisposition to Disease
- Glomerular Filtration Rate/drug effects
- Inflammation Mediators/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Kidney Failure, Chronic/prevention & control
- Male
- Metformin/pharmacology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Polycystic Kidney, Autosomal Dominant/drug therapy
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Polycystic Kidney, Autosomal Dominant/physiopathology
- Renal Agents/pharmacology
- TRPP Cation Channels/genetics
- Time Factors
- Mice
Collapse
Affiliation(s)
- Núria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hui Li
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jessica Pham
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Rivera
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pei-Yin Ho
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Valeria Mancino
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kenneth R Hallows
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|