51
|
Panezai J, van Dyke T. Polyunsaturated Fatty Acids and Their Immunomodulatory Actions in Periodontal Disease. Nutrients 2023; 15:nu15040821. [PMID: 36839179 PMCID: PMC9965392 DOI: 10.3390/nu15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a diverse set of molecules with remarkable contributions to human physiology. They not only serve as sources of fuel but also cellular structural components as well as substrates that provide bioactive metabolites. A growing body of evidence demonstrates their role in inflammation. Inflammation in the presence of a polymicrobial biofilm contributes to the pathology of periodontitis. The role PUFAs in modulating immuno-inflammatory reactions in periodontitis is only beginning to be uncovered as research continues to unravel their far-reaching immunologic implications.
Collapse
Affiliation(s)
- Jeneen Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Thomas van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA 02142, USA
- Centre for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard Faculty of Medicine, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
52
|
Redruello-Requejo M, Samaniego-Vaesken MDL, Puga AM, Montero-Bravo A, Ruperto M, Rodríguez-Alonso P, Partearroyo T, Varela-Moreiras G. Omega-3 and Omega-6 Polyunsaturated Fatty Acid Intakes, Determinants and Dietary Sources in the Spanish Population: Findings from the ANIBES Study. Nutrients 2023; 15:nu15030562. [PMID: 36771269 PMCID: PMC9920307 DOI: 10.3390/nu15030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The multiple roles of polyunsaturated fatty acids (PUFA) in growth and general health are well documented. However, available intake data for the Spanish population are limited and lack gender and age considerations. Therefore, our goal was to assess dietary intake adequacy of omega-3 and omega-6 PUFA, their determinants and their major food sources among the Spanish population. Due to their influence on various beneficial functions attributed to omega-3 PUFA, combined intake adequacy with folic acid (FA), vitamin B₁₂ and choline was also assessed. Intake data were obtained from the ANIBES cross-sectional study on a representative sample of the Spanish population (9-75 years; n = 2009), where dietary intake was analysed with a three-day dietary record. Median intake of total omega-3 PUFA stood at 0.81 g/day (0.56-1.19 g/day), with α-linolenic acid (ALA) at 0.61 g/day (0.45-0.85 g/day), eicosapentaenoic acid (EPA) at 0.03 g/day (0.01-0.12 g/day) and docosahexaenoic acid (DHA) at 0.06 g/day (0.0-0.20 g/day). Accordingly, 65% of the Spanish population showed insufficient intakes for total omega-3 PUFA; 87% for ALA, and 83% for combined EPA and DHA. Inadequate intakes were significantly higher in children, adolescents, and younger women of childbearing age (18-30 years). In contrast, inadequacy due to excessive intakes was almost negligible. Regarding omega-6 PUFA, total intake was 10.1 g/day (7.0-14.0 g/day), 10.0 g/day (6.9-13.9 g/day) for linoleic acid (LA) and 0.08 g/day (0.05-0.13 g/day) for arachidonic acid (AA). Non-compliance due to either insufficient or excessive intakes of LA stood at around 5% of the sample, with the elderly showing significantly higher degrees of inadequacy due to insufficient intakes (10%; p ≤ 0.05). Median omega-6 to omega-3 ratio was 12:1, and significantly higher in men compared to women (p ≤ 0.05); in children, adolescents and adults compared to the elderly (p ≤ 0.05); and in younger women of childbearing age compared to the older group (31-45 years) (p ≤ 0.001). Oils and fats and meat and meat products were the main dietary sources for the essential fatty acids LA and ALA, respectively. Meat and meat products were as well the main providers of AA, while fish and shellfish were almost exclusively the only sources of EPA and DHA. However, main food sources identified showed important differences across age groups. Finally, the total combined degree of inadequacy observed for omega-3 PUFA, FA, vitamin B₁₂ and choline reached 21.3% of the ANIBES population. The observed degree of inadequacy of omega-3 PUFA intakes among the Spanish population makes it urgent to increase its consumption and to consider the need for supplementation. This should also be the main strategy for the optimization of the omega-6/omega-3 ratio, as the adequacy observed for omega-6 intakes is relatively acceptable. Additional improvement of the dietary intake of FA, vitamin B12 and choline could contribute to the beneficial effects of omega-3 PUFA.
Collapse
Affiliation(s)
- Marina Redruello-Requejo
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - María de Lourdes Samaniego-Vaesken
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Ana M. Puga
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Ana Montero-Bravo
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Mar Ruperto
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Paula Rodríguez-Alonso
- Spanish Nutrition Foundation (FEN), c/General Álvarez de Castro 20, 1 apta, 28010 Madrid, Spain
| | - Teresa Partearroyo
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
| | - Gregorio Varela-Moreiras
- Grupo USP-CEU de Excelencia “Nutrición Para la Vida (Nutrition for Life)”, Ref: E02/0720, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Boadilla del Monte, Spain
- Correspondence: ; Tel.: +34-91-372-47-26
| |
Collapse
|
53
|
Mustonen AM, Nieminen P. Dihomo- γ-Linolenic Acid (20:3n-6)-Metabolism, Derivatives, and Potential Significance in Chronic Inflammation. Int J Mol Sci 2023; 24:2116. [PMID: 36768438 PMCID: PMC9916522 DOI: 10.3390/ijms24032116] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Dihomo-γ-linolenic acid (DGLA) has emerged as a significant molecule differentiating healthy and inflamed tissues. Its position at a pivotal point of metabolic pathways leading to anti-inflammatory derivatives or via arachidonic acid (ARA) to pro-inflammatory lipid mediators makes this n-6 polyunsaturated fatty acid (PUFA) an intriguing research subject. The balance of ARA to DGLA is probably a critical factor affecting inflammatory processes in the body. The aim of this narrative review was to examine the potential roles of DGLA and related n-6 PUFAs in inflammatory conditions, such as obesity-associated disorders, rheumatoid arthritis, atopic dermatitis, asthma, cancers, and diseases of the gastrointestinal tract. DGLA can be produced by cultured fungi or be obtained via endogenous conversion from γ-linolenic acid (GLA)-rich vegetable oils. Several disease states are characterized by abnormally low DGLA levels in the body, while others can feature elevated levels. A defect in the activity of ∆6-desaturase and/or ∆5-desaturase may be one factor in the initiation and progression of these conditions. The potential of GLA and DGLA administrations as curative or ameliorating therapies in inflammatory conditions and malignancies appears modest at best. Manipulations with ∆6- and ∆5-desaturase inhibitors or combinations of long-chain PUFA supplements with n-3 PUFAs could provide a way to modify the body's DGLA and ARA production and the concentrations of their pro- and anti-inflammatory mediators. However, clinical data remain scarce and further well-designed studies should be actively promoted.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Faculty of Health Sciences, Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
54
|
Fatty-Acid-Based Membrane Lipidome Profile of Peanut Allergy Patients: An Exploratory Study of a Lifelong Health Condition. Int J Mol Sci 2022; 24:ijms24010120. [PMID: 36613559 PMCID: PMC9820545 DOI: 10.3390/ijms24010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Peanut allergy is a lifelong, increasingly prevalent, and potentially life-threatening disease burdening families and communities. Dietary, particularly polyunsaturated fatty acids (PUFAs), intakes can exert positive effects on immune and inflammatory responses, and the red blood cell (RBC) membrane lipidome contains stabilized metabolic and nutritional information connected with such responses. The fatty-acid-based membrane lipidome profile has been exploratorily evaluated in a small cohort of patients (eight males and one female, age range 4.1−21.7 years old, body mass index BMI < 25) with angioedema and/or anaphylaxis after peanut ingestion. This analysis was performed according to an ISO 17025 certified robotic protocol, isolating mature RBCs, extracting membrane lipids, and transforming them to fatty acid methyl esters for gas chromatography recognition and quantification. Comparison with a group of age- and BMI-matched healthy individuals and with benchmark interval values of a healthy population evidenced significant differences, such as higher levels of ω-6 (arachidonic acid), lower values of ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), together with an increased ω-6/ω-3 ratio in allergic patients. A significant inverse correlation was also found between specific immunoglobulin E (IgE) levels and ω-6 di-homo-gamma-linolenic acid (DGLA) and total PUFAs. Results of this preliminary study encourage screenings in larger cohorts, also in view of precision nutrition and nutraceuticals strategies, and stimulate interest to expand basic and applied research for unveiling molecular mechanisms that are still missing and individuating treatments in chronic allergic disorders.
Collapse
|
55
|
Li BZ, Wang H, Li XB, Zhang QR, Huang RG, Wu H, Wang YY, Li KD, Chu XJ, Cao NW, Zhou HY, Fang XY, Leng RX, Fan YG, Tao JH, Shuai ZW, Ye DQ. Altered gut fungi in systemic lupus erythematosus - A pilot study. Front Microbiol 2022; 13:1031079. [PMID: 36545195 PMCID: PMC9760866 DOI: 10.3389/fmicb.2022.1031079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Gut fungi, as symbiosis with the human gastrointestinal tract, may regulate physiology via multiple interactions with host cells. The plausible role of fungi in systemic lupus erythematosus (SLE) is far from clear and need to be explored. Methods A total of 64 subjects were recruited, including SLE, rheumatoid arthritis (RA), undifferentiated connective tissue diseases (UCTDs) patients and healthy controls (HCs). Fecal samples of subjects were collected. Gut fungi and bacteria were detected by ITS sequencing and 16S rRNA gene sequencing, respectively. Alpha and beta diversities of microbiota were analyzed. Linear discriminant analysis effect size analysis was performed to identify abundance of microbiota in different groups. The correlation network between bacterial and fungal microbiota was analyzed based on Spearman correlation. Results Gut fungal diversity and community composition exhibited significant shifts in SLE compared with UCTDs, RA and HCs. Compared with HCs, the alpha and beta diversities of fungal microbiota decreased in SLE patients. According to principal coordinates analysis results, the constitution of fungal microbiota from SLE, RA, UCTDs patients and HCs exhibited distinct differences with a clear separation between fungal microbiota. There was dysbiosis in the compositions of fungal and bacterial microbiota in the SLE patients, compared to HCs. Pezizales, Cantharellales and Pseudaleuria were enriched in SLE compared with HCs, RA and UCTDs. There was a complex relationship network between bacterial and fungal microbiota, especially Candida which was related to a variety of bacteria. Conclusion This study presents a pilot analysis of fungal microbiota with diversity and composition in SLE, and identifies several gut fungi with different abundance patterns taxa among SLE, RA, UCTDs and HCs. Furthermore, the gut bacterial-fungal association network in SLE patients was altered compared with HCs.
Collapse
Affiliation(s)
- Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian-Ru Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rong-Gui Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hong Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Kai-Di Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammatory and Immune Diseases Laboratory of Anhui Province, Hefei, Anhui, China,*Correspondence: Dong-Qing Ye,
| |
Collapse
|
56
|
Keim SA, Jude A, Smith K, Khan AQ, Coury DL, Rausch J, Udaipuria S, Norris M, Bartram LR, Narayanan AR, Rogers LK. Randomized Controlled Trial of Omega-3 and -6 Fatty Acid Supplementation to Reduce Inflammatory Markers in Children with Autism Spectrum Disorder. J Autism Dev Disord 2022; 52:5342-5355. [PMID: 35013866 PMCID: PMC9271516 DOI: 10.1007/s10803-021-05396-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
This double-blind, randomized controlled trial, tested fatty acid (FA) supplementation in children (ages 2- < 6 years) recently diagnosed with Autism Spectrum Disorder (ASD). Participants received daily oral FA supplement containing omega-3 and omega-6 FA, or a placebo for 90 days based on participant weight. Erythrocyte FAs and the cytokines, IL-1β, IL-2, IFNγ, were measured in plasma obtained from serial blood collections. Treatment increased omega-3 and omega-6 FA levels (1.40 mol% for EPA and 1.62 mol% for DHA) and reduced IL-2 levels compared to placebo (- 0.17 pg/mL, 95% CI - 0.31, - 0.02, d = - 0.62). Omega 3-6 treatment was tolerable and adherence was greater than 70%. Future research will assess the effects of Omega 3-6 treatment on ASD symptoms. Registered on 06/08/2018 with ClinicalTrials.gov: NCT03550209.
Collapse
Affiliation(s)
- Sarah A Keim
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA.
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA.
| | - Abigail Jude
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Katie Smith
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Aiman Q Khan
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Daniel L Coury
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph Rausch
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Shivika Udaipuria
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
| | - Megan Norris
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Lindsay R Bartram
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anita R Narayanan
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lynette K Rogers
- Nationwide Children's Hospital, 700 Children's Dr, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
57
|
Casorla-Perez LA, Guennoun R, Cubillas C, Peng B, Kornfeld K, Wang D. Orsay Virus Infection of Caenorhabditis elegans Is Modulated by Zinc and Dependent on Lipids. J Virol 2022; 96:e0121122. [PMID: 36342299 PMCID: PMC9682997 DOI: 10.1128/jvi.01211-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.
Collapse
Affiliation(s)
| | - Ranya Guennoun
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ciro Cubillas
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bo Peng
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kerry Kornfeld
- Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department Pathology & Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
58
|
Abed DZ, Jabbari S, Zakaria ZA, Mohammadi S. Insight into the possible mechanism(s) involved in the antinociceptive and antineuropathic activity of Descurainia sophia L. Webb ex Prantl essential oil. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115638. [PMID: 36007719 DOI: 10.1016/j.jep.2022.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Descurainia sophia (L.)(Brassicaceae), popularly known as "Khaksheer", is a native species widely distributed in Iran. The seeds and essential oil has been used in local traditional medicine (Persian folk ethnomedicine) to treat fever, inflammation, back pain, and headache. AIM OF THE STUDY To investigate in vitro anti-nociceptive and antineuropathic activities of Descurainia sophia seeds essential oil (DSEO) in rats and to determine the possible mechanism(s) involved. MATERIALS AND METHODS The antinociceptive activity of DSEO or Linolenic acid (LA) was evaluated using the formalin induced paw licking test followed by determination on the role of NO-cGMP-K+ channel pathway as well as a number of non-opioid receptor systems (vanilloid, dopamine, cannabinoid, serotonin, peroxisome proliferator activated, and adrenergic receptors) in the modulation of DSEO-induced antinociceptive activity. Additionally, the cervical spinal cord contusion (CCS) model was used to study antineuropathic potential of DSEO or LA. RESULTS DSEO exerted significant (p < 0.05) antinociceptive activity in formalin test (both phases) and altered mechanical allodynia and hyperalgesia observed in the CCS model. Pretreatment with glibenclamide, Nω-nitro-L-arginine methyl ester, tranilast, methylene blue, SCH23390, SR141716A and SR144528 restored DSEO-induced antinociceptive activity observed in the formalin test. Furthermore, LA also reduced nociceptive responses induced in the formalin and CCS models. CONCLUSION DSEO inhibits inflammatory mediated nociceptive response partly via the modulation of NO-cGMP-K+ channels pathway well as the activation of vanilloid, dopamine, and cannabinoid receptors, and exerts antineuropathic activity possibly via the modulation of inflammatory mediated activity. Thus, these findings confirm the Persian ethno-medicine claim on the efficacy of D. Sophia.
Collapse
Affiliation(s)
- Donya Ziafatdoost Abed
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia.
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
59
|
Heinzer K, Lang S, Farowski F, Wisplinghoff H, Vehreschild MJGT, Martin A, Nowag A, Kretzschmar A, Scholz CJ, Roderburg C, Mohr R, Tacke F, Kasper P, Goeser T, Steffen HM, Demir M. Dietary omega-6/omega-3 ratio is not associated with gut microbiota composition and disease severity in patients with nonalcoholic fatty liver disease. Nutr Res 2022; 107:12-25. [PMID: 36162275 DOI: 10.1016/j.nutres.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 12/27/2022]
Abstract
In this cross-sectional study, we hypothesized that a high dietary ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids could be associated with an altered gut bacterial composition and with the disease severity in patients with nonalcoholic fatty liver disease (NAFLD). A total of 101 NAFLD patients were included in the study, of which 63 underwent a liver biopsy. All 101 patients completed a 14-day food and activity record. Ebispro 2016 professional software was used to calculate individual macronutrients and micronutrients consumed. Patients were grouped into 3 quantiles (Q) according to a low (Q1: <6.1, n = 34), moderate (Q2: 6.1-7.8, n = 33), or high (Q3: >7.8, n = 34) dietary n-6/n-3 ratio. Stool samples were analyzed using 16S rRNA gene sequencing. Spearman correlation coefficients and principal coordinate analysis were used to detect differences in the bacterial composition of the gut microbiota. The median dietary n-6/n-3 ratio of all patients was 6.7 (range, 3.1-14.9). No significant associations between the dietary n-6/n-3 ratio and the gut microbiota composition or disease severity were observed. However, the abundance of specific bacteria such as Catenibacterium or Lactobacillus ruminis were found to be positively correlated and the abundance of Clostridium were negatively correlated with dietary n-6 fatty acid intake. The results indicate that a high dietary n-6/n-3 ratio is probably not a highly relevant factor in the pathogenesis of human NAFLD. Further studies are needed to clarify the importance of interactions between gut bacterial taxa and n-6 fatty acids in the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Kathrin Heinzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Sonja Lang
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fedja Farowski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; German Centre for Infection Research (DZIF), partner site Bonn/Cologne; Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hilmar Wisplinghoff
- Wisplinghoff Laboratories, Cologne, Germany; University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany; Institute for Virology and Medical Microbiology, University Witten/Herdecke, Witten, Germany
| | - Maria J G T Vehreschild
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; German Centre for Infection Research (DZIF), partner site Bonn/Cologne; Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna Martin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Angela Nowag
- Wisplinghoff Laboratories, Cologne, Germany; University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | | | | | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Philipp Kasper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Tobias Goeser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Hans-Michael Steffen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
60
|
Effects on Spirulina Supplementation on Immune Cells' Parameters of Elite College Athletes. Nutrients 2022; 14:nu14204346. [PMID: 36297029 PMCID: PMC9612057 DOI: 10.3390/nu14204346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: To identify the effect of spirulina supplementation on the immune cells’ indicators of young soccer players during the preparation period of a tournament. Methods: 39 undergraduate male soccer players were recruited and randomly allocated into a spirulina supplementation group (SP group, n = 20) and the placebo supplementation group (PB group, n = 19). Their elbow venous blood samples were collected before and after the preparation period of a tournament, which included 8 weeks total. The differences within the group and between groups were recorded and analyzed. Results: The ratio of the basophils in the SP group between the pre-test and post-test were statistically significantly different (p < 0.05). In the PB group, the percentage of before and after in leukocytes and monocytes were statistically significantly different (p < 0.05). In the data of the post-test, the percentage of monocytes and basophils between the SP group and PB group were statistically significantly different. The delta variations of monocytes between groups were significantly different (p < 0.05). Conclusions: Intense long-duration exercise can reduce the ratio of leukocytes and monocytes in young athletes, yet the spirulina supplement can inhibit the change. It also might improve immunity to parasites, pathogenic bacterium, and rapid-onset allergies.
Collapse
|
61
|
Trivedi P, Abbas A, Lehmann C, Rupasinghe HPV. Antiviral and Anti-Inflammatory Plant-Derived Bioactive Compounds and Their Potential Use in the Treatment of COVID-19-Related Pathologies. J Xenobiot 2022; 12:289-306. [PMID: 36278757 PMCID: PMC9589987 DOI: 10.3390/jox12040020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
The highly contagious coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic and public health emergency as it has taken the lives of over 5.7 million in more than 180 different countries. This disease is characterized by respiratory tract symptoms, such as dry cough and shortness of breath, as well as other symptoms, including fever, chills, and fatigue. COVID-19 is also characterized by the excessive release of cytokines causing inflammatory injury to the lungs and other organs. It is advised to undergo precautionary measures, such as vaccination, social distancing, use of masks, hygiene, and a healthy diet. This review is aimed at summarizing the pathophysiology of COVID-19 and potential biologically active compounds (bioactive) found in plants and plant food. We conclude that many plant food bioactive compounds exhibit antiviral and anti-inflammatory properties and support in attenuating organ damage due to reduced cytokine release and improving the recovery process from COVID-19 infection.
Collapse
Affiliation(s)
- Purvi Trivedi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3E2, Canada
| | - Amna Abbas
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3E2, Canada
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 3E2, Canada
- Correspondence:
| |
Collapse
|
62
|
Yamaguchi A, Botta E, Holinstat M. Eicosanoids in inflammation in the blood and the vessel. Front Pharmacol 2022; 13:997403. [PMID: 36238558 PMCID: PMC9551235 DOI: 10.3389/fphar.2022.997403] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids in cells. PUFAs regulate cellular function through the formation of derived lipid mediators termed eicosanoids. The oxygenation of 20-carbon PUFAs via the oxygenases cyclooxygenases, lipoxygenases, or cytochrome P450, generates a class of classical eicosanoids including prostaglandins, thromboxanes and leukotrienes, and also the more recently identified hydroxy-, hydroperoxy-, epoxy- and oxo-eicosanoids, and the specialized pro-resolving (lipid) mediators. These eicosanoids play a critical role in the regulation of inflammation in the blood and the vessel. While arachidonic acid-derived eicosanoids are extensively studied due to their pro-inflammatory effects and therefore involvement in the pathogenesis of inflammatory diseases such as atherosclerosis, diabetes mellitus, hypertension, and the coronavirus disease 2019; in recent years, several eicosanoids have been reported to attenuate exacerbated inflammatory responses and participate in the resolution of inflammation. This review focused on elucidating the biosynthesis and the mechanistic signaling of eicosanoids in inflammation, as well as the pro-inflammatory and anti-inflammatory effects of these eicosanoids in the blood and the vascular wall.
Collapse
Affiliation(s)
- Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Eliana Botta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Michael Holinstat,
| |
Collapse
|
63
|
Mäkelä TNK, Tuomainen TP, Hantunen S, Virtanen JK. Associations of serum n-3 and n-6 polyunsaturated fatty acids with prevalence and incidence of nonalcoholic fatty liver disease. Am J Clin Nutr 2022; 116:759-770. [PMID: 35648467 PMCID: PMC9437980 DOI: 10.1093/ajcn/nqac150] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver diseases worldwide, and lifestyle and diet are significant factors in its development. Recent studies have suggested that dietary fat quality is associated with the development of NAFLD. OBJECTIVES Our purpose was to investigate the cross-sectional and longitudinal associations of serum n-3 (ω-3) and n-6 (ω-6) PUFAs with NAFLD among middle-aged and older men and women from eastern Finland. We also investigated the associations of estimated Δ5-desaturase and Δ6-desaturase activities, enzymes involved in PUFA metabolism, with NAFLD. METHODS After exclusions, the cross-sectional analyses included 1533 men examined in 1984-1989 and 674 men and 870 women examined in 1998-2001 in the Kuopio Ischaemic Heart Disease Risk Factor Study. The longitudinal analyses included 520 men examined in 1991-1993 and 301 men and 466 women examined in 2005-2008. Fatty liver index (FLI) was used as a surrogate for NAFLD. Hepatic steatosis was defined as FLI >60. ANCOVA and logistic regression were used for analyses. RESULTS In the longitudinal analyses, participants with higher serum concentrations of total n-6 PUFA and linoleic acid, the major n-6 PUFA, had markedly lower FLI and lower odds for hepatic steatosis (e.g., odds ratios for incident hepatic steatosis in the highest compared with lowest quartiles were ≤0.41), whereas serum γ-linolenic acid concentration was associated with a higher FLI and higher odds for hepatic steatosis. The associations with the other PUFAs were generally weaker and nonsignificant. In the cross-sectional analyses, also the long-chain n-3 PUFAs had inverse associations. In most analyses, high estimated Δ5-desaturase activity was associated with lower risk and high estimated Δ6-desaturase activity with higher risk for NAFLD. CONCLUSIONS In middle-aged and older Finnish adults, higher serum concentrations of total n-6 PUFAs and linoleic acid were associated with lower odds for future NAFLD.
Collapse
Affiliation(s)
- Tiia N K Mäkelä
- Institute of Clinical Medicine, University of Eastern Finland, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Sari Hantunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
64
|
D’Helft J, Caccialanza R, Derbyshire E, Maes M. Relevance of ω-6 GLA Added to ω-3 PUFAs Supplements for ADHD: A Narrative Review. Nutrients 2022; 14:nu14163273. [PMID: 36014778 PMCID: PMC9416383 DOI: 10.3390/nu14163273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The use of polyunsaturated fatty acids in Attention-Deficit/Hyperactivity Disorder (ADHD) and developmental disorders has been gaining interest with preparations containing different dosages and combinations. Gamma-linolenic acid (GLA) is an ω-6 fatty acid of emerging interest with potential roles as an adjuvant anti-inflammatory agent that could be used with ω-3 PUFAs in the treatment of ADHD and associated symptoms. A narrative review was undertaken to examine the potential role(s) of the ω-6 fatty acid GLA. PubMed, Google Scholar, and Scopus were searched to examine the potential role(s) of the ω-6 fatty acid GLA as (1) an antioxidant and anti-inflammatory agent, (2) a synergistic nutrient when combined with ω-3 PUFAs, and (3) a potential etiological factor in ADHD and its treatment. The results show that GLA exerts anti-inflammatory effects by increasing dihomo-gamma-linolenic acid in immune cells. ω-3 PUFAs, such as EPA and DHA, are often co-administered with GLA because these ω-3 PUFAs may prevent the accumulation of serum arachidonic acid in response to GLA administration without limiting the storage of DGLA in immune cells. The administration of ω-3 PUFAs alone might not be sufficient to effectively treat patients with ADHD and developmental disorders. Overall studies point towards a combination of EPA and DHA with GLA in a 9:3:1 ratio appearing to be associated with ADHD symptom improvement. A combination of PUFAs may lead to better outcomes.
Collapse
Affiliation(s)
- Jelle D’Helft
- Springfield Nutraceuticals, Managing Director, Research & Development, Veldenstraat 23, 2220 Heist-op-den-Berg, Belgium
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
65
|
Esmaili H, Tajik B, Tuomainen TP, Kurl S, Salonen JT, Virtanen JK. Associations of the serum n-6 PUFA with exercise cardiac power in men. Br J Nutr 2022; 129:1-10. [PMID: 35929337 PMCID: PMC10024979 DOI: 10.1017/s0007114522002501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022]
Abstract
Low intake or tissue concentrations of the n-6 PUFA, especially to the major n-6 PUFA linoleic acid (LA), and low exercise cardiac power (ECP) are both associated with CVD risk. However, associations of the n-6 PUFA with ECP are unknown. The aim of the present study was to explore cross-sectional associations of the serum total n-6 PUFA, LA, arachidonic acid (AA), γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA) concentrations with ECP and its components. In total, 1685 men aged 42-60 years from the Kuopio Ischaemic Heart Disease Risk Factor Study and free of CVD were included. ANCOVA was used to examine the mean values of ECP (maximal oxygen uptake (VO2max)/maximal systolic blood pressure (SBP)) and its components in quartiles of the serum total and individual n-6 PUFA concentrations. After multivariable adjustments, higher serum total n-6 PUFA concentration was associated with higher ECP and VO2max (for ECP, the extreme-quartile difference was 0·77 ml/mmHg (95 % CI 0·38, 1·16, Pfor trend across quartiles < 0·001) and for VO2max 157 ml/min (95 % CI 85, 230, Pfor trend < 0·001), but not with maximal SBP. Similar associations were observed with serum LA concentration. Higher serum AA concentration was associated with higher ECP but not with VO2max or maximal SBP. The minor serum n-6 PUFA GLA and DGLA were associated with higher maximal SBP during exercise test and DGLA also with higher VO2max but neither with ECP. In conclusion, especially LA concentration was associated with higher ECP. This may provide one mechanism for the cardioprotective properties of, especially, LA.
Collapse
Affiliation(s)
- Haleh Esmaili
- University of Eastern Finland, Kuopio Campus, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Behnam Tajik
- University of Eastern Finland, Kuopio Campus, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Tomi-Pekka Tuomainen
- University of Eastern Finland, Kuopio Campus, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Sudhir Kurl
- University of Eastern Finland, Kuopio Campus, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| | - Jukka T. Salonen
- University of Helsinki, the Faculty of Medicine, Department of Public Health, Helsinki, Finland
- Metabolic Analytical Services Oy, Helsinki, Finland
| | - Jyrki K. Virtanen
- University of Eastern Finland, Kuopio Campus, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| |
Collapse
|
66
|
Venter L, Alfaro AC, Van Nguyen T, Lindeque JZ. Metabolite profiling of abalone (Haliotis iris) energy metabolism: a Chatham Islands case study. Metabolomics 2022; 18:52. [PMID: 35829802 PMCID: PMC9279229 DOI: 10.1007/s11306-022-01907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The Chatham Islands has some of the most prized black-footed abalone (Haliotis iris) beds in New Zealand. This well-managed fishery includes restrictions on catch and size limits, selective fishing methods, and shellfish management. However, recent declines in biomass and growth parameters have prompted omics research to characterise the biological responses of abalone, potentially contributing towards animal management strategies. OBJECTIVES The aim of this study was to characterise the metabolite profiles of slow and fast growing, juvenile and adult abalone, relating to metabolites supporting energy metabolism. METHODS A gas chromatography-mass spectrometry metabolite profiling, applying methyl chloroformate alkylation, was performed on juvenile and adult abalone samples collected from Point Durham and Wharekauri sites, Chatham Islands, New Zealand. RESULTS The results obtained from haemolymph and muscle samples indicated that abalone from the fast-growing area, Wharekauri, fuelled metabolic functions via carbohydrate sources, providing energy for fatty acid and amino acid synthesis. Conversely, higher amino acid levels were largely utilised to promote growth in this population. The metabolism of juvenile abalone favoured anabolism, where metabolites were diverted from glycolysis and the tricarboxylic acid cycle, and used for the production of nucleotides, amino acids and fatty acids. CONCLUSIONS This research provides unique physiological insights towards abalone populations supporting the use of metabolomics as a tool to investigate metabolic processes related to growth. This work sets the stage for future work aimed at developing biomarkers for growth and health monitoring to support a growing and more sustainably abalone fishery.
Collapse
Affiliation(s)
- Leonie Venter
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Thao Van Nguyen
- Aquaculture Biotechnology Research Group, Department of Environmental Science, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Jeremie Zander Lindeque
- Human Metabolomics, North West University, Potchefstroom Campus, Private Bag X 6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
67
|
Plasma Fatty Acids Pattern and Dry Eye Disease in the Elderly: The Montrachet Population-Based Study. Nutrients 2022; 14:nu14112290. [PMID: 35684090 PMCID: PMC9183164 DOI: 10.3390/nu14112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: To investigate the association between plasma fatty acids (FAs) and dry eye disease (DED) in an elderly population; (2) Methods: We conducted a population-based study, the Montrachet study, in individuals older than 75 years. DED was evaluated using the Schirmer I test without anesthesia, tear film breakup time (TFBUT) measurement and fluorescein corneal staining. Plasma FAs were measured in fasting blood using gas chromatography; (3) Results: A total of 740 subjects with a plasma measurement of 25 FAs were included in this study. The mean age was 82.2 ± 3.7 years, and 62.7% were women. DED was present in 35.0% of participants. We identified a plasma FAs pattern positively associated with DED, characterized by low polyunsaturated fatty acids (PUFAs), high monounsaturated fatty acids (MUFAs) and low saturated fatty acids (SFAs) levels. After adjustment for major confounders, individuals in the upper quartile of the FAs pattern scores compared with those in the lower quartile were more likely to present DED (OR 2.46 (95% CI 1.51-4.01), p = 0.001); (4) Conclusion: In this study, we found that a plasma FAs pattern characterized by low PUFAs, high MUFAs and low SFAs was significantly associated with DED in elderly participants.
Collapse
|
68
|
There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. J Clin Med 2022; 11:jcm11092365. [PMID: 35566490 PMCID: PMC9105551 DOI: 10.3390/jcm11092365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Crohn’s disease (CD) and Ulcerative Colitis (UC) are classified as inflammatory bowel diseases (IBD). Currently, an increasing number of studies indicate that the metabolic consequences of IBD may include abnormalities in the fatty acid profile. The aim of this study was to compare fatty acid concentrations in IBD in order to identify differences between CD and UC and differences between the phases of both diseases. Methods: Sixty-three adolescent patients with CD (n = 33) and UC (n = 30) aged 13.66 ± 2.67 and 14.15 ± 3.31, respectively, were enrolled in the study. Analysis was performed by gas chromatography. Results: A statistically significant higher concentration of vaccenic acid was observed in the total UC group relative to total CD. In remission CD relative to active CD, a significantly higher concentration of palmitic acid was shown. Whereas in active CD, significantly higher levels of linoleic acid were observed relative to remission. The UC group had significantly higher lauric acid and gamma-linoleic acid levels in active disease relative to remission. Conclusions: The identified differences between FA levels in UC and CD could potentially be involved in the course of both diseases.
Collapse
|
69
|
Pobee RA, Fenton JI, Sikorskii A, Zalwango SK, Felzer-Kim I, Medina IM, Giordani B, Ezeamama AE. Association of serum PUFA and linear growth over 12 months among 6-10 years old Ugandan children with or without HIV. Public Health Nutr 2022; 25:1-11. [PMID: 35369893 PMCID: PMC9991724 DOI: 10.1017/s1368980022000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/29/2021] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To quantify PUFA-associated improvement in linear growth among children aged 6-10 years. DESIGN Serum fatty acids (FA), including essential FA (EFA) (linoleic acid (LA) and α-linolenic acid (ALA)) were quantified at baseline using GC-MS technology. FA totals by class (n-3, n-6, n-9, PUFA and SFA) and FA ratios were calculated. Height-for-age Z-score (HAZ) relative to WHO population reference values were calculated longitudinally at baseline, 6 and 12 months. Linear regression models estimated PUFA, HIV status and their interaction-associated standardised mean difference (SMD) and 95 % CI in HAZ over 12 months. SETTING Community controls and children connected to community health centre in Kampala, Uganda, were enrolled. PARTICIPANTS Children perinatally HIV-infected (CPHIV, n 82), or HIV-exposed but uninfected (CHEU, n 76) and community controls (n 78). RESULTS Relative to highest FA levels, low SFA (SMD = 0·31, 95 % CI: 0·03, 0·60), low Mead acid (SMD = 0·38, 95 % CI: 0·02, 0·74), low total n-9 (SMD = 0·44, 95 % CI: 0·08, 0·80) and low triene-to-tetraene ratio (SMD = 0·42, 95 % CI: 0·07, 0·77) predicted superior growth over 12 months. Conversely, low LA (SMD = -0·47, 95 % CI: -0·82, -0·12) and low total PUFA (sum of total n-3, total n-6 and Mead acid) (SMD = -0·33 to -0·39, 95 % CI: -0·71, -0·01) predicted growth deficit over 12 months follow-up, regardless of HIV status. CONCLUSION Low n-3 FA (ALA, EPA and n-3 index) predicted growth deficits among community controls. EFA sufficiency may improve stature in school-aged children regardless of HIV status. Evaluating efficacy of diets low in total SFA, sufficient in EFA and enriched in n-3 FA for improving child growth is warranted.
Collapse
Affiliation(s)
- Ruth A Pobee
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Alla Sikorskii
- Department of Psychiatry, Michigan State University, 909 Wilson Road, 322B West Fee Hall, East Lansing, MI48824, USA
| | - Sarah K Zalwango
- Directorate of Public Health and Environment, Kampala Capital City Authority, Kampala, Uganda
| | | | - Ilce M Medina
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| | - Bruno Giordani
- Departments of Psychiatry, Neurology and Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Amara E Ezeamama
- Department of Psychiatry, Michigan State University, 909 Wilson Road, 322B West Fee Hall, East Lansing, MI48824, USA
| |
Collapse
|
70
|
Galler AI, Klavins K, Burgener IA. A Preliminary Metabolomic Study of Yorkshire Terrier Enteropathy. Metabolites 2022; 12:metabo12030264. [PMID: 35323707 PMCID: PMC8954012 DOI: 10.3390/metabo12030264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Perturbations of metabolite profiles in human and canine enteropathies have been reported before. However, data in dogs are scarce and inconsistent. Currently, the metabolite profile in Yorkshire Terrier enteropathy (YTE) and the impact of treatment is unknown. The objective of this study was to investigate the plasma metabolome of 13 Yorkshire Terriers with YTE and compare it to 20 healthy Yorkshire Terriers. Furthermore, we studied the impact of treatment on the metabolome. In this prospective observational study, plasma metabolite profiles were analyzed by flow injection analysis-tandem mass spectrometry (FIA-MS/MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a targeted metabolomics kit. Metabolite analysis revealed that YTE is accompanied by changes in lipid and bile acid metabolism. YTE was associated with a significant decrease of long-chain fatty acids (octadecenoic acid, eicosadienoic acid, eicosatrienoic acid) and lower levels of long-chain acylcarnitines (tetradecanoylcarnitine, hexadecanoylcarnitine, hexadecenoylcarnitine, octadecenoylcarnitine) compared with healthy controls. Furthermore, taurodeoxycholic acid, a secondary bile acid, was decreased in plasma from YTE patients. These changes might be breed-specific and might be involved in the pathogenesis of YTE. Interestingly, changes in metabolite levels were not recovered after treatment and differed considerably from healthy controls.
Collapse
Affiliation(s)
- Alexandra I. Galler
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence:
| | - Kristaps Klavins
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia;
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia
| | - Iwan A. Burgener
- Division of Small Animal Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|
71
|
Kruse AB, Gärtner M, Vach K, Grueninger D, Peikert SA, Ratka-Krüger P, Tennert C, Woelber JP. An exploratory study on the role of serum fatty acids in the short-term dietary therapy of gingivitis. Sci Rep 2022; 12:4022. [PMID: 35256737 PMCID: PMC8901712 DOI: 10.1038/s41598-022-07989-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
A previous randomised controlled trial showed that an anti-inflammatory diet (AID) significantly reduced gingival inflammation despite constant plaque values. This exploratory study investigated the role of serum fatty acids in relation to the observed clinical effects. Therefore, data of thirty participants with gingivitis, following either a pro-inflammatory dietary pattern (PID) rich in saturated fat, omega 6 fatty acids, and refined carbohydrates or an AID for 4 weeks, were correlated with corresponding serum samples for a variety of fatty acids. Changes in the fatty acid profile and effects on clinical periodontal parameters were analysed. Results showed that the polyunsatured:saturated fatty acids ratio (PUFA:SFA ratio) and nervonic acid level were significantly higher in the AID group than in the PID group at the end of the study. Significant intragroup differences were seen only in the AID group. Diverse fatty acids showed heterogeneous relations to clinical parameters. This study demonstrated that the serum fatty acid profile was not fundamentally associated with the clinical gingivitis-lowering effects of an AID in short-term, although some fatty acids showed individual relations to clinical parameters with respect to inflammation. Hence, short-term effects of dietary therapy on gingivitis may be rather based on carbohydrate-related effects and/or micronutrients.
Collapse
Affiliation(s)
- Anne B Kruse
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Maximilian Gärtner
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Kirstin Vach
- Department of Medical Biometry and Medical Informatics, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Dirk Grueninger
- Centre of Laboratory Diagnostics MVZ Clotten, Merzhauser Str. 112 a, 79100, Freiburg, Germany
| | - Stefanie A Peikert
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Petra Ratka-Krüger
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christian Tennert
- Department of Restorative, Preventive and Pediatric Dentistry, University of Berne, Freiburgstrasse 7, 3010, Berne, Switzerland
| | - Johan P Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
72
|
Chen G, Guo L, Zhao X, Ren Y, Chen H, Liu J, Jiang J, Liu P, Liu X, Hu B, Wang N, Peng H, Xu G, Tao H. Serum Metabonomics Reveals Risk Factors in Different Periods of Cerebral Infarction in Humans. Front Mol Biosci 2022; 8:784288. [PMID: 35242810 PMCID: PMC8887861 DOI: 10.3389/fmolb.2021.784288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from different periods may better predict disease progression are still unknown. We performed a systematic investigation using the metabonomics method. Various metabolites in different pathways were investigated by serum metabolic profiling of 143 patients diagnosed with CI and 59 healthy controls. Phe-Phe, carnitine C18:1, palmitic acid, cis-8,11,14-eicosatrienoic acid, palmitoleic acid, 1-linoleoyl-rac-glycerol, MAG 18:1, MAG 20:3, phosphoric acid, 5α-dihydrotestosterone, Ca, K, and GGT were the major components in the early period of CI. GCDCA, glycocholate, PC 36:5, LPC 18:2, and PA showed obvious changes in the intermediate time. In contrast, trans-vaccenic acid, linolenic acid, linoleic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, arachidonic acid, DHA, FFA 18:1, FFA 18:2, FFA 18:3, FFA 20:4, FFA 22:6, PC 34:1, PC 36:3, PC 38:4, ALP, and Crea displayed changes in the later time. More importantly, we found that phenylalanine metabolism, medium-chain acylcarnitines, long-chain acylcarnitines, choline, DHEA, LPC 18:0, LPC 18:1, FFA 18:0, FFA 22:4, TG, ALB, IDBIL, and DBIL played vital roles in the development of different periods of CI. Increased phenylacetyl-L-glutamine was detected and may be a biomarker for CI. It was of great significance that we identified key metabolic pathways and risk metabolites in different periods of CI different from those previously reported. Specific data are detailed in the Conclusion section. In addition, we also explored metabolite differences of CI patients complicated with high blood glucose compared with healthy controls. Further work in this area may inform personalized treatment approaches in clinical practice for CI by experimentally elucidating the pathophysiological mechanisms.
Collapse
Affiliation(s)
- Guoyou Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Li Guo
- Department of Anesthesia, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xinjie Zhao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yachao Ren
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Hongyang Chen
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Jincheng Liu
- Academic Affairs Office, Harbin Medical University-Daqing, Daqing, China
| | - Jiaqi Jiang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Peijia Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Bo Hu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Na Wang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Haisheng Peng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haiquan Tao
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cerebrovascular Diseases Department, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
73
|
Chilton FH, Manichaikul A, Yang C, O'Connor TD, Johnstone LM, Blomquist S, Schembre SM, Sergeant S, Zec M, Tsai MY, Rich SS, Bridgewater SJ, Mathias RA, Hallmark B. Interpreting Clinical Trials With Omega-3 Supplements in the Context of Ancestry and FADS Genetic Variation. Front Nutr 2022; 8:808054. [PMID: 35211495 PMCID: PMC8861490 DOI: 10.3389/fnut.2021.808054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Human diets in developed countries such as the US have changed dramatically over the past 75 years, leading to increased obesity, inflammation, and cardiometabolic dysfunction. Evidence over the past decade indicates that the interaction of genetic variation with changes in the intake of 18-carbon essential dietary omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), respectively, has impacted numerous molecular and clinical phenotypes. Interactions are particularly relevant with the FADS1 and FADS2 genes, which encode key fatty acid desaturases in the pathway that converts LA and ALA to their long chain (≥20 carbons), highly unsaturated fatty acid (HUFA) counterparts. These gene by nutrient interactions affect the levels and balance of n-6 and n-3 HUFA that in turn are converted to a wide array of lipids with signaling roles, including eicosanoids, docosanoids, other oxylipins and endocannabinoids. With few exceptions, n-6 HUFA are precursors of pro-inflammatory/pro-thrombotic signaling lipids, and n-3 HUFA are generally anti-inflammatory/anti-thrombotic. We and others have demonstrated that African ancestry populations have much higher frequencies (vs. European-, Asian- or indigenous Americas-ancestry populations) of a FADS “derived” haplotype that is associated with the efficient conversion of high levels of dietary n-6 PUFA to pro-inflammatory n-6 HUFA. By contrast, an “ancestral” haplotype, carrying alleles associated with a limited capacity to synthesize HUFA, which can lead to n-3 HUFA deficiency, is found at high frequency in certain Hispanic populations and is nearly fixed in several indigenous populations from the Americas. Based on these observations, a focused secondary subgroup analysis of the VITAL n-3 HUFA supplementation trial stratifying the data based on self-reported ancestry revealed that African Americans may benefit from n-3 HUFA supplementation, and both ancestry and FADS variability should be factored into future clinical trials design.
Collapse
Affiliation(s)
- Floyd H. Chilton
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- *Correspondence: Floyd H. Chilton
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Timothy D. O'Connor
- Program in Personalized and Genomic Medicine, Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurel M. Johnstone
- University of Arizona Genetics Core, University of Arizona, Tucson, AZ, United States
| | - Sarah Blomquist
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Susan M. Schembre
- Department of Family and Community Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ, United States
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | | | - Rasika A. Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brian Hallmark
- Center for Biomedical Informatics and Biostatistics, BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
74
|
Patel A, Desai SS, Mane VK, Enman J, Rova U, Christakopoulos P, Matsakas L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
75
|
Supplementation of Enriched Polyunsaturated Fatty Acids and CLA Cheese on High Fat Diet: Effects on Lipid Metabolism and Fat Profile. Foods 2022; 11:foods11030398. [PMID: 35159548 PMCID: PMC8834222 DOI: 10.3390/foods11030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have demonstrated a positive relationship between dietary fat intake and the onset of several metabolic diseases. This association is particularly evident in a diet rich in saturated fatty acids, typical of animal foods, such as dairy products. However, these foods are the main source of fatty acids with a proven nutraceutical effect, such as the ω-3 fatty acid α-linolenic acid (ALA) and the conjugated linoleic acid (CLA), which have demonstrated important roles in the prevention of various diseases. In the present study, the effect of a supplementation with cheese enriched with ω-3 fatty acids and CLA on the metabolism and lipid profiles of C57bl/6 mice was evaluated. In particular, the analyses were conducted on different tissues, such as liver, muscle, adipose tissue and brain, known for their susceptibility to the effects of dietary fats. Supplementing cheese enriched in CLA and ω-3 fats reduced the level of saturated fat and increased the content of CLA and ALA in all tissues considered, except for the brain. Furthermore, the consumption of this cheese resulted in a tissue-specific response in the expression levels of genes involved in lipid and mitochondrial metabolism. As regards genes involved in the inflammatory response, the consumption of enriched cheese resulted in a reduction in the expression of inflammatory genes in all tissues analyzed. Considering the effects that chronic inflammation associated with a high-calorie and high-fat diet (meta-inflammation) or aging (inflammaging) has on the onset of chronic degenerative diseases, these data could be of great interest as they indicate the feasibility of modulating inflammation (thus avoiding/delaying these pathologies) with a nutritional and non-pharmacological intervention.
Collapse
|
76
|
Liu X, Shi Q, Fan X, Chen H, Chen N, Zhao Y, Qi K. Associations of Maternal Polyunsaturated Fatty Acids With Telomere Length in the Cord Blood and Placenta in Chinese Population. Front Nutr 2022; 8:779306. [PMID: 35155512 PMCID: PMC8831827 DOI: 10.3389/fnut.2021.779306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022] Open
Abstract
Few studies have investigated the correlation between maternal polyunsaturated fatty acids (PUFAs) and telomeres in offspring, and the underlying influential mechanisms. In this study, we assessed the associations of maternal PUFAs with telomere length (TL) and DNA methylation of the telomerase reverse transcriptase (TERT) promoter in the cord blood and the placenta. A total of 274 pregnant women and their newborn babies were enrolled in this study. Maternal blood before delivery, the cord blood, and the placenta at birth were collected. Fatty acids in maternal erythrocytes and cord blood cells were measured by gas chromatography (GC). TL in the cord blood and the placenta was determined using real-time quantitative PCR (qPCR) by calculating the product ratio of telomeric DNA to the single-copy gene β-globin. The TERT promoter methylation was analyzed by DNA bisulfite sequencing. The associations of maternal fatty acids with TL were analyzed by univariate and multivariate regression. We found that low concentrations of docosapentaenoci acid (DPA, C22: 5n-3) and total n-3 PUFAs, adrenic acid (ADA, C22: 4n-6), and osbond acid (OA, C22: 5n-6) and high concentrations of linoleic acid (LA, C18: 2n-6) in maternal erythrocytes were associated with the shortened TL in cord blood cells (estimated difference in univariate analysis −0.36 to −0.46 for extreme quintile compared with middle quintile), and that low concentrations of cord blood docosahexaenoic acid (DHA, C22: 6n-3) were related to the shortened TL in cord blood cells. Differently, high concentrations of α-linolenic acid (LNA, C18: 3n-3), eicosatrienoic acid (EA, C20: 3n-3), DHA, and γ-linoleic acid (GLA, C18:3n-6) in maternal erythrocytes were associated with the shortened TL in the placenta (estimated difference in univariate analysis −0.36 to −0.45 for higher quintiles compared with the middle quintile). Further examination demonstrated that the concentrations of DHA and total n-3 PUFAs in maternal erythrocytes had positive associations with DNA methylation of the TERT promoter in the cord blood instead of the placenta. These data suggest that maternal PUFAs are closely correlated to infant TL and the TERT promoter methylation, which are differently affected by maternal n-3 PUFAs between the cord blood and the placenta. Therefore, keeping higher levels of maternal n-3 PUFAs during pregnancy may help to maintain TL in the offspring, which is beneficial to long-term health.
Collapse
Affiliation(s)
- Xuanyi Liu
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiaoyu Shi
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiuqin Fan
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hang Chen
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yurong Zhao
- Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yurong Zhao
| | - Kemin Qi
- Key Laboratory of Major Diseases in Children, Laboratory of Nutrition and Development, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Kemin Qi
| |
Collapse
|
77
|
Kirk LM, Waits CMK, Bashore AC, Dosso B, Meyers AK, Renaldo AC, DePalma TJ, Simms KN, Hauser N, Chuang Key CC, McCall CE, Parks JS, Sergeant S, Langefeld CD, Skardal A, Rahbar E. Exploiting three-dimensional human hepatic constructs to investigate the impact of rs174537 on fatty acid metabolism. PLoS One 2022; 17:e0262173. [PMID: 35051193 PMCID: PMC8775235 DOI: 10.1371/journal.pone.0262173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
The Modern Western Diet has been associated with the rise in metabolic and inflammatory diseases, including obesity, diabetes, and cardiovascular disease. This has been attributed, in part, to the increase in dietary omega-6 polyunsaturated fatty acid (PUFA) consumption, specifically linoleic acid (LA), arachidonic acid (ARA), and their subsequent metabolism to pro-inflammatory metabolites which may be driving human disease. Conversion of dietary LA to ARA is regulated by genetic variants near and within the fatty acid desaturase (FADS) haplotype block, most notably single nucleotide polymorphism rs174537 is strongly associated with FADS1 activity and expression. This variant and others within high linkage disequilibrium may potentially explain the diversity in both diet and inflammatory mediators that drive chronic inflammatory disease in human populations. Mechanistic exploration into this phenomenon using human hepatocytes is limited by current two-dimensional culture models that poorly replicate in vivo functionality. Therefore, we aimed to develop and characterize a three-dimensional hepatic construct for the study of human PUFA metabolism. Primary human hepatocytes cultured in 3D hydrogels were characterized for their capacity to represent basic lipid processing functions, including lipid esterification, de novo lipogenesis, and cholesterol efflux. They were then exposed to control and LA-enriched media and reproducibly displayed allele-specific metabolic activity of FADS1, based on genotype at rs174537. Hepatocytes derived from individuals homozygous with the minor allele at rs174537 (i.e., TT) displayed the slowest metabolic conversion of LA to ARA and significantly reduced FADS1 and FADS2 expression. These results support the feasibility of using 3D human hepatic cultures for the study of human PUFA and lipid metabolism and relevant gene-diet interactions, thereby enabling future nutrition targets in humans.
Collapse
Affiliation(s)
- L. Madison Kirk
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Charlotte Mae K. Waits
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Alexander C. Bashore
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Beverly Dosso
- Department of Integrative Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allison K. Meyers
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Thomas J. DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Kelli N. Simms
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Nathaniel Hauser
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
| | - Chia-Chi Chuang Key
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - John S. Parks
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Virginia Tech – Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, Virginia, United States of America
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
78
|
Lipid Profile, Antioxidant and Antihypertensive Activity, and Computational Molecular Docking of Diatom Fatty Acids as ACE Inhibitors. Antioxidants (Basel) 2022; 11:antiox11020186. [PMID: 35204069 PMCID: PMC8868434 DOI: 10.3390/antiox11020186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
Diatoms, as single cell eukaryotic microalgae, are rich sources of lipids, which have either beneficial or detrimental effects on the prevention and treatment of many diseases. Gas chromatography-mass spectrometry (GC-MS) identified diatom lipids with high levels of essential fatty acids (EFAs), especially polyunsaturated FAs (PUFAs) containing both omega-3 and omega-6. Nutritional values of FAs indicated possible applications in the pharmaceutical, nutraceutical, and functional food industries. Diatom FAs showed antioxidative potential on harmful radicals by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) scavenging, with high inhibition of the angiotensin-converting enzyme (ACE) that causes cardiovascular disease (CVD) and hypertension. A computational molecular docking simulation confirmed the inhibition mechanisms of FAs on ACE, with comparable levels of binding free energy to chemically synthesized ACE drugs. Findings suggested that diatom lipids showed potential for use as alternative ACE inhibitors or food supplement for CVD prevention.
Collapse
|
79
|
Qin H, Zhang J, Dong K, Chen D, Yuan D, Chen J. Metabolic characterization and biomarkers screening for visceral leishmaniasis in golden hamsters. Acta Trop 2022; 225:106222. [PMID: 34757045 DOI: 10.1016/j.actatropica.2021.106222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
A better understanding of the changes in metabolic molecules during visceral leishmaniasis (VL) is essential to develop new strategies for diagnosis and treatment. Previous metabolomics studies on Leishmania have increased our knowledge of leishmaniasis and its causative pathogen. As these studies were mainly carried out in vitro, to go further, we conducted this global metabolomics analysis on the serum of golden hamsters. Serum samples were detected over a time course of 2, 4, 8 and 12 weeks post infection. Our results revealed that under extensively disturbed metabolomes between the infection group and controls, glycerophospholipid (GPL) metabolism was most affected over the infection time, followed by α-linoleic acid metabolism and arachidonic acid metabolism. Within GPLs, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were found to be significantly increased, while their enzyme-catalysed metabolites lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) showed no significant changes. Moreover, eight differential metabolites were selected. The ability of these metabolites to be used as a diagnostic biomarker panel was supported by receiver operating characteristic (ROC) analysis. Our findings revealed that GPL metabolism might play an important role in the response of the host to Leishmania infection. The metabolism of PC and PE might be crucial in the in vivo progression of VL. The panel of eight potential biomarkers might contribute to the diagnosis of VL.
Collapse
Affiliation(s)
- Hanxiao Qin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Dong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
80
|
WANG C, LI N, WU L, XIA L, HU Z, LI X, QU Z, YANG J. Optimization of ultrasound-homogenization combined extraction of phenolics in peony roots and leaves. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Nana LI
- North University of China, China
| | | | | | | | - Xiaojun LI
- North University of China, China; Nanolattix Biotech Corporation, China
| | - Zhican QU
- Nanolattix Biotech Corporation, China
| | | |
Collapse
|
81
|
Pellegrini CN, Buzkova P, Lichtenstein AH, Matthan NR, Ix JH, Siscovick DS, Heckbert SR, Tracy RP, Mukamal KJ, Djoussé L, Kizer JR. Individual non-esterified fatty acids and incident atrial fibrillation late in life. Heart 2021; 107:1805-1812. [PMID: 33483356 PMCID: PMC8607526 DOI: 10.1136/heartjnl-2020-317929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Obesity and dysmetabolism are major risk factors for atrial fibrillation (AF). Expansion of fat depots is associated with increased circulating total non-esterified fatty acids (NEFAs), elevated levels of which are associated with incident AF. We undertook comprehensive serum measurement of individual NEFA to identify specific associations with new-onset AF late in life. METHODS The present study focused on participants with available serum and free of AF selected from the Cardiovascular Health Study, a community-based longitudinal investigation of older US adults. Thirty-five individual NEFAs were measured by gas chromatography. Cox regression was used to evaluate the association of individual NEFAs with incident AF. RESULTS The study sample included 1872 participants (age 77.7±4.4). During median follow-up of 11.3 years, 715 cases of incident AF occurred. After concurrent adjustment of all NEFAs and full adjustment for potential confounders, higher serum concentration of nervonic acid (24:1 n-9), a long-chain monounsaturated fatty acid, was associated with higher risk of AF (HR per SD: 1.18, 95% CI 1.08 to 1.29; p<0.001). Conversely, higher serum concentration of gamma-linolenic acid (GLA) (18:3 n-6), a polyunsaturated n-6 fatty acid, was associated with lower risk of AF (HR per SD: 0.81, 95% CI 0.71 to 0.94; p=0.004). None of the remaining NEFAs was significantly associated with AF. CONCLUSIONS Among older adults, serum levels of non-esterified nervonic acid were positively associated, while serum levels of non-esterified GLA were inversely associated, with incident AF. If confirmed, these results could offer new strategies for AF prevention and early intervention in this segment of the population at highest risk.
Collapse
Affiliation(s)
- Cara N Pellegrini
- Medical Service, San Francisco VA Medical Center, San Francisco, California, USA
- Medicine, University of California San Francisco, San Francisco, California, USA
| | - Petra Buzkova
- Biostatics, University of Washington, Seattle, Washington, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, Massachusetts, USA
| | - Joachim H Ix
- Medicine, University of California San Diego, La Jolla, California, USA
| | - David S Siscovick
- Medicine and Epidemiology, New York Academy of Medicine, New York, New York, USA
| | - Susan R Heckbert
- Epidemiology, University of Washington, Seattle, Washington, USA
| | - Russell P Tracy
- Pathology and Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Kenneth J Mukamal
- Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Luc Djoussé
- Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jorge R Kizer
- Medical Service, San Francisco VA Medical Center, San Francisco, California, USA
- Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
82
|
Health-Promoting Properties of Borage Seed Oil Fractionated by Supercritical Carbon Dioxide Extraction. Foods 2021; 10:foods10102471. [PMID: 34681520 PMCID: PMC8535258 DOI: 10.3390/foods10102471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Borage (Borago officinalis L.) seed oil is an important source of γ–linolenic acid, which is normally used as a treatment against different pathologies. Since the fractionation of this interesting seed oil has many environmental, economic and biological benefits, two borage fractionation techniques after extraction with CO2 under supercritical conditions have been studied: precipitation in two cyclone separators and countercurrent extraction column. Both techniques have successfully collected free fatty acids in one fraction: (i) two separators set up in series obtained the highest concentration of free fatty acids in separator 2 at 90 bar/40 °C; (ii) when countercurrent extraction column was used, the acidity index of the raffinate stream was independent from the operating conditions (2.6 ± 0.5%). Furthermore, the composition of the fatty acids, as well as their antioxidant and cytotoxic activities, were determined. The profile of the fatty acids obtained by either of these two methods remained unaltered, so that the crude oil exhibited improved antioxidant and cytotoxic properties. All the extracts obtained in the two cyclone separators at the same pressure/temperature conditions displayed high tumouricidal activity against HL 60 promyelocytic leukaemia cells, even if the extracts at 50% concentration from separator 2 presented a lower inhibitory activity (IC50). The extracts from separator 2 at 90 bar/40 °C exhibited the highest anti-proliferative activity at low doses (IC50 of 0.3 μL/mL for the trypan blue exclusion test). To reach the lethal dose—IC50—with the product obtained through countercurrent column fractionation, a concentration of 2 μL/mL of crude borage oil raffinate was required.
Collapse
|
83
|
DiSilvestro RA, Olivo Marston S, Zimmerman A, Joseph E, Boeh McCarty C. Borage oil intake by overweight young adults: no effect on metabolic rate; beneficial effects on plasma triglyceride and HDL cholesterol readings. Food Funct 2021; 12:8882-8886. [PMID: 34606560 DOI: 10.1039/d1fo01887f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Some research has raised the possibility that gamma linolenic acid (GLA) can increase resting metabolic rate (RMR), which can help with weight control. However, in overweight young adults with a family history of obesity, no effect on RMR was seen after a 6 weeks treatment with borage oil (880 mg GLA per day) or evening primrose oil (540 mg GLA per day). On the other hand, borage oil did lower plasma triglyceride readings and raise HDL cholesterol readings (mean starting values in normal range for triglycerides, borderline low for HDL). No effect was seen for body mass index, plasma total cholesterol, LDL cholesterol, or glucose. Thus, in the type of subjects studied here, borage oil, a source of GLA, did not show promise as a weight control aid, but could help prevent undesirable readings for two blood lipid measures.
Collapse
Affiliation(s)
- Robert A DiSilvestro
- Human Nutrition, The Ohio State University, 1787 Neil Ave, Columbus, OH 43210, USA.
| | - Susan Olivo Marston
- Public Health - Division of Epidemiology, The Ohio State University, 1841 Neil Ave, Columbus, OH 43210, USA
| | - Autumn Zimmerman
- Human Nutrition, The Ohio State University, 1787 Neil Ave, Columbus, OH 43210, USA.
| | - Elizabeth Joseph
- Human Nutrition, The Ohio State University, 1787 Neil Ave, Columbus, OH 43210, USA.
| | | |
Collapse
|
84
|
Santana-Sánchez A, Lynch F, Sirin S, Allahverdiyeva Y. Nordic cyanobacterial and algal lipids: Triacylglycerol accumulation, chemotaxonomy and bioindustrial potential. PHYSIOLOGIA PLANTARUM 2021; 173:591-602. [PMID: 33928648 DOI: 10.1111/ppl.13443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to capture and convert sunlight, water and nutrients into useful compounds make photosynthetic microbes ideal candidates for the bio-industrial factories of the future. However, the suitability of isolates from temperate regions to grow under Nordic conditions is questionable. In this work, we explore the chemotaxonomy of Nordic strains of cyanobacteria and one green alga and evaluate their potential as raw materials for the production of lipid-based bio-industrial compounds. Thin-layer chromatography was used to identify the presence of triacylglycerol, which were detected in the majority of strains. Fatty acid methyl ester profiles were analysed to determine the suitability of strains for the production of biodiesel or the production of polyunsaturated fatty acids for the nutraceutical industry. The Nordic Synechococcus strains were unique in demonstrating fatty acid profiles comprised mostly C14:0, C16:0 and C16:1 and lacking polyunsaturated fatty acids. These properties translated to superior predicted biodiesel qualities, including cetane number, cold filter plugging point and oxidative stability compared to the other evaluated strains. Polyunsaturated fatty acids were detected at high levels (38-53%), with Calothrix sp. 336/3 being abundant in two essential fatty acids, linoleic and alpha-linolenic acid (21 and 17%, respectively). Gamma-linoleic acid was the predominant polyunsaturated fatty acid for the remaining strains (13-21%). In addition to assessing the potential of Nordic strains for bio-industrial production, this work also discusses issues such as taxonomy and predictive modelling, which can affect the identification of prospective high-performing strains.
Collapse
Affiliation(s)
- Anita Santana-Sánchez
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Fiona Lynch
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Sema Sirin
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
85
|
Nilsen DWT, Myhre PL, Kalstad A, Schmidt EB, Arnesen H, Seljeflot I. Serum Levels of Dihomo-Gamma (γ)-Linolenic Acid (DGLA) Are Inversely Associated with Linoleic Acid and Total Death in Elderly Patients with a Recent Myocardial Infarction. Nutrients 2021; 13:nu13103475. [PMID: 34684479 PMCID: PMC8540726 DOI: 10.3390/nu13103475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Dihomo-gamma-linolenic acid (DGLA) is an n-6 polyunsaturated fatty acid (PUFA) derived from linoleic acid (LA). The LA:DGLA ratio reflects conversion from LA to DGLA. Low levels of DGLA in serum have been related to poor outcome in myocardial infarction (MI) patients. Aims: To assess the association of DGLA and LA:DGLA with total death as a primary aim and incident cardiovascular events as a secondary objective. Methods: Baseline samples from 1002 patients, aged 70 to 82 years, included 2–8 weeks after an MI and followed for 2 years, were used. Major adverse clinical events (MACE) consisted of nonfatal MI, unscheduled coronary revascularization, stroke, hospitalization for heart failure or all-cause death. Cox regression analysis was used to relate serum n-6 PUFA phospholipid levels (%wt) to the risk of MACE, adjusting for the following: (1) age, sex and body mass index (BMI); (2) adding baseline cod liver oil supplementation; (3) adding prevalent hypertension, chronic kidney disease and diabetes mellitus. Results: Median DGLA level in serum phospholipids was 2.89 (Q1–Q3 2.43–3.38) %wt. DGLA was inversely related to LA and LA:DGLA ratio. There were 208 incident cases of MACE and 55 deaths. In the multivariable analysis, the hazard ratio (HR) for the total death in the three higher quartiles (Q2–4) of DGLA as compared to Q1 was 0.54 (0.31–0.95), with p = 0.03 (Model-1), 0.50 (0.28–0.91), with p = 0.02 (Model-2), and 0.47 (0.26–0.84), with p = 0.012 (Model-3), and non-significant for MACE. Risk of MACE (Model 3) approached borderline significance for LA:DGLA in Q2–4 vs. Q1 [HR 1.42 (1.00–2.04), p = 0.052]. Conclusions: Low levels of DGLA were related to a high LA:DGLA ratio and risk of total death in elderly patients with recent MI.
Collapse
Affiliation(s)
- Dennis Winston T. Nilsen
- Department of Cardiology, Stavanger University Hospital, 4068 Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Correspondence:
| | - Peder Langeland Myhre
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (P.L.M.); (A.K.); (H.A.); (I.S.)
- Department of Cardiology, Division of Medicine, Akershus University Hospital, 1474 Lørenskog, Norway
| | - Are Kalstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (P.L.M.); (A.K.); (H.A.); (I.S.)
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, 0424 Oslo, Norway
| | - Erik Berg Schmidt
- Department of Cardiology, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Harald Arnesen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (P.L.M.); (A.K.); (H.A.); (I.S.)
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, 0424 Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway; (P.L.M.); (A.K.); (H.A.); (I.S.)
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, 0424 Oslo, Norway
| |
Collapse
|
86
|
Castor K, Dawlaty J, Arakaki X, Gross N, Woldeamanuel YW, Harrington MG, Cowan RP, Fonteh AN. Plasma Lipolysis and Changes in Plasma and Cerebrospinal Fluid Signaling Lipids Reveal Abnormal Lipid Metabolism in Chronic Migraine. Front Mol Neurosci 2021; 14:691733. [PMID: 34531722 PMCID: PMC8438335 DOI: 10.3389/fnmol.2021.691733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lipids are a primary storage form of energy and the source of inflammatory and pain signaling molecules, yet knowledge of their importance in chronic migraine (CM) pathology is incomplete. We aim to determine if plasma and cerebrospinal fluid (CSF) lipid metabolism are associated with CM pathology. Methods We obtained plasma and CSF from healthy controls (CT, n = 10) or CM subjects (n = 15) diagnosed using the International Headache Society criteria. We measured unesterified fatty acid (UFA) and esterified fatty acids (EFAs) using gas chromatography-mass spectrometry. Glycerophospholipids (GP) and sphingolipid (SP) levels were determined using LC-MS/MS, and phospholipase A2 (PLA2) activity was determined using fluorescent substrates. Results Unesterified fatty acid levels were significantly higher in CM plasma but not in CSF. Unesterified levels of five saturated fatty acids (SAFAs), eight monounsaturated fatty acids (MUFAs), five ω-3 polyunsaturated fatty acids (PUFAs), and five ω-6 PUFAs are higher in CM plasma. Esterified levels of three SAFAs, eight MUFAs, five ω-3 PUFAs, and three ω-6 PUFAs, are higher in CM plasma. The ratios C20:4n-6/homo-γ-C20:3n-6 representative of delta-5-desaturases (D5D) and the elongase ratio are lower in esterified and unesterified CM plasma, respectively. In the CSF, the esterified D5D index is lower in CM. While PLA2 activity was similar, the plasma UFA to EFA ratio is higher in CM. Of all plasma GP/SPs detected, only ceramide levels are lower (p = 0.0003) in CM (0.26 ± 0.07%) compared to CT (0.48 ± 0.06%). The GP/SP proportion of platelet-activating factor (PAF) is significantly lower in CM CSF. Conclusions Plasma and CSF lipid changes are consistent with abnormal lipid metabolism in CM. Since plasma UFAs correspond to diet or adipose tissue levels, higher plasma fatty acids and UFA/EFA ratios suggest enhanced adipose lipolysis in CM. Differences in plasma and CSF desaturases and elongases suggest altered lipid metabolism in CM. A lower plasma ceramide level suggests reduced de novo synthesis or reduced sphingomyelin hydrolysis. Changes in CSF PAF suggest differences in brain lipid signaling pathways in CM. Together, this pilot study shows lipid metabolic abnormality in CM corresponding to altered energy homeostasis. We propose that controlling plasma lipolysis, desaturases, elongases, and lipid signaling pathways may relieve CM symptoms.
Collapse
Affiliation(s)
- Katherine Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Jessica Dawlaty
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noah Gross
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | | | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| | - Robert P Cowan
- Pain Center, Department of Neurology, Stanford University, Stanford, CA, United States
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
87
|
The Fatty Acid-Based Erythrocyte Membrane Lipidome in Dogs with Chronic Enteropathy. Animals (Basel) 2021; 11:ani11092604. [PMID: 34573570 PMCID: PMC8469057 DOI: 10.3390/ani11092604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Canine chronic enteropathies (CEs) are inflammatory processes resulting from complex interplay between the mucosal immune system, intestinal microbiome, and dietary components in susceptible dogs. Fatty acids (FAs) play important roles in the regulation of physiologic and metabolic pathways and their role in inflammation seems to be dual, as they exhibit pro-inflammatory and anti-inflammatory functions. Analysis of red blood cell (RBC) membrane fatty acid profile represents a tool for assessing the quantity and quality of structural and functional molecular components. This study was aimed at comparing the FA membrane profile, determined by Gas Chromatography and relevant lipid parameter of 48 CE dogs compared with 68 healthy dogs. In CE patients, the levels of stearic (p < 0.0001), dihomo-gamma-linolenic, eicosapentaenoic (p = 0.02), and docosahexaenoic (p = 0.02) acids were significantly higher, and those of palmitic (p < 0.0001) and linoleic (p = 0.0006) acids were significantly lower. Non-responder dogs presented higher percentages of vaccenic acid (p = 0.007), compared to those of dogs that responded to diagnostic trials. These results suggest that lipidomic status may reflect the "gut health", and the non-invasive analysis of RBC membrane might have the potential to become a candidate biomarker in the evaluation of dogs affected by CE.
Collapse
|
88
|
Lopes CMC, Hime LDFCDC, Baracat EC, Soares-Júnior JM. The influence of essential fatty acids on the female health. Rev Assoc Med Bras (1992) 2021; 67:1209-1212. [DOI: 10.1590/1806-9282.2021edt679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
|
89
|
Golovenko E, Lyashenko S, Akimova S, Mitina L, Mulenkova E, Belarbi EH, Guil-Guerrero JL. Gamma-linolenic Acid from Fifty-seven Ribes Species and Cultivars. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:385-393. [PMID: 34328593 DOI: 10.1007/s11130-021-00913-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
γ-linolenic acid (GLA, 18:3n-6) is a bioactive fatty acid (FA) that exerts several healthy actions; however, its occurrence is restricted to a few oils. The goal of this study was to detect GLA-rich Ribes species and cultivars (cv), and to achieve this the seeds of 7 Ribes taxa and 50 Ribes cv were surveyed for FA profiles. The highest GLA percentages were found in R. nigrum cv 'Plotnokistnaya', 'Volshebnica', 'Atlant' and 'Nara' (22.6, 22.1, 20.9, and 20.0% of total FA, respectively) and also in R. komarovii (19.6%) and R. nigrum var. sibiricum (18.3%). Stearidonic acid (SDA, 18:4n-3) had the highest values in both R. rubrum 'Konstantinovskaya' and R. niveum 'Smolyaninovskaya' (4.8%). GLA content ranged from 0.4 in some R. rubrum cv and R. niveum 'Smolyaninovskaya' to 3.5 g/100 g seeds in R. nigrum 'Plotnokistnaya'. Principal component analysis (PCA) was performed using PUFA profiles, which allowed grouping Ribes sections as well as black currant cv derived from different pedigree within the section Coreosma. All taxa and cv checked here are valuable by-product sources, given the high GLA percentages contained in their seed oils. Such cv could be used for healthy oils production, as well as for breeding to obtain new cv with improved GLA concentrations.
Collapse
Affiliation(s)
| | | | - Svetlana Akimova
- Department of Fruit Growing, Viticulture and Winemaking, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 127550, Moscow, Russia
| | - Lyubov Mitina
- Donetsk Botanical Garden, 83059, Donetsk, Ukraine, Donetsk People's Republic
| | - Elena Mulenkova
- Donetsk Botanical Garden, 83059, Donetsk, Ukraine, Donetsk People's Republic
| | | | | |
Collapse
|
90
|
Myers A, Cumberford G. Ahiflower Oil-The Rising GLA Alternative to Evening Primrose for Women & Vegans. Integr Med (Encinitas) 2021; 20:30-33. [PMID: 34602874 PMCID: PMC8483257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
91
|
Deng Y, Wu Q, Chen W, Zhu L, Liu W, Xia F, Sun L, Lin X, Zeng R. Lipidomics reveals association of circulating lipids with body mass index and outcomes in IgA nephropathy patients. J Mol Cell Biol 2021; 13:mjab040. [PMID: 34272854 PMCID: PMC8697343 DOI: 10.1093/jmcb/mjab040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022] Open
Abstract
IgA nephropathy (IgAN) is a leading cause of chronic kidney disease (CKD), which are commonly accompanied by dyslipidemia. Obesity is also associated with dyslipidemia and risk of CKD, but the relation of the dyslipidemia patterns with obesity and disease progression in IgAN patients remains unknown. Traditional Chinese medicine (TCM) and the combined treatment with corticosteroids and TCM have been shown to be of benefit for IgAN patients, but predictive markers for guiding these treatments are lacking. Here, we quantified 545 lipid species in the plasma from 196 participants, including 140 IgAN patients and 56 healthy volunteers, and revealed an altered plasma lipidome in IgAN patients as compared to healthy participants. Association analysis showed that a sub-group of glycerides, particularly triacylglycerols (TGs) containing docosahexaenoic acid, were positively associated with high body mass index (BMI) in under- or normal weight IgAN patients, while several free fatty acids and sphingomyelins were positively associated with high BMI in overweight or obese IgAN patients. Further, our study suggested that elevated levels of eight lipids, mainly TG species containing linolenic acid, were independent risk factors for IgAN progression and also reported the prospective association of circulating lipids with treatment outcomes in IgAN. Taken together, our findings may not only help to achieve precision medicine but also provide a knowledge base for dietary intervention in the treatment of IgAN.
Collapse
Affiliation(s)
- Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Wanjia Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Li Zhu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Wangyi Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional
Chinese Medicine, Shanghai 200032, China
| | - Fangying Xia
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of
Sciences, Shanghai 200031, China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031,
China
| |
Collapse
|
92
|
Djuricic I, Calder PC. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021; 13:nu13072421. [PMID: 34371930 PMCID: PMC8308533 DOI: 10.3390/nu13072421] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation have been recognized as important contributors to the risk of chronic non-communicable diseases. Polyunsaturated fatty acids (PUFAs) may regulate the antioxidant signaling pathway and modulate inflammatory processes. They also influence hepatic lipid metabolism and physiological responses of other organs, including the heart. Longitudinal prospective cohort studies demonstrate that there is an association between moderate intake of the omega-6 PUFA linoleic acid and lower risk of cardiovascular diseases (CVDs), most likely as a result of lower blood cholesterol concentration. Current evidence suggests that increasing intake of arachidonic acid (up to 1500 mg/day) has no adverse effect on platelet aggregation and blood clotting, immune function and markers of inflammation, but may benefit muscle and cognitive performance. Many studies show that higher intakes of omega-3 PUFAs, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are associated with a lower incidence of chronic diseases characterized by elevated inflammation, including CVDs. This is because of the multiple molecular and cellular actions of EPA and DHA. Intervention trials using EPA + DHA indicate benefit on CVD mortality and a significant inverse linear dose-response relationship has been found between EPA + DHA intake and CVD outcomes. In addition to their antioxidant and anti-inflammatory roles, omega-3 fatty acids are considered to regulate platelet homeostasis and lower risk of thrombosis, which together indicate their potential use in COVID-19 therapy.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- Correspondence:
| |
Collapse
|
93
|
Alterations in Gut Vitamin and Amino Acid Metabolism are Associated with Symptoms and Neurodevelopment in Children with Autism Spectrum Disorder. J Autism Dev Disord 2021; 52:3116-3128. [PMID: 34263410 PMCID: PMC9213278 DOI: 10.1007/s10803-021-05066-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
Metabolic disturbance may be implicated in the pathogenesis of autism. This study aimed to investigate the gut metabolomic profiles of autistic children and to analyze potential interaction between gut metabolites with autistic symptoms and neurodevelopment levels. We involved 120 autistic and 60 neurotypical children. Autistic symptoms and neurodevelopment levels were assessed. Fecal samples were analyzed using untargeted liquid chromatography-tandem mass spectrometry methods. Our results showed the metabolic disturbances of autistic children involved in multiple vitamin and amino acid metabolism pathways, with the strongest enrichment identified for tryptophan metabolism, retinol metabolism, cysteine-methionine metabolism, and vitamin digestion and absorption. Differential gut metabolites were correlated to autistic symptoms and neurodevelopment levels. Our findings improved the understanding of the perturbations of metabolome networks in autism.
Collapse
|
94
|
Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat. Animals (Basel) 2021; 11:ani11061817. [PMID: 34207160 PMCID: PMC8234496 DOI: 10.3390/ani11061817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Milk fat is an important compound in human nutrition. From a nutritional point of view, the production of milk with a higher content of polyunsaturated fatty acids, especially of those from the n3 group, is desirable because consumption of a diet with a lower n6/n3 ratio is considered to be beneficial for humans. The most effective way to achieve this goal is via dietary manipulations in ruminants. In addition to the feedstuffs commonly used in dairy animal nutrition, there are some alternative or unconventional feedstuffs that are often used for other purposes, e.g., for the reduction of methane production in the rumen. However, such feedstuffs can also alter the fatty acid profile of milk, and thus they can have an impact on the health properties of milk fat. Abstract Milk fat is an important nutritional compound in the human diet. From the health point of view, some fatty acids (FAs), particularly long-chain PUFAs such as EPA and DHA, have been at the forefront of interest due to their antibacterial, antiviral, anti-inflammatory, and anti-tumor properties, which play a positive role in the prevention of cardiovascular diseases (CVD), as well as linoleic and γ-linolenic acids, which play an important role in CVD treatment as essential components of phospholipids in the mitochondria of cell membranes. Thus, the modification of the FA profile—especially an increase in the concentration of polyunsaturated FAs and n-3 FAs in bovine milk fat—is desirable. The most effective way to achieve this goal is via dietary manipulations. The effects of various strategies in dairy nutrition have been thoroughly investigated; however, there are some alternative or unconventional feedstuffs that are often used for purposes other than basic feeding or modifying the fatty acid profiles of milk, such as tanniferous plants, herbs and spices, and algae. The use of these foods in dairy diets and their effects on milk fatty acid profile are reviewed in this article. The contents of selected individual FAs (atherogenic, rumenic, linoleic, α-linolenic, eicosapentaenoic, and docosahexaenoic acids) and their combinations; the contents of n3 and n6 FAs; n6/n3 ratios; and atherogenic, health-promoting and S/P indices were used as criteria for assessing the effect of these feeds on the health properties of milk fat.
Collapse
|
95
|
Shen Y, Wang X, Yuan R, Pan X, Yang X, Cai J, Li Y, Yin A, Xiao Q, Ji Q, Li Y, He B, Shen L. Prostaglandin E1 attenuates AngII-induced cardiac hypertrophy via EP3 receptor activation and Netrin-1upregulation. J Mol Cell Cardiol 2021; 159:91-104. [PMID: 34147480 DOI: 10.1016/j.yjmcc.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 01/09/2023]
Abstract
AIMS Pathological cardiac hypertrophy induced by activation of the renin-angiotensin-aldosterone system (RAAS) is one of the leading causes of heart failure. However, in current clinical practice, the strategy for targeting the RAAS is not sufficient to reverse hypertrophy. Here, we investigated the effect of prostaglandin E1 (PGE1) on angiotensin II (AngII)-induced cardiac hypertrophy and potential molecular mechanisms underlying the effect. METHODS AND RESULTS Adult male C57 mice were continuously infused with AngII or saline and treated daily with PGE1 or vehicle for two weeks. Neonatal rat cardiomyocytes were cultured to detect AngII-induced hypertrophic responses. We found that PGE1 ameliorated AngII-induced cardiac hypertrophy both in vivo and in vitro. The RNA sequencing (RNA-seq) and expression pattern analysis results suggest that Netrin-1 (Ntn1) is the specific target gene of PGE1. The protective effect of PGE1 was eliminated after knockdown of Ntn1. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the PGE1-mediated signaling pathway changes are associated with the mitogen-activated protein kinase (MAPK) pathway. PGE1 suppressed AngII-induced activation of the MAPK signaling pathway, and such an effect was attenuated by Ntn1 knockdown. Blockade of MAPK signaling rescued the phenotype of cardiomyocytes caused by Ntn1 knockdown, indicating that MAPK signaling may act as the downstream effector of Ntn1. Furthermore, inhibition of the E-prostanoid (EP) 3 receptor, as opposed to the EP1, EP2, or EP4 receptor, in cardiomyocytes reversed the effect of PGE1, and activation of EP3 by sulprostone, a specific agonist, mimicked the effect of PGE1. CONCLUSION In conclusion, PGE1 ameliorates AngII-induced cardiac hypertrophy through activation of the EP3 receptor and upregulation of Ntn1, which inhibits the downstream MAPK signaling pathway. Thus, targeting EP3, as well as the Ntn1-MAPK axis, may represent a novel approach for treating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Yejiao Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruosen Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiali Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xiao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
96
|
Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E, Nogué F, Rostoks N, Sánchez Serrano JJ, Savoini G, Veromann E, Veronesi F, Frenzel T, Gómez Ruiz JÁ. Statement complementing the EFSA Scientific Opinion on application (EFSA-GMO-NL-2010-85) for authorisation of food and feed containing, consisting of and produced from genetically modified soybean MON 87769 × MON 89788. EFSA J 2021; 19:e06589. [PMID: 34012490 PMCID: PMC8114199 DOI: 10.2903/j.efsa.2021.6589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The European Commission mandated EFSA to complement its original scientific opinion on soybean MON 87769 × MON 89788 (EFSA-GMO-NL-2010-85) considering additional information on the human nutritional assessment of refined bleached deodorised oil produced from the two-event stack soybean (RBD GM-oil). The assessment was mainly based on a replacement scenario with a list of target foods where RBD GM-oil is intended to be added. Intake estimations for several fatty acids present in the RBD GM-oil, in particular γ-linolenic acid (GLA), stearidonic acid (SDA) and linoleic acid (LA) were based on the consumption of the corresponding foods that are likely to be displaced. The assessment of LA considered the established adequate intake of 4% of total energy intake (E%) and that LA deficiency has not been observed with intakes > 1 E%. The assessment of GLA and SDA was conducted using maximum doses without adverse effects from intervention human studies as reference (4.2 grams/day for SDA and 2.8 grams/day for GLA) since no tolerable upper intake levels are set for these fatty acids. The decrease observed in the levels of LA in RBD GM-oil as compared to oil from conventional soybean does not represent a nutritional concern as intakes were in all cases above 1 E%. For GLA, all intake estimations were below the reference dose indicating no safety concern. SDA intake estimations do not pose any safety concerns based on the overly conservative nature of the estimates, the absence of toxicological hazards and the rapid metabolism of SDA in humans. The GMO Panel concluded that the consumption of soybean MON 87769 × MON 89788 and their derived products, in particular its RBD oil, does not represent a nutritional concern in humans. A post-market monitoring plan is recommended to confirm the predicted consumption and the application of conditions of uses considered during the pre-market risk assessment.
Collapse
|
97
|
Tsouko E, Papadaki A, Papanikolaou S, Danezis GP, Georgiou CA, Freire DM, Koutinas A. Enzymatic production of isopropyl and 2-ethylhexyl esters using γ-linolenic acid rich fungal oil produced from spent sulphite liquor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
98
|
Fatty Acids and Oxylipins in Osteoarthritis and Rheumatoid Arthritis-a Complex Field with Significant Potential for Future Treatments. Curr Rheumatol Rep 2021; 23:41. [PMID: 33913032 PMCID: PMC8081702 DOI: 10.1007/s11926-021-01007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterized by abnormal lipid metabolism manifested as altered fatty acid (FA) profiles of synovial fluid and tissues and in the way dietary FA supplements can influence the symptoms of especially RA. In addition to classic eicosanoids, the potential roles of polyunsaturated FA (PUFA)-derived specialized pro-resolving lipid mediators (SPM) have become the focus of intensive research. Here, we summarize the current state of knowledge of the roles of FA and oxylipins in the degradation or protection of synovial joints. Recent Findings There exists discordance between the large body of literature from cell culture and animal experiments on the adverse and beneficial effects of individual FA and the lack of effective treatments for joint destruction in OA and RA patients. Saturated 16:0 and 18:0 induce mostly deleterious effects, while long-chain n-3 PUFA, especially 20:5n-3, have positive influence on joint health. The situation can be more complex for n-6 PUFA, such as 18:2n-6, 20:4n-6, and its derivative prostaglandin E2, with a combination of potentially adverse and beneficial effects. SPM analogs have future potential as analgesics for arthritic pain. Summary Alterations in FA profiles and their potential implications in SPM production may affect joint lubrication, synovial inflammation, pannus formation, as well as cartilage and bone degradation and contribute to the pathogeneses of inflammatory joint diseases. Further research directions include high-quality randomized controlled trials on dietary FA supplements and investigations on the significance of lipid composition of microvesicle membrane and cargo in joint diseases.
Collapse
|
99
|
Baker EJ, Miles EA, Calder PC. A review of the functional effects of pine nut oil, pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits. Prog Lipid Res 2021; 82:101097. [PMID: 33831456 DOI: 10.1016/j.plipres.2021.101097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/26/2022]
Abstract
Pine nut oil (PNO) is rich in a variety of unusual delta-5-non-methylene-interrupted fatty acids (NMIFAs), including pinolenic acid (PLA; all cis-5,-9,-12 18:3) which typically comprises 14 to 19% of total fatty acids. PLA has been shown to be metabolised to eicosatrienoic acid (ETA; all cis-7,-11,-14 20:3) in various cells and tissues. Here we review the literature on PNO, PLA and its metabolite ETA in the context of human health applications. PNO and PLA have a range of favourable effects on body weight as well as fat deposition through increased energy expenditure (fatty acid oxidation) and decreased food energy intake (reduced appetite). PNO and PLA improve blood and hepatic lipids in animal models and insulin sensitivity in vitro and reduce inflammation and modulate immune function in vitro and in animal models. The few studies which have examined effects of ETA indicate it has anti-inflammatory properties. Another NMIFA from PNO, sciadonic acid (all cis-5,-11,-14 20:3), has generally similar properties to PLA where these have been investigated. There is potential for human health benefits from PNO, its constituent NMIFA PLA and the PLA derivative ETA. However further studies are needed to explore the effects in humans.
Collapse
Affiliation(s)
- Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
100
|
Mariamenatu AH, Abdu EM. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their "Balanced Antagonistic Metabolic Functions" in the Human Body. J Lipids 2021; 2021:8848161. [PMID: 33815845 PMCID: PMC7990530 DOI: 10.1155/2021/8848161] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/01/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) contain ≥2 double-bond desaturations within the acyl chain. Omega-3 (n-3) and Omega-6 (n-6) PUFAs are the two known important families in human health and nutrition. In both Omega families, many forms of PUFAs exist: α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) from the n-3 family and linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA) from the n-6 family are the important PUFAs for human health. Omega-3 and Omega-6 PUFAs are competitively metabolized by the same set of desaturation, elongation, and oxygenase enzymes. The lipid mediators produced from their oxidative metabolism perform opposing (antagonistic) functions in the human body. Except for DGLA, n-6 PUFA-derived lipid mediators enhance inflammation, platelet aggregation, and vasoconstriction, while those of n-3 inhibit inflammation and platelet aggregation and enhance vasodilation. Overconsumption of n-6 PUFAs with low intake of n-3 PUFAs is highly associated with the pathogenesis of many modern diet-related chronic diseases. The volume of n-6 PUFAs is largely exceeding the volume of n-3PUFAs. The current n-6/n-3 ratio is 20-50/1. Due to higher ratios of n-6/n-3 in modern diets, larger quantities of LA- and AA-derived lipid mediators are produced, becoming the main causes of the formation of thrombus and atheroma, the allergic and inflammatory disorders, and the proliferation of cells, as well as the hyperactive endocannabinoid system. Therefore, in order to reduce all of these risks which are due to overconsumption of n-6 PUFAs, individuals are required to take both PUFAs in the highly recommended n-6/n-3 ratio which is 4-5/1.
Collapse
Affiliation(s)
- Abeba Haile Mariamenatu
- Department of Biotechnology, College of Natural and Computational Science, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - Emebet Mohammed Abdu
- Department of Biology, College of Natural and Computational Science, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| |
Collapse
|