51
|
Porcino N, Bottari T, Mancuso M. Is Wild Marine Biota Affected by Microplastics? Animals (Basel) 2022; 13:147. [PMID: 36611755 PMCID: PMC9817524 DOI: 10.3390/ani13010147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The present review provides detailed information on the adverse effects of MPs on wild marine organisms, including tissue damage, fish condition, oxidative stress, immune toxicity, and genotoxicity. A bibliometric analysis was carried out on CiteSpace (version 6.1.R3) (Drexel University, Philadelphia, PA, USA) to verify how many papers studied the effects on wild marine species. The results showed a total of 395 articles, but only 22 really presented data on the effects or impacts on marine biota, and of these, only 12 articles highlighted negative effects. This review shows that the observed effects in wild organisms were less severe and milder than those found in the experimental conditions. The knowledge of negative effects caused by direct ingestion of microplastics in wild animals is still limited; more efforts are necessary to fully understand the role of MPs and the adverse effects on wild marine organisms, the ecosystem, and human health.
Collapse
Affiliation(s)
- Nunziatina Porcino
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
| | - Teresa Bottari
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| | - Monique Mancuso
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| |
Collapse
|
52
|
Raguso C, Grech D, Becchi A, Ubaldi PG, Lasagni M, Guala I, Saliu F. Detection of microplastics and phthalic acid esters in sea urchins from Sardinia (Western Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 185:114328. [PMID: 36368079 DOI: 10.1016/j.marpolbul.2022.114328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of microplastics (MPs) and phthalic acid esters (PAEs) in wild purple sea urchins (Paracentrotus lividus) of Sardinia (Italy, Western Mediterranean Sea) was surveyed. Specifically, MPs were analyzed in the digestive tract by μFTIR and PAEs in the gonads by SPME-LC-MS/MS. 9 out of 22 specimens resulted contaminated with MPs and 20 displayed levels of PAEs over the quantification limit. A total of 23 MPs were detected with a maximum concentration of 4 microplastics/individual in the commercially undersized specimens. PAEs displayed average concentration of 32 ng/g, σ = 5.3 with maximum value of 77 ng/g. The most abundant congeners were DEHP (17 ng/g, σ = 4.3) and DBP (10 ng/g, σ = 2.5). Statistical analysis showed correlation between DEHP and fiber concentrations and among the concentration of MEP, DEP, DBP and BBzP. Due to local use of sea urchin gonads as gourmet delicacy, the potential human exposition to MPs and PAEs by consumption is also discussed.
Collapse
Affiliation(s)
- Clarissa Raguso
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Daniele Grech
- IMC - International Marine Centre, 09170 Loc.tà Sa Mardini, Torregrande, Oristano, Italy
| | - Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paolo Giuseppe Ubaldi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Ivan Guala
- IMC - International Marine Centre, 09170 Loc.tà Sa Mardini, Torregrande, Oristano, Italy
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
53
|
Ammar E, Mohamed MS, Sayed AEDH. Polyethylene microplastics increases the tissue damage caused by 4-nonylphenol in the common carp (Cyprinus carpio) juvenile. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.1041003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Plastic particles have the ability to transfer harmful chemical pollutants due to their high adsorption capacity. Therefore, this study aimed to investigate the effects of combined exposure to polyethylene microplastics (PE-MPs) and 4-nonylphenol (4-NP) on juvenile common carp (Cyprinus carpio) using histopathological and histochemical biomarkers. Fish were separated into a control group and three treatment groups (10 mg/L PE-MPs; 10 mg/L PE-MPs + 200 µg/L 4-NP; 200 µg/L 4-NP) for a two-week continuous exposure experiment followed by two weeks of recovery. The three treatment groups showed histopathological changes compared to the control. These alterations included severe edema, lifting of the outer epithelium, interlamellar fusion and vacuolation, secondary lamellar shortening and complete fusion, increased mucous cell numbers in the gill tissue, enlargement of inner layer stratum periventricular, cell degeneration with pyknotic nuclei, increased blood capillaries, spongiosis in the brain tissue (optic tectum), central vein hemorrhage, shrunken and fatty degeneration of hepatocytes, rosette shapes around small congested blood sinusoids, vacuoles, necrosis, and severe glycogen reduction in the liver tissue. Some tissue changes improved during the two-week recovery period but did not return to normal. In conclusion, the mixture exposure of the PE-MPs and 4-NP on fish carp induced some histological alterations in most studied tissues and post-exposure made improvement in cellular and tissue structure.
Collapse
|
54
|
Manfrini V, Pierantonio N, Giuliani A, De Pascalis F, Maio N, Mancia A. Fin Whale ( Balaenoptera physalus) Mortality along the Italian Coast between 1624 and 2021. Animals (Basel) 2022; 12:3111. [PMID: 36428339 PMCID: PMC9686696 DOI: 10.3390/ani12223111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Mediterranean Sea hosts a population of fin whale (Balaenoptera physalus), the only species of Mysticete regularly occurring in the basin. Observed and inferred mortality suggests that the population is likely declining. Accordingly, understanding the causes of mortality and assessing the health status is pivotal to the survival of this endangered population. While such studies are inherently difficult for a highly roaming species with a pelagic distribution, mortality events provide the opportunity to investigate biological and epidemiological traits linked to these events, and evaluate the footprint of human activity, especially when long-term data series exist. We present a comprehensive spatial-temporal overview of fin whale mortality events along the Italian coast encompassing four centuries (1624-2021). Time series analysis was used to highlight structural changes in the evolution of mortality through time, while spatial-temporal patterns in the distribution of mortality events were assessed through emerging hot spot analysis methods. Recent mortality events (1964-2021) were further explored to evaluate, where possible, the primary causes of mortality and to identify anthropogenic threats of conservation concerns. This long-term survey offers the basis for an understanding of the health status of this B. physalus population and provides much-needed information for developing an effective management and conservation plan for the species in the region.
Collapse
Affiliation(s)
| | | | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy
| | - Federico De Pascalis
- BIO-AVM, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 40064 Ozzano dell’Emilia, Italy
| | - Nicola Maio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Naples, Italy
| | - Annalaura Mancia
- Dipartimento Scienze Della Vita e Biotecnologie, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
55
|
Field measurements reveal exposure risk to microplastic ingestion by filter-feeding megafauna. Nat Commun 2022; 13:6327. [PMID: 36319629 PMCID: PMC9626449 DOI: 10.1038/s41467-022-33334-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Microparticles, such as microplastics and microfibers, are ubiquitous in marine food webs. Filter-feeding megafauna may be at extreme risk of exposure to microplastics, but neither the amount nor pathway of microplastic ingestion are well understood. Here, we combine depth-integrated microplastic data from the California Current Ecosystem with high-resolution foraging measurements from 191 tag deployments on blue, fin, and humpback whales to quantify plastic ingestion rates and routes of exposure. We find that baleen whales predominantly feed at depths of 50-250 m, coinciding with the highest measured microplastic concentrations in the pelagic ecosystem. Nearly all (99%) microplastic ingestion is predicted to occur via trophic transfer. We predict that fish-feeding whales are less exposed to microplastic ingestion than krill-feeding whales. Per day, a krill-obligate blue whale may ingest 10 million pieces of microplastic, while a fish-feeding humpback whale likely ingests 200,000 pieces of microplastic. For species struggling to recover from historical whaling alongside other anthropogenic pressures, our findings suggest that the cumulative impacts of multiple stressors require further attention.
Collapse
|
56
|
Solomando A, Pujol F, Sureda A, Pinya S. Evaluating the Presence of Marine Litter in Cetaceans Stranded in the Balearic Islands (Western Mediterranean Sea). BIOLOGY 2022; 11:biology11101468. [PMID: 36290372 PMCID: PMC9598389 DOI: 10.3390/biology11101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022]
Abstract
The global distribution and presence of plastic, at all levels of the water column, has made plastic debris one of today's greatest environmental challenges. The ingestion and entanglement of plastic-containing marine debris has been documented in more than 60% of all cetacean species. In light of the increasing pressure on cetaceans, and the diversity of factors that they face, the aim of this work is to provide evidence of the impact of plastic debris on stranded cetaceans, in terms of ingestion and entanglement, in the Balearic Islands for the first-time. Detailed examinations, necropsies, and plastic debris analysis were performed on 30 of the 108 cetaceans stranded between 2019 and 2022. Specimens belonging to five different species, Stenella coeruleoalba, Tursiops truncatus, Grampus griseus, Balaenoptera physalus, and Physeter macrocephalus, were evaluated. Ten percent of the cetaceans (N = 3) presented plastic debris in their stomach, with one case of obstruction and perforation. Fishery gear fragments (ropes and nets) were found in two adults of T. truncatus, whereas packaging debris (plastic bag, packing straps, and plastic sheets) were found in a juvenile P. macrocephalus. Plastic items analysed by Fourier transform infrared spectroscopy (FT-IR) reported three polymer types: polypropylene, polyamide, and high-density polypropylene. A total of seven cases of entanglement were recorded during the study, affecting four different species (S. coeruleoalba, T. truncatus, P. macrocephalus, and Megaptera novaeangliae). Only two individuals were freed from the nets, although one died after a week, whereas the rest were already found dead. In conclusion, data collected in the present study provided evidence of plastic ingestion and entanglement in cetaceans of the Balearic Islands for the first-time, thus highlighting the need for the regular examination of stranded cetaceans (as they are top predators) in future research to better understand the effects of these pollutants.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Francisca Pujol
- Palma Aquarium Foundation, Carrer Manuela de los Herreros i Sorà 21, E-07610 Palma de Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), E-28029 Madrid, Spain
- Correspondence: ; Tel.: +34-971172820
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
57
|
Tursi A, Baratta M, Easton T, Chatzisymeon E, Chidichimo F, De Biase M, De Filpo G. Microplastics in aquatic systems, a comprehensive review: origination, accumulation, impact, and removal technologies. RSC Adv 2022; 12:28318-28340. [PMID: 36320515 PMCID: PMC9531539 DOI: 10.1039/d2ra04713f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Although the discovery of plastic in the last century has brought enormous benefits to daily activities, it must be said that its use produces countless environmental problems that are difficult to solve. The indiscriminate use and the increase in industrial production of cleaning, cosmetic, packaging, fertilizer, automotive, construction and pharmaceutical products have introduced tons of plastics and microplastics into the environment. The latter are of greatest concern due to their size and their omnipresence in the various environmental sectors. Today, they represent a contaminant of increasing ecotoxicological interest especially in aquatic environments due to their high stability and diffusion. In this regard, this critical review aims to describe the different sources of microplastics, emphasizing their effects in aquatic ecosystems and the danger to the health of living beings, while examining, at the same time, those few modelling studies conducted to estimate the future impact of plastic towards the marine ecosystem. Furthermore, this review summarizes the latest scientific advances related to removal techniques, evaluating their advantages and disadvantages. The final purpose is to highlight the great environmental problem that we are going to face in the coming decades, and the need to develop appropriate strategies to invert the current scenario as well as better performing removal techniques to minimize the environmental impacts of microplastics.
Collapse
Affiliation(s)
- Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| | - Thomas Easton
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh The King's Buildings Edinburgh EH9 3JL UK
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh The King's Buildings Edinburgh EH9 3JL UK
| | - Francesco Chidichimo
- Department of Environmental Engineering, University of Calabria Via P. Bucci, Cubo 42B, 87036 Arcavacata di Rende (CS) Italy
| | - Michele De Biase
- Department of Environmental Engineering, University of Calabria Via P. Bucci, Cubo 42B, 87036 Arcavacata di Rende (CS) Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| |
Collapse
|
58
|
Compa M, Wilcox C, Hardesty BD, Alomar C, March D, Deudero S. Quantifying the risk of plastic ingestion by ichthyofauna in the Balearic Islands (western Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 183:114075. [PMID: 36084610 DOI: 10.1016/j.marpolbul.2022.114075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study investigates the risk plastic debris ingestion poses to coastal marine taxa in the Balearic Islands in the western Mediterranean Sea. Here, we use species observations and environmental data to model habitat maps for 42 species of fish. For each species, we then match estimates of habitat suitability against the spatial distribution of plastic debris to quantify plastic exposure, which we further combine with species-wise ingestion rates to map the risk of plastic ingestion. The results indicate that the risk of plastic ingestion is particularly high in the north-west and south-east regions and the risks varied strongly between species, with those at higher trophic levels being the most vulnerable overall. Extending this work to other coastal regions within the Mediterranean Sea and beyond will allow managers and policymakers to target the most appropriate areas and types of interventions for mitigating plastic pollution on coastal diversity in the marine environment.
Collapse
Affiliation(s)
- Montserrat Compa
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain.
| | - Chris Wilcox
- Commonwealth Scientific and Industrial Research Organization, Oceans and Atmosphere, Hobart, Tasmania 7001, Australia
| | - Britta Denise Hardesty
- Commonwealth Scientific and Industrial Research Organization, Oceans and Atmosphere, Hobart, Tasmania 7001, Australia
| | - Carme Alomar
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - David March
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain; Centre for Ecology and Conservation, College of Life and Environmental Science, University of Exeter, TR10 9FE Penryn (Cornwall), United Kingdom
| | - Salud Deudero
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| |
Collapse
|
59
|
Potential SARS-CoV-2 Susceptibility of Cetaceans Stranded along the Italian Coastline. Pathogens 2022; 11:pathogens11101096. [PMID: 36297153 PMCID: PMC9607105 DOI: 10.3390/pathogens11101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Due to marine mammals' demonstrated susceptibility to SARS-CoV-2, based upon the homology level of their angiotensin-converting enzyme 2 (ACE2) viral receptor with the human one, alongside the global SARS-CoV-2 occurrence and fecal contamination of the river and marine ecosystems, SARS-CoV-2 infection may be plausibly expected to occur also in cetaceans, with special emphasis on inshore species like bottlenose dolphins (Tursiops truncatus). Moreover, based on immune and inflammatory responses to SARS-CoV-2 infection in humans, macrophages could also play an important role in antiviral defense mechanisms. In order to provide a more in-depth insight into SARS-CoV-2 susceptibility in marine mammals, we evaluated the presence of SARS-CoV-2 and the expression of ACE2 and the pan-macrophage marker CD68. Aliquots of tissue samples, belonging to cetaceans stranded along the Italian coastline during 2020-2021, were collected for SARS-CoV-2 analysis by real-time PCR (RT-PCRT) (N = 43) and Immunohistochemistry (IHC) (N = 59); thirty-two aliquots of pulmonary tissue sample (N = 17 Tursiops truncatus, N = 15 Stenella coeruleoalba) available at the Mediterranean Marine Mammal Tissue Bank (MMMTB) of the University of Padua (Legnaro, Padua, Italy) were analyzed to investigate ACE2 expression by IHC. In addition, ACE2 and CD68 were also investigated by Double-Labeling Immunofluorescence (IF) Confocal Laser Microscopy. No SARS-CoV-2 positivity was found in samples analyzed for the survey while ACE2 protein was detected in the lower respiratory tract albeit heterogeneously for age, gender/sex, and species, suggesting that ACE2 expression can vary between different lung regions and among individuals. Finally, double IF analysis showed elevated colocalization of ACE2 and CD68 in macrophages only when an evident inflammatory reaction was present, such as in human SARS-CoV-2 infection.
Collapse
|
60
|
Solomando A, Cohen-Sánchez A, Box A, Montero I, Pinya S, Sureda A. Microplastic presence in the pelagic fish, Seriola dumerili, from Balearic Islands (Western Mediterranean), and assessment of oxidative stress and detoxification biomarkers in liver. ENVIRONMENTAL RESEARCH 2022; 212:113369. [PMID: 35508220 DOI: 10.1016/j.envres.2022.113369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are characterized by their high persistence in marine ecosystems, and due to their small size, they can be easily ingested by very diverse organisms. Although the presence of MPs in wild fish is well documented, there is still limited information on their potential to induce adverse effects. Pelagic fish species, because of their wide distribution, are considered good bioindicators for monitoring environmental pollution of marine ecosystems. This study investigated the presence of MPs in the gastrointestinal tract of the predatory pelagic fish (Seriola dumerili) in the Balearic Islands (Mediterranean Sea), and the possible relationship with oxidative stress through the analysis of biomarkers in liver tissue. The results showed the presence of MPs in 98% of total samples examined (n = 52) with an average of 12.2 ± 1.3 MPs/individual. A greater amount of fibre-like particles was isolated compared to fragments. No correlation between the presence of MPs in the gastrointestinal contents and the size of the fishes was noted. Antioxidant enzymes (superoxide dismutase and catalase) and the phase II detoxification enzyme glutathione-S-transferase showed increased activities in fish with higher MPs load. The activity ethoxyresorufin-O-deethylase and the levels of malondialdehyde were similar in both groups. In conclusion, the present results provide an important database on the assessment of the presence of MP debris in S. dumerili gastrointestinal tract and, the potential capability to cause oxidative stress.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d'Eivissa, 07800, Balearic Islands, Spain.
| | - Inmaculada Montero
- Grup D'Accio Local Per Al Desenvolupament Rural D'Eivissa i Formentera (GALEF), 07800, Ibiza, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain.
| |
Collapse
|
61
|
Lv M, Jiang B, Xing Y, Ya H, Zhang T, Wang X. Recent advances in the breakdown of microplastics: strategies and future prospectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65887-65903. [PMID: 35876989 DOI: 10.1007/s11356-022-22004-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/10/2022] [Indexed: 05/26/2023]
Abstract
Microplastics pollution is becoming a major environmental issue, and exposure to microplastics has been associated with numerous adverse results to both the ecological system and humans. This work summarized the state-of-the-art developments in the breakdown of microplastics, including natural weathering, catalysts-assisted breakdown and biodegradation. Characterization techniques for microplastic breakdown involve scanning electron microscopy, Fourier infrared spectroscopy, X-ray photoelectron spectroscopy, etc. Bioavailability and adsorption capacity of microplastics may change after they are broken down, therefore leading to variety in microplastics toxicity. Further prospectives for should be focused on the determination and toxicity evaluation of microplastics breakdown products, as well as unraveling uncultivable microplastics degraders via cultivation-independent approaches. This work benefits researchers interested in environmental studies, particularly the removal of microplastics from environmental matrix.
Collapse
Affiliation(s)
- Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, People's Republic of China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Zhejiang Development & Planning Institute, Hangzhou, 310030, China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
62
|
Choi H, Im DH, Park YH, Lee JW, Yoon SJ, Hwang UK. Ingestion and egestion of polystyrene microplastic fragments by the Pacific oyster, Crassostrea gigas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119217. [PMID: 35421553 DOI: 10.1016/j.envpol.2022.119217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Marine microplastics (MPs) pose a risk to human health through accumulation in maricultural organisms, particularly bivalves. Various studies have reported the presence of MP particles in Pacific oysters (Crasostrea gigas). In this study, we investigated the size-specific ingestion and egestion of polystyrene (PS) MPs by Pacific oysters. The cultivation density of C. gigas was maintained at 1 L of filtered seawater per oyster (n = 5) during the MP ingestion and egestion experiments. On exposure to 300 n/L of PS MP fragments for 7 d, 60.4% of the PS was ingested within 6 h (7.25 × 102 ± 1.36 × 102 n/indv.), and the ingestion was saturated at 12 h (1.2 × 103 ± 2.2 × 102 n/indv.) in C. gigas. The maximum MP ingestion capacity (Igmax) of a single Pacific oyster was 73.0 ± 16.3 n/g wet weight. Further, 62.9% of the PS MP particles were egested for 7 d from the saturated single C. gigas. Ingestion and egestion varied according to the PS MP size. In the case of <50 μm PS MP, ingestion rate was low but MP amount and net-ingestion efficiency was significantly higher than other PS MP sizes. In addition, egestion, egestion rate, and net-egestion efficiency for <50 μm PS MPs were significantly higher than other PS MP sizes. Therefore, smaller MPs (<50 μm) normally exhibit the highest ingestion and egestion rates; therefore, the 50-300 μm size fraction exhibited the highest residual possibility (particles >1000 μm were excluded). Additionally, considering the net-egestion efficiency, the most economical and efficient depuration period was 24 h. This study clarifies the size-specific MP accumulation in oysters, and the egestion results suggest that the potential risk of MPs to human health through the intake of maricultural products could be reduced by depuration.
Collapse
Affiliation(s)
- Hoon Choi
- Korea Research Institute of Ships and Ocean Engineering (KRISO), Daejeon, 34103, Republic of Korea
| | - Dong-Hoon Im
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, Republic of Korea
| | - Yun-Ho Park
- Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, 22383, Republic of Korea
| | - Ju-Wook Lee
- Fisheries Resources and Environment Division, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, 22383, Republic of Korea
| | - Sung-Jin Yoon
- Ulleungdo-Docdo Ocean Science Station, Korea Institute of Ocean Science & Technology (KIOST), Ulleung-gun, 40205, Republic of Korea
| | - Un-Ki Hwang
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, Republic of Korea
| |
Collapse
|
63
|
Abdel Ghani SA, El-Sayed AAM, Ibrahim MIA, Ghobashy MM, Shreadah MA, Shabaka S. Characterization and distribution of plastic particles along Alexandria beaches, Mediterranean Coast of Egypt, using microscopy and thermal analysis techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155363. [PMID: 35460789 DOI: 10.1016/j.scitotenv.2022.155363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) contamination has become a global concern with potential impacts on the marine environment. Alexandria is the second-largest city in Egypt and a significant contributor of plastic litter inputs into the Eastern Mediterranean Sea. The current study provides an in-depth analysis of the plastic particles accumulated along Alexandria beaches. Types, composition, and potential sources of MPs were investigated using microscopy and thermal analysis. A mean value of 389.1 ± 285.9 items kg-1 dry weight was detected in the shore sediments similar to other records from the Eastern Mediterranean region. An average of 457.4 ± 281.8 items m-3 was recorded in the surface water, which was the highest recorded MPs density in onshore waters of the Mediterranean region. Thermogravimetric analysis (TGA) showed that plastics made up 0.5% - 72% of the materials extracted from the sediment samples, and 0.58% - 20.6% from the water samples. Differential scanning calorimetry (DSC) identified ten semi-crystalline polymers. Low-density polyethylene (LDPE) and polyethylene vinyl acetate (PEVA) were the common polymers. The single-use plastic bags and detergents were the land-based sources of marine plastic litter. The sea-based sources included antifouling paints, maintenance of ships, and abandoned fishing gears. Proper management plans of domestic waste input, polluter-pay strategy, and education programs aiming at the Fishermen and how plastic pollution would impact their livelihood are urgently needed.
Collapse
Affiliation(s)
| | | | - Mohamed I A Ibrahim
- National Institute of Oceanography and Fisheries, NIOF, Egypt; Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry, National Center For Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Soha Shabaka
- National Institute of Oceanography and Fisheries, NIOF, Egypt.
| |
Collapse
|
64
|
Ghaffar I, Rashid M, Akmal M, Hussain A. Plastics in the environment as potential threat to life: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56928-56947. [PMID: 35713833 DOI: 10.1007/s11356-022-21542-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plastics have become inevitable for human beings in their daily life. Million tons of plastic waste is entering in oceans, soil, freshwater, and sediments. Invasion of plastics in different ecosystems is causing severe problems to inhabitants. Wild animals such as seabirds, fishes, crustaceans, and other invertebrates are mostly effected by plastic entanglements and organic pollutants absorbed and carried by plastics/microplastics. Plastics can also be potentially harmful to human beings and other mammals. Keeping in view the possible harms of plastics, some mitigation strategies must be adopted which may include the use of bioplastics and some natural polymers such as squid-ring teeth protein. This review focuses on the possible sources of intrusion and fate of plastics in different ecosystems, their potential deleterious effects on wildlife, and the measures that can be taken to minimize and avoid the plastic use.
Collapse
Affiliation(s)
- Imania Ghaffar
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Akmal
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
65
|
Pittura L, Garaventa F, Costa E, Minetti R, Nardi A, Ventura L, Morgana S, Capello M, Ungherese G, Regoli F, Gorbi S. Microplastics in seawater and marine organisms: Site-specific variations over two-year study in Giglio Island (North Tyrrhenian Sea). MARINE POLLUTION BULLETIN 2022; 181:113916. [PMID: 35810651 DOI: 10.1016/j.marpolbul.2022.113916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Geographical and temporal differences of microplastic occurrence were documented in water and fish collected in 2017 and 2019 from the Giglio Island (North Tyrrhenian Sea) close to the area where the Costa Concordia sank in January 2012. Results on water samples showed a site-dependent difference, suggesting the role of surface current dynamics in the microplastic local distribution, while tested Neuston nets (200 μm and 330 μm mesh size) did not influence microplastic retention efficiency. Fish exhibited in 2019 a higher frequency of specimens positive to microplastic ingestion with respect to 2017, with an occurrence higher than those typically observed in other Mediterranean areas. Both in water and fish, fragments were the dominating shape, polypropylene and polyethylene were the prevalent polymers, without particular difference between sites and years. This study highlights the importance of applying microplastic investigation in biotic and abiotic matrices for an effective monitoring of this pollution in the marine environment.
Collapse
Affiliation(s)
- Lucia Pittura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Garaventa
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, Italian National Research Council, Rome, Italy
| | - Elisa Costa
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, Italian National Research Council, Rome, Italy
| | - Roberta Minetti
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, Italian National Research Council, Rome, Italy
| | - Alessandro Nardi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Ventura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Morgana
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment, Italian National Research Council, Rome, Italy
| | - Marco Capello
- Department for the Earth, Environment and Life Sciences, University of Genova, Italy
| | | | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Stefania Gorbi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
66
|
Rabari V, Patel K, Patel H, Trivedi J. Quantitative assessment of microplastic in sandy beaches of Gujarat state, India. MARINE POLLUTION BULLETIN 2022; 181:113925. [PMID: 35841675 DOI: 10.1016/j.marpolbul.2022.113925] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The present study was carried out to quantify microplastic prevalence among 20 sandy beaches on the Gujarat coast. Beaches were categorised into three different classes, viz. low-impacted sites, moderately impacted sites, and highly impacted sites based on anthropogenic pressure. Microplastic (MP) (≤ 5 mm) contamination on the beaches varied with an average of 1.4 MPs/kg to 26 MPs/kg sediment. Sutrapada site-1 and Porbandar showed the highest and lowest mean abundance of microplastics, respectively, among 20 selected beaches. Out of the total assessed microplastics, threads were the maximum (89.98%), followed by the films (4.75%), fragments (3.36%) and foam (1.89%). In terms of colour and size, different microplastics were recorded in this study. The chemical composition of microplastics was identified by ATR-FTIR as polypropylene (47.5%), polyethylene (26%), and polystyrene (25%). Tourism and fishing activities are the possible sources of higher microplastic contamination at highly impacted sites.
Collapse
Affiliation(s)
- Vasantkumar Rabari
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Heris Patel
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Jigneshkumar Trivedi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| |
Collapse
|
67
|
Garcia-Garin O, Sahyoun W, Net S, Vighi M, Aguilar A, Ouddane B, Víkingsson GA, Chosson V, Borrell A. Intrapopulation and temporal differences of phthalate concentrations in North Atlantic fin whales (Balaenoptera physalus). CHEMOSPHERE 2022; 300:134453. [PMID: 35390406 DOI: 10.1016/j.chemosphere.2022.134453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The fin whale (Balaenoptera physalus) is a migratory filter-feeding species that is susceptible to ingest plastics while lunge feeding across the oceans. Plastic additives, such as phthalates, are compounds that are added to plastics to give them specific characteristics, such as flexibility. These so-called plasticizers are currently raising major concern because of their potential adverse effects on marine fauna. However, little is known about phthalate concentrations in tissues of baleen whales as well as their potential relation with biological variables (i.e., sex, body length and age) and their trends with time. In this study, we assessed the concentration of 13 phthalates in the muscle of 31 fin whales sampled in the feeding grounds off western Iceland between 1986 and 2015. We detected 5 of the 13 phthalates investigated, with di-n-butylphthalate (DBP), diethylphthalate (DEP) and bis(2-ethylhexyl) phthalate (DEHP) being the most abundant. None of the biological variables examined showed a statistically significant relationship with phthalate concentrations. Also, phthalate concentrations did not significantly vary over the 29-year period studied, a surprising result given the global scenario of increasing plastic pollution in the seas. The lack of time trends in phthalate concentration may be due in part to the fact that phthalates also originate from other sources. Although no adverse effects of phthalates on fin whales have been detected to date, further monitoring of these pollutants is required to identify potential toxic effects in the future.
Collapse
Affiliation(s)
- Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain.
| | - Wissam Sahyoun
- Université de Lille 1, Sciences et Technologies, Laboratoire LASIR (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Sopheak Net
- Université de Lille 1, Sciences et Technologies, Laboratoire LASIR (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain
| | - Baghdad Ouddane
- Université de Lille 1, Sciences et Technologies, Laboratoire LASIR (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq, France
| | - Gísli A Víkingsson
- Marine and Freshwater Research Institute, Fornubúðum 5, 220, Hafnarfjörður, Iceland
| | - Valerie Chosson
- Marine and Freshwater Research Institute, Fornubúðum 5, 220, Hafnarfjörður, Iceland
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio). Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
68
|
Pinho I, Amezcua F, Rivera JM, Green-Ruiz C, Piñón-Colin TDJ, Wakida F. First report of plastic contamination in batoids: Plastic ingestion by Haller's Round Ray (Urobatis halleri) in the Gulf of California. ENVIRONMENTAL RESEARCH 2022; 211:113077. [PMID: 35276199 DOI: 10.1016/j.envres.2022.113077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics has been reported in the marine environment and these pollutants have also been reported in food webs. Information about the presence of microplastics in the Haller's Round Ray (Urobatis halleri) and bottom sediments off the east coast of the Gulf of California is non-existent. The digestive tracts of individuals of this species and sediment samples were examined for plastic particles in this region. In total, 107 plastic particles were found in the sediment. All were fibers and 94.4% were microplastics, the rest were mesoplastics. The gastrointestinal tracts of 142 rays were analysed, and it was determined that this is a benthic feeder. A total of 386 plastic particles were recovered from 46 individuals (32.4%). On average 10.2 (±7.4) plastic particles were found per specimen, with plastic lengths ranging from 0.00821 mm to 0.953 mm. The FTIR-ATR analysis revealed the presence of six types of polymers: polyamide or nylon polyethylene, polypropylene, and polyacrylic were found in both sediments and gastrointestinal tracts of Haller's Round Ray. Polyethylene terephthalate and polyacrylamide were only found in the gastrointestinal tracts of the ray. These polymers are consistent with the human activities undertaken in this area, specifically intensive small-scale and industrial fisheries, as they are used for the elaboration of fishing nets, plastic bags, storage containers, clothing, and fishing boats maintenance. Our results show that benthic feeders are exposed to plastic debris, and its presence is another potential threat to batoids, which are already threatened by bycatch, overfishing, and other pollutants. However, studies on the ingestion of plastic debris in batoids and its presence in the sediment are still scarce or non-existent for this region. As such, these studies are necessary to help in the preservation of these species.
Collapse
Affiliation(s)
- Inês Pinho
- International MSc in Marine Biodiversity and Conservation, Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000, Ghent, Belgium
| | - Felipe Amezcua
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico.
| | - Jessica M Rivera
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Ramón Padilla Sánchez 2100, Las Agujas, 44600, Zapopan, Jalisco, Mexico
| | - Carlos Green-Ruiz
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin, 82040, Mexico
| | - Teresita de Jesus Piñón-Colin
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, C.P. 22390, Tijuana, Baja California, Mexico
| | - Fernando Wakida
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, C.P. 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
69
|
Liao J, Ji S, Chi Y. Effects of Discarded Masks on the Offshore Microorganisms during the COVID-19 Pandemic. TOXICS 2022; 10:toxics10080426. [PMID: 36006105 PMCID: PMC9414469 DOI: 10.3390/toxics10080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Numerous disposable plastic masks had been produced and used for preventing the worldwide COVID-19 pandemic effectively. Discarded masks are a potential source of microplastic pollution in marine ecosystems. The effect of discarded masks on offshore microorganisms is still unclear. Herein, we profiled the interaction between the microplastics released by discarded masks and marine microbes. The effects of mask quantity, time, and environment on the microplastic-related communities were determined. We characterized the bacterial communities of each group using 16S rRNA gene sequencing and metagenomic sequencing and correlated the community diversity to the physicochemical properties of seawater. We found that the diversity and richness of microflora on the surface of microplastics with different quantity and time varied significantly. Proteobacteria are the main bacteria on microplastics, and the KEGG metabolic pathway prediction shows that amino acid metabolism and carbohydrate metabolism were abundant. In addition, there was a correlation between bacterial communities and Antibiotic Resistance Ontology (ARO). We used scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques to evaluate the plastic polymer characteristics of disposable medical masks. Our research shows that disposable medical masks immersed in seawater can alter the microbial community. This study provides the most recent data and insights into the contamination of discarded masks in the marine environment.
Collapse
Affiliation(s)
- Jinlan Liao
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China;
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence: (S.J.); (Y.C.)
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence: (S.J.); (Y.C.)
| |
Collapse
|
70
|
Detection and Classification of Floating Plastic Litter Using a Vessel-Mounted Video Camera and Deep Learning. REMOTE SENSING 2022. [DOI: 10.3390/rs14143425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Marine plastic pollution is a major environmental concern, with significant ecological, economic, public health and aesthetic consequences. Despite this, the quantity and distribution of marine plastics is poorly understood. Better understanding of the global abundance and distribution of marine plastic debris is vital for global mitigation and policy. Remote sensing methods could provide substantial data to overcome this issue. However, developments have been hampered by the limited availability of in situ data, which are necessary for development and validation of remote sensing methods. Current in situ methods of floating macroplastics (size greater than 1 cm) are usually conducted through human visual surveys, often being costly, time-intensive and limited in coverage. To overcome this issue, we present a novel approach to collecting in situ data using a trained object-detection algorithm to detect and quantify marine macroplastics from video footage taken from vessel-mounted general consumer cameras. Our model was able to successfully detect the presence or absence of plastics from real-world footage with an accuracy of 95.2% without the need to pre-screen the images for horizon or other landscape features, making it highly portable to other environmental conditions. Additionally, the model was able to differentiate between plastic object types with a Mean Average Precision of 68% and an F1-Score of 0.64. Further analysis suggests that a way to improve the separation among object types using only object detection might be through increasing the proportion of the image area covered by the plastic object. Overall, these results demonstrate how low-cost vessel-mounted cameras combined with machine learning have the potential to provide substantial harmonised in situ data of global macroplastic abundance and distribution.
Collapse
|
71
|
Spatial distribution and risk assessments due to the microplastics pollution in sediments of Karnaphuli River Estuary, Bangladesh. Sci Rep 2022; 12:8581. [PMID: 35595854 PMCID: PMC9123007 DOI: 10.1038/s41598-022-12296-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Microplastics (MPs) have become an emerging global pollutant due to their widespread dispersion and potential threats to marine ecosystems. However, studies on MPs in estuarine and coastal ecosystems of Bangladesh are very limited. Here, we conducted the first study on abundance, distribution, characteristics, and risk assessment of microplastics in the sediment of Karnaphuli River estuary, Bangladesh. Microplastic particles were extracted from sediments of 30 stations along the estuary by density separation and then enumerated and characterized using a stereomicroscope and Fourier Transform Infrared (FT-IR) spectroscopy. In the collected sediment of the Karnaphuli River estuary, the number of MPs varied from 22.29 to 59.5 items kg-1 of dry weight. The mean abundance was higher in the downstream and left banks of the estuary, whereas the predominant shape, colour, and size of MPs were films (35%), and white (19%), and 1-5 mm (30.38%), respectively. Major polymer types were polyethylene terephthalate, polystyrene, polyethylene, cellulose, and nylon. MPs were found to pose risks (low to high) in the sediment of the estuary, with the highest risk occurring at one station near a sewage outlet, according to the results of risk analyses using the pollution risk index, polymer risk index (H), contamination factors, and pollution load index (PLI). The single value index, PLI, clearly demonstrated that all sampling sites were considerably polluted with microplastics (PLI > 1). H values showed toxic polymers, even in lower proportions, possess higher polymeric hazard scores and vice versa. This investigation uncovered new insights on the status of MPs in the sediments of the Karnaphuli River estuary, laying the groundwork for future research and control of microplastic pollution and management.
Collapse
|
72
|
Chellasamy G, Kiriyanthan RM, Maharajan T, Radha A, Yun K. Remediation of microplastics using bionanomaterials: A review. ENVIRONMENTAL RESEARCH 2022; 208:112724. [PMID: 35026186 DOI: 10.1016/j.envres.2022.112724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Pollution by microplastics (MPs) formed by the physicochemical breakdown of plastics are a worldwide issue with long-lasting and hazardous natural effects. The natural expulsion of MPs takes several years and can be dangerous. Several effective technological innovations have been developed over the years to remediate harmful MPs. Among them, a blend of nanotechnological techniques using bionanomaterials has been investigated to a large extent. The objective of this review is to compile the MPs found in the environment and bionanomaterial-based approaches for their removal. This information is important for researchers who are exploring the adverse consequences of MPs and their remediation and developing advanced eco-friendly strategies to control and eradicate MPs in the future. The control and eradication of MPs depend on all of us; hence, the proper awareness of MPs pollution must be provided to every individual, as all of us are a part of the environment.
Collapse
Affiliation(s)
- Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | | | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Cochin, 683 104, Kerala, India
| | - A Radha
- PG and Research Department of Botany, Bharathi Women's College, Tamil Nadu, India.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
73
|
Eisfeld-Pierantonio SM, Pierantonio N, Simmonds MP. The impact of marine debris on cetaceans with consideration of plastics generated by the COVID-19 pandemic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118967. [PMID: 35134431 DOI: 10.1016/j.envpol.2022.118967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of human-derived debris in the oceans is a global concern and a serious threat to marine wildlife. There is a volume of evidence that points to deleterious effects of marine debris (MD) on cetaceans in terms of both entanglement and ingestion. This review suggests that about 68% of cetacean species are affected by interacting with MD with an increase in the number of species reported to have interacted with it over the past decades. Despite the growing body of evidence, there is an ongoing debate on the actual effects of plastics on cetaceans and, in particular, with reference to the ingestion of microplastics and their potential toxicological and pathogenic effects. Current knowledge suggests that the observed differences in the rate and nature of interactions with plastics are the result of substantial differences in species-specific diving and feeding strategies. Existing projections on the production, use and disposal of plastics suggest a further increase of marine plastic pollution. In this context, the contribution of the ongoing COVID-19 pandemic to marine plastic pollution appears to be substantial, with potentially serious consequences for marine life including cetaceans. Additionally, the COVID-19 pandemic offers an opportunity to investigate the direct links between industry, human behaviours and the effects of MD on cetaceans. This could help inform management, prevention efforts, describe knowledge gaps and guide advancements in research efforts. This review highlights the lack of assessments of population-level effects related to MD and suggests that these could be rather immediate for small populations already under pressure from other anthropogenic activities. Finally, we suggest that MD is not only a pollution, economic and social issue, but also a welfare concern for the species and populations involved.
Collapse
Affiliation(s)
| | - Nino Pierantonio
- Tethys Research Institute, Viale G. B. Gadio 2, 20121, Milano, Italy.
| | - Mark P Simmonds
- Bristol Veterinary School Langford House, Langford, Bristol, BS40 5DU, UK; OceanCare, PO Box 372, 8820, Wadenswill, Switzerland.
| |
Collapse
|
74
|
Marchetto D, de Ferri L, Latella A, Pojana G. Micro- and mesoplastics in sea surface water from a Northern Adriatic coastal area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37471-37497. [PMID: 35066833 DOI: 10.1007/s11356-021-17874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
The presence of microplastics in the sea is a global issue widely studied and discussed in the last years. The whole marine ecosystem is now considered at high risk because of their presence and abundance in every studied environment all over the world because polymeric materials commonly constitute the main raw materials in contemporary industrial production. The presented study reports the results obtained from surface seawater monitoring of two sampling transects in the coastal area close to the Venice Lagoon (Italy) inlet, investigated in order to get new information about the presence and relevance of plastic pollution. Plastic particles collected by means of a manta net (0.3-mm mesh size) have been characterized in detail by utilizing a multi-technique approach in order to discriminate them by typology, dimension, colour, spatial density and chemical composition. Such information permitted the individuation of subgroups (specific groups) of plastic micro-debris in this Northern Adriatic area.
Collapse
Affiliation(s)
- Davide Marchetto
- Department of Philosophy and Cultural Heritage, University Ca' Foscari of Venice, Dorsoduro 3484/D, 30123, Venice, Italy.
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy.
| | - Lavinia de Ferri
- Department of Collection Management-Museum of Cultural History, University of Oslo, Kabelgaten 34, 0580, Oslo, Norway
| | - Aurelio Latella
- Department of Philosophy and Cultural Heritage, University Ca' Foscari of Venice, Dorsoduro 3484/D, 30123, Venice, Italy
| | - Giulio Pojana
- Department of Philosophy and Cultural Heritage, University Ca' Foscari of Venice, Dorsoduro 3484/D, 30123, Venice, Italy.
| |
Collapse
|
75
|
Zantis LJ, Bosker T, Lawler F, Nelms SE, O'Rorke R, Constantine R, Sewell M, Carroll EL. Assessing microplastic exposure of large marine filter-feeders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151815. [PMID: 34822890 DOI: 10.1016/j.scitotenv.2021.151815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Large filter-feeding animals are potential sentinels for understanding the extent of microplastic pollution, as their mode of foraging and prey mean they are continuously sampling the environment. However, there is considerable uncertainty about the total and mode of exposure (environmental vs trophic). Here, we explore microplastic exposure and ingestion by baleen whales feeding year-round in coastal Auckland waters, New Zealand. Plastic and DNA were extracted concurrently from whale scat, with 32 ± 24 (mean ± SD, n = 21) microplastics per 6 g scat sample detected. Using a novel stochastic simulation modeling incorporating new and previously published DNA diet information, we extrapolate this to total microplastic exposure levels of 24,028 (95% CI: 2119, 69,270) microplastics per mouthful of prey, or 3,408,002 microplastics (95% CI: 295,810, 10,031,370) per day, substantially higher than previous estimates for large filter-feeding animals. Critically, we find that the total exposure is four orders of magnitude more than expected from microplastic measurements of local coastal surface waters. This suggests that trophic transfer, rather than environmental exposure, is the predominant mode of exposure of large filter feeders for microplastic pollution. Measuring plastic concentration from the environment alone significantly underestimates exposure levels, an important consideration for future risk assessment studies.
Collapse
Affiliation(s)
- L J Zantis
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - T Bosker
- Leiden University College, Leiden University, The Hague, the Netherlands; Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - F Lawler
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - S E Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom; Exeter Centre for Circular Economy, University of Exeter, Cornwall, United Kingdom
| | - R O'Rorke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - R Constantine
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Institute of Marine Sciences, University of Auckland, Auckland, New Zealand
| | - M Sewell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - E L Carroll
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
76
|
Çevik C, Kıdeyş AE, Tavşanoğlu ÜN, Kankılıç GB, Gündoğdu S. A review of plastic pollution in aquatic ecosystems of Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26230-26249. [PMID: 34853999 DOI: 10.1007/s11356-021-17648-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/16/2021] [Indexed: 05/16/2023]
Abstract
Turkey is one of the major plastic pollution sources in the Mediterranean and the Black Sea. This review summarizes present information, data, and legislation on plastic pollution in Turkish aquatic ecosystems. According to results derived from reviewed studies, both macro- and microplastic pollutions were documented in Turkish aquatic ecosystems. Most of the studies on plastic pollution in Turkish waters were performed in the marine environment while only four were conducted in freshwater environments. Spatially, the majority of these studies, which were on levels in the marine environment, were conducted on the northeastern Mediterranean coasts of Turkey, especially Iskenderun and Mersin Bays. Additional studies were carried out on either the ingestion/presence/impact of microplastics by/to aquatic organisms or the entanglement of marine organisms in plastics. There were also studies assessing the microplastic content of commercial salt, and another has reported microplastic presence in traditional stuffed mussels sold in Turkish streets. Some studies were conducted on microplastic presence and/or their removal in wastewater treatment plants in Mersin, Adana, Mugla, and Istanbul cities. Macro- and microliter loading from a few Turkish rivers to the sea was also estimated. All these investigations indicate that Turkish aquatic environments have significant plastic pollution problems, which were also underlined by the legislative studies. The need for further studies in this field still exists, especially in freshwater environments.
Collapse
Affiliation(s)
- Cem Çevik
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey
| | - Ahmet Erkan Kıdeyş
- Institute of Marine Sciences, Limonlu, Erdemli, Middle East Technical University, Mersin, Turkey
| | - Ülkü Nihan Tavşanoğlu
- Faculty of Sciences, Department of Biology, Çankırı Karatekin University, Çankırı, Turkey
| | | | - Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey.
| |
Collapse
|
77
|
Shabbir S, Faheem M, Dar AA, Ali N, Kerr PG, Yu ZG, Li Y, Frei S, Albasher G, Gilfedder BS. Enhanced periphyton biodegradation of endocrine disrupting hormones and microplastic: Intrinsic reaction mechanism, influential humic acid and microbial community structure elucidation. CHEMOSPHERE 2022; 293:133515. [PMID: 34990716 DOI: 10.1016/j.chemosphere.2022.133515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Endocrine-disrupting compounds (EDCs), as well as microplastics, have drawn global attention due to their presence in the aquatic ecosystem and persistence in wastewater treatment plants (WWTPs). In the present study, for simultaneous bio-removal of two EDCs, 17α-ethinylestradiol (EE2), bisphenol A (BPA), and a microplastic, polypropylene (PP) four kinds of periphytic biofilms were employed. Additionally, the effect of humic acid (HA) on the removal efficacy of these biofilms was evaluated. It was observed that EE2 and BPA (0.2 mg L-1 each) were completely (∼100%) removed within 36 days of treatment; and the biodegradation of EE2, BPA, and PP was significantly enhanced in the presence of HA. Biodegradation of EE2 and BPA was evaluated through Ultra-high performance liquid chromatography (UHPLC), and Gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was used to determine the mechanism of degradation. Gel permeation chromatography (GPC) and SEM had validated the biodegradation of PP (5.2-14.7%). MiSeqsequencing showed that the community structure of natural biofilm changed after the addition of HA, as well as after the addition of EDCs and PP. This change in community structure might be a key factor regarding variable biodegradation percentages. The present study revealed the potential of periphytic biofilms for the simultaneous removal of pollutants of different chemical natures, thus provides a promising new method for wastewater treatment applications.
Collapse
Affiliation(s)
- Sadaf Shabbir
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, 210044, Nanjing, China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Muhammad Faheem
- Department of Agricultural Resources and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, 210044, Nanjing, China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, China
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University, 3rd Avenue, 45320, Islamabad, Pakistan
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, 210044, Nanjing, China
| | - Yi Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Sven Frei
- Department of Hydrology, University of Bayreuth, Bayreuth, Germany
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
78
|
Zazouli M, Nejati H, Hashempour Y, Dehbandi R, Nam VT, Fakhri Y. Occurrence of microplastics (MPs) in the gastrointestinal tract of fishes: A global systematic review and meta-analysis and meta-regression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152743. [PMID: 35007572 DOI: 10.1016/j.scitotenv.2021.152743] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 05/20/2023]
Abstract
The presence of Microplastics (MPs) in food has become a global health concern in the last two decades. In this study, an attempt was made to obtain articles about the occurrence of MPs in the gastrointestinal tract (gt) of fishes using searching the Scopus and PubMed databases from 1 January 1990 to 10 August 2021. The occurrence of MPs was meta-analyzed using the random effect model (REM). The results indicate that pooled occurrence of MPs in gastrointestinal of fishes was 2.76 P/gt: 95%CI:2.65-2.86 P/gt. Occurrence MPs in gastrointestinal of fishes in closed water sources (5.86 P/gt) was higher than free water sources (2.46 P/gt). In addition, the rank order of water sources based on occurrence MPs in gastrointestinal of fish was Lake (5.50 P/gt) > Estuary (5.46 P/gt) > River (2.91 P/gt) > Bay (2.85 P/gt) > Sea (2.58 P/gt) > Ocean (1.29 P/gt). The lowest and highest occurrence MPs in gastrointestinal of fishes were observed in high-income economies (1.45 P/gt) and low-income economies (8.08 P/gt), respectively. The higher frequency of color in MPS was related to blue with polyethylene-type polymers. Therefore, control plans to reduce the occurrence of MPs in fishes is recommended.
Collapse
Affiliation(s)
- Mohammadali Zazouli
- Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Habib Nejati
- Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yalda Hashempour
- Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Dehbandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Van Thai Nam
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abas, Iran.
| |
Collapse
|
79
|
Galli M, Tepsich P, Baini M, Panti C, Rosso M, Vafeiadou A, Pantelidou M, Moulins A, Fossi MC. Microplastic abundance and biodiversity richness overlap: Identification of sensitive areas in the Western Ionian Sea. MARINE POLLUTION BULLETIN 2022; 177:113550. [PMID: 35318169 DOI: 10.1016/j.marpolbul.2022.113550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Plastic pollution in the Mediterranean Sea has been widely reported, but its impact on biodiversity has not been fully explored. Simultaneous sampling of microplastics (MP) with a manta net and surveys of large marine vertebrates were conducted along the coastal waters of Sicily (Western Ionian Sea). A total of 17 neustonic samples have been collected and 17 marine species (cetaceans, sea turtles, seabirds, and fish) have been sighted in the target area. Kernel density estimation was evaluated to highlight a possible overlap between the presence of large marine fauna and MP densities to provide a preliminary risk assessment. The highest biodiversity and MP concentration (0.197 ± 0.130 items/m2) were observed in the southernmost part of the studied area. The overlap between biodiversity hotspots and the occurrence of MP, potential contribute to the identification of sensitive areas of exposure in a poorly studied region.
Collapse
Affiliation(s)
- Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | - Ariadni Vafeiadou
- CIMA Research Foundation, 17100, Savona, Italy; Aristotle University of Thessaloniki, 54124, Greece
| | - Martha Pantelidou
- CIMA Research Foundation, 17100, Savona, Italy; Aristotle University of Thessaloniki, 54124, Greece
| | | | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
80
|
Miccoli A, Mancini E, Saraceni PR, Della Ventura G, Scapigliati G, Picchietti S. First evidence of in vitro cytotoxic effects of marine microlitter on Merluccius merluccius and Mullus barbatus, two Mediterranean commercial fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152618. [PMID: 34968612 DOI: 10.1016/j.scitotenv.2021.152618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Marine litter is composed mainly of plastics and is recognized as a serious threat to marine ecosystems. Ecotoxicological approaches have started elucidating the potential severity of microplastics (MPs) in controlled laboratory studies with pristine materials but no information exists on marine environmental microlitter as a whole. Here, we characterized the litter in the coastal Northern Tyrrhenian sea and in the stomach of two fish species of socio-economic importance, and exposed primary cell cultures of mucosal and lymphoid organs to marine microlitter for evaluating possible cytotoxic effects. An average of 0.30 ± 0.02 microlitter items m-3 was found in water samples. μFT-IR analysis revealed that plastic particles, namely HDPE, polyamide and polypropylene were present in 100% and 83.3% of Merluccius merluccius and Mullus barbatus analyzed, which overall ingested 14.67 ± 4.10 and 5.50 ± 1.97 items/individual, respectively. Moreover, microlitter was confirmed as a vector of microorganisms. Lastly, the apical end-point of viability was found to be significantly reduced in splenic cells exposed in vitro to two microlitter conditions. Considering the role of the spleen in the mounting of adaptive immune responses, our results warrant more in-depth investigations for clarifying the actual susceptibility of these two species to anthropogenic microlitter.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy.
| | - E Mancini
- Italian Fishery Research and Studies Center, Rome 00184, Italy
| | - P R Saraceni
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - G Della Ventura
- Department of Science, Roma 3 University, Rome 00146, Italy; INFN Laboratori Nazionali di Frascati, Via E. Fermi 54, Frascati 00044, Italy
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| |
Collapse
|
81
|
Sarma H, Hazarika RP, Kumar V, Roy A, Pandit S, Prasad R. Microplastics in marine and aquatic habitats: sources, impact, and sustainable remediation approaches. ENVIRONMENTAL SUSTAINABILITY (SINGAPORE) 2022; 5:39-49. [PMID: 37519772 PMCID: PMC8923096 DOI: 10.1007/s42398-022-00219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/31/2022]
Abstract
Plastic trash dumped into water bodies degrade over time into small fragments. These plastic fragments, which come under the category of micro-plastics (MPs), are generally 0.05-5 mm in size, and due to their small size they are frequently consumed by aquatic organisms. As a result, widespread MPs infiltration is a global concern for the aquatic environment, posing a threat to existing life forms. MPs easily bind to other toxic chemicals or metals, acting as vector for such toxic substances and introducing them into life forms. Polyethylene, polypropylene, polystyrene, and other polymers are emerging pollutants that are detrimental to all types of organisms. The main route for MPs into the aquatic ecosystems is through the flushing of urban wastewater. The current paper investigates the origin, environmental fate, and toxicity of MPs, shedding light on their sustainable remediation. Graphical abstract
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam 783370 India
| | - Rupshikha Patowary Hazarika
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam 781035 India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, 201306 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| |
Collapse
|
82
|
Desclos-Dukes L, Butterworth A, Cogan T. Using a non-invasive technique to identify suspected microplastics in grey seals (Halichoerus grypus) living in the western North Sea. Vet Rec 2022; 190:e1484. [PMID: 35233772 DOI: 10.1002/vetr.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/21/2021] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Plastic pollution is of growing concern in marine ecosystems worldwide. Specifically, microplastics (<5 mm) may interact with a variety of biota with the potential to cause harm to organism health. Studies investigating microplastics are increasing, yet their occurrence within free-ranging and living marine mammals remains largely unexplored. METHODS By using a protocol involving enzymatic digestion, filtration and microscopic identification, faecal samples collected from a grey seal (Halichoerus grypus) haul-out site in the North Sea were investigated for microplastic presence. RESULTS Altogether, 71 suspected microplastic particles, consisting of both fibres and fragments in a variety of colours and sizes, were identified across 66 analysed faecal subsamples. CONCLUSION The present study indicates that marine mammals are ingesting microplastics and that faecal material can be used to indirectly and non-invasively record microplastic uptake data in pinnipeds. Since the current paper is the first to document potential microplastic exposure among wild, living and free-ranging grey seals of the western North Sea, further research is needed to begin to understand the biological significance of these findings.
Collapse
Affiliation(s)
| | | | - Tristan Cogan
- University of Bristol, Bristol Veterinary School, Langford, Bristol, UK
| |
Collapse
|
83
|
Manzo S, Schiavo S. Physical and chemical threats posed by micro(nano)plastic to sea urchins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152105. [PMID: 34863733 DOI: 10.1016/j.scitotenv.2021.152105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The awareness of the plastic issue is rising in recent years. Our seas and coastal seawaters are investigated with the aim to evaluate the possible fate, behavior and the impact of these novel contaminants upon marine biota. In particular, benthic organisms are exposed to micro(nano)plastics that sink and accumulated on the seabed. Sea urchins can be prone to the plastic impact for all their lifespan with effect that can be extended upon the trophic cascade since their key role as grazer organisms. Moreover, they are largely used in the assessment of contaminant impact both as adult individuals and as early larval stages. This review analyzes the recent literature about the chemical and physical hazards posed by diverse polymers to sea urchins, in relation to their peculiar characteristics and to their size. The search was based on a query of the keyword terms: microplastic _ OR nanoplastic_AND Sea urchins in Web of Science and Google Scholar. The effects provoked by exposure of different sea urchin biological form are highlighted, considering both laboratory exposure and collection in real world. Additional focus has also been given upon the exposure methods utilized in laboratory test and in the existing limitations in the testing procedures. In conclusion, the micro(nano)plastics major impact seemed to be attributable to leaching compounds, however variability and lacking of realisms in the procedures do not allow a full understanding of the hazard posed by micro(nano)plastics for sea urchins. Finally, the work provides insights into the future research strategies to better characterize the actual risk for sea urchins.
Collapse
Affiliation(s)
- Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| |
Collapse
|
84
|
Towards Risk Assessments of Microplastics in Bivalve Mollusks Globally. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020288] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitous presence of microplastics in bivalve mollusks and related risks have raised particular concerns. In this study, the available data on the abundance and polymer type of microplastics in bivalves from twenty-two countries were extracted to comprehensively understand the risks of microplastics in bivalves. Following the data from 52 peer-reviewed papers, the abundance, chemical composition, and human exposure risks of microplastics of bivalves among countries were initially assessed. Abundance risk results indicated that bivalves from 22 countries presented a low pollution load index, showing a lower risk level (level I). The polymer risk index (H) of bivalves from Portugal (Hcountry = 1335, level IV) and India (Hcountry = 1187, level IV) were higher than the other countries due to the occurrence of hazardous microplastics, such as polyvinyl chloride. For the human exposure risks, the global mean value of microplastic exposure to humans via mollusk consumption is estimated to be 751 microplastics/capita/year, with the maximum intake by the Chinese. This study suggests that abundance risk may be a fundamental indicator for assessing the potential hazard to humans until the chemical composition risks are confirmed. This study is the first attempt to assess the potential risks of microplastics in bivalves using three evaluation models based on microplastic abundances and polymer types, which will contribute to establishing future human health risk assessment frameworks. These findings will also assist efforts in policy-making to minimize microplastic risks in seafood.
Collapse
|
85
|
Tongo I, Erhunmwunse NO. Effects of ingestion of polyethylene microplastics on survival rate, opercular respiration rate and swimming performance of African catfish (Clarias gariepinus). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127237. [PMID: 34844355 DOI: 10.1016/j.jhazmat.2021.127237] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The study evaluated the impact of ingestion of microplastics on accumulation, survival, opercular respiratory rate (ORR), and swimming performance of Clarias gariepinus, the African freshwater catfish exposed to polyethylene microplastics. Juveniles were exposed for 4 days to 50-500 µm low-density polyethylene (LDPE) microplastics at four different concentrations (0.5, 1.0, 1.5, and 2.0 g/L). After 4 days of exposure, the concentration of microplastics in the gastrointestinal tract (GIT) of the fish increased with increasing concentrations of microplastics. Mean weights of microplastics in the GIT of the fish ranged from 0.0025 ± 0.001 g to 0.054 ± 0.01 g, suggesting that the fish were unable to detect and avoid ingesting the microplastics. No mortality was observed in all the treatment concentrations except in the highest concentration (2 g/L) where 10% mortality was observed. The results showed that ORR increased in a concentration and time-dependent manner. Compared with the control group, the swimming speed, travel distance and movement patterns of the fish exposed to microplastics were significantly reduced (p < 0.05). Therefore, this study helps understand the environmental impact of microplastics on C. gariepinus in freshwater environments.
Collapse
Affiliation(s)
- Isioma Tongo
- Laboratory for Ecotoxicology and Environmental Forensics, University of Benin, PMB 1154 Benin City, Nigeria.
| | | |
Collapse
|
86
|
Uzun P, Farazande S, Guven B. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review. CHEMOSPHERE 2022; 288:132517. [PMID: 34634279 DOI: 10.1016/j.chemosphere.2021.132517] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Microplastic pollution in marine and riverine environments is a threat not only for the aquatic ecosystem itself but also for human activity and life. Although there are reviews regarding microplastic debris in environments, most of them focus on the studies on their type, occurrence, and distribution. Only a limited number of these studies focus on the modeling methods, usually concentrating on particular aspects, such as settling or bioaccumulation. In this paper, physically-based existing microplastics modeling studies are classified and reviewed according to the environment, modeling methodology, and input-output relationships. Considering the strengths and weaknesses of all modeling methodologies, it is deduced that more reliable results are obtained using hybrid methods, especially the coupling of hydrodynamic and process-based models, and hydrodynamics and statistical models. The significance of having much more consideration and knowledge on the microplastics' physical properties and the environmental processes affecting their fate and transport in the aquatic environments is revealed for future research. It has also been recommended that a standardized method for data calibration, validation, and verification is necessary to be able to compare the modeling results with field investigations more efficiently than it is currently.
Collapse
Affiliation(s)
- Pelin Uzun
- Faculty of Engineering, Bogazici University, 34342, Istanbul, Turkey
| | - Sofi Farazande
- Faculty of Engineering, Bogazici University, 34342, Istanbul, Turkey
| | - Basak Guven
- Institute of Environmental Sciences, Bogazici University, 34342, Istanbul, Turkey.
| |
Collapse
|
87
|
Arreola-Alarcón IM, Reyes-Bonilla H, Sakthi JS, Rodríguez-González F, Jonathan MP. Seasonal tendencies of microplastics around coral reefs in selected Marine Protected National Parks of Gulf of California, Mexico. MARINE POLLUTION BULLETIN 2022; 175:113333. [PMID: 35123271 DOI: 10.1016/j.marpolbul.2022.113333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This study focuses on the presence of MPs in the sediment beds around coral reefs of MPNPs in Baja California Sur, México. Based on seasonal sampling results, comparison of MPs from Cabo Pulmo (avg. 680.25 items/100 g-1 d.w) recorded higher values than Espiritu Santo Island (avg. 321.75 items/100 g-1 d.w) from backshore/foreshore regions. Fibrous MPs are the dominant morphotypes followed by fragments and spheres. SEM/EDS analysis revealed that the MPs are altered texturally in surface and is bioavailable to marine organisms independent of size/shape. FTIR analysis indicate different polymers (in %) in the form of PP (70), PET (65), HDPE (59), LDPE (50), PS (30), PC (18), PU (10) and RYN (10). Most of the MPs are secondary in origin resulting from man-made and tourist's activities controlled by wave transportation and tidal currents. Existence of MPs in sediment beds around the coral reefs signals the ways for future investigations.
Collapse
Affiliation(s)
- I Montserrat Arreola-Alarcón
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur K.M 5.5, Apartado Postal 19-B, C.P.23080 La Paz, Baja California Sur, Mexico
| | - H Reyes-Bonilla
- Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Carretera al Sur K.M 5.5, Apartado Postal 19-B, C.P.23080 La Paz, Baja California Sur, Mexico
| | - J S Sakthi
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico
| | - Francisco Rodríguez-González
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional (IPN), Carretera Yautepec-Jojutla Km. 6, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico
| | - M P Jonathan
- Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340 Ciudad de México, Mexico.
| |
Collapse
|
88
|
Yu Y, Mo WY, Luukkonen T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149140. [PMID: 34303986 DOI: 10.1016/j.scitotenv.2021.149140] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Nano/microplastics (NPs/MPs) and organic micropollutants are contaminants exerting serious threats to aquatic ecosystems, which are further aggravated through their interactions. Organic micropollutants can adsorb on the surface of NPs/MPs, enter to the digestive systems of aquatic organisms with NPs/MPs, and desorb from the surface inside the organism. Consequently, the migration behaviour of organic micropollutants is significantly affected increasing their risk to accumulate in the food chain. Therefore, understanding the adsorption interactions between NPs/MPs and organic micropollutants is critical for evaluating the fate and impact of NPs/MPs in the environment. This review article provides an overview about the role of NPs/MPs as (temporary) sinks for organic micropollutants but also as primary sources of organic micropollutants through the leaching of plastic additives. Specifically, the following aspects are discussed: adsorption/desorption mechanisms (e.g., hydrophobic partitioning interaction, surface adsorption by van der Waals forces or hydrogen bonding, and pore filling), influencing environmental factors (e.g., pH, salinity, and dissolved organic matter), leaching of plastic additives from NPs/MPs, and potential ecotoxicological effects arising from the interactions of NPs/MPs and organic micropollutants.
Collapse
Affiliation(s)
- Yangmei Yu
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, Oulu 90014, Finland; Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, People's Republic of China
| | - Wing Yin Mo
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong, People's Republic of China
| | - Tero Luukkonen
- Fibre and Particle Engineering Research Unit, University of Oulu, Pentti Kaiteran katu 1, Oulu 90014, Finland.
| |
Collapse
|
89
|
Curren E, Kuwahara VS, Yoshida T, Leong SCY. Marine microplastics in the ASEAN region: A review of the current state of knowledge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117776. [PMID: 34280748 DOI: 10.1016/j.envpol.2021.117776] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Microplastic pollution is a prevalent and serious problem in marine environments. These particles have a detrimental impact on marine ecosystems. They are harmful to marine organisms and are known to be a habitat for toxic microorganisms. Marine microplastics have been identified in beach sand, the seafloor and also in marine biota. Although research investigating the presence of microplastics in various marine environments have increased across the years, studies in Southeast Asia are still relatively limited. In this paper, 36 studies on marine microplastic pollution in Southeast Asia were reviewed and discussed, focusing on microplastics in beach and benthic sediments, seawater and marine organisms. These studies have shown that the presence of fishing harbours, aquaculture farms, and tourism result in an increased abundance of microplastics. The illegal and improper disposal of waste from village settlements and factories also contribute to the high abundance of microplastics observed. Hence, it is crucial to identify the hotspots of microplastic pollution, for assessment and mitigation purposes. Future studies should aim to standardize protocols and quantification, to allow for better quantification and assessment of the levels of microplastic contamination for monitoring purposes.
Collapse
Affiliation(s)
- Emily Curren
- St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore.
| | - Victor S Kuwahara
- Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Teruaki Yoshida
- Unit for Harmful Algal Bloom Studies, Borneo Marine Research Institute, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sandric Chee Yew Leong
- St. John Island National Marine Laboratory, Tropical Marine Science Institute (TMSI), National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| |
Collapse
|
90
|
Zhang F, Xu J, Zhu L, Peng G, Jabeen K, Wang X, Li D. Seasonal distributions of microplastics and estimation of the microplastic load ingested by wild caught fish in the East China Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126456. [PMID: 34186430 DOI: 10.1016/j.jhazmat.2021.126456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Microplastic (MP) pollution in marine environments and organisms has received substantial international attention. However, long-term field studies of MPs are scarce. Here, we assessed the seasonal variation in MP abundance in the Zhoushan fishing ground (ZFG), one of the most abundant and productive fishing grounds worldwide, and analyzed the long-term MP accumulation in fish gastrointestinal tracts from September 2017 to June 2018. The most common MP particles in the ZFG were polyethylene terephthalate and polypropylene. After four seasons of continuous monitoring, we did not find accumulation of MPs in the fish after 10% KOH digestion. In total, 254 MP particles were removed from the gastrointestinal tracts of all fish. The average number of particles per fish was lower than that reported in previous global marine studies. There were significant differences among species. Moreover, this study provides the calculation of the weight of MPs ingested by fish and an estimate of the load of accumulated MPs in fish. According to the estimation, the load of MPs ingested by fish annually was approximately 3 kg in ZFG. These findings provide the long-term evidence of MP contamination in biota from the ZFG. The amounts of MPs ingested by fish require more detailed and improved investigation and estimation in further studies.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Guyu Peng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, 200062 Shanghai, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai 200241, China.
| |
Collapse
|
91
|
Nanthini Devi K, Raju P, Santhanam P, Dinesh Kumar S, Krishnaveni N, Roopavathy J, Perumal P. Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch Microbiol 2021; 203:6253-6265. [PMID: 34591146 DOI: 10.1007/s00203-021-02592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
The present study aimed to evaluate the microplastic degradation efficiency of bacterial isolates collected from Vaigai River, Madurai, India. The isolates were processed with proper methods and incorporated in to the UV-treated polyethylene (PE) and polypropylene (PP) degradation. Based on preliminary screening, four bacterial isolates such as Bacillus sp. (BS-1), Bacillus cereus (BC), Bacillus sp. (BS-2), and Bacillus paramycoides (BP) were proceed to further degradation experiment for 21 days. The microplastics were filled with bacterial isolates which is use microplastic (PE, PP) as carbon source for their growth and proceed for shake flask experiment were carried out by two approaches with control. The microplastic degradation was confirmed through their weight loss, increasing fragmentations and changes of surface area against control experiments (microplastic without isolates) also confirms degrading efficiency of isolated bacterial strains through non-changes in their weight and surface area. The highest degradation of PP and PE were observed in BP (78.99 ± 0.005%), and BC (63.08 ± 0.009%) in single approach, while in combined approach BC & BP recorded the highest degradation in both PP (78.62 ± 2.16%), and PE (72.50 ± 20.53%). The formation of new functional groups is confirming the biofilm formation in the surface area of microplastics by isolates and proving their efficiency in degrade the microplastics. The degradation of microplastic experiments should be cost effective and zero waste which is helpful to save the environment and the present findings could reveal the way to degrade the microplastics and prevent the microplastic pollution in aquatic environment.
Collapse
Affiliation(s)
- K Nanthini Devi
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P Raju
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P Santhanam
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| | - S Dinesh Kumar
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - N Krishnaveni
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - J Roopavathy
- PG & Research Department of Zoology, Nirmala College for Women (Autonomous), Red Fields, Coimbatore, Tamil Nadu, 641 018, India
| | - P Perumal
- Marine Planktonology and Aquaculture Lab, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| |
Collapse
|
92
|
Expósito N, Rovira J, Sierra J, Folch J, Schuhmacher M. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. Case study of Tarragona coast (western Mediterranean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147453. [PMID: 33964765 DOI: 10.1016/j.scitotenv.2021.147453] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Mediterranean Sea has been proposed as the sixth greatest accumulation zone for marine litter and the most affected regarding to microplastics (MPs). Tarragona (Catalonia, NE Spain) coastal region suffers high pressure due to urbanization, tourism, industrial harbour and petrochemical/plastic industries. The present study aims to quantify and characterize in size, morphology and composition the MPs present in sandy beaches, marine sediments, and surface seawaters of Tarragona coastal region. MPs mean abundance were 1.30 items/m3 in surface seawaters, 32.4 items/kg in marine sediments, and 10.7 items/kg in sandy beaches. Polyester fibres were dominant MPs in bottom sediments and seawater meanwhile polyethylene and polypropylene fragments were the main MPs in beaches. The fibres balls associated with bottom sediments, organic matter and plankton were abundant, masking the real quantity of fibres in each reservoir. The abundance by volume of seawater MPs was higher to those found in oceanic areas and similar to other areas of Mediterranean Sea, corroborating that Western Mediterranean Sea as a region of MPs accumulation. MPs composition and abundance suggested the input of numerous land-base-sources, WWTP (wastewater treatment plants) effluents discharges, and emissaries as the most important. Marine MPs pollution were studied from an integrative point of view, that includes superficial sea water, sand from beaches and sediments. The dynamics of MPs in Tarragona coast were characterized by seawater as the media that receive and facilitate dispersion and fragmentation. The shoreline acts as an intermediate reservoir with constant weathering and active exchange with seawater surface and the sediments acts as a significant sink for medium MPs sizes. It is necessary to develop protocols and guidelines for MPs analysis to obtain harmonized and comparable results.
Collapse
Affiliation(s)
- Nora Expósito
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Jordi Sierra
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; Laboratory of Soil Science, Faculty of Pharmacy, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Catalonia, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
93
|
Solomando A, Capó X, Alomar C, Compa M, Valencia JM, Sureda A, Deudero S. Assessment of the effect of long-term exposure to microplastics and depuration period in Sparus aurata Linnaeus, 1758: Liver and blood biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147479. [PMID: 33975116 DOI: 10.1016/j.scitotenv.2021.147479] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The constant increase in plastic pollution has attracted great attention in recent years due to its potential detrimental effects on organisms and ecosystems. While the consequences of ingestion of large plastic litter are mostly understood, the impacts resulting from a long-term exposure and a recovery period of microplastics (MPs) are still limited. The aims were to monitor oxidative stress, detoxification and inflammatory biomarkers in liver, plasma and erythrocytes of Sparus aurata exposed during 90 days to low-density polyethylene (LDPE)-MPs enriched diet (10% by weight) followed by 30 days of depuration. Exposure to LDPE-MPs progressively activates the antioxidant and detoxification system and induces an inflammatory response in liver and plasma, whereas no significant changes were observed in erythrocytes. The plasma activities of catalase, myeloperoxidase (MPO), lysozyme and the levels of malondialdehyde (MDA) as maker of lipid peroxidation significantly increased after exposure to LDPE-MPs for 90 days compared to the control group. The activities of all antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase-, the detoxification enzyme glutathione s-transferase, MPO, the production of reactive oxygen species and the levels of MDA were also significantly increased in liver after MPs exposure. Additionally, all these biomarkers tended to recover during the depuration period, most of them reaching similar levels to those of the control group. In conclusion, the ingestion of a diet containing LDPE-MPs for 90 days induced a progressive increase in oxidative stress and inflammation biomarkers in liver and plasma of S. aurata but not in erythrocytes, which tended to regain control values when not exposed to MPs for 30 days. The present study contributes to a better understanding of the toxic effects of MPs in S. aurata and highlights the usefulness of plasma that can be obtained in a minimally invasive way to monitor these effects.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Xavier Capó
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain
| | - Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| | - Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| | - José María Valencia
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de les Illes Balears, E-07157 Port d'Andratx, Balearic Islands, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA) (INIA-CAIB-UIB), E-07122 Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122 Palma de Mallorca, Balearic Islands, Spain..
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015 Palma de Mallorca, Balearic Islands, Spain.
| |
Collapse
|
94
|
Pelamatti T, Rios-Mendoza LM, Hoyos-Padilla EM, Galván-Magaña F, De Camillis R, Marmolejo-Rodríguez AJ, González-Armas R. Contamination knows no borders: Toxic organic compounds pollute plastics in the biodiversity hotspot of Revillagigedo Archipelago National Park, Mexico. MARINE POLLUTION BULLETIN 2021; 170:112623. [PMID: 34146855 DOI: 10.1016/j.marpolbul.2021.112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution is ubiquitous and not even remote protected islands are safe from it. Floating debris can adsorb toxic compounds that concentrate on their surface, being available to the animals that ingest them. For this reason, a baseline study of plastic pollution was conducted in the remote Revillagigedo Archipelago, in the Mexican Pacific Ocean. In 47 manta net samples an average of 4.8 plastics/1000m2 was found, 73% of the pieces being <5 mm. Polyethylene and polypropylene were the most common polymers found. The chemical analysis of organic pollutants revealed that organochlorine pesticides, polycyclic aromatic hydrocarbons and polychlorinated biphenyls are adsorbed on the plastics collected in the area. Filter feeding megafauna such as humpback whales, manta rays and whale sharks could ingest contaminated micro and macroplastics. Plastics were found also on the beach, where they are available to the ingestion by terrestrial animals, including endemic species endangered to extinction.
Collapse
Affiliation(s)
- Tania Pelamatti
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico; Pelagios Kakunja A.C., Sinaloa 1540, Las Garzas, 23070 La Paz, Baja California Sur, Mexico.
| | - Lorena M Rios-Mendoza
- University of Wisconsin-Superior, Department of Natural Sciences, Chemistry Program, Belknap and Catlin, PO Box 2000, Superior, WI 54880, USA
| | - Edgar M Hoyos-Padilla
- Pelagios Kakunja A.C., Sinaloa 1540, Las Garzas, 23070 La Paz, Baja California Sur, Mexico; Fins Attached Marine Research and Conservation, Colorado Springs 80908, USA
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Roberto De Camillis
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Ana J Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| |
Collapse
|
95
|
Rios-Mendoza LM, Ontiveros-Cuadras JF, Leon-Vargas D, Ruiz-Fernández AC, Rangel-García M, Pérez-Bernal LH, Sanchez-Cabeza JA. Microplastic contamination and fluxes in a touristic area at the SE Gulf of California. MARINE POLLUTION BULLETIN 2021; 170:112638. [PMID: 34174745 DOI: 10.1016/j.marpolbul.2021.112638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are long-lasting anthropogenic pollutants, observed in all types of natural environments. The MPs abundance and their temporal variability in beach sands, surface waters (manta trawl), and suspended sediments (sediment trap) were assessed in Mazatlán, Mexico, a tourism destination on the northern Pacific coast, under the hypothesis that MP contamination is influenced by rainfall and population density. The MP concentrations in beach sands from urban and rural areas nearby Mazatlán (4-36 MPs m-2) and in surface waters (1.7-2.0 MPs m-3) were comparable between type of sampling sites; whereas the MP fluxes in sediment trap samples varied widely (40-782 MPs m-2 day-1) with highest values during the rainfall season. The MPs recovered were mostly white/clear (48-54%), and the prevailing shapes were fragments in beach sands and surface waters (59-80%), and fibers (75%) in suspended sediments. The synthetic polymers polypropylene, polyethylene, and polyethylene terephthalate were the most abundant in the study area.
Collapse
Affiliation(s)
- Lorena M Rios-Mendoza
- University of Wisconsin Superior, Belknap St. and Catlin Ave., Superior, WI 54880, Barstow Hall 311A, United States of America.
| | - Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Procesos Oceánicos y Costeros, Ciudad Universitaria, 04510 México City, Mexico.
| | - Daniela Leon-Vargas
- University of Wisconsin Superior, Belknap St. and Catlin Ave., Superior, WI 54880, Barstow Hall 311A, United States of America.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz, Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Martín Rangel-García
- Universidad Nacional Autónoma de México, Posgrado en Química, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Libia Hascibe Pérez-Bernal
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz, Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz, Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| |
Collapse
|
96
|
Chinfak N, Sompongchaiyakul P, Charoenpong C, Shi H, Yeemin T, Zhang J. Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi-Phumduang River system and Bandon Bay, Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146700. [PMID: 33812121 DOI: 10.1016/j.scitotenv.2021.146700] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Microplastic contamination in the environment is a global problem, as evidenced by the increasing amount of research worldwide. To our knowledge, this study is the first to investigate the microplastic distribution in Bandon Bay, one of the most important maricultural areas of Thailand. Water and sediment samples from the Tapi-Phumduang River system (n = 10) and Bandon Bay (n = 5) were collected. Water sampling at the river mouth was carried out during a complete tidal cycle to estimate the microplastic flux to the bay during the wet season. Moreover, two commercial bivalve species grown in the bay, the green mussel (Perna viridis) and lyrate Asiatic hard clam (Meretrix lyrata), were analyzed. More items of microplastics were found in the river system than in the bay. During the tide cycle, one-third of the microplastics entering the bay were washed back upstream during high tide. This backflow consisted mainly of larger microplastics. The average daily load of microplastics to the bay was 22.4 × 109 items day-1. The load during low tide was approximately 4-5 times higher than that during high tide. The overall accumulation of microplastics in the bottom sediments of the river and in the bay was similar (p < 0.05). Green mussels showed significantly higher contamination with microplastics than clams. Notably, the small-sized shellfish contained more particles (items/g) than the large ones (p < 0.05). Fibers were detected in virtually all samples: water (98%), sediment (94%), mussels (100%), and clams (95%). Among these, microfibers (<1 mm) were detected in water (71%), sediment (63%), green mussels (63%), and clams (52%). Blue and white particles were the two most frequently observed colors, while the most dominant polymers were rayon, followed by polypropylene (PP) or polyethylene (PE), polyethylene terephthalate (PET), and nylon. To this end, we posit that river discharge was a significant source of microplastics in Bandon Bay, with minor additional contributions from fishing and mariculture activities within the bay. Ultimately, these microplastics may end up in the sediments and living organisms.
Collapse
Affiliation(s)
- Narainrit Chinfak
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Thamasak Yeemin
- Marine Biodiversity Research Group, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| |
Collapse
|
97
|
Kozak ER, Franco-Gordo C, Mendoza-Pérez J, Sánchez-Nuño N, Martínez-Sánchez XA, Melo-Agustín P, Pelayo-Martínez G, Gómez-Gutiérrez J. Surface layer microplastic pollution in four bays of the central Mexican Pacific. MARINE POLLUTION BULLETIN 2021; 169:112537. [PMID: 34062323 DOI: 10.1016/j.marpolbul.2021.112537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Surface microplastics were sampled monthly in four tropical bays (Manzanillo, Santiago, Navidad and Cuastecomates) of the central Mexican Pacific during March 2017 to February 2018. Microplastic concentrations ranged between 0.01 and 1.05 particles/m2 with a median per bay ranging between 0.26 and 0.40 particles/m2. Raman spectroscopy registered polypropylene (40%), polyethylene (40%) and polyester (20%) polymers. Fibers dominated all samples, except for Manzanillo where fragments numerically dominated during the rainy season (Jun-Oct). Fiber concentration was not significantly different among bays or seasons, likely associated with continuous wastewater discharge. Fragment concentrations were significantly higher in Bahía Manzanillo and Santiago than the other two bays. Non-metric multidimensional scaling showed distinct distribution of Manzanillo samples (which has important port activities) as compared to Santiago, Navidad, Cuastecomates (where tourism economic activities predominate). This first direct comparison of sea surface microplastic concentration among four bays in Mexico provides a baseline to study impacts on marine zooplankton in this tropical ecosystem.
Collapse
Affiliation(s)
- Eva R Kozak
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farias 82, San Patricio Melaque, Jalisco 48980, Mexico.
| | - Carmen Franco-Gordo
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farias 82, San Patricio Melaque, Jalisco 48980, Mexico
| | - Jorge Mendoza-Pérez
- Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Cda. Miguel Stampa s/n, U.P. Adolfo López Mateos, 07738 México, D.F., Mexico
| | - Nancy Sánchez-Nuño
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farias 82, San Patricio Melaque, Jalisco 48980, Mexico
| | - Xenia A Martínez-Sánchez
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farias 82, San Patricio Melaque, Jalisco 48980, Mexico
| | - Paola Melo-Agustín
- Departamento de Ingeniería en Sistemas Ambientales, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Cda. Miguel Stampa s/n, U.P. Adolfo López Mateos, 07738 México, D.F., Mexico
| | - Gloria Pelayo-Martínez
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farias 82, San Patricio Melaque, Jalisco 48980, Mexico
| | - Jaime Gómez-Gutiérrez
- Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Baja California Sur 23096, Mexico
| |
Collapse
|
98
|
Mallik A, Xavier KAM, Naidu BC, Nayak BB. Ecotoxicological and physiological risks of microplastics on fish and their possible mitigation measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146433. [PMID: 33743469 DOI: 10.1016/j.scitotenv.2021.146433] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are widely distributed and extensively found within marine ecosystems, and approximately 8 million tons of plastics are being dumped into the sea annually. Once reached the marine environment, plastics tend to get fragmented into smaller particles through photo-degradation, mechanical and biological processes. These MPs have raised concerns globally due to their potential toxic impacts on a wide variety of aquatic fauna and humans. Ingested microplastics can cause severe health implications in fishes, including reduced feeding intensity, improper gill functioning, immuno-suppression, and compromised reproducibility. Several studies were also conducted to scrutinize MPs trophic transfer through the food chain from primary producers to top predators and their bioaccumulation. This paper briefly summarizes all the possible sources, routes, bioavailability, trophic transfer, and consequences of microplastics in fishes. The review article also intended to highlight various mitigation strategies like implementing Four R's concept (refuse, reduce, reuse, and recycle), integrated strategies, ban on single-use plastics, use bioplastics, and create behavioural changes with public awareness.
Collapse
Affiliation(s)
- Abhijit Mallik
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K A Martin Xavier
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
| | - Bejawada Chanikya Naidu
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Binaya Bhusan Nayak
- Fishery Resource Harvest and Postharvest Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
99
|
Prokić MD, Gavrilović BR, Radovanović TB, Gavrić JP, Petrović TG, Despotović SG, Faggio C. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125476. [PMID: 33647615 DOI: 10.1016/j.jhazmat.2021.125476] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Although we are witnesses of an increase in the number of studies examining the exposure/effects of microplastics (MPs) on different organisms, there are many unknowns. This review aims to: (i) analyze current studies devoted to investigating the exposure/effects of MPs on animals; (ii) provide some basic knowledge about different model organisms and experimental approaches used in studying MPs; and to (iii) convey directions for future studies. We have summarized data from 500 studies published from January 2011 to May 2020, about different aspects of model organisms (taxonomic group of organisms, type of ecosystem they inhabit, life-stage, sex, tissue and/or organ) and experimental design (laboratory/field, ingestion/bioaccumulation/effect). We also discuss and try to encourage investigation of some less studied organisms (terrestrial and freshwater species, among groups including Annelida, Nematoda, Echinodermata, Cnidaria, Rotifera, birds, amphibians, reptiles), and aspects of MP pollution (long-term field studies, comparative studies examining life stages, sexes, laboratory and field work). We hope that the information presented in this review will serve as a good starting point and will provide useful guidelines for researchers during the process of deciding on the model organism and study designs for investigating MPs.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 3198166 Santa Agata-Messina, Italy.
| |
Collapse
|
100
|
Akanyange SN, Lyu X, Zhao X, Li X, Zhang Y, Crittenden JC, Anning C, Chen T, Jiang T, Zhao H. Does microplastic really represent a threat? A review of the atmospheric contamination sources and potential impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146020. [PMID: 33677289 DOI: 10.1016/j.scitotenv.2021.146020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are regarded as one of the major atmospheric contaminants that have gained wide attention across the globe in the current dispensation. Airborne MPs have been collected in atmospheric fallouts, in indoor and outdoor air as well as along roadways and indoor dust. The most dominating constituent shapes and forms of identified airborne MPs are fibers and synthetic textiles, respectively. With the breathing mechanism as a spontaneous practice for survival, the inhalation of airborne MPs is an inevitable deal. The level of toxicity of MPs to organisms stems from its physiochemical speciation. The smaller size and almost weightless nature make it possible to suspend in the atmosphere and be inhaled and create potential health problems. Nonetheless, the data available concerning the presence of airborne MPs and its environmental and human health impacts is limited. In this review, we extensively discuss the rigorous and suitable methodologies adopted for the analysis of airborne MPs in previous studies. The characteristics and sources of airborne MPs, the potential health impacts on humans, and some mitigating measures have also been discussed thoroughly.
Collapse
Affiliation(s)
- Stephen Nyabire Akanyange
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Xianjun Lyu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Xiaohan Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Xue Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Yan Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China.
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 W. Peachtree Street, Suite 320, Atlanta, GA 30332-0595, USA
| | - Cosmos Anning
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Tianpeng Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Tianlin Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| | - Huaqing Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266000, China
| |
Collapse
|