51
|
Deep Transcranial Magnetic Stimulation Affects Gut Microbiota Composition in Obesity: Results of Randomized Clinical Trial. Int J Mol Sci 2021; 22:ijms22094692. [PMID: 33946648 PMCID: PMC8125086 DOI: 10.3390/ijms22094692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: −4.1 ± 0.8%, LF: −1.9 ± 0.8%, sham: −1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: −61.5 ± 15.2%, p < 0.01; LF: −31.8 ± 17.1%, p < 0.05; sham: −35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (−77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: −54.9%, sham: −15.1%; p > 0.05) and Lactobacillus (LF: −26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.
Collapse
|
52
|
Abstract
Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20-30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs-an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
53
|
Antonelli M, Fattore L, Sestito L, Di Giuda D, Diana M, Addolorato G. Transcranial Magnetic Stimulation: A review about its efficacy in the treatment of alcohol, tobacco and cocaine addiction. Addict Behav 2021; 114:106760. [PMID: 33316590 DOI: 10.1016/j.addbeh.2020.106760] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
Substance Use Disorder (SUD) is a chronic and relapsing disease characterized by craving, loss of control, tolerance and physical dependence. At present, the combination of pharmacotherapy and psychosocial intervention is the most effective management strategy in preventing relapse to reduce dropout rates and promote abstinence in SUD patients. However, only few effective medications are available. Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that modulates the cellular activity of the cerebral cortex through a magnetic pulse applied on selected brain areas. Recently, the efficacy of TMS has been investigated in various categories of SUD patients. The present review analyzes the application of repetitive TMS in patients with alcohol, tobacco, and cocaine use disorder. Although the number of clinical studies is still limited, repetitive TMS yields encouraging results in these patients, suggesting a possible role of TMS in the treatment of SUD.
Collapse
Affiliation(s)
- Mariangela Antonelli
- Alcohol Use Disorder and Alcohol Related Disease Unit, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Luisa Sestito
- Alcohol Use Disorder and Alcohol Related Disease Unit, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Catholic University of Rome, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Marco Diana
- G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Giovanni Addolorato
- Alcohol Use Disorder and Alcohol Related Disease Unit, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy; Internal Medicine Unit, Columbus-Gemelli Hospital, Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
54
|
Ferrulli A, Massarini S, Macrì C, Luzi L. Safety and tolerability of repeated sessions of deep transcranial magnetic stimulation in obesity. Endocrine 2021; 71:331-343. [PMID: 32964308 PMCID: PMC7881959 DOI: 10.1007/s12020-020-02496-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023]
Abstract
PURPOSE Repetitive Transcranial Magnetic Stimulation (rTMS) has been demonstrated to be effective in body weight control in individuals with obesity. Most clinical trials on rTMS provided a reassuring safety profile. In the present work, we present an extensive analysis on both severe and mild Adverse Events (AEs) in obese individuals treated with rTMS. METHODS We examined the intensity, duration, correlation with the treatment, up to 1 year after the end of rTMS treatment. RESULTS Descriptive analysis included a total of 63 subjects undergoing a 5-week deep rTMS experimental treatment for obesity (age 48.3 ± 10.4 years; BMI 36.3 ± 4.4 kg/m2): 31 patients were treated with high-frequency rTMS (HF), 13 with low-frequency rTMS (LF), and 19 were sham treated (Sham). Thirty-two subjects (50.8%) reported a total of 52 AEs, including mainly moderate (51.9%) events. The most frequently reported side effects were headaches of moderate intensity (40.4%) and local pain/discomfort (19.2%) and resulted significantly more frequent in HF group compared to other groups (p < 0.05). No significant differences among groups were found for the other reported AEs: drowsiness, insomnia, paresthesia, vasovagal reactions, hypertensive crisis. No AEs potentially related to the rTMS arised up to 1 year from the end of the treatment. CONCLUSIONS This is the first comprehensive safety analysis in obese patients treated with rTMS. The analysis did not reveal any unexpected safety concerns. Only headaches and local pain/discomfort have been significantly more frequent in the HF group, confirming the good tolerability of rTMS even in the obese population potentially more susceptible to side effects of brain stimulation.
Collapse
Affiliation(s)
- Anna Ferrulli
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, 20099, Sesto San Giovanni (MI), Italy
| | - Stefano Massarini
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, 20099, Sesto San Giovanni (MI), Italy
| | - Concetta Macrì
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, 20099, Sesto San Giovanni (MI), Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, 20099, Sesto San Giovanni (MI), Italy.
| |
Collapse
|
55
|
Altered brain intrinsic functional hubs and connectivity associated with relapse risk in heroin dependents undergoing methadone maintenance treatment: A resting-state fMRI study. Drug Alcohol Depend 2021; 219:108503. [PMID: 33444899 DOI: 10.1016/j.drugalcdep.2020.108503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The neural substrates underlying the relapse behavior of heroin dependents (HD) who received long-term methadone maintenance treatment (MMT) have yet to be thoroughly expounded. This study investigated the relapse-related intrinsic functional hubs of HD and their functional integration feature at whole brain network level. METHODS 57 male HD receiving MMT and 49 matched healthy controls (HC) were enrolled. All of the subjects received resting-state functional magnetic resonance imaging scan. And the 57 patients were assigned a 26-month follow-up for collecting illegal drug use information. Of them, 11 were non-relapsers and 46 relapsers. We analyzed the voxel-based degree centrality (DC) to reveal the differences in nodule centrality between HD and HC, conducted Pearson partial-correlation analysis to confirm the relationship between relapse frequency and DC value of the nodes with significant intergroup differences, and finally compared the functional connectivity (FC) of the relapse-related hubs between non-relapsers and relapsers. RESULTS We found the DC values of right insula and left nucleus accumbens (NAc) were negatively correlated with relapse frequency. Compared with the non-relapsers, the relapsers had a significant decreased FC between left NAc and inhibitory control circuitry, including left dorsolateral prefrontal cortex, left inferior frontal gyrus and motor regions. CONCLUSIONS These findings suggest that the neural substrates of relapse vulnerability in HD undergoing MMT are the intrinsic functional hubs of introceptive and reward systems and the latter modulates relapse behavior via interaction with inhibitory control circuit.
Collapse
|
56
|
Clinical and Functional Connectivity Outcomes of 5-Hz Repetitive Transcranial Magnetic Stimulation as an Add-on Treatment in Cocaine Use Disorder: A Double-Blind Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:745-757. [PMID: 33508499 DOI: 10.1016/j.bpsc.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cocaine use disorder (CUD) is a global condition lacking effective treatment. Repetitive transcranial magnetic stimulation (rTMS) may reduce craving and frequency of cocaine use, but little is known about its efficacy and neural effects. We sought to elucidate short- and long-term clinical benefits of 5-Hz rTMS as an add-on to standard treatment in patients with CUD and discern underlying functional connectivity effects using magnetic resonance imaging. METHODS A total of 44 patients with CUD were randomly assigned to complete the 2-week double-blind randomized controlled trial (acute phase) (sham [n = 20, 2 female] and active [n = 24, 4 female]), in which they received two daily sessions of rTMS on the left dorsolateral prefrontal cortex (PFC). Subsequently, 20 patients with CUD continued to an open-label maintenance phase for 6 months (two weekly sessions for up to 6 mo). RESULTS rTMS plus standard treatment for 2 weeks significantly reduced craving (baseline: 3.9 ± 3.6; 2 weeks: 1.5 ± 2.4, p = .013, d = 0.77) and impulsivity (baseline: 64.8 ± 16.8; 2 weeks: 53.1 ± 17.4, p = .011, d = 0.79) in the active group. We also found increased functional connectivity between the left dorsolateral PFC and ventromedial PFC and between the ventromedial PFC and right angular gyrus. Clinical and functional connectivity effects were maintained for 3 months, but they dissipated by 6 months. We did not observe reduction in positive results for cocaine in urine; however, self-reported frequency and grams consumed for 6 months were reduced. CONCLUSIONS With this randomized controlled trial, we show that 5-Hz rTMS has potential promise as an adjunctive treatment for CUD and merits further research.
Collapse
|
57
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Vulnerability to addiction. Neuropharmacology 2021; 186:108466. [PMID: 33482225 DOI: 10.1016/j.neuropharm.2021.108466] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Addiction is a chronic brain disease that has dramatic health and socioeconomic consequences worldwide. Multiple approaches have been used for decades to clarify the neurobiological basis of this disease and to identify novel potential treatments. This review summarizes the main brain networks involved in the vulnerability to addiction and specific innovative technological approaches to investigate these neural circuits. First, the evolution of the definition of addiction across the Diagnostic and Statistical Manual of Mental Disorders (DSM) is revised. We next discuss several innovative experimental techniques that, combined with behavioral approaches, have allowed recent critical advances in understanding the neural circuits involved in addiction, including DREADDs, calcium imaging, and electrophysiology. All these techniques have been used to investigate specific neural circuits involved in vulnerability to addiction and have been extremely useful to clarify the neurobiological basis of each specific component of the addictive process. These novel tools targeting specific brain regions are of great interest to further understand the different aspects of this complex disease. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- R Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - P Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
58
|
Cardullo S, Gómez Pérez LJ, Cuppone D, Sarlo M, Cellini N, Terraneo A, Gallimberti L, Madeo G. A Retrospective Comparative Study in Patients With Cocaine Use Disorder Comorbid With Attention Deficit Hyperactivity Disorder Undergoing an rTMS Protocol Treatment. Front Psychiatry 2021; 12:659527. [PMID: 33841218 PMCID: PMC8026860 DOI: 10.3389/fpsyt.2021.659527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Adult attention-deficit/hyperactivity disorder (ADHD) is associated with high comorbidity with other psychiatric diseases, including cocaine use disorder (CocUD). Given the common fronto-striatal dysfunction, ADHD patients often use cocaine as self-medication for ameliorating symptoms by increasing striatal dopamine release. Yet, comorbidity with ADHD is related to poor treatment outcomes. CocUD has been treated with transcranial magnetic stimulation (TMS), but no studies investigated the outcomes in patients comorbid with ADHD. Methods: Twenty-two ADHD/CocUD and 208 CocUD-only participants received a high-frequency (15 Hz) rTMS treatment stimulating the left-DLPFC. We investigated whether both groups of patients shared similar demographic and clinical characteristics at baseline. Then, we monitored the effect of treatment testing for potential differences between groups. Results: At baseline demographic, toxicology and clinical features were not different between the two groups except for global severity index (GSI from SCL-90): patients of ADHD/CocUD group reported higher general symptomatology compared to the CocUD-only group. Concerning the effect of treatment, both groups significantly improved over time regarding cocaine use, craving, and other negative affect symptoms. No differences were observed between groups. Conclusions: To our knowledge, this is the first study comparing the demographic characterization and rTMS clinical improvements of patients with a dual diagnosis of ADHD and CocUD against CocUD-only patients. Cocaine use and common self-reported withdrawal/abstinence symptoms appear to benefit from rTMS treatment with no differences between groups. Future studies are needed to further investigate these preliminary results.
Collapse
Affiliation(s)
| | | | - Diego Cuppone
- Fondazione Novella Fronda, Piazza Castello, Padova, Italy
| | - Michela Sarlo
- Department of Communication Sciences, Humanities and International Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
59
|
Mahoney JJ, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci 2020; 418:117149. [PMID: 33002757 PMCID: PMC7702181 DOI: 10.1016/j.jns.2020.117149] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
Given the high prevalence of individuals diagnosed with substance use disorder, along with the elevated rate of relapse following treatment initiation, investigating novel approaches and new modalities for substance use disorder treatment is of vital importance. One such approach involves neuromodulation which has been used therapeutically for neurological and psychiatric disorders and has demonstrated positive preliminary findings for the treatment of substance use disorder. The following article provides a review of several forms of neuromodulation which warrant consideration as potential treatments for substance use disorder. PubMed, PsycINFO, Ovid MEDLINE, and Web of Science were used to identify published articles and clinicaltrials.gov was used to identify currently ongoing or planned studies. Search criteria for Brain Stimulation included the following terminology: transcranial direct current stimulation, transcranial magnetic stimulation, theta burst stimulation, deep brain stimulation, vagus nerve stimulation, trigeminal nerve stimulation, percutaneous nerve field stimulation, auricular nerve stimulation, and low intensity focused ultrasound. Search criteria for Addiction included the following terminology: addiction, substance use disorder, substance-related disorder, cocaine, methamphetamine, amphetamine, alcohol, nicotine, tobacco, smoking, marijuana, cannabis, heroin, opiates, opioids, and hallucinogens. Results revealed that there are currently several forms of neuromodulation, both invasive and non-invasive, which are being investigated for the treatment of substance use disorder. Preliminary findings have demonstrated the potential of these various neuromodulation techniques in improving substance treatment outcomes by reducing those risk factors (e.g. substance craving) associated with relapse. Specifically, transcranial magnetic stimulation has shown the most promise with several well-designed studies supporting the potential for reducing substance craving. Deep brain stimulation has also shown promise, though lacks well-controlled clinical trials to support its efficacy. Transcranial direct current stimulation has also demonstrated promising results though consistently designed, randomized trials are also needed. There are several other forms of neuromodulation which have not yet been investigated clinically but warrant further investigation given their mechanisms and potential efficacy based on findings from other studied indications. In summary, given promising findings in reducing substance use and craving, neuromodulation may provide a non-pharmacological option as a potential treatment and/or treatment augmentation for substance use disorder. Further research investigating neuromodulation, both alone and in combination with already established substance use disorder treatment (e.g. medication treatment), warrants consideration.
Collapse
Affiliation(s)
- James J Mahoney
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America.
| | - Colleen A Hanlon
- Wake Forest School of Medicine, Cancer Biology and Center for Substance Use and Addiction, 475 Vine Street, Winston-Salem, NC 27101, United States of America
| | - Patrick J Marshalek
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Behavioral Medicine and Psychiatry, 930 Chestnut Ridge Road, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Ali R Rezai
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neurosurgery, 64 Medical Center Drive, Morgantown, WV 26505, United States of America
| | - Lothar Krinke
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, 33 Medical Center Drive, Morgantown, WV 26505, United States of America; WVU Department of Neuroscience, 64 Medical Center Drive, Morgantown, WV 26505, United States of America; Magstim Inc., 9855 West 78 Street, Suite 12, Eden Prairie, MN 55344, United States of America
| |
Collapse
|
60
|
Caparelli EC, Zhai T, Yang Y. Simultaneous Transcranial Magnetic Stimulation and Functional Magnetic Resonance Imaging: Aspects of Technical Implementation. Front Neurosci 2020; 14:554714. [PMID: 33132819 PMCID: PMC7550427 DOI: 10.3389/fnins.2020.554714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 12/02/2022] Open
Abstract
The simultaneous transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) offers a unique opportunity to non-invasively stimulate brain circuits while simultaneously monitoring changes in brain activity. However, to take advantage of this multimodal technique, some technical issues need to be considered/addressed. In this work, we evaluated technical issues associated with the setup and utilization of this multimodal tool, such as the use of a large single-channel radio frequency (rf) coil, and the artifacts induced by TMS when interleaved with the echo-planar imaging (EPI) sequence. We demonstrated that good image quality can be achieved with this rf coil and that the adoption of axial imaging orientation in conjunction with a safe interval of 100 ms, between the TMS pulse and imaging acquisition, is a suitable combination to eliminate potential image artifacts when using the combined TMS-fMRI technique in 3-T MRI scanners.
Collapse
Affiliation(s)
- Elisabeth C Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
61
|
Mansouriyeh N, Mahmoud-Aliloo M, Rostami R. The Effect of High-frequency Repetitive Transcranial Magnetic Stimulation on Reducing Depression and Anxiety in Methamphetamine Users. ADDICTION & HEALTH 2020; 12:278-286. [PMID: 33623647 PMCID: PMC7878001 DOI: 10.22122/ahj.v12i4.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Methamphetamine use has been associated with higher rates of depression and anxiety. The mesocorticolimbic dopaminergic reward system seems to play a crucial role in inducing depression and anxiety in methamphetamine users. High-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to alter dopaminergic neurotransmission considering the acute rewarding and reinforcing effects in the subcortical structure. The aim of this study was to investigate the efficacy of rTMS in reducing depression and anxiety symptoms in methamphetamine users. METHODS In a single-subject method with concurrent multiple baseline designs, in 2017, in Iran, eight methamphetamine users were included, which compared 15 days of active versus placebo stimulation and control group. Two subjects received rTMS on the right dorsolateral prefrontal cortex (DLPFC) and two subjects received rTMS on the left DLPFC. We carried out the measurement using the Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) before, during, and after 15 and 30 days of the procedure. FINDINGS Right and left DLPFC stimulation significantly reduced depression and anxiety, but the reduction of depression and anxiety by the right DLPFC stimulation was noticeable in this study. CONCLUSION High-frequency rTMS is useful for the treatment of depression and anxiety in methamphetamine users.
Collapse
Affiliation(s)
- Nastaran Mansouriyeh
- Department of Psychology, School of Psychology, Tabriz Branch, Islamic Azad University, Tabriz, Iran,Correspondence to: Nastaran Mansouriyeh; Department of Psychology, School of Educational Sciences and Psychology, Tabriz
Branch, Islamic Azad University, Tabriz, Iran;
| | - Majid Mahmoud-Aliloo
- Department of Psychology, School of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Reza Rostami
- Department of Psychology, School of Educational Sciences and Psychology, University of Tehran, Tehran, Iran
| |
Collapse
|
62
|
Ou H, Zhang Y, He W. Commentary: Clinical Improvements in Comorbid Gambling/Cocaine Use Disorder (GD/CUD) Patients Undergoing Repetitive Transcranial Magnetic Stimulation (rTMS). Front Neural Circuits 2020; 14:39. [PMID: 32848631 PMCID: PMC7396627 DOI: 10.3389/fncir.2020.00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/29/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Hang Ou
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Shanghai, China
| | - Yi Zhang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqi He
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Shanghai, China
| |
Collapse
|
63
|
Zucchella C, Mantovani E, Federico A, Lugoboni F, Tamburin S. Non-invasive Brain Stimulation for Gambling Disorder: A Systematic Review. Front Neurosci 2020; 14:729. [PMID: 33013280 PMCID: PMC7461832 DOI: 10.3389/fnins.2020.00729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Gambling disorder (GD) is the most common behavioral addiction and shares pathophysiological and clinical features with substance use disorders (SUDs). Effective therapeutic interventions for GD are lacking. Non-invasive brain stimulation (NIBS) may represent a promising treatment option for GD. Objective: This systematic review aimed to provide a comprehensive and structured overview of studies applying NIBS techniques to GD and problem gambling. Methods: A literature search using Pubmed, Web of Science, and Science Direct was conducted from databases inception to December 19, 2019, for studies assessing the effects of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (t-DCS) on subjects with GD or problem gambling. Studies using NIBS techniques on healthy subjects and those without therapeutic goals but only aiming to assess basic neurophysiology measures were excluded. Results: A total of 269 articles were title and abstract screened, 13 full texts were assessed, and 11 were included, of which six were controlled and five were uncontrolled. Most studies showed a reduction of gambling behavior, craving for gambling, and gambling-related symptoms. NIBS effects on psychiatric symptoms were less consistent. A decrease of the behavioral activation related to gambling was also reported. Some studies reported modulation of behavioral measures (i.e., impulsivity, cognitive and attentional control, decision making, cognitive flexibility). Studies were not consistent in terms of NIBS protocol, site of stimulation, clinical and surrogate outcome measures, and duration of treatment and follow-up. Sample size was small in most studies. Conclusions: The clinical and methodological heterogeneity of the included studies prevented us from drawing any firm conclusion on the efficacy of NIBS interventions for GD. Further methodologically sound, robust, and well-powered studies are needed.
Collapse
Affiliation(s)
- Chiara Zucchella
- Neurology Unit, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Angela Federico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fabio Lugoboni
- Addiction Medicine Unit, Department of Medicine, Verona University Hospital, Verona, Italy
| | - Stefano Tamburin
- Neurology Unit, Department of Neurosciences, Verona University Hospital, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
64
|
Bariselli S, Miyazaki NL, Creed MC, Kravitz AV. Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nat Commun 2020; 11:3996. [PMID: 32778725 PMCID: PMC7417999 DOI: 10.1038/s41467-020-17763-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Psychomotor stimulants increase dopamine levels in the striatum and promote locomotion; however, their effects on striatal pathway function in vivo remain unclear. One model that has been proposed to account for these motor effects suggests that stimulants drive hyperactivity via activation and inhibition of direct and indirect pathway striatal neurons, respectively. Although this hypothesis is consistent with the cellular actions of dopamine receptors and received support from optogenetic and chemogenetic studies, it has been rarely tested with in vivo recordings. Here, we test this model and observe that cocaine increases the activity of both pathways in the striatum of awake mice. These changes are linked to a dopamine-dependent cocaine-induced strengthening of upstream orbitofrontal cortex (OFC) inputs to the dorsomedial striatum (DMS) in vivo. Finally, depressing OFC-DMS pathway with a high frequency stimulation protocol in awake mice over-powers the cocaine-induced potentiation of OFC-DMS pathway and attenuates the expression of locomotor sensitization, directly linking OFC-DMS potentiation to cocaine-induced hyperactivity.
Collapse
Affiliation(s)
- Sebastiano Bariselli
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- National Institute on Alcohol Abuse and Alcoholism (NIAAA), Laboratory for Integrative Neuroscience (LIN), Bethesda, MD, 20892-9412, USA
| | - Nanami L Miyazaki
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Meaghan C Creed
- Washington University Pain Center, St Louis, MO, 63110, USA
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexxai V Kravitz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
65
|
Liu X, Zhao X, Liu T, Liu Q, Tang L, Zhang H, Luo W, Daskalakis ZJ, Yuan TF. The effects of repetitive transcranial magnetic stimulation on cue-induced craving in male patients with heroin use disorder. EBioMedicine 2020; 56:102809. [PMID: 32512513 PMCID: PMC7276507 DOI: 10.1016/j.ebiom.2020.102809] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
Background Craving is a central feature of addiction. Early evidence suggests that repetitive transcranial magnetic stimulation is effective in reducing cue induced craving for patients with opioid use disorder (OUD). However, trials in large populations of patients with OUDs are lacking. Methods We randomly assigned 118 male heroin patients into three groups (i.e., 10 Hz rTMS, 1 Hz rTMS and a wait-list control group) from two addiction rehabilitation centers. rTMS was applied to the left dorsolateral prefrontal cortex (DLPFC) for 20 daily consecutive sessions. Findings Results showed that 10 Hz rTMS and 1 Hz rTMS were both effective in reducing cue-induced craving scores in heroin users when compared to the wait list group. The treatment effects lasted for up to 60 days after rTMS treatment cessation. Interpretation Our results suggest that rTMS applied to the DLPFC is effective in reducing craving severity in heroin use disorder patients. Our results also suggest that such treatment effects can last for up to 60 days after treatment cessation.
Collapse
Affiliation(s)
- Xiaoli Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Ningbo Key Laboratory of Sleep Medicine, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiwen Zhao
- Yale Center for Analytical Sciences, School of Public Health, Yale University, New Haven, CT, U.S.A
| | - Ting Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qingming Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, U.S.A
| | - Hui Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, U.S.A
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neurosience, Liaoning Province, China.
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ont., Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
66
|
Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Transl Psychiatry 2020; 10:150. [PMID: 32424183 PMCID: PMC7235223 DOI: 10.1038/s41398-020-0833-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The anterior insular cortex plays a key role in the representation of interoceptive effects of drug and natural rewards and their integration with attention, executive function, and emotions, making it a potential target region for intervention to control appetitive behaviors. Here, we investigated the effects of chemogenetic stimulation or inhibition of the anterior insula on alcohol and sucrose consumption. Excitatory or inhibitory designer receptors (DREADDs) were expressed in the anterior insula of alcohol-preferring rats by means of adenovirus-mediated gene transfer. Rats had access to either alcohol or sucrose solution during intermittent sessions. To characterize the brain network recruited by chemogenetic insula stimulation we measured brain-wide activation patterns using pharmacological magnetic resonance imaging (phMRI) and c-Fos immunohistochemistry. Anterior insula stimulation by the excitatory Gq-DREADDs significantly attenuated both alcohol and sucrose consumption, whereas the inhibitory Gi-DREADDs had no effects. In contrast, anterior insula stimulation failed to alter locomotor activity or deprivation-induced water drinking. phMRI and c-Fos immunohistochemistry revealed downstream activation of the posterior insula and medial prefrontal cortex, as well as of the mediodorsal thalamus and amygdala. Our results show the critical role of the anterior insula in regulating reward-directed behavior and delineate an insula-centered functional network associated with the effects of insula stimulation. From a translational perspective, our data demonstrate the therapeutic potential of circuit-based interventions and suggest that potentiation of insula excitability with neuromodulatory methods, such as repetitive transcranial magnetic stimulation (rTMS), could be useful in the treatment of alcohol use disorders.
Collapse
|
67
|
Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci 2020; 21:247-263. [PMID: 32231315 PMCID: PMC7610550 DOI: 10.1038/s41583-020-0289-z] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
Compulsion is a cardinal symptom of drug addiction (severe substance use disorder). However, compulsion is observed in only a small proportion of individuals who repeatedly seek and use addictive substances. Here, we integrate accounts of the neuropharmacological mechanisms that underlie the transition to compulsion with overarching learning theories, to outline how compulsion develops in addiction. Importantly, we emphasize the conceptual distinctions between compulsive drug-seeking behaviour and compulsive drug-taking behaviour (that is, use). In the latter, an individual cannot stop using a drug despite major negative consequences, possibly reflecting an imbalance in frontostriatal circuits that encode reward and aversion. By contrast, an individual may compulsively seek drugs (that is, persist in seeking drugs despite the negative consequences of doing so) when the neural systems that underlie habitual behaviour dominate goal-directed behavioural systems, and when executive control over this maladaptive behaviour is diminished. This distinction between different aspects of addiction may help to identify its neural substrates and new treatment strategies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
68
|
Kou XL, Tao Y, Xian JY, Lin YH, Cai CY, Wu HY, Chang L, Zhu DY. Uncoupling nNOS-PSD-95 in mPFC inhibits morphine priming-induced reinstatement after extinction training. Biochem Biophys Res Commun 2020; 525:520-527. [PMID: 32113678 DOI: 10.1016/j.bbrc.2020.02.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
Extremely high relapse rate is the dramatic challenge of drug abuse at present. Environmental cues play an important role in relapse of drug abuse. However, the specific mechanism underlying relapse remains unclear. Using morphine conditioned place preference (CPP) model, we show that association of neuronal nitric oxide synthase (nNOS) with postsynaptic density-95 (PSD-95) plays a significant role in morphine priming-induced reinstatement. The nNOS-PSD-95 coupling and c-Fos expression in the medial prefrontal cortex (mPFC) was significantly increased after extinction of morphine CPP. Dissociation of nNOS-PSD-95 in the mPFC by ZL006 inhibited the reinstatement of morphine CPP induced by a priming dose of morphine. Significantly reduced phosphorylation of cAMP-response element binding protein (CREB) in the mPFC was observed in the mice exposed to morphine after the extinction training. Uncoupling nNOS-PSD-95 reversed the morphine-induced CREB dysfunction. Moreover, effects of ZL006 on the reinstatement of morphine CPP and CREB activation depended on nNOS-PSD-95 target. Together, our findings suggest that nNOS-PSD-95 in the mPFC contributes to reinstatement of morphine CPP, possibly through CREB dysfunction, offering a potential target to prevent relapse of drug abuse.
Collapse
Affiliation(s)
- Xiao-Lin Kou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yan Tao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Jia-Yun Xian
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Cheng-Yun Cai
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, People's Republic of China; Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
69
|
Ojeda A, Buscher N, Balasubramani P, Maric V, Ramanathan D, Mishra J. SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans. Biomed Phys Eng Express 2020; 6:035023. [PMID: 33438668 PMCID: PMC10092292 DOI: 10.1088/2057-1976/ab6e20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A promising application of BCI technology is in the development of personalized therapies that can target neural circuits linked to mental or physical disabilities. Typical BCIs, however, offer limited value due to simplistic designs and poor understanding of the conditions being treated. Building BCIs on more solid grounds may require the characterization of the brain dynamics supporting cognition and behavior at multiple scales, from single-cell and local field potential (LFP) recordings in animals to non-invasive electroencephalography (EEG) in humans. Despite recent efforts, a unifying software framework to support closed-loop studies in both animals and humans is still lacking. The objective of this paper is to develop such a unifying neurotechnological software framework. APPROACH Here we develop the Simulink for Brain Signal Interfaces library (SimBSI). Simulink is a mature graphical programming environment within MATLAB that has gained traction for processing electrophysiological data. SimBSI adds to this ecosystem: 1) advanced human EEG source imaging, 2) cross-species multimodal data acquisition based on the Lab Streaming Layer library, and 3) a graphical experimental design platform. MAIN RESULTS We use several examples to demonstrate the capabilities of the library, ranging from simple signal processing, to online EEG source imaging, cognitive task design, and closed-loop neuromodulation. We further demonstrate the simplicity of developing a sophisticated experimental environment for rodents within this environment. SIGNIFICANCE With the SimBSI library we hope to aid BCI practitioners of dissimilar backgrounds in the development of, much needed, single and cross-species closed-loop neuroscientific experiments. These experiments may provide the necessary mechanistic data for BCIs to become effective therapeutic tools.
Collapse
Affiliation(s)
- Alejandro Ojeda
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, La Jolla , California, United States of America
| | - Nathalie Buscher
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, La Jolla , California, United States of America.,Mental Health, VA San Diego Medical Center, United States of America
| | - Pragathi Balasubramani
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, La Jolla , California, United States of America
| | - Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, La Jolla , California, United States of America
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, La Jolla , California, United States of America.,Mental Health, VA San Diego Medical Center, United States of America
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California San Diego, La Jolla , California, United States of America
| |
Collapse
|
70
|
Sleep quality improves during treatment with repetitive transcranial magnetic stimulation (rTMS) in patients with cocaine use disorder: a retrospective observational study. BMC Psychiatry 2020; 20:153. [PMID: 32252720 PMCID: PMC7137315 DOI: 10.1186/s12888-020-02568-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sleep disturbance is a prominent and common complaint in people with cocaine use disorder (CUD), either during intake or withdrawal. Repetitive transcranial magnetic stimulation (rTMS) has shown promise as a treatment for CUD. Thus, we evaluated the relationship between self-perceived sleep quality and cocaine use pattern variables in outpatients with CUD undergoing an rTMS protocol targeted at the left dorsolateral prefrontal cortex. METHODS This is a retrospective observational study including 87 patients diagnosed with CUD according to the DSM-5 criteria. Scores in Pittsburgh Sleep Quality Index (PSQI), Cocaine Craving Questionnaire (CCQ), Beck Depression Inventory-II (BDI-II), Self-rating Anxiety Scale (SAS), and Symptoms checklist 90-Revised (outcome used: Global Severity Index, GSI) were recorded at baseline, and after 5, 30, 60, and 90 days of rTMS treatment. Cocaine use was assessed by self-report and regular urine screens. RESULTS Sleep disturbances (PSQI scores > 5) were common in patients at baseline (mean ± SD; PSQI score baseline: 9.24 ± 3.89; PSQI > 5 in 88.5% of patients). PSQI scores significantly improved after rTMS treatment (PSQI score Day 90: 6.12 ± 3.32). Significant and consistent improvements were also seen in craving and in negative-affect symptoms compared to baseline. Considering the lack of a control group, in order to help the conceptualization of the outcomes, we compared the results to a wait-list group (n = 10). No significant improvements were observed in the wait-list group in any of the outcome measures. CONCLUSIONS The present findings support the therapeutic role of rTMS interventions for reducing cocaine use and accompanying symptoms such as sleep disturbance and negative-affect symptoms. TRIAL REGISTRATION ClinicalTrials.gov.NCT03733821.
Collapse
|
71
|
Zhao D, Li Y, Liu T, Voon V, Yuan TF. Twice-Daily Theta Burst Stimulation of the Dorsolateral Prefrontal Cortex Reduces Methamphetamine Craving: A Pilot Study. Front Neurosci 2020; 14:208. [PMID: 32273837 PMCID: PMC7113524 DOI: 10.3389/fnins.2020.00208] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Transcranial magnetic stimulation (TMS) holds potential promise as a therapeutic modality for disorders of addiction. Our previous findings indicate that high-frequency repetitive transcranial magnetic stimulation (rTMS) over the left dorsal-lateral prefrontal cortex (DLPFC) and low-frequency rTMS over the right DLPFC can reduce drug craving for methamphetamine. One major issue with rTMS is the duration of treatment and hence potential dropout rate. Theta burst stimulation (TBS) has been recently shown to be non-inferior relative to repetitive transcranial magnetic stimulation for major depression. Here, we aim to compare the clinical efficacy and tolerability of intermittent and continuous theta burst stimulation protocols targeting left or right dorsolateral prefrontal cortex on methamphetamine craving in abstinent-dependent subjects. METHODS In this randomized single-blind pilot study, 83 abstinent methamphetamine-dependent subjects from a long-term residential treatment program were randomly allocated into three groups: intermittent theta burst stimulation (iTBS) over the left DLPFC (active group), continuous theta burst stimulation (cTBS) over the left DLPFC (active control group), or cTBS over the right DLPFC (active group) was administered twice daily over 5 days for a total of 10 sessions. We measured the primary outcome of cue-induced craving and secondarily sleep quality, depression, anxiety, impulsivity scores, and adverse effects. RESULTS We show a pre- vs. postintervention effect on craving, which, on paired t tests, showed that the effect was driven by iTBS of the left DLPFC and cTBS of the right DLPFC, reducing cue-induced craving but not cTBS of the left DLPFC. We did not show the critical group-by-time interaction. The secondary outcomes of depression, anxiety, and sleep were unrelated to the improvement in craving in the left iTBS and right cTBS group. In the first two sessions, self-reported adverse effects were higher with left iTBS when compared to right cTBS. The distribution of craving change suggested greater clinical response (50% improvement) with right cTBS and a bimodal pattern of effect with left iTBS, suggesting high interindividual variable response in the latter. CONCLUSION Accelerated twice-daily TBS appears feasible and tolerable at modulating craving and mood changes in abstinent methamphetamine dependence critically while reducing session length. We emphasize the need for a larger randomized controlled trial study with a sham control to confirm these findings and longer duration of clinically relevant follow-up. CLINICAL TRIAL REGISTRATION Chinese Clinical Trial Registry number, 17013610.
Collapse
Affiliation(s)
- Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongqiang Li
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Liu
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
72
|
Moretti J, Poh EZ, Rodger J. rTMS-Induced Changes in Glutamatergic and Dopaminergic Systems: Relevance to Cocaine and Methamphetamine Use Disorders. Front Neurosci 2020; 14:137. [PMID: 32210744 PMCID: PMC7068681 DOI: 10.3389/fnins.2020.00137] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cocaine use disorder and methamphetamine use disorder are chronic, relapsing disorders with no US Food and Drug Administration-approved interventions. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool that has been increasingly investigated as a possible therapeutic intervention for substance use disorders. rTMS may have the ability to induce beneficial neuroplasticity in abnormal circuits and networks in individuals with addiction. The aim of this review is to highlight the rationale and potential for rTMS to treat cocaine and methamphetamine dependence: we synthesize the outcomes of studies in healthy humans and animal models to identify and understand the neurobiological mechanisms of rTMS that seem most involved in addiction, focusing on the dopaminergic and glutamatergic systems. rTMS-induced changes to neurotransmitter systems include alterations to striatal dopamine release and metabolite levels, as well as to glutamate transporter and receptor expression, which may be relevant for ameliorating the aberrant plasticity observed in individuals with substance use disorders. We also discuss the clinical studies that have used rTMS in humans with cocaine and methamphetamine use disorders. Many such studies suggest changes in network connectivity following acute rTMS, which may underpin reduced craving following chronic rTMS. We suggest several possible future directions for research relating to the therapeutic potential of rTMS in addiction that would help fill current gaps in the literature. Such research would apply rTMS to animal models of addiction, developing a translational pipeline that would guide evidence-based rTMS treatment of cocaine and methamphetamine use disorder.
Collapse
Affiliation(s)
- Jessica Moretti
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eugenia Z Poh
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
73
|
A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nat Commun 2020; 11:782. [PMID: 32034128 PMCID: PMC7005839 DOI: 10.1038/s41467-020-14458-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Food addiction is linked to obesity and eating disorders and is characterized by a loss of behavioral control and compulsive food intake. Here, using a food addiction mouse model, we report that the lack of cannabinoid type-1 receptor in dorsal telencephalic glutamatergic neurons prevents the development of food addiction-like behavior, which is associated with enhanced synaptic excitatory transmission in the medial prefrontal cortex (mPFC) and in the nucleus accumbens (NAc). In contrast, chemogenetic inhibition of neuronal activity in the mPFC-NAc pathway induces compulsive food seeking. Transcriptomic analysis and genetic manipulation identified that increased dopamine D2 receptor expression in the mPFC-NAc pathway promotes the addiction-like phenotype. Our study unravels a new neurobiological mechanism underlying resilience and vulnerability to the development of food addiction, which could pave the way towards novel and efficient interventions for this disorder. Food addiction is linked to obesity and eating disorders. In a mouse model of food addiction, the authors show that a medial prefrontal cortex-nucleus accumbens pathway is involved in vulnerability and resilience against the development of food addiction-like behavior.
Collapse
|
74
|
Cheng Z, Cui R, Ge T, Yang W, Li B. Optogenetics: What it has uncovered in potential pathways of depression. Pharmacol Res 2020; 152:104596. [DOI: 10.1016/j.phrs.2019.104596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
|
75
|
LeCocq MR, Randall PA, Besheer J, Chaudhri N. Considering Drug-Associated Contexts in Substance Use Disorders and Treatment Development. Neurotherapeutics 2020; 17:43-54. [PMID: 31898285 PMCID: PMC7007469 DOI: 10.1007/s13311-019-00824-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Environmental contexts that are reliably associated with the use of pharmacologically active substances are hypothesized to contribute to substance use disorders. In this review, we provide an updated summary of parallel preclinical and human studies that support this hypothesis. Research conducted in rats shows that environmental contexts that are reliably paired with drug use can renew extinguished drug-seeking behavior and amplify responding elicited by discrete, drug-predictive cues. Akin to drug-associated contexts, interoceptive drug stimuli produced by the psychopharmacological effects of drugs can also influence learning and memory processes that play a role in substance use disorders. Findings from human laboratory studies show that drug-associated contexts, including social stimuli, can have profound effects on cue reactivity, drug use, and drug-related cognitive expectancies. This translationally relevant research supports the idea that treatments for substance use disorders could be improved by considering drug-associated contexts as a factor in treatment interventions. We conclude this review with ideas for how to integrate drug-associated contexts into treatment-oriented research based on 4 approaches: pharmacology, brain stimulation, mindfulness-based relapse prevention, and cognitive behavioral group therapy. Throughout, we focus on alcohol- and tobacco-related research, which are two of the most prevalent and commonly misused drugs worldwide for which there are known treatments.
Collapse
Affiliation(s)
- Mandy Rita LeCocq
- Department of Psychology, Center for Studies in Behavioural Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, Quebec, H4B-1R6, Canada
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Joyce Besheer
- Department of Psychiatry, Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nadia Chaudhri
- Department of Psychology, Center for Studies in Behavioural Neurobiology, Concordia University, 7141 Sherbrooke Street West, Room SP 244, Montreal, Quebec, H4B-1R6, Canada.
| |
Collapse
|
76
|
Madeo G, Terraneo A, Cardullo S, Gómez Pérez LJ, Cellini N, Sarlo M, Bonci A, Gallimberti L. Long-Term Outcome of Repetitive Transcranial Magnetic Stimulation in a Large Cohort of Patients With Cocaine-Use Disorder: An Observational Study. Front Psychiatry 2020; 11:158. [PMID: 32180745 PMCID: PMC7059304 DOI: 10.3389/fpsyt.2020.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Cocaine is a psychostimulant drug used as performance enhancer throughout history. The prolonged use of cocaine is associated with addiction and a broad range of cognitive deficits. Currently, there are no medications proven to be effective for cocaine-use disorder (CocUD). Previous preliminary clinical work suggests some benefit from repetitive transcranial magnetic stimulation (rTMS) stimulating the prefrontal cortex (PFC), involved in inhibitory cognitive control, decision-making and attention. All published studies to date have been limited by small sample sizes and short follow-up times. Methods: This is a retrospective observational study of 284 outpatients (of whom 268 were men) meeting DSM-5 criteria for CocUD. At treatment entry, most were using cocaine every day or several times per week. All patients underwent 3 months of rTMS and were followed for up to 2 years, 8 months. Self-report, reports by family or significant others and regular urine screens were used to assess drug use. Results: Median time to the first lapse (resumption of cocaine use) since the beginning of treatment was 91 days. For most patients, TMS was re-administered weekly, then monthly, throughout follow-up. The decrease in frequency of rTMS sessions was not accompanied by an increase in lapses to cocaine use. Mean frequency of cocaine use was <1·0 day/month (median 0), while serious rTMS-related adverse events were infrequent, consistent with published reports from smaller studies. Conclusions: This is the first follow-up study to show that rTMS treatment is accompanied by long-lasting reductions in cocaine use in a large cohort.
Collapse
Affiliation(s)
| | | | | | | | - Nicola Cellini
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Michela Sarlo
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | | | | |
Collapse
|
77
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
78
|
Abstract
Monkeys are a premier model organism for neuroscience research. Activity in the central nervous systems of monkeys can be recorded and manipulated while they perform complex perceptual, motor, or cognitive tasks. Conventional techniques for manipulating neural activity in monkeys are too coarse to address many of the outstanding questions in primate neuroscience, but optogenetics holds the promise to overcome this hurdle. In this article, we review the progress that has been made in primate optogenetics over the past 5 years. We emphasize the use of gene regulatory sequences in viral vectors to target specific neuronal types, and we present data on vectors that we engineered to target parvalbumin-expressing neurons. We conclude with a discussion of the utility of optogenetics for treating sensorimotor hearing loss and Parkinson's disease, areas of translational neuroscience in which monkeys provide unique leverage for basic science and medicine.
Collapse
|
79
|
Burns EJ, Wilcockson TDW. Alcohol usage predicts holistic perception: A novel method for exploring addiction. Addict Behav 2019; 99:106000. [PMID: 31491686 DOI: 10.1016/j.addbeh.2019.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/19/2022]
Abstract
Holistic perception is a special form of automatic and experience dependent processing that prioritises objects of interest through the visual system. We therefore speculated that higher levels of alcohol consumption may be associated with enhanced holistic perception for alcohol cues. In our first experiment, we confirmed this hypothesis by showing that increasing regular alcohol usage was associated with greater holistic perception of alcohol, but not non-alcohol, cues. We replicated this finding in a second experiment, but confirmed drink-specific holistic perception for lager cues was not predicted by experience with that drink, but general alcohol usage. In our final experiment when alcohol images were absent from the task, higher levels of alcohol consumption predicted decreased holistic perception for non-rewarding cues. Alcohol use is therefore linked to inverse alterations in holistic perception for alcohol versus non-alcohol cues, with the latter's effects context dependent. We hypothesise that such inverse relationships may be due to limited cortical resources becoming reutilised for alcohol cues at the expense of other stimuli. Future work will be required to determine holistic perception's role in maintaining addiction, its predictive value in successful abstinence, and its relationship with characteristics of addiction such as cue reactivity, attentional biases and personality traits.
Collapse
Affiliation(s)
- Edwin J Burns
- Department of Psychology, University of Richmond, Richmond, USA.
| | | |
Collapse
|
80
|
Zhang JJQ, Fong KNK, Ouyang RG, Siu AMH, Kranz GS. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: a systematic review and meta-analysis. Addiction 2019; 114:2137-2149. [PMID: 31328353 DOI: 10.1111/add.14753] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as an intervention for treating substance dependence. We aimed to assess evidence of the anti-craving and consumption-reducing effects of rTMS in patients with alcohol, nicotine and illicit drug dependence. METHODS A systematic review and meta-analysis of 26 randomized controlled trials (RCTs) published from January 2000 to October 2018 that investigated the effects of rTMS on craving and substance consumption in patients with nicotine, alcohol and illicit drug dependence (n = 748). Craving, measured using self-reported questionnaires or visual analog scale, and substance consumption, measured using self-report substance intake or number of addiction relapse cases, were considered as primary and secondary outcomes, respectively. Substance type, study design and rTMS parameters were used as the independent factors in the meta-regression. RESULTS Results showed that excitatory rTMS of the left dorsolateral pre-frontal cortex (DLPFC) significantly reduced craving [Hedges' g = -0.62; 95% confidence interval (CI) = -0.89 to -0.35; P < 0.0001], compared with sham stimulation. Moreover, meta-regression revealed a significant positive association between the total number of stimulation pulses and effect size among studies using excitatory left DLPFC stimulation (P = 0.01). Effects of other rTMS protocols on craving were not significant. However, when examining substance consumption, excitatory rTMS of the left DLPFC and excitatory deep TMS (dTMS) of the bilateral DLPFC and insula revealed significant consumption-reducing effects, compared with sham stimulation. CONCLUSION Excitatory repetitive transcranial magnetic stimulation of the dorsolateral pre-frontal cortex appears to have an acute effect on reducing craving and substance consumption in patients with substance dependence. The anti-craving effect may be associated with stimulation dose.
Collapse
Affiliation(s)
- Jack J Q Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Rang-Ge Ouyang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Andrew M H Siu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
81
|
The Effects of Repetitive Transcranial Magnetic Stimulation in Reducing Cocaine Craving and Use. ADDICTIVE DISORDERS & THEIR TREATMENT 2019. [DOI: 10.1097/adt.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
82
|
Stewart JL, May AC, Paulus MP. Bouncing back: Brain rehabilitation amid opioid and stimulant epidemics. NEUROIMAGE-CLINICAL 2019; 24:102068. [PMID: 31795056 PMCID: PMC6978215 DOI: 10.1016/j.nicl.2019.102068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Frontoparietal event related potentials predict/track recovery. Frontostriatal functional magnetic resonance imaging signals predict/track recovery. Transcranial magnetic left prefrontal stimulation reduces craving and drug use.
Recent methamphetamine and opioid use epidemics are a major public health concern. Chronic stimulant and opioid use are characterized by significant psychosocial, physical and mental health costs, repeated relapse, and heightened risk of early death. Neuroimaging research highlights deficits in brain processes and circuitry that are linked to responsivity to drug cues over natural rewards as well as suboptimal goal-directed decision-making. Despite the need for interventions, little is known about (1) how the brain changes with prolonged abstinence or as a function of various treatments; and (2) how symptoms change as a result of neuromodulation. This review focuses on the question: What do we know about changes in brain function during recovery from opioids and stimulants such as methamphetamine and cocaine? We provide a detailed overview and critique of published research employing a wide array of neuroimaging methods – functional and structural magnetic resonance imaging, electroencephalography, event-related potentials, diffusion tensor imaging, and multiple brain stimulation technologies along with neurofeedback – to track or induce changes in drug craving, abstinence, and treatment success in stimulant and opioid users. Despite the surge of methamphetamine and opioid use in recent years, most of the research on neuroimaging techniques for recovery focuses on cocaine use. This review highlights two main findings: (1) interventions can lead to improvements in brain function, particularly in frontal regions implicated in goal-directed behavior and cognitive control, paired with reduced drug urges/craving; and (2) the targeting of striatal mechanisms implicated in drug reward may not be as cost-effective as prefrontal mechanisms, given that deep brain stimulation methods require surgery and months of intervention to produce effects. Overall, more studies are needed to replicate and confirm findings, particularly for individuals with opioid and methamphetamine use disorders.
Collapse
Affiliation(s)
- Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States.
| | - April C May
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
83
|
Drug-related Virtual Reality Cue Reactivity is Associated with Gamma Activity in Reward and Executive Control Circuit in Methamphetamine Use Disorders. Arch Med Res 2019; 50:509-517. [DOI: 10.1016/j.arcmed.2019.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
|
84
|
Steele VR, Maxwell AM, Ross TJ, Stein EA, Salmeron BJ. Accelerated Intermittent Theta-Burst Stimulation as a Treatment for Cocaine Use Disorder: A Proof-of-Concept Study. Front Neurosci 2019; 13:1147. [PMID: 31736689 PMCID: PMC6831547 DOI: 10.3389/fnins.2019.01147] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 11/15/2022] Open
Abstract
There are no effective treatments for cocaine use disorder (CUD), a chronic, relapsing brain disease characterized by dysregulated circuits related to cue reactivity, reward processing, response inhibition, and executive control. Transcranial magnetic stimulation (TMS) has the potential to modulate circuits and networks implicated in neuropsychiatric disorders, including addiction. Although acute applications of TMS have reduced craving in urine-negative cocaine users, the tolerability and safety of administering accelerated TMS to cocaine-positive individuals is unknown. As such, we performed a proof-of-concept study employing an intermittent theta-burst stimulation (iTBS) protocol in an actively cocaine-using sample. Although our main goal was to assess the tolerability and safety of administering three iTBS sessions daily, we also hypothesized that iTBS would reduce cocaine use in this non-treatment seeking cohort. We recruited 19 individuals with CUD to receive three open-label iTBS sessions per day, with approximately a 60-min interval between sessions, for 10 days over a 2-week period (30 total iTBS sessions). iTBS was delivered to left dorsolateral prefrontal cortex (dlPFC) with neuronavigation guidance. Compliance and safety were assessed throughout the trial. Cocaine use behavior was assessed before, during, and after the intervention and at 1- and 4-week follow-up visits. Of the 335 iTBS sessions applied, 73% were performed on participants with cocaine-positive urine tests. Nine of the 14 participants who initiated treatment received at least 26 of 30 iTBS sessions and returned for the 4-week follow-up visit. These individuals reduced their weekly cocaine consumption by 78% in amount of dollars spent and 70% in days of use relative to pre-iTBS cocaine use patterns. Similarly, individuals reduced their weekly consumption of nicotine, alcohol, and THC, suggesting iTBS modulated a common circuit across drugs of abuse. iTBS was well-tolerated, despite the expected occasional headaches. A single participant developed a transient neurological event of uncertain etiology on iTBS day 9 and cocaine-induced psychosis 2 weeks after discontinuation. It thus appears that accelerated iTBS to left dlPFC administered in active, chronic cocaine users is both feasible and tolerable in actively using cocaine participants with preliminary indications of efficacy in reducing both the amount and frequency of cocaine (and other off target drug) use. The neural underpinnings of these behavioral changes could help in the future development of effective treatment of CUD.
Collapse
Affiliation(s)
- Vaughn R Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States.,Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | - Andrea M Maxwell
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Thomas J Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
85
|
Abstract
Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Michael Michaelides
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ruben Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
86
|
Adams RC, Sedgmond J, Maizey L, Chambers CD, Lawrence NS. Food Addiction: Implications for the Diagnosis and Treatment of Overeating. Nutrients 2019; 11:E2086. [PMID: 31487791 PMCID: PMC6770567 DOI: 10.3390/nu11092086] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
With the obesity epidemic being largely attributed to overeating, much research has been aimed at understanding the psychological causes of overeating and using this knowledge to develop targeted interventions. Here, we review this literature under a model of food addiction and present evidence according to the fifth edition of the Diagnostic and Statistical Manual (DSM-5) criteria for substance use disorders. We review several innovative treatments related to a food addiction model ranging from cognitive intervention tasks to neuromodulation techniques. We conclude that there is evidence to suggest that, for some individuals, food can induce addictive-type behaviours similar to those seen with other addictive substances. However, with several DSM-5 criteria having limited application to overeating, the term 'food addiction' is likely to apply only in a minority of cases. Nevertheless, research investigating the underlying psychological causes of overeating within the context of food addiction has led to some novel and potentially effective interventions. Understanding the similarities and differences between the addictive characteristics of food and illicit substances should prove fruitful in further developing these interventions.
Collapse
Affiliation(s)
- Rachel C Adams
- CUBRIC, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
| | - Jemma Sedgmond
- CUBRIC, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Leah Maizey
- CUBRIC, School of Psychology, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | | | - Natalia S Lawrence
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
87
|
Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, Castelo-Branco L, Challet-Bouju G, Clark VP, Claus E, Dannon PN, Del Felice A, den Uyl T, Diana M, di Giannantonio M, Fedota JR, Fitzgerald P, Gallimberti L, Grall-Bronnec M, Herremans SC, Herrmann MJ, Jamil A, Khedr E, Kouimtsidis C, Kozak K, Krupitsky E, Lamm C, Lechner WV, Madeo G, Malmir N, Martinotti G, McDonald WM, Montemitro C, Nakamura-Palacios EM, Nasehi M, Noël X, Nosratabadi M, Paulus M, Pettorruso M, Pradhan B, Praharaj SK, Rafferty H, Sahlem G, Salmeron BJ, Sauvaget A, Schluter RS, Sergiou C, Shahbabaie A, Sheffer C, Spagnolo PA, Steele VR, Yuan TF, van Dongen JDM, Van Waes V, Venkatasubramanian G, Verdejo-García A, Verveer I, Welsh JW, Wesley MJ, Witkiewitz K, Yavari F, Zarrindast MR, Zawertailo L, Zhang X, Cha YH, George TP, Frohlich F, Goudriaan AE, Fecteau S, Daughters SB, Stein EA, Fregni F, Nitsche MA, Zangen A, Bikson M, Hanlon CA. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev 2019; 104:118-140. [PMID: 31271802 PMCID: PMC7293143 DOI: 10.1016/j.neubiorev.2019.06.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
There is growing interest in non-invasive brain stimulation (NIBS) as a novel treatment option for substance-use disorders (SUDs). Recent momentum stems from a foundation of preclinical neuroscience demonstrating links between neural circuits and drug consuming behavior, as well as recent FDA-approval of NIBS treatments for mental health disorders that share overlapping pathology with SUDs. As with any emerging field, enthusiasm must be tempered by reason; lessons learned from the past should be prudently applied to future therapies. Here, an international ensemble of experts provides an overview of the state of transcranial-electrical (tES) and transcranial-magnetic (TMS) stimulation applied in SUDs. This consensus paper provides a systematic literature review on published data - emphasizing the heterogeneity of methods and outcome measures while suggesting strategies to help bridge knowledge gaps. The goal of this effort is to provide the community with guidelines for best practices in tES/TMS SUD research. We hope this will accelerate the speed at which the community translates basic neuroscience into advanced neuromodulation tools for clinical practice in addiction medicine.
Collapse
Affiliation(s)
| | - Hosna Tavakoli
- Institute for Cognitive Science Studies (ICSS), Iran; Iranian National Center for Addiction Studies (INCAS), Iran
| | - Giovanni Addolorato
- Alcohol Use Disorder Unit, Division of Internal Medicine, Gastroenterology and Hepatology Unit, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy; Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Vincent P Clark
- University of New Mexico, USA; The Mind Research Network, USA
| | | | | | - Alessandra Del Felice
- University of Padova, Department of Neuroscience, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | | - Marco Diana
- 'G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - John R Fedota
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Gallimberti
- Novella Fronda Foundation, Human Science and Brain Research, Padua, Italy
| | | | - Sarah C Herremans
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Karolina Kozak
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Evgeny Krupitsky
- V. M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St.-Petersburg, Russia; St.-Petersburg First Pavlov State Medical University, Russia
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria
| | | | - Graziella Madeo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | | | | | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chiara Montemitro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; University G.d'Annunzio of Chieti-Pescara, Italy
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xavier Noël
- Université Libre de Bruxelles (ULB), Belgium
| | | | | | | | | | - Samir K Praharaj
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Haley Rafferty
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | | | - Betty Jo Salmeron
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Anne Sauvaget
- Laboratory «Movement, Interactions, Performance» (E.A. 4334), University of Nantes, 25 Bis Boulevard Guy Mollet, BP 72206, 44322, Nantes Cedex 3, France; CHU de Nantes Addictology and Liaison Psychiatry Department, University Hospital Nantes, Nantes Cedex 3, France
| | - Renée S Schluter
- Laureate Institute for Brain Research, USA; Institute for Cognitive Science Studies (ICSS), Iran
| | | | - Alireza Shahbabaie
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Vaughn R Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, China
| | | | - Vincent Van Waes
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France
| | | | | | | | - Justine W Welsh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Fatemeh Yavari
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laurie Zawertailo
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Xiaochu Zhang
- University of Science and Technology of China, China
| | | | - Tony P George
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | | | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Arkin, Department of Research and Quality of Care, Amsterdam, The Netherlands
| | | | | | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | | | | | | |
Collapse
|
88
|
Transcranial Direct Current Stimulation Reduces Craving in Substance Use Disorders: A Double-blind, Placebo-Controlled Study. J ECT 2019; 35:207-211. [PMID: 30844881 DOI: 10.1097/yct.0000000000000580] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The use of transcranial direct current stimulation (tDCS) in addiction disorders is still on its rise in comparison with pharmacological and psychotherapeutic strategies that still show low level of evidence. In this study, we aimed to evaluate the efficacy of the anodic tDCS for the short-term treatment of substance craving and other psychiatric symptoms. METHODS In this randomized, double-blind, sham-controlled trial, inclusion criteria included the diagnosis of substance use disorder and/or gambling disorder. The protocol includes 5 consecutive days of active or sham tDCS session. Cathode was placed over the left dorsolateral prefrontal cortex. Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Young Mania Rating Scale, Barratt Impulsiveness Scale, South Oaks Gambling Screen, and visual analog scale (VAS) 1 to 10 for craving were administered at the baseline (T0) and after 5 days of treatment (T1). RESULTS Thirty-four treatment-seeking subjects were randomized to sham (n = 16) and active stimulation (n = 18) groups. A statistically significant reduction of values at T1 was found in all subjects considering VAS (P < 0.001), Hamilton Depression Rating Scale (P < 0.001), Hamilton Anxiety Rating Scale (P < 0.001), and Barratt Impulsiveness Scale 11 (P = 0.032). A significant reduction for VAS craving in favor of the active stimulation (P = 0.011) was found. CONCLUSIONS Our findings reveal a statistically significant rapid reduction of craving in the active tDCS group on the right dorsolateral prefrontal cortex with respect to sham group, confirming the scientific literature trend. Large samples, with maintenance tDCS therapy and long-term follow-up, are required to establish the potential of this noninvasive and easily delivered brain stimulation strategy.
Collapse
|
89
|
Takahashi YK, Stalnaker TA, Marrero-Garcia Y, Rada RM, Schoenbaum G. Expectancy-Related Changes in Dopaminergic Error Signals Are Impaired by Cocaine Self-Administration. Neuron 2019; 101:294-306.e3. [PMID: 30653935 DOI: 10.1016/j.neuron.2018.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
Addiction is a disorder of behavioral control and learning. While this may reflect pre-existing propensities, drug use also clearly contributes by causing changes in outcome processing in prefrontal and striatal regions. This altered processing is associated with behavioral deficits, including changes in learning. These areas provide critical input to midbrain dopamine neurons regarding expected outcomes, suggesting that effects on learning may result from changes in dopaminergic error signaling. Here, we show that dopamine neurons recorded in rats that had self-administered cocaine failed to suppress firing on omission of an expected reward and exhibited lower amplitude and imprecisely timed increases in firing to an unexpected reward. Learning also appeared to have less of an effect on reward-evoked and cue-evoked firing in the cocaine-experienced rats. Overall, the changes are consistent with reduced fidelity of input regarding the expected outcomes, such as their size, timing, and overall value, because of cocaine use.
Collapse
Affiliation(s)
- Yuji K Takahashi
- Intramural Research program of the National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| | - Thomas A Stalnaker
- Intramural Research program of the National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Yasmin Marrero-Garcia
- Intramural Research program of the National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Ray M Rada
- Intramural Research program of the National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | - Geoffrey Schoenbaum
- Intramural Research program of the National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
90
|
Sanna A, Fattore L, Badas P, Corona G, Cocco V, Diana M. Intermittent Theta Burst Stimulation of the Prefrontal Cortex in Cocaine Use Disorder: A Pilot Study. Front Neurosci 2019; 13:765. [PMID: 31402851 PMCID: PMC6670008 DOI: 10.3389/fnins.2019.00765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) is earning a role in the therapeutic arsenal of cocaine use disorder (CUD). A widespread and still growing number of studies have reported beneficial use of repeated TMS (rTMS) in reduction of craving, intake and cue-induced craving in cocaine addicts. In spite of these encouraging findings, many issues are still unresolved such as brain area to be stimulated, laterality of the effects, coil geometry and stimulation protocols/parameters. Intermittent theta burst stimulation (iTBS) is a more tolerable protocol administered at lower intensities and shorter intervals than conventional rTMS protocols. Yet, its effects on cocaine craving and length of abstinence in comparison with standard high frequency (10–15 Hz) protocols have never been evaluated so far. In the present paper, we describe the effect of the bilateral iTBS of the prefrontal cortex (PFC) in a population (n = 25) of treatment-seeking cocaine addicts, in an outpatient setting, and compare them with 15 Hz stimulation of the same brain area (n = 22). The results indicate that iTBS produces effects on cocaine consumption and cocaine craving virtually superimposable to the 15 Hz rTMS group. Both treatments had low numbers of dropouts and similar side-effects, safety and tolerability profiles. While larger studies are warranted to confirm these observations, iTBS appears to be a valid approach to be considered in treatment-seeking cocaine addicts, especially in light of its brief duration (3 min) vs. 15 Hz stimulation (15 min). The use of iTBS would allow increasing the number of patients treated per day with current rTMS devices, thus reducing patient discomfort and hopefully reducing drop-out rates without compromising clinical effectiveness.
Collapse
Affiliation(s)
- Angela Sanna
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | | | | | - Viola Cocco
- Department of Medical Science and Public Health, Section of Neurology, University of Cagliari, Cagliari, Italy
| | - Marco Diana
- "G. Minardi" Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
91
|
Goudriaan AE, Schluter RS. Non-invasive Neuromodulation in Problem Gambling: What Are the Odds? CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00266-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
92
|
Lipton DM, Gonzales BJ, Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front Syst Neurosci 2019; 13:28. [PMID: 31379523 PMCID: PMC6657020 DOI: 10.3389/fnsys.2019.00028] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we review the neural circuit bases of habits, compulsions, and addictions, behaviors which are all characterized by relatively automatic action performance. We discuss relevant studies, primarily from the rodent literature, and describe how major headway has been made in identifying the brain regions and neural cell types whose activity is modulated during the acquisition and performance of these automated behaviors. The dorsal striatum and cortical inputs to this structure have emerged as key players in the wider basal ganglia circuitry encoding behavioral automaticity, and changes in the activity of different neuronal cell-types in these brain regions have been shown to co-occur with the formation of automatic behaviors. We highlight how disordered functioning of these neural circuits can result in neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) and drug addiction. Finally, we discuss how the next phase of research in the field may benefit from integration of approaches for access to cells based on their genetic makeup, activity, connectivity and precise anatomical location.
Collapse
Affiliation(s)
- David M Lipton
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Zuckerman Postdoctoral Scholar, Jerusalem, Israel
| | - Ben J Gonzales
- Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, MaRS Centre, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
93
|
Martens KM, Pechacek KM, Modrak CG, Milleson VJ, Zhu B, Vonder Haar C. Cathodal Transcranial Direct-Current Stimulation Selectively Decreases Impulsivity after Traumatic Brain Injury in Rats. J Neurotrauma 2019; 36:2827-2830. [PMID: 31072218 PMCID: PMC6744944 DOI: 10.1089/neu.2019.6470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) often results in chronic psychiatric-like symptoms. In a condition with few therapeutic options, neuromodulation has emerged as a promising potential treatment avenue for these individuals. The goal of the current study was to determine if transcranial direct-current stimulation (tDCS) could treat deficits of impulsivity and attention in rats. This could then be used as a model to investigate treatment parameters and the mechanism of action underlying therapeutic effects. Rats were trained on a task to measure attention and motor impulsivity (five-choice serial reaction time task), then given a frontal, controlled cortical impact injury. After rats recovered to a new baseline, tDCS (cathodal, 10 min, 800 μA) was delivered daily prior to testing in a counterbalanced, cross-over design. Treatment with tDCS selectively reduced impulsivity in the TBI group, and the greatest recovery occurred in the rats with the largest deficits. With these data, we have established a rat model for studying the effects of tDCS on psychiatric-like dysfunction. More research is needed to determine the mechanism of action by which tDCS-related gains occur.
Collapse
Affiliation(s)
- Kris M Martens
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Kristen M Pechacek
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Cassandra G Modrak
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Virginia J Milleson
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Binxing Zhu
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, West Virginia
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
94
|
Liu T, Li Y, Shen Y, Liu X, Yuan TF. Gender does not matter: Add-on repetitive transcranial magnetic stimulation treatment for female methamphetamine dependents. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:70-75. [PMID: 30605708 DOI: 10.1016/j.pnpbp.2018.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) targeting prefrontal cortex reduces craving in different types of drug addiction. However, most studies failed to elucidate the potential gender discrepancies for the treatment effects, due to the small percentage of female subjects enrolled. The present study prospectively recruited female methamphetamine dependents for TMS treatment. METHODS Ninety female methamphetamine dependents were randomly assigned into the control group (routine addiction rehabilitation) or add-on 10 Hz group (routine addiction rehabilitation plus 20 times rTMS treatments). The craving scores to drug associated cues were examined as the primary outcome for this treatment. RESULTS The results showed that add-on rTMS treatment was as well effective in female methamphetamine dependents, and the effect lasted for at least 30 days after treatment. Drug abuse history predicts the efficacy of chronic treatment, and the effects of TMS treatment was more pronounced in young, high-craving subjects. CONCLUSIONS Add-on high frequency rTMS treatment is as well tolerable and effective in female methamphetamine dependents.
Collapse
Affiliation(s)
- Ting Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yongqiang Li
- Rehabilitation Medicine Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Medicine Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Nanjing Normal University, Nanjing, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
95
|
Pettorruso M, Di Giuda D, Martinotti G, Cocciolillo F, De Risio L, Montemitro C, Camardese G, Di Nicola M, Janiri L, di Giannantonio M. Dopaminergic and clinical correlates of high-frequency repetitive transcranial magnetic stimulation in gambling addiction: a SPECT case study. Addict Behav 2019; 93:246-249. [PMID: 30798016 DOI: 10.1016/j.addbeh.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) shows the potential to modulate local brain activity, thus resulting in a modulatory action on neurocircuitries implicated in the pathophysiology of Gambling Disorder (GD). We report the case of a GD patient treated with two weeks of high frequency (15 Hz) rTMS over the dorsolateral prefrontal cortex (DLPFC). At baseline and after rTMS treatment the patient underwent a SPECT examination with (123)I-FP-CIT tracer, to test changes in dopamine transporter (DAT) availability. The patient was followed up for six months, to explore safety and clinical correlates of a weekly high frequency rTMS maintenance treatment. Over the six-month follow-up the patient reported no episodes of gambling relapse. Also, the patient did not report craving for gambling or gambling-related symptoms. After two weeks of left DLPFC-rTMS treatment, we found a decrease in DAT availability in striatal regions, that represents a putative neurobiological substrate of dopaminergic pathways modulation. This study suggests that high frequency DLPFC-rTMS deserves further investigations in larger samples, using controlled study designs, to assess its real potential as a treatment for GD.
Collapse
|
96
|
Lavallé L, Aleman A. rTMS for treatment of negative symptoms in schizophrenia: Clinical effects and neural basis. L'ENCEPHALE 2019; 45 Suppl 2:S50-S51. [PMID: 31101378 DOI: 10.1016/j.encep.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- L Lavallé
- Inserm U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, université Claude Bernard Lyon 1, centre hospitalier Le Vinatier, 69678 Lyon, France.
| | - A Aleman
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
97
|
Cardullo S, Gomez Perez LJ, Marconi L, Terraneo A, Gallimberti L, Bonci A, Madeo G. Clinical Improvements in Comorbid Gambling/Cocaine Use Disorder (GD/CUD) Patients Undergoing Repetitive Transcranial Magnetic Stimulation (rTMS). J Clin Med 2019; 8:jcm8060768. [PMID: 31151221 PMCID: PMC6616893 DOI: 10.3390/jcm8060768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Pathological gambling behaviors may coexist with cocaine use disorder (CUD), underlying common pathogenic mechanisms. Repetitive transcranial magnetic stimulation (rTMS) has shown promise as a therapeutic intervention for CUD. In this case series, we evaluated the clinical effects of rTMS protocol stimulating the left dorsolateral prefrontal cortex (DLPFC) on the pattern of gambling and cocaine use. (2) Methods: Gambling severity, craving for cocaine, sleep, and other negative affect symptoms were recorded in seven patients with a diagnosis of gambling disorder (South Oaks Gambling Screen (SOGS) >5), in comorbidity with CUD, using the following scales: Gambling-Symptom Assessment Scale (G-SAS), Cocaine Craving Questionnaire (CCQ), Beck Depression Inventory-II (BDI-II), Self-rating Anxiety Scale (SAS), and Symptoms checklist-90 (SCL-90). The measures were assessed before the rTMS treatment and after 5, 30, and 60 days of treatment. Patterns of gambling and cocaine use were assessed by self-report and regular urine screens. (3) Results: Gambling severity at baseline ranged from mild to severe (mean ± Standard Error of the Mean (SEM), G-SAS score baseline: 24.42 ± 2.79). G-SAS scores significantly improved after treatment (G-SAS score Day 60: 2.66 ± 1.08). Compared to baseline, consistent improvements were significantly seen in craving for cocaine and in negative-affect symptoms. (4) Conclusions: The present findings provide unprecedent insights into the potential role of rTMS as a therapeutic intervention for reducing both gambling and cocaine use in patients with a dual diagnosis.
Collapse
Affiliation(s)
- Stefano Cardullo
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
| | - Luis Javier Gomez Perez
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
| | - Linda Marconi
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
| | - Alberto Terraneo
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
| | - Luigi Gallimberti
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
| | - Antonello Bonci
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Graziella Madeo
- Human Science and Brain Research, Novella Fronda Foundation, Piazza Castello, 35141 Padua, Italy.
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
98
|
Madeo G, Bonci A. Rewiring the Addicted Brain: Circuits-Based Treatment for Addiction. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:173-184. [PMID: 31097615 DOI: 10.1101/sqb.2018.83.038158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The advent of the noninvasive brain stimulation (NIBS) technique has paved the way for neural circuit-based treatments for addiction. Recently, evidence from both preclinical and clinical studies has evaluated the use of transcranial magnetic stimulation (TMS) as a safe and cost-effective therapeutic tool for substance use disorders (SUDs). Indeed, repetitive TMS impacts on neural activity inducing short- and long-term effects involving neuroplasticity mechanisms locally within the target area of stimulation and the network level throughout the brain. Here, we provide an integrated view of evidence highlighting the mechanisms of TMS-induced effects on modulating the maladaptive brain circuitry of addiction. We then review the preclinical and clinical findings suggesting rTMS as an effective interventional tool for the treatment of SUDs.
Collapse
Affiliation(s)
- Graziella Madeo
- Novella Fronda Foundation, Human Science and Brain Research Piazza Castello, 16-35141 Padua, Italy.,Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
99
|
Doñamayor N, Baek K, Voon V. Distal Functional Connectivity of Known and Emerging Cortical Targets for Therapeutic Noninvasive Stimulation. Cereb Cortex 2019; 28:791-804. [PMID: 29207006 DOI: 10.1093/cercor/bhx331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
Noninvasive stimulation is an emerging modality for the treatment of psychiatric disorders, including addiction. A crucial element in effective cortical target selection is its distal influence. We approached this question by examining resting-state functional connectivity patterns in known and potential stimulation targets in 145 healthy adults. We compared connectivity patterns with distant regions of particular relevance in the development and maintenance of addiction. We used stringent Bonferroni-correction for multiple comparisons. We show how the anterior insula, dorsal anterior cingulate, and ventromedial prefrontal cortex had opposing functional connectivity with striatum compared to the dorsomedial prefrontal cortex. However, the dorsolateral prefrontal cortex, the currently preferred target, and the presupplementary motor area had strongest negative connections to amygdala and hippocampus. Our findings highlight differential and opposing influences as a function of cortical site, underscoring the relevance of careful cortical target selection dependent on the desired effect on subcortical structures. We show the relevance of dorsal anterior cingulate and ventromedial prefrontal cortex as emerging cortical targets, and further emphasize the anterior insula as a potential promising target in addiction treatment, given its strong connections to ventral striatum, putamen, and substantia nigra.
Collapse
Affiliation(s)
- Nuria Doñamayor
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge CB2 2QQ, UK.,Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge CB2 3EB, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK.,NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
100
|
Gobin C, Shallcross J, Schwendt M. Neurobiological substrates of persistent working memory deficits and cocaine-seeking in the prelimbic cortex of rats with a history of extended access to cocaine self-administration. Neurobiol Learn Mem 2019; 161:92-105. [PMID: 30946882 DOI: 10.1016/j.nlm.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/21/2019] [Accepted: 03/26/2019] [Indexed: 01/16/2023]
Abstract
Cocaine use disorder (CUD) is associated with prefrontal cortex dysfunction and cognitive deficits that may contribute to persistent relapse susceptibility. As the relationship between cognitive deficits, cortical abnormalities and drug seeking is poorly understood, development of relevant animal models is of high clinical importance. Here, we used an animal model to characterize working memory and reversal learning in rats with a history of extended access cocaine self-administration and prolonged abstinence. We also investigated immediate and long-term functional changes within the prelimbic cortex (PrL) in relation to cognitive performance and drug-seeking. Adult male rats underwent 6 days of short-access (1 h/day) followed by 12 days of long-access (6 h/day) cocaine self-administration, or received passive saline infusions. Next, rats were tested in delayed match-to-sample (DMS) and (non)match-to-sample (NMS) tasks, and finally in a single context + cue relapse test on day 90 of abstinence. We found that a history of chronic cocaine self-administration impaired working memory, though sparing reversal learning, and that the components of these cognitive measures correlated with later drug-seeking. Further, we found that dysregulated metabolic activity and mGlu5 receptor signaling in the PrL of cocaine rats correlated with past working memory performance and/or drug-seeking, as indicated by the analysis of cytochrome oxidase reactivity, mGlu5 and Homer 1b/c protein expression, as well as Arc mRNA expression in mGlu5-positive cells. These findings advocate for a persistent post-cocaine PrL dysfunction, rooted in ineffective compensatory changes and manifested as impaired working memory performance and hyperreactivity to cocaine cues. Considering the possible interplay between the neural correlates underlying post-cocaine cognitive deficits and drug-seeking, cognitive function should be evaluated and considered when developing neurobiologically-based treatments of cocaine relapse.
Collapse
Affiliation(s)
- Christina Gobin
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA
| | - John Shallcross
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA
| | - Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA.
| |
Collapse
|