51
|
Lupu A, Gradinaru LM, Gradinaru VR, Bercea M. Diversity of Bioinspired Hydrogels: From Structure to Applications. Gels 2023; 9:gels9050376. [PMID: 37232968 DOI: 10.3390/gels9050376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc.
Collapse
Affiliation(s)
- Alexandra Lupu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
52
|
Bosco CD, De Cesaris MG, Felli N, Lucci E, Fanali S, Gentili A. Carbon nanomaterial-based membranes in solid-phase extraction. Mikrochim Acta 2023; 190:175. [PMID: 37022492 PMCID: PMC10079727 DOI: 10.1007/s00604-023-05741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Carbon nanomaterials (CNMs) have some excellent properties that make them ideal candidates as sorbents for solid-phase extraction (SPE). However, practical difficulties related to their handling (dispersion in the atmosphere, bundling phenomena, reduced adsorption capability, sorbent loss in cartridge/column format, etc.) have hindered their direct use for conventional SPE modes. Therefore, researchers working in the field of extraction science have looked for new solutions to avoid the above-mentioned problems. One of these is the design of CNM-based membranes. These devices can be of two different types: membranes that are exclusively composed of CNMs (i.e. buckypaper and graphene oxide paper) and polysaccharide membranes containing dispersed CNMs. A membrane can be used either as a filter, operating under flow-through mode, or as a rotating device, operating under the action of magnetic stirring. In both cases, the main advantages arising from the use of membranes are excellent results in terms of transport rates, adsorption capability, high throughput, and ease of employment. This review covers the preparation/synthesis procedures of such membranes and their potential in SPE applications, highlighting benefits and shortcomings in comparison with conventional SPE materials (especially, microparticles carbonaceous sorbents) and devices. Further challenges and expected improvements are addressed too.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | | | - Nina Felli
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Elena Lucci
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Nanoscience and Advanced Technologies, University of Verona, Strada Le Grazie, 15 37129, Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
- Hydro-Eco Research Centre, Sapienza University, Rome, Italy.
| |
Collapse
|
53
|
Annaka M. Anion specific conformational change in aqueous gellan gum solutions. Carbohydr Polym 2023; 305:120437. [PMID: 36737176 DOI: 10.1016/j.carbpol.2022.120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
127I NMR is applied to investigate the motional state and the selective interaction of I- ions in tetramethylammonium form of gellan gum (TMA gellan), together with monitoring the conformational change by the optical rotation measurement. The experimental results indicate that I- ion promotes the conformational transition, and there exists the preferential affinity of I- ion for the ordered conformation of TMA gellan.
Collapse
Affiliation(s)
- Masahiko Annaka
- Department of Chemistry, Kyushu University Fukuoka, Fukuoka 8190395, Japan; Center for Molecular Systems (CMS), Kyushu University Fukuoka, Fukuoka 8190395, Japan.
| |
Collapse
|
54
|
Thermo-irreversible emulsion gels based on deacetylated konjac glucomannan and methylcellulose as animal fat analogs. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
55
|
Du M, Zhang Y, Zhao Y, Fang Y. Role of conformation transition of high acyl gellan in the design of double network hydrogels. Int J Biol Macromol 2023; 233:123583. [PMID: 36758759 DOI: 10.1016/j.ijbiomac.2023.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Double network hydrogels (DNs) with excellent strength and toughness have been preliminarily applied in the preparation of artificial foods. To evaluate the effect of conformation transition of ductile polymers on the physicochemical properties of DNs, we firstly prepared agarose (AR)/high acyl gellan (HAG) DNs and investigated their mechanical properties, and then calcium ion (Ca2+) was introduced into optimized AR/HAG DNs to regulate the conformation of ductile chains (HAG) for further increasing their mechanical properties. The mechanical strength of the optimized AR/HAG gel is 5 times and 2 times that of AR and HAG gel, respectively. Compared with adding Ca2+ method, immersing Ca2+ solution endowed optimized DNs with 5-fold increase in mechanical strength, outstanding textural properties and lower swelling ratio, which was attributed to the extended conformation of ductile chains. Furthermore, the obtained DNs were reminiscent of beef omasum based on their physicochemical properties. Optimized AR/HAG DNs after immersing in 2 wt% CaCl2 solution exhibited comparable texture properties with beef omasum by three correlation analysis methods and sensory evaluation, providing a new strategy to fabricate biomimetic food with high chewiness by regulating the conformation of ductile polymers in DNs.
Collapse
Affiliation(s)
- Mengjia Du
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yiguo Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
56
|
Vieira S, Strymecka P, Stanaszek L, Silva-Correia J, Drela K, Fiedorowicz M, Malysz-Cymborska I, Janowski M, Reis RL, Łukomska B, Walczak P, Oliveira JM. Mn-Based Methacrylated Gellan Gum Hydrogels for MRI-Guided Cell Delivery and Imaging. Bioengineering (Basel) 2023; 10:bioengineering10040427. [PMID: 37106614 PMCID: PMC10135712 DOI: 10.3390/bioengineering10040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Paulina Strymecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joana Silva-Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Izabela Malysz-Cymborska
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Rui Luís Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Barbara Łukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Piotr Walczak
- Department of Neurology and Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +351-253510931; Fax: +351-253510909
| |
Collapse
|
57
|
Lu H, Zhang Y, Tian T, Li X, Wu J, Yang H, Huang H. Preparation and properties of Sanxan gel based fertilizer for water retention and slow-release. Int J Biol Macromol 2023; 238:124104. [PMID: 36934818 DOI: 10.1016/j.ijbiomac.2023.124104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The advent of gel fertilizers has benefited agriculture and the environment. This study utilized sanxan, a novel polysaccharide, as a carrier and loaded it with urea to create sanxan gel fertilizer (SGF), thus creating a new, effective gel fertilizer. Water retention and sustained release ability of SGF were evaluated, and crop experiments were carried out. The results showed that, SGF that content 2.0 % solution of sanxan and loaded 20 g g-1 of urea were prepared by heating-cooling method. The water-retention ratio of SGF was attained at 56.4 g g-1 for 10 h. The urea releases of SGF in water have a more significant persistence than pure urea. In addition, wheat growth was promoted by SGF, compared with pure urea, the biomass of wheat shoot and root increased 27.4 % and 62.2 % during 20 days, respectively. Consequently, SGF has the ability to retain water and slowly release nutrition, which was an ideal carrier for managing water and urea. The SGF developed in this study provides data support and theoretical basis for the application of sanxan gel in agriculture and the environment.
Collapse
Affiliation(s)
- Hegang Lu
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Yu Zhang
- Hebei Xinhe Biochemical Co. LTD, Xinhe 055650, China.
| | - Tian Tian
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Xiaoyan Li
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Jiang Wu
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Hongpeng Yang
- Tianjin Agricultural University, Tianjin 300392, China.
| | - Haidong Huang
- Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
58
|
Textural and Rheological Properties of Sliceable Ketchup. Gels 2023; 9:gels9030222. [PMID: 36975671 PMCID: PMC10048648 DOI: 10.3390/gels9030222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
This study investigates the effect of different mixtures of gums [xanthan (Xa), konjac mannan (KM), gellan, and locust bean gum (LBG)] on the physical, rheological (steady and unsteady), and textural properties of sliceable ketchup. Each gum had an individually significant effect (p < 0.05) on viscosity; however, the addition of Xa in combination with other gums had a greater effect on viscosity. By increasing the use of Xa in ketchup formulations, the amount of syneresis decreased such that the lowest amount of syneresis related to the sample prepared with 50% Xa and 50% gellan. Although the use of different levels of gums did not have a significant effect on the brightness (L) and redness (a) indices (p < 0.05), the use of different ratios of gums had a significant effect (p < 0.05) on the yellowness (b) index. The effect of different levels of gums used had a significant effect only on firmness (p < 0.05), and their effects on other textural parameters were not statistically significant (p > 0.05). The ketchup samples produced had a shear-thinning behavior, and the Carreau model was the best model to describe the flow behavior. Based on unsteady rheology, G’ was higher than G” for all samples, and no crossover between G’ and G” was observed for any of the samples. The constant shear viscosity (η) was lower than the complex viscosity (η*), which showed the weak gel structure. The particle size distribution of the tested samples indicated the monodispersed distribution. Scanning electron microscopy confirmed the viscoelastic properties and particle size distribution.
Collapse
|
59
|
Tavagnacco L, Chiessi E, Severini L, Franco S, Buratti E, Capocefalo A, Brasili F, Mosca Conte A, Missori M, Angelini R, Sennato S, Mazzuca C, Zaccarelli E. Molecular origin of the two-step mechanism of gellan aggregation. SCIENCE ADVANCES 2023; 9:eadg4392. [PMID: 36897940 PMCID: PMC10005172 DOI: 10.1126/sciadv.adg4392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 05/31/2023]
Abstract
Among hydrocolloids, gellan is one of the most studied polysaccharides due to its ability to form mechanically stable gels. Despite its long-standing use, the gellan aggregation mechanism is still not understood because of the lack of atomistic information. Here, we fill this gap by developing a new gellan force field. Our simulations offer the first microscopic overview of gellan aggregation, detecting the coil to single-helix transition at dilute conditions and the formation of higher-order aggregates at high concentration through a two-step process: first, the formation of double helices and then their assembly into superstructures. For both steps, we also assess the role of monovalent and divalent cations, complementing simulations with rheology and atomic force microscopy experiments and highlighting the leading role of divalent cations. These results pave the way for future use of gellan-based systems in a variety of applications, from food science to art restoration.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Leonardo Severini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Silvia Franco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Elena Buratti
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Angela Capocefalo
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Francesco Brasili
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Adriano Mosca Conte
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Mauro Missori
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Roberta Angelini
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Simona Sennato
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
| | - Emanuela Zaccarelli
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
60
|
Hosseini P, Hojjatoleslamy M, Molavi H. Investigation of the mixing ratio of quince seed gum, potato starch and gellan gum on the properties of the resulting film by Mixture Design. Int J Biol Macromol 2023; 237:123869. [PMID: 36871687 DOI: 10.1016/j.ijbiomac.2023.123869] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
In this study, the impact of three different biopolymers, namely, quince seed gum, potato starch and gellan gum, at levels of zero to three, on optimizing the biodegradable film was investigated. In order to prepare the mixed edible film, the textural properties of the films, water vapor permeability, water-solubility, transparency, thickness, color parameters, acid solubility and microstructure of the made films were investigated. Numerical optimization of method variables was performed based on the maximum Young's modulus and minimum solubility in water, minimum solubility in acid and minimum water vapor permeability by mixed design, using the Design-Expert software. The results showed that the increase of the quince seed gum directly affected the Young's modulus, tensile strength, elongation to break, solubility in acid, and a* and b* values. However, the rise of the potato starch and gellan gum levels increased the thickness, solubility in water, water vapor permeability, transparency, L* value and Young's modulus, tensile strength, elongation to break, solubility in acid and a* and b* values. The optimal conditions for the production of the biodegradable edible film were selected at the levels of 1.623 %, 1.637 % and 0 % for quince seed gum, potato starch and gellan gum, respectively. The results of scanning electron microscopy showed that the film had more uniformity, coherence and smoothness, as compared to other films studied. The results of this study, thus, showed that there was no statistically significant difference between the predicted and laboratory results (p < 0.05), indicating the good fit of the model designed for producing a quince seed gum/potato starch/gellan gum composite film.
Collapse
Affiliation(s)
- Pegah Hosseini
- Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Hojjatoleslamy
- Department of Food Science and Technology, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Energy Research Center, Shahrekord Branch Islamic Azad University, Shahrekord, Iran.
| | - Hooman Molavi
- Department of Food Science and Technology, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
61
|
Laitinen M, Mäkelä-Salmi N, Maina NH. Gelation of cereal β-glucan after partial dissolution at physiological temperature: Effect of molecular structure. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
62
|
Study of polysaccharide gels at Prof. Nishinari's laboratory. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
63
|
Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr Polym 2023; 311:120782. [PMID: 37028862 DOI: 10.1016/j.carbpol.2023.120782] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Gellan gum, a microbial exopolysaccharide, is biodegradable and has potential to fill several key roles in many fields from food to pharmacy, biomedicine and tissue engineering. In order to improve the physicochemical and biological properties of gellan gum, some researchers take advantage of numerous hydroxyl groups and the free carboxyl present in each repeating unit. As a result, design and development of gellan-based materials have advanced significantly. The goal of this review is to provide a summary of the most recent, high-quality research trends that have used gellan gum as a polymeric component in the design of numerous cutting-edge materials with applications in various fields.
Collapse
|
64
|
Feng S, Yi J, Ma Y, Bi J. The role of amide groups in the mechanism of acid-induced pectin gelation: A potential pH-sensitive hydrogel based on hydrogen bond interactions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
65
|
Kikuchi S, Horiuchi A, Nishimoto Y, Iwamoto A. Different effects of gellan gum and agar on change in root elongation in Arabidopsis thaliana by polyploidization: the key role of aluminum. JOURNAL OF PLANT RESEARCH 2023; 136:253-263. [PMID: 36689102 DOI: 10.1007/s10265-023-01435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Agar and gellan gum have been considered to have different effects on polyploidy-dependent growth in plants. We aim to demonstrate that agar and gellan gum differently affect the change in root elongation in Arabidopsis thaliana by polyploidization and examined the physico-chemical parameters in each gelling agent to elucidate key factors that caused the differences. Each polyploid strain was cultured vertically on agar and gellan gum solidified medium under fixed conditions. Root elongation rate was measured during 4-10 days after sowing. As a result, agar promoted root elongation of polyploids more than the gellan gum. Then water potential, gel hardness, and trace elements of each medium were quantified in each medium. Water potential and gel hardness of agar medium were significantly higher than those of gellan gum medium. The decrease in water potential and gel hardness in agar medium, however, did not affect the change in polyploidy-dependent growth. Elemental analysis showed that gellan gum contained more aluminum than agar. Subsequently, the polyploids were grown on agar media with additional aluminum, on which the root elongation in tetraploids and octoploids was significantly suppressed. These results revealed that agar and gellan gum affect the change in growth of root elongation in A. thaliana by polyploidization in different ways and the different effects on change in polyploidy-dependent growth is partially caused by aluminum in the gellan gum, which may be due to cell wall composition of polyploids.
Collapse
Affiliation(s)
- Suzuka Kikuchi
- Department of Biological Sciences, Graduate School of Sciences, Kanagawa University, Hiratsuka, Japan
| | - Arisa Horiuchi
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Yuko Nishimoto
- Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Akitoshi Iwamoto
- Department of Biological Sciences, Graduate School of Sciences, Kanagawa University, Hiratsuka, Japan.
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan.
| |
Collapse
|
66
|
Lameirinhas NS, Teixeira MC, Carvalho JPF, Valente BFA, Pinto RJB, Oliveira H, Luís JL, Pires L, Oliveira JM, Vilela C, Freire CSR. Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells. Int J Biol Macromol 2023; 229:849-860. [PMID: 36572084 DOI: 10.1016/j.ijbiomac.2022.12.227] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 ± 10.93 Pa (90:10) to 337.16 ± 34.03 Pa (60:40) and from 18.27 ± 1.32 kPa (90:10) to 47.17 ± 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 × 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 ± 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.
Collapse
Affiliation(s)
- Nicole S Lameirinhas
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria C Teixeira
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P F Carvalho
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno F A Valente
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge L Luís
- School of Design, Management and Production Technologies Northern Aveiro, ESAN, Portugal
| | - Liliana Pires
- School of Design, Management and Production Technologies Northern Aveiro, ESAN, Portugal
| | - José M Oliveira
- School of Design, Management and Production Technologies Northern Aveiro, ESAN, Portugal
| | - Carla Vilela
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
67
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
68
|
Zeng J, Xie Z, Dekishima Y, Kuwagaki S, Sakai N, Matsusaki M. "Out-of-the-box" Granular Gel Bath Based on Cationic Polyvinyl Alcohol Microgels for Embedded Extrusion Printing. Macromol Rapid Commun 2023; 44:e2300025. [PMID: 36794543 DOI: 10.1002/marc.202300025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Embedded extrusion printing provides a versatile platform for fabricating complex hydrogel-based biological structures with living cells. However, the time-consuming process and rigorous storage conditions of current support baths hinder their commercial application. This work reports a novel "out-of-the-box" granular support bath based on chemically crosslinked cationic polyvinyl alcohol (PVA) microgels, which is ready to use by simply dispersing the lyophilized bath in water. Notably, with ionic modification, PVA microgels yield reduced particle size, uniform distribution, and appropriate rheological properties, contributing to high-resolution printing. Following by the lyophilization and re-dispersion process, ion-modified PVA baths recover to its original state, with unchanged particle size, rheological properties, and printing resolution, demonstrating its stability and recoverability. Lyophilization facilitates the long-term storage and delivery of granular gel baths, and enables the application of "out-of-the-box" support materials, which will greatly simplify experimental procedures, avoid labor-intensive and time-consuming operations, thus accelerating the broad commercial development of embedded bioprinting.
Collapse
Affiliation(s)
- Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasumasa Dekishima
- Mitsubishi Chemical Corporation, Science and Innovation Center, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-8502, Japan
| | - Setsuka Kuwagaki
- Mitsubishi Chemical Corporation, Osaka R&D Center, 13-1 Muroyama 2-chome, Ibaraki, Osaka, 567-0052, Japan
| | - Norihito Sakai
- Mitsubishi Chemical Corporation, Osaka R&D Center, 13-1 Muroyama 2-chome, Ibaraki, Osaka, 567-0052, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
69
|
Sales LS, Gimenes MDS, Meneguin AB, Barud HDS, Achcar JA, Brighenti FL. Development of multiparticulate systems based on natural polymers for morin controlled release. Int J Biol Macromol 2023; 228:1-12. [PMID: 36543296 DOI: 10.1016/j.ijbiomac.2022.12.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
This study aimed to develop a multiparticulate system based on sodium alginate/gellan gum polymers for morin controlled release using standardized spray-dryer parameters. A 24 experimental factorial design was used to standardize spray-dryer parameters. After standardization, three systems with three different proportions of the natural polymers (50:50, 25:75, 75:25; sodium alginate: gellan gum) with and without morin (control) were developed. The systems were characterized according to its morphology and physicochemical properties. Next, the systems were evaluated regarding antibiofilm and antimicrobial activity against Streptococcus mutans. The factorial design indicated the use of the following parameters: i) air flow rate: 1.0 m3 /min; ii) outlet temperature: 120 °C; iii) natural polymers combination in different proportions; iiii) polymer concentration: 2 %. Scanning electron microscopy showed microparticles with spherical shape and rough surface. The samples released 99.86 % ± 9.36; 85.45 % ± 8.31; 86.87 % ± 3.83 of morin after 480 min. The systems containing morin significantly reduced S. mutans biofilm biomass, microbial viability and acidogenicity when compared to their respective controls. In conclusion, the spray-dryer parameters were standardized to the highest possible yield values and proved to be efficient for morin encapsulation and controlled release. Furthermore, these systems controlled important virulence factors of S. mutans biofilms.
Collapse
Affiliation(s)
- Luciana Solera Sales
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), School of Dentistry, R. Humaitá, 1680 - Centro, Araraquara, São Paulo 14801-903, Brazil.
| | - Milena da Silva Gimenes
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), School of Dentistry, R. Humaitá, 1680 - Centro, Araraquara, São Paulo 14801-903, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceuticals, São Paulo State University (Unesp), School of Pharmaceutical Sciences, Jaú, Km 1, CP 502, Araraquara, São Paulo 14800-903, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Laboratory (BioPolMat), University of Araraquara - UNIARA, 14801-340 Araraquara, SP, Brazil
| | | | - Fernanda Lourenção Brighenti
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp), School of Dentistry, R. Humaitá, 1680 - Centro, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
70
|
A novel starch-based microparticle with polyelectrolyte complexes and its slow digestion mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
71
|
Bi G, Liu S, Zhong X, Peng Y, Song W, Yang J, Ren L. Thermosensitive Injectable Gradient Hydrogel-Induced Bidirectional Differentiation of BMSCs. Macromol Biosci 2023; 23:e2200250. [PMID: 36148592 DOI: 10.1002/mabi.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/11/2022] [Indexed: 11/10/2022]
Abstract
Osteochondral defects threaten the quality of life of patients to a great extent. To simulate gradient changes in osteochondral tissue, a gradient-mixing injection device consisting of a controller and injection pumps is design. Bioactive glass (BG) and gellan gum (GG) are used to prepare thermosensitive injectable gradient hydrogels (B0.5 G, B1 G) with an upper critical solution temperature (UCST) range of 37.7-40.2 °C using this device for the first time. The mechanical properties of gradient hydrogels are significantly better than those of pure GG hydrogels. The gradients in the composition, structure, and morphology of gradient hydrogels are confirmed via physicochemical characterization. Cytocompatibility tests show that hydrogels, especially B0.5 G gradient hydrogels, promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). Most importantly, qRT-PCR shows that the different components in B0.5 G gradient hydrogels simultaneously induce the osteogenic and chondrogenic differentiation of BMSCs. Experimental injection in porcine osteochondral defects indicates that the B0.5 G gradient hydrogel seamlessly fills irregular osteochondral defects in a less invasive manner by controlling the temperature to avoid cellular and tissue damage arising from crosslinkers or other conditions. These results show that thermosensitive injectable B0.5 G gradient hydrogels have the potential for less invasive integrated osteochondral repair.
Collapse
Affiliation(s)
- Gangyuan Bi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Sa Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xiupeng Zhong
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yaotian Peng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wenjing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Junzhong Yang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China.,School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
72
|
de Lima IS, Ferreira MOG, Barros EML, Rizzo MDS, Santos JDA, Ribeiro AB, Anteveli Osajima Furtini J, C. Silva-Filho E, Estevinho LM. Antibacterial and Healing Effect of Chicha Gum Hydrogel ( Sterculia striata) with Nerolidol. Int J Mol Sci 2023; 24:2210. [PMID: 36768534 PMCID: PMC9916798 DOI: 10.3390/ijms24032210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Chicha gum is a natural polymer obtained from the Sterculia striata plant. The hydroxyl groups of its structure have a chemical affinity to form hydrogels, which favors the association with biologically active molecules, such as nerolidol. This association improves the biological properties and allows the material to be used in drug delivery systems. Chicha gum hydrogels associated with nerolidol were produced at two concentrations: 0.01 and 0.02 g mL-1. Then, the hydrogels were characterized by thermogravimetry (TG), Fourier Transform Infrared spectroscopy (FTIR), and rheological analysis. The antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. The cytotoxicity was evaluated against Artemia salina. Finally, an in vivo healing assay was carried out. The infrared characterization indicated that interactions were formed during the gel reticulation. This implies the presence of nerolidol in the regions at 3100-3550 cm-1. The rheological properties changed with an increasing concentration of nerolidol, which resulted in less viscous materials. An antibacterial 83.6% growth inhibition effect was observed using the hydrogel with 0.02 g mL-1 nerolidol. The in vivo healing assay showed the practical activity of the hydrogels in the wound treatment, as the materials promoted efficient re-epithelialization. Therefore, it was concluded that the chicha hydrogels have the potential to be used as wound-healing products.
Collapse
Affiliation(s)
- Idglan Sá de Lima
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Maria Onaira Gonçalves Ferreira
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | | | - Marcia dos Santos Rizzo
- Centro de Biotecnologia e Química Fina (CBQF)—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Jailson de Araújo Santos
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Alessandra Braga Ribeiro
- Centro de Biotecnologia e Química Fina (CBQF)—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Josy Anteveli Osajima Furtini
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Edson C. Silva-Filho
- Interdisciplinary Laboratory of Advanced Materials (LIMAV), Postgraduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Leticia M. Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
73
|
Lupu A, Rosca I, Gradinaru VR, Bercea M. Temperature Induced Gelation and Antimicrobial Properties of Pluronic F127 Based Systems. Polymers (Basel) 2023; 15:polym15020355. [PMID: 36679236 PMCID: PMC9861663 DOI: 10.3390/polym15020355] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Different formulations containing Pluronic F127 and polysaccharides (chitosan, sodium alginate, gellan gum, and κ-carrageenan) were investigated as potential injectable gels that behave as free-flowing liquid with reduced viscosity at low temperatures and displayed solid-like properties at 37 °C. In addition, ZnO nanoparticles, lysozyme, or curcumin were added for testing the antimicrobial properties of the thermal-sensitive gels. Rheological investigations evidenced small changes in transition temperature and kinetics of gelation at 37 °C in presence of polysaccharides. However, the gel formation is very delayed in the presence of curcumin. The antimicrobial properties of Pluronic F127 gels are very modest even by adding chitosan, lysozyme, or ZnO nanoparticles. A remarkable enhancement of antimicrobial activity was observed in the presence of curcumin. Chitosan addition to Pluronic/curcumin systems improves their viscoelasticity, antimicrobial activity, and stability in time. The balance between viscoelastic and antimicrobial characteristics needs to be considered in the formulation of Pluronic F127 gels suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bd., 700506 Iasi, Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Correspondence:
| |
Collapse
|
74
|
Jongprasitkul H, Turunen S, Parihar VS, Kellomäki M. Sequential Cross-linking of Gallic Acid-Functionalized GelMA-Based Bioinks with Enhanced Printability for Extrusion-Based 3D Bioprinting. Biomacromolecules 2023; 24:502-514. [PMID: 36544430 PMCID: PMC9832479 DOI: 10.1021/acs.biomac.2c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The printability of a photocross-linkable methacrylated gelatin (GelMA) bioink with an extrusion-based 3D bioprinter is highly affected by the polymer concentration and printing temperature. In this work, we developed a gallic acid (GA)-functionalized GelMA ink to improve the printability at room and physiological temperatures and to enable tissue adhesion and antioxidant properties. We introduced a sequential cross-linking approach using catechol-Fe3+ chelation, followed by photocross-linking. The results show that the ink formulation with 0.5% (w/v) Fe3+ in GelMA (30% modification) with 10% GA (GelMA30GA-5Fe) provided the optimum printability, shape fidelity, and structural integrity. The dual network inside the printed constructs significantly enhanced the viscoelastic properties. Printed cylinders were evaluated for their printing accuracy. The printed structures of GelMA30GA-5Fe provided high stability in physiological conditions over a month. In addition, the optimized ink also offered good tissue adhesion and antioxidant property. This catechol-based sequential cross-linking method could be adopted for the fabrication of other single-polymer bioinks.
Collapse
Affiliation(s)
- Hatai Jongprasitkul
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland
| | - Sanna Turunen
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland,Brinter
Ltd, Turku20520, Finland
| | - Vijay Singh Parihar
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland,
| | - Minna Kellomäki
- Biomaterials
and Tissue Engineering Group, BioMediTech, Faculty of Medicine and
Health Technology, Tampere University, Tampere33720, Finland
| |
Collapse
|
75
|
Shu M, Fan L, Zhang J, Li J. Research progress of water-in-oil emulsion gelated with internal aqueous phase: gel factors, gel mechanism, application fields, and future direction of development. Crit Rev Food Sci Nutr 2023; 64:6055-6072. [PMID: 36591896 DOI: 10.1080/10408398.2022.2161994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The W/O emulsion is a promising system. Its special structure can keep the sensory properties of fat while reducing the fat content. Improving the stability and physical properties of W/O emulsions is generally oriented toward outer oil-phase modified oil gels and inner water-phase modified inner hydrogels. In this paper, the research progress of internal aqueous gel was reviewed, and some gel factors suitable for internal aqueous gel and the gel mechanism of main gel factors were discussed. The advantages of this internal aqueous gel emulsion system allow its use in the field of fat substitutes and encapsulating substances. Finally, some shortcomings and possible research directions in the future were proposed, which would provide a theoretical basis for the further development of internal water-phase gelled W/O emulsion in the future.
Collapse
Affiliation(s)
- Mingjun Shu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
76
|
Pietryga K, Reczyńska-Kolman K, Reseland JE, Haugen H, Larreta-Garde V, Pamuła E. Biphasic monolithic osteochondral scaffolds obtained by diffusion-limited enzymatic mineralization of gellan gum hydrogel. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
77
|
Thermo-responsive behavior and gelation of curdlan alkyl-ethers prepared by homogeneous reaction. Carbohydr Polym 2023; 300:120248. [DOI: 10.1016/j.carbpol.2022.120248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/24/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
|
78
|
Cui B, Wu D, Zhou B, Zhu K, Pei Y, Li B, Liang H. Hydrogel-based encapsulation strategy for nobiletin stabilization. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
79
|
Hu D, Zhang Z, Li W, Qin X, Zhang R, Yuan L, Yang X. Promoting adsorption performance and mechanical strength in composite porous gel film. Int J Biol Macromol 2022; 223:1115-1125. [PMID: 36395927 DOI: 10.1016/j.ijbiomac.2022.11.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Starch is widely used to prepare biodegradable films due to its superior biocompatibility, low immunogenicity, and renewability. In this work, a novel K+/carrageenan porous-starch/casein gel film with high oil absorption was prepared using modified porous starch. Optimal gel stability and uniformity were obtained when adding 10 mg/mL k-carrageenan and 2 mg/mL K+ to 2 mg/mL microgels, with significantly reduced crystallinity and elasticity and increased tensile strength. The concentration of k-carrageenan was the main factor affecting gel strength and the hydrophilic and mechanical properties of the film. In addition, the film-forming solution showed excellent fluidity and spreading typical of non-Newtonian fluids. The film also exhibited a highly porous structure, as visualized by SEM and AFM, in line with a cumulative oil absorption rate of 87.5 % within 20 min, which was significantly higher than that obtained with glutinous rice starch. In conclusion, reinforcement of starch-based microgels as described in this study can maximize the film's adsorption performance and mechanical properties, with promising applications in skin care and beauty products.
Collapse
Affiliation(s)
- Dan Hu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong, Yantai 264003, PR China
| | - Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Engineering Research Center of High Value Utilization of Western Fruit Resources, Ministry of Education, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
80
|
Gering C, Párraga J, Vuorenpää H, Botero L, Miettinen S, Kellomäki M. Bioactivated gellan gum hydrogels affect cellular rearrangement and cell response in vascular co-culture and subcutaneous implant models. BIOMATERIALS ADVANCES 2022; 143:213185. [PMID: 36371972 DOI: 10.1016/j.bioadv.2022.213185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels are suitable soft tissue mimics and capable of creating pre-vascularized tissues, that are useful for in vitro tissue engineering and in vivo regenerative medicine. The polysaccharide gellan gum (GG) offers an intriguing matrix material but requires bioactivation in order to support cell attachment and transfer of biomechanical cues. Here, four versatile modifications were investigated: Purified NaGG; avidin-modified NaGG combined with biotinylated fibronectin (NaGG-avd); oxidized GG (GGox) covalently modified with carbohydrazide-modified gelatin (gelaCDH) or adipic hydrazide-modified gelatin (gelaADH). All materials were subjected to rheological analysis to assess their viscoelastic properties, using a time sweep for gelation analysis, and subsequent amplitude sweep of the formed hydrogels. The sweeps show that NaGG and NaGG-avd are rather brittle, while gelatin-based hydrogels are more elastic. The degradation of preformed hydrogels in cell culture medium was analyzed with an amplitude sweep and show that gelatin-containing hydrogels degrade more dramatically. A co-culture of GFP-tagged HUVEC and hASC was performed to induce vascular network formation in 3D for up to 14 days. Immunofluorescence staining of the αSMA+ network showed increased cell response to gelatin-GG networks, while the NaGG-based hydrogels did not allow for the elongation of cells. Preformed, 3D hydrogels disks were implanted to subcutaneous rat skin pockets to evaluate biological in vivo response. As visible from the hematoxylin and eosin-stained tissue slices, all materials are biocompatible, however gelatin-GG hydrogels produced a stronger host response. This work indicates, that besides the biochemical cues added to the GG hydrogels, also their viscoelasticity greatly influences the biological response.
Collapse
Affiliation(s)
- Christine Gering
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Jenny Párraga
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hanna Vuorenpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Lucía Botero
- Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Minna Kellomäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
81
|
Xiong T, Sun H, Niu Z, Xu W, Li Z, He Y, Luo D, Xi W, Wei J, Zhang C. Carrageenan-Based Pickering Emulsion Gels Stabilized by Xanthan Gum/Lysozyme Nanoparticle: Microstructure, Rheological, and Texture Perspective. Foods 2022; 11:3757. [PMID: 36496565 PMCID: PMC9736083 DOI: 10.3390/foods11233757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, Pickering emulsion gels were prepared by the self-gel method based on kappa carrageenan (kC). The effects of particle stabilizers and polysaccharide concentrations on the microstructure, rheological characteristics, and texture of Pickering emulsion gels stabilized by xanthan gum/lysozyme nanoparticles (XG/Ly NPs) with kC were discussed. The viscoelasticity of Pickering emulsion gels increased significantly with the increase of kC and XG/Ly NPs. The results of temperature sweep showed that the gel formation mainly depended on the kC addition. The XG/Ly NPs addition could accelerate the formation of Pickering emulsion gels and increase its melting temperature (Tmelt), which is helpful to improve the thermal stability of emulsion gels. Cryo-scanning electron microscope (Cryo-SEM) images revealed that Pickering emulsion gel has a porous network structure, and the oil droplets were well wrapped in the pores. The hardness increased significantly with the increase of XG/Ly NPs and kC. In particular, the Pickering emulsion gel hardness was up to 2.9 Newton (N) when the concentration of kC and XG/Ly NPs were 2%. The results showed that self-gelling polysaccharides, such as kC, could construct and regulate the structure and characteristics of Pickering emulsion gel. This study provides theoretical support for potential new applications of emulsion gels as functional colloids and delivery systems in the food industry.
Collapse
Affiliation(s)
- Tianzhen Xiong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyi Niu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Zhifan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yawen He
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjie Xi
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jingjing Wei
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Chunlan Zhang
- College of Food Science and Engineering, Tarim University, Alar 843300, China
| |
Collapse
|
82
|
Hypoglycemic Activity of Self-Assembled Gellan Gum-Soybean Isolate Composite Hydrogel-Embedded Active Substance-Saponin. Foods 2022; 11:foods11223729. [PMID: 36429321 PMCID: PMC9689565 DOI: 10.3390/foods11223729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
In order to avoid hemolysis caused by direct dietary of kidney tea saponin, complex gels based on gellan gum (GG) and soybean isolate protein (SPI) loaded with saponin were created in the present study by using a self-assembly technique. Studies were conducted on the rheological characteristics, encapsulation effectiveness, molecular structure, microstructure, and hypoglycemic activity of GG/SPI-saponin gels. Increasing the concentration of SPI helped to enhance the strength and energy storage modulus (G') of the gels, and the incorporation of high acylated saponin allowed the whole gel to undergo sol-gel interconversion. The encapsulation efficiency showed that GG/SPI-saponin was 84.52 ± 0.78% for saponin. Microstructural analysis results suggested that GG and SPI were bound by hydrogen bonds. The in vitro digestion results also indicated that saponin could be well retained in the stomach and subsequently released slowly in the intestine. In addition, the in vitro hypoglycemic activity results showed that the IC50 of encapsulated saponin against α-glucosidase and α-amylase were at 2.4790 mg/mL and 1.4317 mg/mL, respectively, and may be used to replace acarbose for hypoglycemia.
Collapse
|
83
|
Rivera-Hernández L, Chavarría-Hernández N, Tecante A, López-Ortega MA, López Cuellar MDR, Rodríguez-Hernández AI. Mixed gels based on low acyl gellan and citrus pectin: A linear viscoelastic analysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Meriem B, Yahoum MM, Lefnaoui S, Ribiero M, Bañobre-López M, Moulai-Mostefa N. Magnetic ferrogels based on crosslinked xanthan and iron oxide nanoparticles: preparation and physico-chemical characterization. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2130270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Boudoukhani Meriem
- Materials and Environmental Laboratory (LME), University of Medea, Medea, Algeria
| | - Madiha Melha Yahoum
- Materials and Environmental Laboratory (LME), University of Medea, Medea, Algeria
| | - Sonia Lefnaoui
- Experimental Biology and Pharmacology Laboratory (LBPE), University of Medea, Medea, Algeria
| | - Marta Ribiero
- INL, International Iberian Nanotechnology Laboratory, Advanced (Magnetic) Theranostic Nanostructures Laboratory, Braga, Portugal
| | - Manuel Bañobre-López
- INL, International Iberian Nanotechnology Laboratory, Advanced (Magnetic) Theranostic Nanostructures Laboratory, Braga, Portugal
| | - Nadji Moulai-Mostefa
- Materials and Environmental Laboratory (LME), University of Medea, Medea, Algeria
| |
Collapse
|
85
|
Henrique Marcondes Sari M, Mota Ferreira L, Cruz L. The use of natural gums to produce nano-based hydrogels and films for topical application. Int J Pharm 2022; 626:122166. [PMID: 36075522 DOI: 10.1016/j.ijpharm.2022.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Natural gums are a source of biopolymeric materials with a wide range of applications for multiple purposes. These polysaccharides are extensively explored due to their low toxicity, gelling and thickening properties, and bioadhesive potential, which have sparked interest in researchers given their use in producing pharmaceutic dosage forms compared to synthetic agents. Hence, gums can be used as gelling and film-forming agents, which are suitable platforms for topical drug administration. Additionally, recent studies have demonstrated the possibility of obtaining nanocomposite materials formed by a polymeric matrix of gums associated with nanoscale carriers that have shown superior drug delivery performance and compatibility with multiple administration routes compared to starting components. In this sense, research on topical natural gum-based form preparation containing drug-loaded nanocarriers was detailed and discussed herein. A special focus was devoted to the advantages achieved regarding physicochemical and mechanical features, drug delivery capacity, permeability through topical barriers, and biocompatibility of the hydrogels and polymeric films.
Collapse
Affiliation(s)
- Marcel Henrique Marcondes Sari
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Letícia Cruz
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
86
|
Israkarn K, Buathongjan C, Gamonpilas C, Methacanon P, Wisetsuwannaphum S. Effects of gellan gum and calcium fortification on the rheological properties of mung bean protein and gellan gum mixtures. J Food Sci 2022; 87:5001-5016. [PMID: 36181362 DOI: 10.1111/1750-3841.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Abstract
In this study, the effects of gellan gum types and CaCl2 addition on the rheological characteristics of mung bean protein (MBP)-gellan gum mixtures at varying protein contents (1-7 wt%) were investigated. Two types of gellan gum, high acyl gellan (HAG) and low acyl gellan (LAG), at 0.5 wt% were used. MBP-HAG system showed soft and elastic gels at below 3 wt% MBP content, but gel became weaker due to protein network disruption at higher MBP content. In contrast, MBP-LAG system exhibited a liquid-like behavior and a synergistic interaction between LAG and MBP. High calcium concentration can cause proteins to aggregate leading to protein precipitation. However, such phenomenon could be retarded by both types of gellan gum in the MBP-gellan gum mixtures studied herein. The calcium addition of up to 50 mM did not significantly alter the overall viscoelastic property of MBP-HAG system. In contrast, MBP-LAG system fortified with calcium formed solid gel at low protein content (1 wt%), but excessive calcium ions were required to maintain the strong gel characteristic at higher protein concentration (≥ 3 wt%) due to the competitive binding of calcium between the protein and gellan gum. These results were also supported by their microstructure observed through CLSM and SEM experiments. PRACTICAL APPLICATION: The application of hydrocolloids as rheology modifiers is useful to improve the stability and textural properties of plant-based protein drinks. Results from this study are helpful for the industry to understand the textural properties of mung bean protein at varying concentrations in the presence of gellan gum and calcium. Especially, at high calcium fortification which is desirable in plant-based protein drinks, protein aggregation could be retarded by gellan gum. Overall, the finding demonstrated that a range of rheological characteristics of mung bean protein and gellan gum mixtures could be manipulated as desired to meet both nutritional quality and product stability.
Collapse
Affiliation(s)
- Kamolwan Israkarn
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Chonchanok Buathongjan
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Chaiwut Gamonpilas
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Pawadee Methacanon
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| | - Sirikarn Wisetsuwannaphum
- Advanced Polymer Technology Research Group, National Metal and Materials Technology Center, Pathum Thani, Thailand
| |
Collapse
|
87
|
Yang C, Wang X, Hu H, Feng Y, Tang H, Zhang W, Wang J. Cold-set oat protein isolate--gellan gum binary gels with various microstructures: Fabrication, characterization, formation mechanism, and controlled release properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
88
|
Preparation and Characterization of Aronia Melanocarpa/Gellan Gum/Pea Protein/Chitosan Bilayer Films. Foods 2022; 11:foods11182835. [PMID: 36140963 PMCID: PMC9498015 DOI: 10.3390/foods11182835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, pH-sensitive bilayer hydrogel films with different AM contents (0.00%, 0.50%, 1.00%, 1.50%, 2.00% and 2.50%) were constructed. The films took AM/GG hydrogel as the inner layer structure and a pea protein (PP)/chitosan (CS) composite system as the outer structure. Film formation and the effect of AM were clarified through the detection and analysis of mechanical properties, microstructure, pH sensitivity and fresh-keeping ability. Results showed that AM exhibited good compatibility with each substance in the composite film, which were evenly dispersed in the system. The addition of AM significantly improved the water content, tensile strength, elongation at break, puncture resistance, oil resistance and water resistance of the composite films. The antioxidant activity, pH sensitivity and fresh-keeping effect of the composite film on fresh pork were remarkably enhanced. Moreover, it was found that the composite film containing AM effectively inhibited the production of total volatile base nitrogen (TVN) in fresh pork and significantly reduced the weight loss of fresh pork due to water loss during storage. Therefore, the functional properties revealed that AM was more positive to the comprehensive performance of films, and the AM-GG/PP-CS bilayer film containing AM exhibited strong potential for use in food preservation and packaging as a food freshness indicator to test food quality changes in storage.
Collapse
|
89
|
Behavioral responses of sand fly Nyssomyia neivai (Psychodidae: Phlebotominae) to 1-hexanol and light. Acta Trop 2022; 236:106680. [PMID: 36087769 DOI: 10.1016/j.actatropica.2022.106680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The search for attractive baits that may facilitate the capture of haematophagous insects has been epidemiologically relevant. Sand flies use chemical cues in different phases of their life cycles to find carbohydrate meals, mates, blood meals and oviposition sites. Few studies have related the behaviours of sand flies with volatile compounds that can influence their life cycles. Previous studies in our laboratory have shown that 1-hexanol released on filter paper is a good attractant for the sand fly Nyssomyia neivai, which is suspected in the transmission of the aetiologic agent of American cutaneous leishmaniasis. METHODS In this study, we developed two release systems to modulated 1-hexanol release: system 1 contained gellan gum and pectin (4:1 ratio), 3% aluminium chloride and 1% glutaraldehyde; system 2 contained: gellan gum and pectin (4:1 ratio) and 3% aluminium chloride. After addition of 1-hexanol to each release system, trials were performed in a wind tunnel with Ny. neivai males and females (unfed, blood-fed and gravid) to evaluate activation and attraction responses. RESULTS Males and unfed females showed the same response pattern to the systems. For both systems, the males and unfed females of the sand flies showed an activation response up to 24 h. The number of responsive gravid females was lower than unfed females for both systems. The blood-fed females showed no responses in any of the release systems. CONCLUSIONS Our findings indicate that the state of the females (unfed, fed and gravid) can interfere with the sand fly responses to volatile compounds. Additionally, both systems evaluated with the compound showed effectiveness for sand fly attraction.
Collapse
|
90
|
Jover A, Troncoso J, di Gregorio MC, Fraga López F. Thermodynamic properties of sodium deoxycholate at the gel-sol transition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Dev MJ, Warke RG, Warke GM, Mahajan GB, Patil TA, Singhal RS. Advances in fermentative production, purification, characterization and applications of gellan gum. BIORESOURCE TECHNOLOGY 2022; 359:127498. [PMID: 35724911 DOI: 10.1016/j.biortech.2022.127498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.
Collapse
Affiliation(s)
- Manoj J Dev
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Rahul G Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Gangadhar M Warke
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Girish B Mahajan
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Tanuja A Patil
- Microbiology Division, Hi-Media Laboratories Pvt. Ltd., Mumbai, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
92
|
Xu L, Chen Y, Zhang P, Tang J, Xue Y, Luo H, Dai R, Jin J, Liu J. 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor photothermal-chemotherapy and wound healing. Biomater Sci 2022; 10:5648-5661. [PMID: 35994007 DOI: 10.1039/d2bm00903j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surgical resection remains the mainstay of melanoma treatment. However, due to the difficulties in controlling tumor recurrence and wound healing simultaneously, high postoperative recurrence rates and wound reconstruction remain the most significant challenges. As a result, a heterogeneous hybrid hydrogel scaffold was designed in this work to achieve sequential photothermal therapy and chemotherapy for melanoma recurrence inhibition and wound healing. A 3D printing platform was used to create a SA-GG@PDA hybrid hydrogel scaffold, which was prepared from a hybrid bioink consisting of sodium alginate (SA), gellan gum (GG), and polydopamine nanoparticles (PDA NPs). The printability, biocompatibility, and mechanical qualities of the hybrid bioink were all satisfactory. PDA NPs were generated in situ in the hybrid bioink, providing superior photothermal effects to the scaffold. After coating with a thermosensitive gelatin hydrogel loaded with the chemotherapeutic drug doxorubicin (DOX), the heterogeneous hydrogel scaffold could accelerate drug release under photothermal triggering and achieve photothermal-chemotherapy to suppress tumor cell proliferation and recurrence after surgical resection. Subsequently, the printed porous hybrid hydrogel scaffold enhanced HUVEC proliferation and migration, as well as tissue ingrowth, promoting wound healing following surgery. In the same mouse model, the sequential treatment with the heterogeneous SA-GG@PDA + DOX hydrogel scaffold was tested. The fabrication of the heterogeneous SA-GG@PDA + DOX hydrogel scaffold with multifunctional capabilities seemed to be a potential technique for preventing tumor recurrence and promoting wound healing following surgery.
Collapse
Affiliation(s)
- Langtao Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Peng Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Junjie Tang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Yifan Xue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Hongsheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rui Dai
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Jinlong Jin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
93
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
94
|
Zheng W, Zhang H, Wang J, Wang J, Yan L, Liu C, Zheng L. Pickering emulsion hydrogel based on alginate-gellan gum with carboxymethyl chitosan as a pH-responsive controlled release delivery system. Int J Biol Macromol 2022; 216:850-859. [PMID: 35914551 DOI: 10.1016/j.ijbiomac.2022.07.223] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Pickering emulsion hydrogels (PEHs) were developed as a pH-responsive, controlled-release delivery system to address the limitations of Pickering emulsions in some harsh processing or gastrointestinal conditions. Specifically, the PEHs were fabricated based on alginate and various concentrations of gellan gum (GG) with carboxymethyl chitosan (CMCS) matrix. The encapsulation efficiency (EE), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results proved the successful encapsulation. Furthermore, the hydrogels remained stable in the presence of destabilizing ions (Na+ or phosphate ions) and high osmotic pressure mediums. The texture profile analysis (TPA) characteristics and Young's modulus of the 0.8 % GG (w/v) PEHs were superior to the others. The PEHs prevented the emulsions from being released at pH 2.0, while the emulsions were entirely released at pH 7.4 in vitro, with the rate of release controlled by CMCS and the degree by GG concentration. This work facilitates the delivery of Pickering emulsions with excellent stability and pH-responsive controlled release for hydrophobic actives in food applications.
Collapse
Affiliation(s)
- Wenxiu Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huizhe Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ju Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jinjin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ling Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changhong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
95
|
Kong X, Xiao Z, Du M, Wang K, Yu W, Chen Y, Liu Z, Cheng Y, Gan J. Physicochemical, Textural, and Sensorial Properties of Soy Yogurt as Affected by Addition of Low Acyl Gellan Gum. Gels 2022; 8:gels8070453. [PMID: 35877538 PMCID: PMC9318443 DOI: 10.3390/gels8070453] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Soy yogurt is plant-based dairy of great nutritional interest that is widely accepted in developing countries as a milk alternative. Poor stability has been an urgent problem to solve of soy yogurt products over past several years. The present study aimed to construct multiple network composite gel by adding low acyl gellan gum (LAG) to improve the stability. The effect of addition of LAG on property of soy yogurt was investigated by determining water holding capacity, texture, rheology, particle size, and zeta potential. The results showed that water holding capacity was significantly higher than control. The soy yogurt with 0.1% LAG had a stable gel network with much gel strength and viscosity, and strengthened interaction between complex gel. The addition of LAG increased the particle size and decreased zeta potential. Furthermore, sensory properties were acceptable. Therefore, during industrial production, LAG could act as an appropriate stabilizer to inhibit poor body and bring more desirable sensory characteristics of soy yogurt.
Collapse
Affiliation(s)
- Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Ziqun Xiao
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuhang Chen
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (Y.C.); (J.G.); Tel.: +86-18853596400 (J.G.)
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (X.K.); (Z.X.); (M.D.); (K.W.); (W.Y.); (Y.C.); (Z.L.)
- Correspondence: (Y.C.); (J.G.); Tel.: +86-18853596400 (J.G.)
| |
Collapse
|
96
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
97
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
98
|
Wang H, Wang X, Wu D. Recent Advances of Natural Polysaccharide-based Double-network Hydrogels for Tissue Repair. Chem Asian J 2022; 17:e202200659. [PMID: 35837995 DOI: 10.1002/asia.202200659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Natural polysaccharide hydrogels have been extensively explored for many years due to their outstanding biocompatibility and biodegradability, which are very promising candidates as artificial soft materials for biomedical applications. However, their inferior mechanical performances greatly limited their applications. Introduction of double-network (DN) structure has been well documented to be an efficient strategy for significant improvement of the mechanical property of hydrogels. Here, recent progress of natural polysaccharide-based DN hydrogels is reviewed from the perspective of fundamental concepts on both design rationale and preparation strategies to biomedical application in tissue repair. Retrospect of the DN-strengthened polysaccharide hydrogels can give a deep insight into the fundamental relationship of such bio-based hydrogels among structural design, mechanical properties and practical demands, thereby prompting their translation to clinical application prospects.
Collapse
Affiliation(s)
- Hufei Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Xing Wang
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, CHINA
| | - Decheng Wu
- Southern University of Science and Technology, Department of Biomedical Engineering, No. 1088 Xueyuan Avenue, 518055, Shenzhen, CHINA
| |
Collapse
|
99
|
Li Y, Li J, Fan L. Effects of combined drying methods on physicochemical and rheological properties of instant Tremella fuciformis soup. Food Chem 2022; 396:133644. [PMID: 35870245 DOI: 10.1016/j.foodchem.2022.133644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/12/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
Abstract
The textural, rheological and flavor reconstitution behaviors of rehydrated instant Tremella fuciformis soup, treated by combined freeze drying + vacuum drying (FD-VD), freeze drying + far-infrared drying (FD-FIRD) and freeze drying + hot air drying (FD-HAD), were evaluated and compared with fresh soup. Moisture content transfer point (MTP) of 15 ± 2% was selected according to products quality and drying time. Instant soup treated by FD-VD showed lower shrinkage and looser structure compared with that of FD-FIRD and FD-HAD. After rehydration, FD-VD soup showed the best reconstitution behaviors with recovery rate of TSS, soluble protein and polysaccharide content up to 87.61%, 83.52%, 79.08% respectively. Besides, FD-VD rehydrated soup, with the highest polysaccharide content, showed similar rheological properties to the fresh soup. FD-VD soup contained more similar aroma compounds to FD sample measured by GC-MS, while FD-FIRD and FD-HAD generated new aldehydes, ketones and hydrocarbons, leading to unpleasant flavors.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
100
|
Floating sphere assay: A rapid qualitative method for microvolume analysis of gelation. PLoS One 2022; 17:e0266309. [PMID: 35802608 PMCID: PMC9269766 DOI: 10.1371/journal.pone.0266309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022] Open
Abstract
A huge, unprecedented demand for gelatin coupled with its implications on global sustainability has resulted in the need to discover novel proteins with gelling attributes for applications in the food industry. Currently used gelation assays require large sample volumes and thus the screening for novel gelling proteins is a formidable technical challenge. In this paper, we report the ‘Floating Sphere Assay’ which is a simple, economical, and miniaturized assay to detect minimum gelling concentration with volumes as low as 50 μl. Results from the Floating Sphere Assay are consistent with currently used methods for gelation tests and accurately estimate the Minimum Gelling Concentrations (MGCs) of gelatin, κ-carrageenan and gellan gum. The assay was also able to differentiate the strengths of strong and weak gellan gum gels prepared at pH 3.5 and pH 7.0 respectively. The Floating Sphere Assay can be utilized in high-throughput screens for gelling proteins and can accelerate the discovery of gelatin substitutes.
Collapse
|