51
|
Hernandez HM, Martinez FA, Vitek CJ. Insecticide Resistance in Aedes aegypti Varies Seasonally and Geographically in Texas/Mexico Border Cities. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2022; 38:59-69. [PMID: 35276730 DOI: 10.2987/21-21-7034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Insecticide use is the primary method of attempting to reduce or control the spread of mosquito-borne diseases. Insecticide resistance is a major concern as resistance will limit the efficacy of vector-control efforts. The lower Rio Grande Valley region of South Texas has had autochthonous transmission of multiple mosquito-borne diseases including those caused by dengue virus, chikungunya virus, and Zika virus. However, the current status of mosquito resistance to commonly used pesticides in this region is unknown. In this study, we collected field samples from multiple municipalities in South Texas and assessed resistance using the Centers for Disease Control and Prevention bottle bioassay. All populations exhibited characteristics of resistance, and permethrin was the most effective insecticide with an average mortality rate of 44.78%. Deltamethrin and sumethrin had significantly lower mortality rates of 20.31% and 32.16%, respectively, although neither of these insecticides are commonly used for vector-control activities in this region. Depending on which insecticide was used, there was little significance between each of the 7 cities. Seasonal variation in resistance was observed among the collection sites. Both deltamethrin and sumethrin exhibited an increase in susceptibility over the course of 10 months, while permethrin exhibited a decrease in susceptibility. These data highlight the need for further studies to determine if variations in resistance observed are repeated. The data and future findings may be useful in determining the most effective strategies for pesticide use and rotation.
Collapse
Affiliation(s)
- Heather M Hernandez
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, 1201 W University Drive, Edinburg, Texas 78539
| | - Flor A Martinez
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, 1201 W University Drive, Edinburg, Texas 78539
| | - Christopher J Vitek
- University of Texas Rio Grande Valley, Center for Vector-Borne Diseases, 1201 W University Drive, Edinburg, Texas 78539
| |
Collapse
|
52
|
Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids. INSECTS 2022; 13:insects13030247. [PMID: 35323544 PMCID: PMC8955173 DOI: 10.3390/insects13030247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Targeting mosquitoes with insecticides is one of the most effective methods to prevent malaria transmission. Although numbers of malaria cases have declined substantially this century, this pattern is not universal and Burkina Faso has one of the highest burdens of malaria; it is also a hotspot for the evolution of insecticide resistance in malaria vectors. We have established laboratory colonies from multiple species within the An. gambiae complex, the most efficient group of malaria vectors in the world, from larval collections in southwest Burkina Faso. Using bioassays with different insecticides widely used to control public health pests, we provide a profile of insecticide resistance in each of these colonies and, using molecular tools, reveal the genetic changes underpinning this resistance. We show that, whilst many resistance mechanisms are shared between species, there are some important differences which may affect resistance to current and future insecticide classes. The complexity, and diversity of resistance mechanisms highlights the importance of screening any potential new insecticide intended for use in malaria control against a wide range of populations. These stable laboratory colonies provide a valuable resource for insecticide discovery, and for further studies on the evolution and dispersal of insecticide resistance within and between species. Abstract Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance.
Collapse
|
53
|
Demissew A, Animut A, Kibret S, Tsegaye A, Hawaria D, Degefa T, Getachew H, Lee MC, Yan G, Yewhalaw D. Evidence of pyrethroid resistance in Anopheles amharicus and Anopheles arabiensis from Arjo-Didessa irrigation scheme, Ethiopia. PLoS One 2022; 17:e0261713. [PMID: 35030201 PMCID: PMC8759678 DOI: 10.1371/journal.pone.0261713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background Indoor residual spraying and insecticide-treated nets are among the key malaria control intervention tools. However, their efficacy is declining due to the development and spread of insecticide resistant vectors. In Ethiopia, several studies reported resistance of An. arabiensis to multiple insecticide classes. However, such data is scarce in irrigated areas of the country where insecticides, pesticides and herbicides are intensively used. Susceptibility of An. gambiae s.l. to existing and new insecticides and resistance mechanisms were assessed in Arjo-Didessa sugarcane plantation area, southwestern Ethiopia. Methods Adult An. gambiae s.l. reared from larval/pupal collections of Arjo-Didessa sugarcane irrigation area and its surrounding were tested for their susceptibility to selected insecticides. Randomly selected An. gambiae s.l. (dead and survived) samples were identified to species using species-specific polymerase chain reaction (PCR) and were further analyzed for the presence of knockdown resistance (kdr) alleles using allele-specific PCR. Results Among the 214 An. gambiae s.l. samples analyzed by PCR, 89% (n = 190) were An. amharicus and 9% (n = 20) were An. arabiensis. Mortality rates of the An. gambiae s.l. exposed to deltamethrin and alphacypermethrin were 85% and 86.8%, respectively. On the other hand, mortalities against pirmiphos-methyl, bendiocarb, propoxur and clothianidin were 100%, 99%, 100% and 100%, respectively. Of those sub-samples (An. amharicus and An. arabiensis) examined for presence of kdr gene, none of them were found to carry the L1014F (West African) allelic mutation. Conclusion Anopheles amharicus and An. arabiensis from Arjo-Didessa sugarcane irrigation area were resistant to pyrethroids which might be synergized by extensive use of agricultural chemicals. Occurrence of pyrethroid resistant malaria vectors could challenge the ongoing malaria control and elimination program in the area unless resistance management strategies are implemented. Given the resistance of An. amharicus to pyrethroids, its behavior and vectorial capacity should be further investigated.
Collapse
Affiliation(s)
- Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail: ,
| | - Abebe Animut
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Kibret
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Arega Tsegaye
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Dawit Hawaria
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Yirgalem Hospital Medical College, Yirgalem, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Hallelujah Getachew
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arba Minch, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
54
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. Characterisation of the epigenetic architecture of the major malaria vector Anopheles arabiensis (Diptera: Culicidae) after treatment with epigenetic modulators and heavy metals. Acta Trop 2022; 226:106259. [PMID: 34843689 DOI: 10.1016/j.actatropica.2021.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
Anopheles arabiensis (a member of the An. gambiae species complex) is a major vector of malaria in sub-Saharan Africa. Despite its disease vector status, there is currently a paucity of epigenetic information for this species. The aim this study was therefore to analyse global epigenetic markers and their response to metal exposure in insecticide susceptible and resistant laboratory strains of An. arabiensis. This was done using commercially available epigenetic marker quantification kits. In order to validate the efficacy of the kits, several kits were assessed to determine whether changes induced by known epigenetic modulators were detectable using these platforms. The efficacy of the dosages used were determined by examining the effect of the dosages used on insecticide resistant phenotypes. Upon confirmation that the dosages used were sufficient to induce a phenotypic change, the effect on epigenetic markers was assessed. Commercial kits were used to quantify 5-methylcysteine (5-mC) and 5-hydroxymethylcysteine (5-hmC) methylation in DNA, m6A methylation in mRNA as well as Histone Acetyl Transferase (HAT) activity. There was a marked difference in the phenotypic response in adult mosquitoes of the insecticide susceptible strain compared to that of its' resistant counterpart. For males and females of the resistant strain, exposure to nucleic acid modifying drugs typically increased their tolerance to insecticides. The patterns of changes in 5-mC methylation by epigenetic modulators was congruent with previous studies which quantified by mass spectrometry. The two strains differed in methylation patterns under control conditions and responded differentially to larval metal exposure. In the resistant strain, which previously was demonstrated to show increased detoxification enzyme activity and insecticide tolerance after the same treatment, the potential increase in transcriptional activity appeared to be modulated by reduced methylation and increased HAT activity. This study suggests that the commercial epigenetic quantification kits can be used to characterise phenotypic changes in An. arabiensis, and also shows that epigenetic regulation of the response to metal exposure is regulated at the DNA as opposed to the RNA level.
Collapse
Affiliation(s)
- Alexander C S N Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
55
|
Mwagira-Maina S, Runo S, Wachira L, Kitur S, Nyasende S, Kemei B, Ochomo E, Matoke-Muhia D, Mbogo C, Kamau L. Genetic markers associated with insecticide resistance and resting behaviour in Anopheles gambiae mosquitoes in selected sites in Kenya. Malar J 2021; 20:461. [PMID: 34903240 PMCID: PMC8670025 DOI: 10.1186/s12936-021-03997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Molecular diagnostic tools have been incorporated in insecticide resistance monitoring programmes to identify underlying genetic basis of resistance and develop early warning systems of vector control failure. Identifying genetic markers of insecticide resistance is crucial in enhancing the ability to mitigate potential effects of resistance. The knockdown resistance (kdr) mutation associated with resistance to DDT and pyrethroids, the acetylcholinesterase-1 (ace-1R) mutation associated with resistance to organophosphates and carbamates and 2La chromosomal inversion associated with indoor resting behaviour, were investigated in the present study. Methods Anopheles mosquitoes sampled from different sites in Kenya and collected within the context of malaria vector surveillance were analysed. Mosquitoes were collected indoors using light traps, pyrethrum spray and hand catches between August 2016 and November 2017. Mosquitoes were identified using morphological keys and Anopheles gambiae sensu lato (s.l.) mosquitoes further identified into sibling species by the polymerase chain reaction method following DNA extraction by alcohol precipitation. Anopheles gambiae and Anopheles arabiensis were analysed for the presence of the kdr and ace-1R mutations, while 2La inversion was only screened for in An. gambiae where it is polymorphic. Chi-square statistics were used to determine correlation between the 2La inversion karyotype and kdr-east mutation. Results The kdr-east mutation occurred at frequencies ranging from 0.5 to 65.6% between sites. The kdr-west mutation was only found in Migori at a total frequency of 5.3% (n = 124). No kdr mutants were detected in Tana River. The ace-1R mutation was absent in all populations. The 2La chromosomal inversion screened in An. gambiae occurred at frequencies of 87% (n = 30), 80% (n = 10) and 52% (n = 50) in Baringo, Tana River and Migori, respectively. A significant association between the 2La chromosomal inversion and the kdr-east mutation was found. Conclusion The significant association between the 2La inversion karyotype and kdr-east mutation suggests that pyrethroid resistant An. gambiae continue to rest indoors regardless of the presence of treated bed nets and residual sprays, a persistence further substantiated by studies documenting continued mosquito abundance indoors. Behavioural resistance by which Anopheles vectors prefer not to rest indoors may, therefore, not be a factor of concern in this study’s malaria vector populations.
Collapse
Affiliation(s)
- Sharon Mwagira-Maina
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya.
| | - Steven Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Lucy Wachira
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Sarah Nyasende
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), P.O. Box 54840-00200, Nairobi, Kenya
| | - Brigid Kemei
- Centre for Global Health Research, KEMRI_CDC, P.O Box 1578-40100, Kisumu, Kenya
| | - Eric Ochomo
- Centre for Global Health Research, KEMRI_CDC, P.O Box 1578-40100, Kisumu, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Charles Mbogo
- KEMRI -Wellcome Trust Research Programme, Public Health Unit, P.O. Box 43640-00100, Nairobi, Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
56
|
Inductions of a CYP6 cluster conferring deltamethrin resistance in colonized and field-collected Culex pipiens pallens. Parasitol Res 2021; 121:75-85. [PMID: 34782935 DOI: 10.1007/s00436-021-07351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Mosquitoes transmit many damaging vector-borne diseases. Unfortunately, the rise of insecticide resistance has become a major obstacle to mosquito control. A preliminary study showed that a CYP6 cluster is significant for deltamethrin resistance in colonized Culex pipiens pallens. Here, several field strains were collected to explore the association of the cluster in deltamethrin tolerance. We examined the effect of deltamethrin treatment on the cluster expression at a deltamethrin concentration of LC50 in these strains using five time points. As a result, both P450 induction and constitutive overexpression were associated with deltamethrin resistance. Deltamethrin could stimulate different expression sets in the P450 cluster in different strains, predominately correlated with the resistance level of the strain. Our results will offer more insight into working with the characterization of P450s related to insecticide resistance.
Collapse
|
57
|
Nawaz S, Tahir HM, Asif Mahmood M, Summer M, Ali S, Ali A, Gormani AH. Current Status of Pyrethroids Resistance in Aedes aegypti (Culicidae: Diptera) in Lahore District, Pakistan: A Novel Mechanistic Insight. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2432-2438. [PMID: 34343301 DOI: 10.1093/jme/tjab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Aedes aegypti (Linnaeus, 1762) is a major vector responsible for dengue transmission. Insecticides are being used as the most effective tool to control vector populations in Lahore, Pakistan. Control of Ae. aegypti is threatened by the development of resistance against insecticides. The current status of insecticide resistance was evaluated against pyrethroids (deltamethrin, cypermethrin, and lambda-cyhalothrin) in different populations of Lahore (Model Town, Mishri Shah, Sadar Cantt, Walton, and Valencia). The susceptibility of the larval and adult populations was tested following the standard WHO guidelines. Moderate to high levels of resistance were found against pyrethroids in the larval (RR50: 3.6-27.2 and RR90: 5-90) and adult populations (percentage mortality < 98%). Biochemical assays revealed a statistically significant increase in the enzyme level in all field populations compared to the laboratory strain. The value of esterase was one-fold higher, monooxygenase was 3.9- to 4.7-fold higher, and glutathione S-transferases was 1.9- to 2.6-fold higher in field populations compared to the laboratory strain. These results depict the presence of resistance against deltamethrin, cypermethrin, and lambda-cyhalothrin in field populations of Lahore mediated by metabolic enzymes i.e. esterases, monooxygenases, and glutathione S-transferase.
Collapse
Affiliation(s)
- Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | | | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
58
|
Chidambaram S, Ali D, Alarifi S, Gurusamy R, Radhakrishnan S, Akbar I. Tyrosinase-mediated synthesis of larvicidal active 1,5-diphenyl pent-4-en-1-one derivatives against Culex quinquefasciatus and investigation of their ichthyotoxicity. Sci Rep 2021; 11:20730. [PMID: 34671085 PMCID: PMC8528871 DOI: 10.1038/s41598-021-98281-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/30/2021] [Indexed: 12/02/2022] Open
Abstract
1,5-diphenylpent-4-en-1-one derivatives were synthesised using the grindstone method with Cu(II)-tyrosinase used as a catalyst. This method showed a high yield under mild reaction conditions. The synthesised compounds were identified by FTIR, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. In this study, a total of 17 compounds (1a-1q) were synthesised, and their larvicidal and antifeedant activities were evaluated. Compound 1i (1-(5-oxo-1,5-diphenylpent-1-en-3-yl)-3-(3-phenylallylidene)thiourea) was notably more active (LD50: 28.5 µM) against Culex quinquefasciatus than permethrin(54.6 µM) and temephos(37.9 µM), whereas compound 1i at 100 µM caused 0% mortality in Oreochromis mossambicus within 24 h in an antifeedant screening, with ichthyotoxicity determined as the death ratio (%) at 24 h. Compounds 1a, 1e, 1f, 1j, and 1k were found to be highly toxic, whereas 1i was not toxic in antifeedant screening. Compound 1i was found to possess a high larvicidal activity against C. quinquefasciatus and was non-toxic to non-target aquatic species. Molecular docking studies also supported the finding that 1i is a potent larvicide with higher binding energy than the control (- 10.0 vs. - 7.6 kcal/mol) in the 3OGN protein. Lead molecules are important for their larvicidal properties and application as insecticides.
Collapse
Affiliation(s)
- SathishKumar Chidambaram
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchchirappalli District, Tamil Nadu, 621007, India
| | - Daoud Ali
- Department of Zoology, College of Sciences, King Saud University (KSU), P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Sciences, King Saud University (KSU), P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Raman Gurusamy
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Gyeongsan-buk, South Korea
| | - SurendraKumar Radhakrishnan
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchchirappalli District, Tamil Nadu, 621007, India
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchchirappalli District, Tamil Nadu, 621007, India.
| |
Collapse
|
59
|
Nambunga IH, Msugupakulya BJ, Hape EE, Mshani IH, Kahamba NF, Mkandawile G, Mabula DM, Njalambaha RM, Kaindoa EW, Muyaga LL, Hermy MRG, Tripet F, Ferguson HM, Ngowo HS, Okumu FO. Wild populations of malaria vectors can mate both inside and outside human dwellings. Parasit Vectors 2021; 14:514. [PMID: 34620227 PMCID: PMC8499572 DOI: 10.1186/s13071-021-04989-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wild populations of Anopheles mosquitoes are generally thought to mate outdoors in swarms, although once colonized, they also mate readily inside laboratory cages. This study investigated whether the malaria vectors Anopheles funestus and Anopheles arabiensis can also naturally mate inside human dwellings. METHOD Mosquitoes were sampled from three volunteer-occupied experimental huts in a rural Tanzanian village at 6:00 p.m. each evening, after which the huts were completely sealed and sampling was repeated at 11:00 p.m and 6 a.m. the next morning to compare the proportions of inseminated females. Similarly timed collections were done inside local unsealed village houses. Lastly, wild-caught larvae and pupae were introduced inside or outside experimental huts constructed inside two semi-field screened chambers. The huts were then sealed and fitted with exit traps, allowing mosquito egress but not entry. Mating was assessed in subsequent days by sampling and dissecting emergent adults caught indoors, outdoors and in exit traps. RESULTS Proportions of inseminated females inside the experimental huts in the village increased from approximately 60% at 6 p.m. to approximately 90% the following morning despite no new mosquitoes entering the huts after 6 p.m. Insemination in the local homes increased from approximately 78% to approximately 93% over the same time points. In the semi-field observations of wild-caught captive mosquitoes, the proportions of inseminated An. funestus were 20.9% (95% confidence interval [CI]: ± 2.8) outdoors, 25.2% (95% CI: ± 3.4) indoors and 16.8% (± 8.3) in exit traps, while the proportions of inseminated An. arabiensis were 42.3% (95% CI: ± 5.5) outdoors, 47.4% (95% CI: ± 4.7) indoors and 37.1% (CI: ± 6.8) in exit traps. CONCLUSION Wild populations of An. funestus and An. arabiensis in these study villages can mate both inside and outside human dwellings. Most of the mating clearly happens before the mosquitoes enter houses, but additional mating happens indoors. The ecological significance of such indoor mating remains to be determined. The observed insemination inside the experimental huts fitted with exit traps and in the unsealed village houses suggests that the indoor mating happens voluntarily even under unrestricted egress. These findings may inspire improved vector control, such as by targeting males indoors, and potentially inform alternative methods for colonizing strongly eurygamic Anopheles species (e.g. An. funestus) inside laboratories or semi-field chambers.
Collapse
Affiliation(s)
- Ismail H. Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Betwel J. Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Emmanuel E. Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Issa H. Mshani
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Najat F. Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Daniel M. Mabula
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Rukiyah M. Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Emmanuel W. Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Letus L. Muyaga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Marie R. G. Hermy
- Disease Vector Group, Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Heather M. Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Sciences & Technology, Arusha, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| |
Collapse
|
60
|
Zoh MG, Bonneville JM, Tutagata J, Laporte F, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, Reynaud S, David JP. Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Sci Rep 2021; 11:19501. [PMID: 34593941 PMCID: PMC8484614 DOI: 10.1038/s41598-021-99061-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The introduction of neonicotinoids for managing insecticide resistance in mosquitoes is of high interest as they interact with a biochemical target not previously used in public health. In this concern, Bayer developed a combination of the neonicotinoid clothianidin and the pyrethroid deltamethrin (brand name Fludora Fusion) as a new vector control tool. Although this combination proved to be efficient against pyrethroid-resistant mosquitoes, its ability to prevent the selection of pyrethroid and neonicotinoid resistance alleles was not investigated. In this context, the objective of this work was to study the dynamics and the molecular mechanisms of resistance of An. gambiae to the separated or combined components of this combination. A field-derived An. gambiae line carrying resistance alleles to multiple insecticides at low frequencies was used as a starting for 33 successive generations of controlled selection. Resistance levels to each insecticide and target site mutation frequencies were monitored throughout the selection process. Cross resistance to other public health insecticides were also investigated. RNA-seq was used to compare gene transcription variations and polymorphisms across all lines. This study confirmed the potential of this insecticide combination to impair the selection of resistance as compared to its two separated components. Deltamethrin selection led to the rapid enrichment of the kdr L1014F target-site mutation. Clothianidin selection led to the over-transcription of multiple cytochrome P450s including some showing high homology with those conferring neonicotinoid resistance in other insects. A strong selection signature associated with clothianidin selection was also observed on a P450 gene cluster previously associated with resistance. Within this cluster, the gene CYP6M1 showed the highest selection signature together with a transcription profile supporting a role in clothianidin resistance. Modelling the impact of point mutations selected by clothianidin on CYP6M1 protein structure showed that selection retained a protein variant with a modified active site potentially enhancing clothianidin metabolism. In the context of the recent deployment of neonicotinoids for mosquito control and their frequent usage in agriculture, the present study highlights the benefit of combining them with other insecticides for preventing the selection of resistance and sustaining vector control activities.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jordan Tutagata
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Frederic Laporte
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Behi K Fodjo
- Centre Suisse de La Recherche Scientifique (CSRS), Abidjan, Côte d'Ivoire
| | | | - Christabelle Gba Sadia
- Centre Suisse de La Recherche Scientifique (CSRS), Abidjan, Côte d'Ivoire.,University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Justin McBeath
- Bayer CropScience Ltd, Cambridge Science Park, Cambridge, UK
| | | | | | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France.
| |
Collapse
|
61
|
Jared Owiti Y. Efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolaccadodecandra (L' Herit) in capturing and killing of indoor mosquitoes (Diptera: Culicidae) at Korando, Western Kenya. Saudi J Biol Sci 2021; 28:5221-5228. [PMID: 34466100 PMCID: PMC8380997 DOI: 10.1016/j.sjbs.2021.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Effective capture and elimination of indoor resting mosquito population is important in the fight against mosquito borne diseases. This study aimed at evaluating the efficacy of a simply resting box baited with crude fruit and leaf ethanol extracts of Phytolacca dodecandra in attracting and killing indoor mosquitoes at Korando, Western Kenya. The study was conducted in three phases: pre-intervention, intervention and post intervention. Simple resting boxes made from galvanized wire frame measuring 30 cm × 30 cm × 30 cm, covered in blue and black tunic in and out and lined with carton boards were used. The boxes were baited with socks with strong human odour and 80 ml/100mls (e/w) solution of either crude ethanol fruit or leaf extracts of P. dodecandra, ethanol leaf extracts of Azadiracta indica or Deltamethrin. Deltamethrin and Azadiracta indica were used as positive and water as negative control. The treatments were applied at the intervention phase only. The boxes were left overnight in the houses and mosquitoes collected by 6.30 h. It was observed that more Culicines than Anopheline were captured irrespective of phase or treatment used. Mosquito densities reduced with phase of activity. P. dodecandra leaf extracts killed more mosquitoes than fruit or A. indica leaf extracts though the number were less than that of Deltamethrin or WHO threshold of >80% mortality. In conclusion, the simple resting boxes were effective in collecting and killing indoor mosquitoes though lethality did not matched the WHO threshold. With improved structural set up and use of pure extracts of P. dodecandra, the resting boxes can serve as effective tools for capture, elimination and management of mosquito borne diseases.
Collapse
Affiliation(s)
- Yugi Jared Owiti
- School of Science and Technology, University of Kabianga, P. O. Box 20230-20300, Kericho, Kenya
| |
Collapse
|
62
|
Rigby LM, Johnson BJ, Peatey CL, Beebe NW, Devine GJ. The impact of sublethal permethrin exposure on susceptible and resistant genotypes of the urban disease vector Aedes aegypti. PEST MANAGEMENT SCIENCE 2021; 77:3450-3457. [PMID: 33818874 PMCID: PMC8252650 DOI: 10.1002/ps.6398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In urban environments, some of the most common control tools used against the mosquito disease vector Aedes aegypti are pyrethroid insecticides applied as aerosols, fogs or residual sprays. Their efficacy is compromised by patchy deployment, aging residues, and the evolution and invasion of pyrethroid-resistant mosquitoes. A large proportion of mosquitoes in a given environment will therefore receive sublethal doses of insecticide. The potential impact of this sublethal exposure on the behaviour and biology of Ae. aegypti carrying commonly reported resistance alleles is poorly documented. RESULTS In susceptible insects, sublethal exposure to permethrin resulted in reductions in egg viability (13.9%), blood avidity (16.7%) and male mating success (28.3%). It caused a 70% decrease in the lifespan of exposed susceptible females and a 66% decrease in the insecticide-resistant females from the parental strain. Exposure to the same dose of insecticide in the presence of the isolated kdr genotype resulted in a smaller impact on female longevity (a 58% decrease) but a 26% increase in eggs per female and a 37% increase in male mating success. Sublethal permethrin exposure reduced host-location success by 20-30% in all strains. CONCLUSION The detrimental effects of exposure on susceptible insects were expected, but resistant insects demonstrated a less predictable range of responses, including negative effects on longevity and host-location but increases in fecundity and mating competitiveness. Overall, sublethal insecticide exposure is expected to increase the competitiveness of resistant phenotypes, acting as a selection pressure for the evolution of permethrin resistance. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lisa M Rigby
- Australian Defence Force Malaria and Infectious Disease InstituteGallipoli Barracks, EnoggeraQLDAustralia
- Mosquito Control LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
- School of MedicineUniversity of QueenslandBrisbaneQLDAustralia
| | - Brian J Johnson
- Mosquito Control LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Christopher L Peatey
- Australian Defence Force Malaria and Infectious Disease InstituteGallipoli Barracks, EnoggeraQLDAustralia
| | - Nigel W Beebe
- School of Biological SciencesUniversity of QueenslandBrisbaneQLDAustralia
- CSIROBrisbaneQLDAustralia
| | - Gregor J Devine
- Mosquito Control LaboratoryQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| |
Collapse
|
63
|
Orondo PW, Nyanjom SG, Atieli H, Githure J, Ondeto BM, Ochwedo KO, Omondi CJ, Kazura JW, Lee MC, Zhou G, Zhong D, Githeko AK, Yan G. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasit Vectors 2021; 14:335. [PMID: 34174946 PMCID: PMC8235622 DOI: 10.1186/s13071-021-04833-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. METHODS The study was carried out in 2018-2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. RESULTS Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8-84% to 83.3-78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1-16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. CONCLUSION Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya. .,International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.,School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J Omondi
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
64
|
D E, Hemavathi M, Deenadhayalan N, Suman T, Sathiyapriya R. A novel approach for synthesis of silver nanoparticles using Pila virens shell and its mosquito larvicidal activity. Toxicol Rep 2021; 8:1248-1254. [PMID: 34195016 PMCID: PMC8233167 DOI: 10.1016/j.toxrep.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mosquito act as a vector for variety of deadly diseases. In this study, larvicide activity was investigated in relation to Aedes aegypti (A. aegypti) and Culex quinquefasciatus (C. quinquefasciatus) of synthesised silver nanoparticles (AgNPs) of the Pila virens (P.virens) shell extract. The characterization techniques UV-vis spectral, Fourier transforms infrared spectroscopy (FTIR),High Resonance Scanning electron microscope (HR-SEM) analysis, X-ray diffraction studies (XRD), High Resonance-Transmission electron microscopy (HR-TEM) used to characterize biosynthesized AgNPs. UV-vis, absorption showed peaks of 450 nm for the biosynthesised AgNPs, SEM observed spherical shaped particles of 25.9-28.9 nm in size and the XRD pattern shows the synthesized AgNPs fcc structure. FTIR investigation shown that the esters, carboxylic acid and ether as functional groups have been intricate in the reduction of metal ions. The larvicidal efficacy of synthesized AgNPs towards a larvae of A. aegypti LC50and LC90 value of (37.87 and 132.86 ppm) and C. quinquefasciatus was (14.70 and 28.96 ppm) respectively. The synthesized AgNPs of P. virens confirmed highest mortality towards larvae of and A. aegypti and C. quinquefasciatus.
Collapse
Affiliation(s)
- Elumalai D
- PG. Department of Zoology, Pachaiyappas College for Men, Kanchipuram, 631501, Tamil Nadu, India
| | - M Hemavathi
- Department of Zoology, Arignar Anna Govt. Arts & Science College for Women, Walajapet, Vellore, 632513, Tamil Nadu, India
| | - N Deenadhayalan
- PG. Department of Zoology, Pachaiyappas College for Men, Kanchipuram, 631501, Tamil Nadu, India
| | - T.Y. Suman
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - R Sathiyapriya
- Department of Physics, Mahendra Engineering College, Namakkal, 637503, Tamil Nadu, India
| |
Collapse
|
65
|
Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 2021; 14:315. [PMID: 34112220 PMCID: PMC8194039 DOI: 10.1186/s13071-021-04785-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries. ![]()
Collapse
Affiliation(s)
- Soon Jian Gan
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yong Qi Leong
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Siew Tung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia. .,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Joon Wah Mak
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rohani Binti Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
66
|
Anosike CA, Babandi A, Ezeanyika LUS. Potentiation Effects of Ficus sycomorus Active Fraction Against Permethrin-Resistant Field-Population of Anopheles coluzzii (Diptera: Culicidae). NEOTROPICAL ENTOMOLOGY 2021; 50:484-496. [PMID: 33661503 DOI: 10.1007/s13744-021-00858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Insecticide resistance in mosquitoes is increasing amidst growing cases of global malaria, leading to high fatality in mostly Africa. To overcome the resistance as well as environmental effects of the synthetic insecticides, preliminary insecticidal and botanical potentiating effects of sub-lethal concentration (LC25) Ficus sycomorus active fraction (AFFS) and its synergistic potential with standard insecticide permethrin were evaluated against malarial vector Anopheles coluzzii (Coetzee & Wilkerson) populations. The glutathione-S-transferase (GST) inhibitory activity of the AFFS was also investigated compared to standard GST inhibitor, diethyl meleate (DEM). The WHO standard protocol for adult bioassay was used to expose the adult mosquitoes with sub-lethal concentration (LD25=0.49 mg/ml) of the plants' active fraction and permethrin (0.75%). The permethrin susceptibility screening result showed high level of resistance to permethrin in the field populations of A. coluzzii from Kano with 50.29 ± 2.14% average mortality after exposure to WHO diagnostic dose 0.75% permethrin. Post hoc Fisher's exact test showed that combination of sub-lethal concentration of AFFS with permethrin (mortality=73.02±12.10%; p=0.00352; RR=0.6923 and 95% CI = 0.5358-0.8946) was statistically significant, while the combination of sub-lethal concentration of AFFS with DEM showed no statistical difference (mortality=63.22±5.03; p=1; RR=0.6667 and 95% CI=0.4470-0.8438). This potentiation effect was signified to be additive effects with co-toxicity factor (CTF) of - 12.66. There was significant reduction of GST activities in the AFFS- and permethrin -exposed groups compared to unexposed populations of A. coluzzii (p < 0.05). The AFFS additively potentiate the permethrin activities by inhibiting GSTs, bio-transformational enzymes implicated in pyrethroids resistance. This study finding generally signifies the potential for bio-rational insecticide approach for malarial vector control.
Collapse
Affiliation(s)
| | - Abba Babandi
- Dept of Biochemistry, Univ of Nigeria, Nsukka, Enugu, Nigeria.
- Dept of Biochemistry, Bayero Univ, Kano, Nigeria.
| | | |
Collapse
|
67
|
Hamaidia K, Soltani N. Methoxyfenozide, a Molting Hormone Agonist, Affects Autogeny Capacity, Oviposition, Fecundity, and Fertility in Culex pipiens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1004-1011. [PMID: 33247298 DOI: 10.1093/jme/tjaa260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/12/2023]
Abstract
The current study aimed to evaluate the effects of methoxyfenozide (RH-2485), an insect growth disrupter (IGD) belonging to molting hormone agonist class, against female adults of Culex pipiens L. under laboratory conditions. Lethal concentrations (LC50 = 24.54 µg/liter and LC90 = 70.79 µg/liter), previously determined against fourth instar larvae, were tested for adult female fertility, fecundity and oviposition after tarsal contact before mating and any bloodmeal. Methoxyfenozide was found to alter negatively their autogeny capacity and oviposition. A strong reduction of 56% and 72% (P < 0.001) in females' autogeny capacity was observed in both treated series, respectively. Alteration in oviposition were found to be higher with LC90 (OAI-LC90 = -0.62) than with the LC50 (OAI-LC50 = -0.42). Also fecundity and hatching rate (fertility) were significantly reduced in treated series as compared to controls. A significant reduction of 37.65 and 28.23% in fecundity and decrease of 56.85 and 71.87% in fertility were found, respectively in LC50 and LC90 treated series. Obtained data clearly demonstrated that methoxyfenozide have significant depressive effect on reproductive potential against medically important vector with minimizing ecotoxicological risks in mosquitoes management.
Collapse
Affiliation(s)
- Kaouther Hamaidia
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| |
Collapse
|
68
|
Huang L, Li J, Peng L, Xie R, Su X, He P, Xu J, Jia Z, Luo X, Chen XG, Li H. The Differential Metabolic Profiles Between Deltamethrin-Resistant and -Susceptible Strains of Aedes albopictus (Diptera: Culicidae) by 1H-NMR. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1256-1263. [PMID: 33367827 PMCID: PMC8122240 DOI: 10.1093/jme/tjaa273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 05/26/2023]
Abstract
Metabolomics can indicate the physiological and biochemical responses of mosquitoes to different stimulants, including insecticides, which allow them to adapt to different inhospitable environments. Though metabolic differences between insecticide-resistant and -susceptible strains have been established for other mosquito species, such as Anopheles and Culex, it is yet to be done for Aedes albopictus (Skuse). In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis performed on Ae. albopictus deltamethrin-resistant and -susceptible strains showed significant differences in amino acid, organic acid, and sugar metabolism. Concentrations of neutral amino acids and sugars tended to be lower in the deltamethrin-resistant strain than in the deltamethrin-suceptible strain, but the concentration of basic and acidic amino acids and organic acids increased. All these changes might accommodate biochemical and physiological needs in deltamethrin-resistant mosquitoes, such as enzyme synthesis and detoxification. This was further confirmed by the predictable draft metabolic map. This is the first report using NMR spectroscopy to investigate the metabolic differences between deltamethrin-resistant and -susceptible strains of Ae. albopictus. To a certain degree, this demonstrates how Ae. albopictus develop insecticide resistance by metabolic reprograming to survive under the insecticide pressure.
Collapse
Affiliation(s)
- Lianfen Huang
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
- Clinical Laboratory, Guangzhou Women and Children’s Medical center, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lilan Peng
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruili Xie
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinghua Su
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiqing He
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabao Xu
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhirong Jia
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoting Luo
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hua Li
- Department of Pathogen Biology and Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
69
|
Zhang C, Shi Q, Li T, Cheng P, Guo X, Song X, Gong M. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett. PLoS Negl Trop Dis 2021; 15:e0009237. [PMID: 33764997 PMCID: PMC7993597 DOI: 10.1371/journal.pntd.0009237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens. Global protein profiles were compared among a susceptible strain of Cx. pipiens pallens and strains that were cypermethrin-resistant, propoxur-resistant, and dimethyl-dichloro-vinyl-phosphate-resistant after 25 generations of selection by distinct chemical insecticide families, multiple mechanisms were found to operate simultaneously in resistant mosquitoes of Cx. pipiens pallens, including mechanisms to lower penetration of or sequester the insecticide or to increase biodegradation of the insecticide via subtle alterations in either the cuticular protein levels or the activities of detoxification enzymes (P450s and glutathione S-transferases).
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| | - Qiqi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Tao Li
- Nanning MHelixProTech Co., Ltd., Nanning Hi-tech Zone Bioengineering Center, Nanning, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiao Song
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| |
Collapse
|
70
|
Maciel LG, Barbosa ADS, de Alencar-Filho EB, Soares TA, Dos Anjos JV. A second generation of 1,2,4-oxadiazole derivatives with enhanced solubility for inhibition of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. RSC Med Chem 2021; 12:222-236. [PMID: 34046611 PMCID: PMC8127416 DOI: 10.1039/d0md00305k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
The most widely used method for the control of the Aedes aegypti mosquito population is the chemical control method. It represents a time- and cost-effective way to curb several diseases (e.g. dengue, Zika, chikungunya, yellow fever) through vector control. For this reason, the discovery of new compounds with a distinct mode of action from the available ones is essential in order to minimize the rise of insecticide resistance. Detoxification enzymes are an attractive target for the discovery of new insecticides. The kynurenine pathway is an important metabolic pathway, and it leads to the chemically stable xanthurenic acid, biosynthesized from 3-hydroxykynurenine, a precursor of reactive oxygen and nitrogen species, by the enzyme 3-hydroxykynurenine transaminase (HKT). Previously, we have reported the effectiveness of 1,2,4-oxadiazole derivatives acting as larvicides for A. aegypti and AeHKT inhibitors from in vitro and in silico studies. Here, we report the synthesis of new sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] propanoates and the cognate HKT-inhibitory activity. These new derivatives act as competitive inhibitors with IC50 values in the range of 42 to 339 μM. We further performed molecular docking simulations and QSAR analysis for the previously synthesized sodium 4-[3-(aryl)-1,2,4-oxadiazol-5-yl] butanoates reported earlier by our group and the data produced herein. Most of the 1,2,4-oxadiazole derivatives, including the canonical compounds for both series, showed a similar binding mode with HKT. The binding occurs similarly to the co-crystallized inhibitor via anchoring to Arg356 and positioning of the aromatic ring and its substituents outwards at the entry of the active site. QSAR analysis was performed in search of more than 770 molecular descriptors to establish a relationship between the lowest energy conformations and the IC50 values. The five best descriptors were selected to create and validate the model, which exhibited parameters that attested to its robustness and predictability. In summary, we observed that compounds with a para substitution and heavier groups (i.e. CF3 and NO2 substituents) had an enhanced HKT-inhibition profile. These compounds comprise a series described as AeHKT inhibitors via enzymatic inhibition experiments, opening the way to further the development of new substances with higher potency against HKT from Aedes aegypti.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Andrey da S Barbosa
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | | | - Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| | - Janaína V Dos Anjos
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE) Recife - PE Brazil
| |
Collapse
|
71
|
Arich S, Assaid N, Taki H, Weill M, Labbé P, Sarih M. Distribution of insecticide resistance and molecular mechanisms involved in the West Nile vector Culex pipiens in Morocco. PEST MANAGEMENT SCIENCE 2021; 77:1178-1186. [PMID: 33009878 DOI: 10.1002/ps.6127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mosquitoes of the Culex pipiens complex are the vectors of several arboviruses and are thus subjected to insecticide control worldwide. However, overuse of insecticides selects for resistance. While assessing the resistance status of the vectors is required for effective and sustainable disease control, resistance has so far only been sparsely studied in Morocco. In this study, we establish a first countrywide assessment of the levels of resistance to various insecticides and the potential responsible mechanisms involved. Cx. pipiens larvae were collected from natural populations of five regions of Morocco, and their taxonomic status was determined (molecular forms). The level of their susceptibility to insecticides was assessed by single-diagnostic-dose bioassays. Molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. RESULTS This study confirms that Moroccan populations are an interbreeding mix of pipiens and molestus forms, with large gene flow for the resistance alleles. We also found that Cx. pipiens mosquitoes are resistant to all insecticide families, all over Morocco: resistance is high for insecticides used in mosquito control, but also present for other pesticides. Resistance alleles are similarly more frequent for mosquito control insecticides. However, their distribution is heterogeneous in the five regions, with significant genetic differentiation between populations, revealing the crucial role of local insecticide treatment practices. CONCLUSION This study provides reference countrywide data that highlight the need for further research to refine the distribution of resistance in Morocco and to understand the role of agriculture/urban residuals in its spread. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Soukaina Arich
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC 34, Hassan II University-Casablanca, Casablanca, Morocco
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Najlaa Assaid
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Taki
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC 34, Hassan II University-Casablanca, Casablanca, Morocco
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Montpellier, CEDEX 5, France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Montpellier, CEDEX 5, France
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
72
|
Larvicidal composite alginate hydrogel combined with a Pickering emulsion of essential oil. Carbohydr Polym 2021; 254:117381. [PMID: 33357888 DOI: 10.1016/j.carbpol.2020.117381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 01/09/2023]
Abstract
Sulfonated cellulose nanocrystals (S-CNCs) can be used to encapsulate thyme white essential oil (EO) that is volatile and immiscible with water. S-CNCs form a Pickering emulsion (PE) with EOs and the micron-scale PEs are embedded in sodium alginate (SA) to form macroscale hydrogel beads. The incorporation of PEs with SA is confirmed with FTIR, XRD, SEM and confocal microscopic characterizations and the release behavior is monitored to understand the time-dependent biological activity of the EOs. The larvicidal performance of the SA-PE composite hydrogel beads is investigated with Aedes albopictus (Skuse) larvae. The larvicidal activity is higher for SA/PE hydrogel beads prepared at 0.5 % CaCl2 than 0.75 or 1.0 % CaCl2 due to their higher release rate.
Collapse
|
73
|
Scott ML, Hribar LJ, Leal AL, McAllister JC. Characterization of Pyrethroid Resistance Mechanisms in Aedes aegypti from the Florida Keys. Am J Trop Med Hyg 2021; 104:1111-1122. [PMID: 33432904 PMCID: PMC7941856 DOI: 10.4269/ajtmh.19-0602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/21/2020] [Indexed: 11/18/2022] Open
Abstract
The status of insecticide resistance in Aedes aegypti is of concern in areas where Aedes-borne arboviruses like chikungunya, dengue, and Zika occur. In recent years, outbreaks involving these arboviruses have occurred, for which vaccines do not exist; therefore, disease prevention is only through vector control and personal protection. Aedes aegypti are present on every inhabited island within the Florida Keys. The resistance status of Ae. aegypti in the Florida Keys was assessed to guide knowledge of the best choice of chemical for use during an outbreak. Mosquito eggs were collected using ovitraps placed on Key West, Stock Island, Vaca Key, Upper Matecumbe Key, Plantation Key, and Key Largo. Bottle bioassays were conducted at the Florida Keys Mosquito Control District using Biomist® 30+30 (Clarke Mosquito Control Products, Inc., Roselle, IL). Further bottle testing using malathion and permethrin occurred at the CDC, Fort Collins, CO, in addition to molecular and biochemical assays. Levels of resistance varied between islands with different underlying mechanisms present. Resistance was seen to Biomist® 30+30 but not to permethrin, indicating that piperonyl butoxide (PBO) or the inert ingredients may be involved in resistance. No study has been conducted to date examining the role of PBO in resistance. Key Largo was treated the most with adulticides and expressed the highest levels of alpha and beta esterases, oxidases, glutathione-S-transferases, and frequency of the V1016I knockdown mutation from all sites tested. Knowledge of localized resistance and underlying mechanisms helps in making rational decisions in selection of appropriate and effective insecticides.
Collapse
Affiliation(s)
- Mariah L. Scott
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | | | - Andrea L. Leal
- Florida Keys Mosquito Control District, Key West, Florida
| | - Janet C. McAllister
- Arbovirus Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| |
Collapse
|
74
|
Vaccine approaches applied to controlling dog ticks. Ticks Tick Borne Dis 2021; 12:101631. [PMID: 33494026 DOI: 10.1016/j.ttbdis.2020.101631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022]
Abstract
Ticks are considered the most important vectors in veterinary medicine with a profound impact on animal health worldwide, as well as being key vectors of diseases affecting household pets. The leading strategy applied to dog tick control is the continued use of acaricides. However, this approach is not sustainable due to surging tick resistance, growing public concern over pesticide residues in food and in the environment, and the rising costs associated with their development. In contrast, tick vaccines are a cost-effective and environmentally friendly alternative against tick-borne diseases by controlling vector infestations and reducing pathogen transmission. These premises have encouraged researchers to develop an effective vaccine against ticks, with several proteins having been characterized and used in native, synthetic, and recombinant forms as antigens in immunizations. The growing interaction between domestic pets and people underscores the importance of developing new tick control measures that require effective screening platforms applied to vaccine development. However, as reviewed in this paper, very little progress has been made in controlling ectoparasite infestations in pets using the vaccine approach. The control of tick infestations and pathogen transmission could be obtained through immunization programs aimed at reducing the tick population and interfering in the pathogenic transmission that affects human and animal health on a global scale.
Collapse
|
75
|
Targanski SK, Sousa JR, de Pádua GM, de Sousa JM, Vieira LC, Soares MA. Larvicidal activity of substituted chalcones against Aedes aegypti (Diptera: Culicidae) and non-target organisms. PEST MANAGEMENT SCIENCE 2021; 77:325-334. [PMID: 32729190 DOI: 10.1002/ps.6021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The expansion of Aedes aegypti (Diptera: Culicidae) population has increased the number of cases of arboviruses, in part due to the inefficiency and toxicity of the chemical control methods available to control this vector. We synthesized 19 chalcone derivatives and examined their activity against Ae. aegypti larvae in order to select larvicidal compounds that are non-toxic to other organisms. RESULTS Seven chalcone derivatives (3a, 3e, 3f, 6a, 6c, 6d, and 6f) had lethal concentrations of substituted chalcones capable of killing 50% (LC50 ) values lower than 100 mg mL-1 at 24 h post-treatment, which is the dose that the World Health Organization recommends for the selection of promising larvicides. The type of substituent added to (E)-1,3-diphenylprop-2-en-1-one (3a) markedly affected the larvicidal activity. Addition of chlorine, bromine and methoxy groups to the aromatic rings reduced the larvicidal activity, while replacement of the B-ring (phenyl) by a furan ring significantly increased the larvicidal activity. The furan-chalcone (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) killed Ae. aegypti larvae (LC50 = 6.66 mg mL-1 ; LC90 = 9.97 mg mL-1 ) more effectively than the non-substituted chalcone (3a) (LC50 = 14.43 mg mL-1 ; LC90 = 20.96 mg mL-1 ), and was not toxic to the insect Galleria mellonella, to the protozoan Tetrahymena pyriformis, and to the algae Chorella vulgaris. CONCLUSIONS The substitution pattern of chalcones influenced their larvicidal activity. In the set of compounds tested, (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) was the most effective larvicide against Ae. aegypti, with no clear signs of toxicity to other animal models. Its mechanism of action and effectiveness under field conditions remain to be determined.
Collapse
Affiliation(s)
- Sabrina K Targanski
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Janaína R Sousa
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Geilly Ms de Pádua
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Jéssica M de Sousa
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Lucas Cc Vieira
- Faculdade de Engenharia, Universidade Federal de Mato Grosso, Várzea Grande, Brazil
| | | |
Collapse
|
76
|
Bogale HN, Cannon MV, Keita K, Camara D, Barry Y, Keita M, Coulibaly D, Kone AK, Doumbo OK, Thera MA, Plowe CV, Travassos M, Irish S, Serre D. Relative contributions of various endogenous and exogenous factors to the mosquito microbiota. Parasit Vectors 2020; 13:619. [PMID: 33303025 PMCID: PMC7726613 DOI: 10.1186/s13071-020-04491-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The commensal microbiota of mosquitoes impacts their development, immunity, and competency, and could provide a target for alternative entomological control approaches. However, despite the importance of the mosquito/microbiota interactions, little is known about the relative contribution of endogenous and exogenous factors in shaping the bacterial communities of mosquitoes. METHODS We used a high-throughput sequencing-based assay to characterize the bacterial composition and diversity of 665 individual field-caught mosquitoes, as well as their species, genotype at an insecticide resistance locus, blood-meal composition, and the eukaryotic parasites and viruses they carry. We then used these data to rigorously estimate the individual effect of each parameter on the bacterial diversity as well as the relative contribution of each parameter to the microbial composition. RESULTS Overall, multivariate analyses did not reveal any significant contribution of the mosquito species, insecticide resistance, or blood meal to the bacterial composition of the mosquitoes surveyed, and infection with parasites and viruses only contributed very marginally. The main driver of the bacterial diversity was the location at which each mosquito was collected, which explained roughly 20% of the variance observed. CONCLUSIONS This analysis shows that when confounding factors are taken into account, the site at which the mosquitoes are collected is the main driver of the bacterial diversity of wild-caught mosquitoes, although further studies will be needed to determine which specific components of the local environment affect bacterial composition.
Collapse
Affiliation(s)
- Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Matthew V. Cannon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kalil Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Denka Camara
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Yaya Barry
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Moussa Keita
- Programme National de Lutte contre le Paludisme, Conakry, Guinea
| | - Drissa Coulibaly
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye K. Kone
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Mark Travassos
- Malaria Research Program, Center of Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD USA
| | - Seth Irish
- U.S. President’s Malaria Initiative and Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, US Centers for Disease Prevention, Atlanta, GA USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
77
|
Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Sci Rep 2020; 10:19063. [PMID: 33149227 PMCID: PMC7642378 DOI: 10.1038/s41598-020-75865-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023] Open
Abstract
The directional selection for insecticide resistance due to indiscriminate use of insecticides in public health and agricultural system favors an increase in the frequency of insecticide-resistant alleles in the natural populations. Similarly, removal of selection pressure generally leads to decay in resistance. Past investigations on the emergence of insecticide resistance in mosquitoes mostly relied on field survey of resistance in vector populations that typically had a complex history of exposure to various public health and agricultural pest control insecticides in nature, and thus the effect of specific insecticides on rate of resistance emergency or resistance decay rate is not known. This study examined the phenotypic, genotypic, and biochemical changes that had occurred during the process of selection for pyrethroid resistance in Anopheles gambiae, the most important malaria vector in Africa. In parallel, we also examined these changes in resistant populations when there is no selection pressure applied. Through repeated deltamethrin selection in adult mosquitoes from a field population collected in western Kenya for 12 generations, we obtained three independent and highly pyrethroid-resistant An. gambiae populations. Three susceptible populations from the same parental population were generated by removing selection pressure. These two lines of mosquito populations differed significantly in monooxygenase and beta-esterase activities, but not in Vgsc gene mutation frequency, suggesting metabolic detoxification mechanism plays a major role in generating moderate-intensity resistance or high-intensity resistance. Pre-exposure to the synergist piperonyl butoxide restored the susceptibility to insecticide among the highly resistant mosquitoes, confirming the role of monooxygenases in pyrethroid resistance. The rate of resistance decay to become fully susceptible from moderate-intensity resistance took 15 generations, supporting at least 2-years interval is needed when the rotational use of insecticides with different modes of action is considered for resistance management.
Collapse
|
78
|
Atoyebi SM, Tchigossou GM, Akoton R, Riveron JM, Irving H, Weedall G, Tossou E, Djegbe I, Oyewole IO, Bakare AA, Wondji CS, Djouaka R. Investigating the molecular basis of multiple insecticide resistance in a major malaria vector Anopheles funestus (sensu stricto) from Akaka-Remo, Ogun State, Nigeria. Parasit Vectors 2020; 13:423. [PMID: 32811561 PMCID: PMC7436991 DOI: 10.1186/s13071-020-04296-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. Methods Bioassays were conducted on 3–5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. Results Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. Conclusions The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.![]()
Collapse
Affiliation(s)
- Seun M Atoyebi
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Genevieve M Tchigossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Jacob M Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Insecticide Bioscience Department, Syngenta, Toulouse, UK
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Gareth Weedall
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Eric Tossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Innocent Djegbe
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, BP 123, Natitingou, Benin
| | - Isaac O Oyewole
- Biology Department, Babcock University, Ilisan Remo, Ogun State, Nigeria
| | - Adekunle A Bakare
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.
| |
Collapse
|
79
|
Huong LT, Huong TT, Huong NTT, Hung NH, Dat PTT, Luong NX, Ogunwande IA. Mosquito Larvicidal Activity of the Essential Oil of Zingiber collinsii against Aedes albopictus and Culex quinquefasciatus. J Oleo Sci 2020; 69:153-160. [PMID: 32023580 DOI: 10.5650/jos.ess19175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chemical composition and larvicidal activity of essential oils from the leaves and rhizomes of Zingiber collinsii Mood & Theilade (Zingiberaceae) were reported. The main compounds in the leaf oil were α-pinene (25.6%), β-caryophyllene (16.8%), β-pinene (16.1%) and bicyclogermacrene (6.9%) while the rhizome oil consist mainly of camphene (22.5%), β-pinene (16.3%), α-pinene (9.0%) and humulene oxide II (9.0%). The rhizome oil demonstrated larvicidal effects towards fourth instant larvae of mosquito vectors. The highest mortality (100%) was observed at 24 h exposure against Aedes albopictus (concentration 100 μg/mL) and 48 h (concentration of 50 and 100 μg/mL), while the highest mortality (100%) was observed for Culex quinquefasciatus at 24 h and 48 h at concentration of 100 μg/mL. The 24 h mosquito larvicidal activity of the rhizome oil against Ae. albopictus were LC50 = 25.51 μg/mL; LC90 = 40.22 μg/mL and towards Cx. quinquefasciatus with LC50 = 50.11 μg/mL and LC90 = 71.53 μg/mL). However, the 48 h larvicidal activity were LC50 = 20.03 μg/mL and LC90 = 24.51 μg/mL (Ae. albopictus), as well as LC50 = 36.18 μg/mL and LC90 = 55.11 μg/mL (Cx. quinquefasciatus). On the other hand, no appreciable mortality and larvicidal activity was observed for the leaf oil. The larvicidal activity of the essential oils of Z. collinsii was being reported for the first time.
Collapse
Affiliation(s)
- Le T Huong
- School of Natural Science Education, Vinh University
| | - Trinh T Huong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology.,Faculty of Natural Science, Hong Duc University
| | - Nguyen T T Huong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology.,Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology
| | - Nguyen H Hung
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University
| | - Pham T T Dat
- Department of Biotechnology, Nong Lam University.,Center of Scientific Research and Practice
| | - Ngo X Luong
- Faculty of Natural Science, Hong Duc University
| | | |
Collapse
|
80
|
Matowo NS, Tanner M, Munhenga G, Mapua SA, Finda M, Utzinger J, Ngowi V, Okumu FO. Patterns of pesticide usage in agriculture in rural Tanzania call for integrating agricultural and public health practices in managing insecticide-resistance in malaria vectors. Malar J 2020; 19:257. [PMID: 32677961 PMCID: PMC7364647 DOI: 10.1186/s12936-020-03331-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Unrestricted use of pesticides in agriculture is likely to increase insecticide resistance in mosquito vectors. Unfortunately, strategies for managing insecticide resistance in agriculture and public health sectors lack integration. This study explored the types and usage of agricultural pesticides, and awareness and management practices among retailers and farmers in Ulanga and Kilombero districts in south-eastern Tanzania, where Anopheles mosquitoes are resistant to pyrethroids. METHODS An exploratory sequential mixed-methods approach was employed. First, a survey to characterize pesticide stocks was conducted in agricultural and veterinary (agrovet) retail stores. Interviews to assess general knowledge and practices regarding agricultural pesticides were performed with 17 retailers and 30 farmers, followed by a survey involving 427 farmers. Concurrently, field observations were done to validate the results. RESULTS Lambda-cyhalothrin, cypermethrin (both pyrethroids) and imidacloprids (neonicotinoids) were the most common agricultural insecticides sold to farmers. The herbicide glyphosate (amino-phosphonates) (59.0%), and the fungicides dithiocarbamate and acylalanine (54.5%), and organochlorine (27.3%) were also readily available in the agrovet shops and widely used by farmers. Although both retailers and farmers had at least primary-level education and recognized pesticides by their trade names, they lacked knowledge on pest control or proper usage of these pesticides. Most of the farmers (54.4%, n = 316) relied on instructions from pesticides dealers. Overall, 93.7% (400) farmers practised pesticides mixing in their farms, often in close proximity to water sources. One-third of the farmers disposed of their pesticide leftovers (30.0%, n = 128) and most farmers discarded empty pesticide containers into rivers or nearby bushes (55.7%, n = 238). CONCLUSION Similarities of active ingredients used in agriculture and malaria vector control, poor pesticide management practices and low-levels of awareness among farmers and pesticides retailers might enhance the selection of insecticide resistance in malaria vectors. This study emphasizes the need for improving awareness among retailers and farmers on proper usage and management of pesticides. The study also highlights the need for an integrated approach, including coordinated education on pesticide use, to improve the overall management of insecticide resistance in both agricultural and public health sectors.
Collapse
Affiliation(s)
- Nancy S Matowo
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Givemore Munhenga
- Wits Research Institute for Malaria, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Salum A Mapua
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
| | - Marceline Finda
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Vera Ngowi
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Fredros O Okumu
- Environmental Health & Ecological Sciences, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
81
|
Culex erythrothorax (Diptera: Culicidae): Activity periods, insecticide susceptibility and control in California (USA). PLoS One 2020; 15:e0228835. [PMID: 32649665 PMCID: PMC7351207 DOI: 10.1371/journal.pone.0228835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
The mosquito Culex erythrothorax Dyar is a West Nile virus (WNV) vector that breeds in wetlands with emergent vegetation. Urbanization and recreational activities near wetlands place humans, birds and mosquitoes in close proximity, increasing the risk of WNV transmission. Adult Cx. erythrothorax abundance peaked in a wetland bordering the San Francisco Bay of California (USA) during the first 3 hours after sunset (5527 ± 4070 mosquitoes / trap night) while peak adult Culex tarsalis Coquillett abundance occurred during the subsequent 3 h period (83 ± 30 Cx. tarsalis). When insecticide resistance was assessed using bottle bioassay, Cx. erythrothorax was highly sensitive to permethrin, naled, and etofenprox insecticides compared to a strain of Culex pipiens that is susceptible to insecticides (LC50 = 0.35, 0.71, and 4.1 μg/bottle, respectively). The Cx. erythrothorax were 2.8-fold more resistant to resmethrin, however, the LC50 value was low (0.68 μg/bottle). Piperonyl butoxide increased the toxicity of permethrin (0.5 μg/bottle) and reduced knock down time, but a higher permethrin concentration (2.0 μg/bottle) did not have similar effects. Bulk mixed-function oxidase, alpha-esterase, or beta-esterase activities in mosquito homogenates were higher in Cx. erythrothorax relative to the Cx. pipiens susceptible strain. There was no difference in the activity of glutathione S-transferase between the two mosquito species and insensitive acetylcholine esterase was not detected. Larvicides that were applied to the site had limited impact on reducing mosquito abundance. Subsequent removal of emergent vegetation in concert with larvicide applications and reduced daily environmental temperature substantially reduced mosquito abundance. To control Cx. erythrothorax in wetlands, land managers should consider vegetation removal so that larvicide can efficiently enter the water. Vector control agencies may more successfully control adult viremic Cx. erythrothorax that enter nearby neighborhoods by applying adulticides during the 3 h that follow sunset.
Collapse
|
82
|
Ahadji-Dabla KM, Romero-Alvarez D, Djègbè I, Amoudji AD, Apétogbo GY, Djouaka R, Oboussoumi K, Aawi A, Atcha-Oubou T, Peterson AT, Ketoh GK. Potential Roles of Environmental and Socio-Economic Factors in the Distribution of Insecticide Resistance in Anopheles gambiae sensu lato (Culicidae: Diptera) Across Togo, West Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1168-1175. [PMID: 32112104 DOI: 10.1093/jme/tjaa023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
Vector control strategies recommended by the World Health Organization are threatened by resistance of Anopheles mosquitoes to insecticides. Information on the distribution of resistant genotypes of malaria vectors is increasingly needed to address the problem. Ten years of published and unpublished data on malaria vector susceptibility/resistance and resistance genes have been collected across Togo. Relationships between the spatial distribution of resistance status and environmental, socio-economic, and landscape features were tested using randomization tests, and calculating Spearman rank and Pearson correlation coefficients between mosquito mortality and different gridded values. Anopheles gambiae sensu lato was resistant to DDT, pyrethroids, and the majority of carbamates and organophosphates. Three sibling species were found (i.e., An. gambiae, Anopheles coluzzii, and Anopheles arabiensis) with four resistance genes, including kdr (L1014F, L1014S, and N1575Y) and ace1 (G119S). The most frequent resistance gene was L1014F. Overall, no association was found between the susceptibility/resistance status and environmental features, suggesting that evolution of resistance may be most closely related to extreme selection from local insecticide use. Nevertheless, further research is necessary for firm conclusions about this lack of association, and the potential role of landscape characteristics such as presence of crops and percentage of tree cover.
Collapse
Affiliation(s)
- Koffi Mensah Ahadji-Dabla
- Department of Zoology and Animal Biology, Faculty of Sciences, Université de Lomé, Lomé, Togo
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS
| | - Daniel Romero-Alvarez
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS
| | - Innocent Djègbè
- National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, Natitingou, BP, Benin
- The AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, Benin
| | - Adjovi Djifa Amoudji
- Department of Zoology and Animal Biology, Faculty of Sciences, Université de Lomé, Lomé, Togo
| | - Georges Yawo Apétogbo
- Department of Zoology and Animal Biology, Faculty of Sciences, Université de Lomé, Lomé, Togo
| | - Rousseau Djouaka
- National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, Natitingou, BP, Benin
| | | | - Agnidoufèyi Aawi
- National Malaria Control Programme/Ministry of Health, Lomé Togo
| | | | - A Townsend Peterson
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS
| | - Guillaume Koffivi Ketoh
- Department of Zoology and Animal Biology, Faculty of Sciences, Université de Lomé, Lomé, Togo
| |
Collapse
|
83
|
Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, Mhumbira NT, Mchwembo KR, Tamayamali GZ, Mlembe SV, Njalambaha RM, Lwetoijera DW, Finda MF, Govella NJ, Matoke-Muhia D, Kaindoa EW, Okumu FO. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J 2020; 19:219. [PMID: 32576200 PMCID: PMC7310514 DOI: 10.1186/s12936-020-03295-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In rural south-eastern Tanzania, Anopheles funestus is a major malaria vector, and has been implicated in nearly 90% of all infective bites. Unfortunately, little is known about the natural ecological requirements and survival strategies of this mosquito species. METHODS Potential mosquito aquatic habitats were systematically searched along 1000 m transects from the centres of six villages in south-eastern Tanzania. All water bodies were geo-referenced, characterized and examined for presence of Anopheles larvae using standard 350 mLs dippers or 10 L buckets. Larvae were collected for rearing, and the emergent adults identified to confirm habitats containing An. funestus. RESULTS One hundred and eleven habitats were identified and assessed from the first five villages (all < 300 m altitude). Of these, 36 (32.4%) had An. funestus co-occurring with other mosquito species. Another 47 (42.3%) had other Anopheles species and/or culicines, but not An. funestus, and 28 (25.2%) had no mosquitoes. There were three main habitat types occupied by An. funestus, namely: (a) small spring-fed pools with well-defined perimeters (36.1%), (b) medium-sized natural ponds retaining water most of the year (16.7%), and (c) slow-moving waters along river tributaries (47.2%). The habitats generally had clear waters with emergent surface vegetation, depths > 0.5 m and distances < 100 m from human dwellings. They were permanent or semi-permanent, retaining water most of the year. Water temperatures ranged from 25.2 to 28.8 °C, pH from 6.5 to 6.7, turbidity from 26.6 to 54.8 NTU and total dissolved solids from 60.5 to 80.3 mg/L. In the sixth village (altitude > 400 m), very high densities of An. funestus were found along rivers with slow-moving clear waters and emergent vegetation. CONCLUSION This study has documented the diversity and key characteristics of aquatic habitats of An. funestus across villages in south-eastern Tanzania, and will form an important basis for further studies to improve malaria control. The observations suggest that An. funestus habitats in the area can indeed be described as fixed, few and findable based on their unique characteristics. Future studies should investigate the potential of targeting these habitats with larviciding or larval source management to complement malaria control efforts in areas dominated by this vector species.
Collapse
Affiliation(s)
- Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Salum A Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Emmanuel E Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Dickson S Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Nicolaus T Mhumbira
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Karim R Mchwembo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Gerald Z Tamayamali
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Slyakus V Mlembe
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Marceline F Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Damaris Matoke-Muhia
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
84
|
Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L. Sci Rep 2020; 10:9489. [PMID: 32528116 PMCID: PMC7289809 DOI: 10.1038/s41598-020-66452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Pesticides commonly contaminate the aquatic environments inhabited by mosquito juveniles. However, their role in shaping the mosquito microbiota is not well understood. We hypothesized that environmentally relevant concentrations of atrazine, permethrin and malathion will mediate a shift in the mosquito gut bacterial community structure due to their toxic effect on the aquatic bacterial communities, and reduce mosquito gut bacterial diversity by enriching pesticide-degrading bacterial communities over susceptible taxa. Illumina MiSeq sequencing of the V3-V4 hypervariable regions of the 16 S rRNA gene was used to characterize the microbial communities of larval and adult stages of the two mosquito species and the water samples from microcosms treated with each of the pesticides, separately. Bacterial community composition differed by sample type (larval stage vs. adult stage) and water sampling date (day 3 vs. day 7), but not by pesticide treatment. In larval stages, bacterial OTU richness was highest in samples exposed to malathion, intermediate in permethrin, and lowest in controls. Bacterial richness was significantly higher in larval stages compared to adult stages for all treatments. This study provides a primer for future studies evaluating mosquito microbial responses to exposures to chemical pesticides and the possible implications for mosquito ecology.
Collapse
|
85
|
Bibi R, Tariq RM, Rasheed M. Toxic assessment, growth disrupting and neurotoxic effects of red seaweeds' botanicals against the dengue vector mosquito Aedes aegypti L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110451. [PMID: 32199214 DOI: 10.1016/j.ecoenv.2020.110451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Application of synthetic pesticides over decades to control insects, pests, and disease vectors has resulted in negative impacts on environment and health. The current study assessed the toxicological effects of 12 botanicals obtained from 4 different red seaweeds against the dengue vector mosquito Aedes aegypti L. (Diptera: Culicidae). Four species of red seaweeds, namely Laurencia karachiana, Gracilaria foliifera, Jania rubens, Asparagopsis taxiformis, were collected from Karachi coast and extracted with hexane, dichloromethane and methanol. The efficiency of these extracts was determined by using a dose-response bioassay method against 4th instar larvae of Ae. aegypti. Separate investigations on the toxicity and IGI effects were done. Comparative studies showed that the hexane extracts induced more toxic effects. Based on the LC50 values, obtained after 24 h of treatments, hexane extract of J. rubens (HJ) exhibited toxic effects with LC50 32 μg/mL, (equivalent to GHS category 3), followed by G. foliifera (HG) (LC50 76.8 μg/mL). HJ also showed prominent neurotoxic effects within 1-6 h. Comparatively, higher morphological abnormalities and growth inhibiting (IGI) effects were obtained in the dichloromethane and methanol extracts treated larvae, after 48-96 h, resulting in the formation of immature life forms such as larvi-pupae and pupi-adult. Presumptive growth inhibiting effects were also noted. These included formation of albino and black pupae, deformities in the internal structure of the treated larvae and the chitin synthesis related effects such as 'inhibiting effect on adult emergence'. Finding revealed that red seaweeds, harvested from the Arabian Sea, have potentials to affect Ae. aegypti survival and thus can be utilized as green pesticides.
Collapse
Affiliation(s)
- Rabia Bibi
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, 75270, Pakistan.
| | | | - Munawwer Rasheed
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, 75270, Pakistan; Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
86
|
Li Z, Cai T, Qin Y, Zhang Y, Jin R, Mao K, Liao X, Wan H, Li J. Transcriptional Response of ATP-Binding Cassette (ABC) Transporters to Insecticide in the Brown Planthopper, Nilaparvata lugens (Stål). INSECTS 2020; 11:insects11050280. [PMID: 32370222 PMCID: PMC7291042 DOI: 10.3390/insects11050280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest groups of proteins and plays a non-negligible role in phase III of the detoxification process, which is highly involved in the response of insects to environmental stress (plant secondary metabolites and insecticides). In the present study, in Nilaparvata lugens, we identified 32 ABC transporters, which are grouped into eight subfamilies (ABCA–H) based on phylogenetic analysis. The temporal and spatial expression profiles suggested that the nymphal stages (1st–5th) and adult males showed similarity, which was different from eggs and adult females, and NlABCA1, NlABCA2, NlABCB6, NlABCD2, NlABCG4, NlABCG12, NlABCG15, and NlABCH1 were highly expressed in the midgut and Malpighian tubules. In addition, ABCG12, which belongs to the ABC transporter G subfamily, was significantly upregulated after exposure to sulfoxaflor, nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. Moreover, verapamil significantly increased the sensitivity of N. lugens to nitenpyram, clothianidin, etofenprox, chlorpyrifos, and isoprocarb. These results provide a basis for further research on ABC transporters involved in detoxification in N. lugens, and for a more comprehensive understanding of the response of N. lugens to environmental stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhong Li
- Correspondence: ; Tel./Fax: +86-27-8728-6968
| |
Collapse
|
87
|
Helvecio E, Romão TP, de Carvalho-Leandro D, de Oliveira IF, Cavalcanti AEHD, Reimer L, de Paiva Cavalcanti M, de Oliveira APS, Paiva PMG, Napoleão TH, Wallau GL, de Melo Neto OP, Melo-Santos MAV, Ayres CFJ. Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104464. [PMID: 32359546 DOI: 10.1016/j.pestbp.2019.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/10/2019] [Accepted: 10/13/2019] [Indexed: 06/11/2023]
Abstract
The glutathione S-transferases (GSTs) are enzymes involved in several distinct biological processes. In insects, the GSTs, especially delta and epsilon classes, play a key role in the metabolism of xenobiotics used to control insect populations. Here, we investigated its potential role in temephos resistance, examining the GSTE2 gene from susceptible (RecL) and resistant (RecR) strains of the mosquito Aedes aegypti, vector for several pathogenic arboviruses. Total GST enzymatic activity and the GSTE2 gene expression profile were evaluated, with the GSTE2 cDNA and genomic loci sequenced from both strains. Recombinant GSTE2 and mutants were produced in a heterologous expression system and assayed for enzyme kinetic parameters. These proteins also had their 3D structure predicted through molecular modeling. Our results showed that RecR has a profile of total GST enzymatic activity higher than RecL, with the expression of the GSTE2 gene in resistant larvae increasing six folds. Four exclusive RecR mutations were observed (L111S, I150V, E178A and A198E), which were absent in the laboratory susceptible strains. The enzymatic activity of the recombinant GSTE2 showed different kinetic parameters, with the GSTE2 RecR showing an enhanced ability to metabolize its substrate. The I150V mutation was shown to induce significant changes in catalytic parameters and a 3D modeling of GSTE2 mapped two of the RecR changes (L111S and I150V) near the enzyme's catalytic pocket, also implying an impact on its catalytic activity. Our results reinforce a potential role for GSTE2 in the metabolic resistance phenotype while contributing to the understanding of the molecular basis for the resistance mechanism.
Collapse
Affiliation(s)
- Elisama Helvecio
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Tatiany Patrícia Romão
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil.
| | | | | | | | - Lisa Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | | | | | - Gabriel Luz Wallau
- Department of Entomology, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE 50740-465, Brazil
| | | | | | | |
Collapse
|
88
|
Wat'senga F, Agossa F, Manzambi EZ, Illombe G, Mapangulu T, Muyembe T, Clark T, Niang M, Ntoya F, Sadou A, Plucinski M, Li Y, Messenger LA, Fornadel C, Oxborough RM, Irish SR. Intensity of pyrethroid resistance in Anopheles gambiae before and after a mass distribution of insecticide-treated nets in Kinshasa and in 11 provinces of the Democratic Republic of Congo. Malar J 2020; 19:169. [PMID: 32354333 PMCID: PMC7193383 DOI: 10.1186/s12936-020-03240-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets (LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resistance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known. Therefore, the intensity of resistance of Anopheles gambiae sensu lato (s.l.) to permethrin and deltamethrin was monitored before and after a mass distribution of LLINs in Kinshasa in December 2016, and in 6 other sites across the country in 2017 and 11 sites in 2018. METHODS In Kinshasa, CDC bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and deltamethrin were conducted using An. gambiae s.l. collected as larvae and reared to adults. Bioassays were conducted in four sites in Kinshasa province 6 months before a mass distribution of deltamethrin-treated LLINs and then two, six, and 10 months after the distribution. One site in neighbouring Kongo Central province was used as a control (no mass campaign of LLIN distribution during the study). Nationwide intensity assays were conducted in six sites in 2017 using CDC bottle bioassays and in 11 sites in 2018 using WHO intensity assays. A sub-sample of An. gambiae s.l. was tested by PCR to determine species composition and frequency of kdr-1014F and 1014S alleles. RESULTS In June 2016, before LLIN distribution, permethrin resistance intensity was high in Kinshasa; the mean mortality rate was 43% at the 5× concentration and 73% at the 10× concentration. Bioassays at 3 time points after LLIN distribution showed considerable variation by site and time and there was no consistent evidence for an increase in pyrethroid resistance intensity compared to the neighbouring control site. Tests of An. gambiae s.l. in 6 sites across the country in 2017 and 11 sites in 2018 showed all populations were resistant to the diagnostic doses of 3 pyrethroids. In 2018, the intensity of resistance varied by site, but was generally moderate for all three pyrethroids, with survivors at ×5 the diagnostic dose. Anopheles gambiae sensu stricto (s.s.) was the most common species identified across 11 sites in DRC, but in Kinshasa, An. gambiae s.s. (91%) and Anopheles coluzzii (8%) were sympatric. CONCLUSIONS Moderate or high intensity pyrethroid resistance was detected nationwide in DRC and is a serious threat to sustained malaria control with pyrethroid LLINs. Next generation nets (PBO nets or bi-treated nets) should be considered for mass distribution.
Collapse
Affiliation(s)
- Francis Wat'senga
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Emile Z Manzambi
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Gillon Illombe
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Tania Mapangulu
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Tamfum Muyembe
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Tiffany Clark
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Mame Niang
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Kinshasa, Democratic Republic of the Congo
| | - Ferdinand Ntoya
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Kinshasa, Democratic Republic of the Congo
| | - Aboubacar Sadou
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Kinshasa, Democratic Republic of the Congo
| | - Mateusz Plucinski
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA
| | - Yikun Li
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA
| | - Louisa A Messenger
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA.,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Christen Fornadel
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Richard M Oxborough
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Seth R Irish
- U.S. President's Malaria Initiative and Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA, 30329, USA.
| |
Collapse
|
89
|
Talom AD, Essoung MA, Gbankoto A, Tchigossou G, Akoton R, Sahabi BBA, Atoyebi SM, Fotso Kuate A, Verspoor RL, Tamò M, Tchuinkam T, Lehman GL, Lines J, Wondji CS, Djouaka R. A preliminary analysis on the effect of copper on Anopheles coluzzii insecticide resistance in vegetable farms in Benin. Sci Rep 2020; 10:6392. [PMID: 32286370 PMCID: PMC7156479 DOI: 10.1038/s41598-020-63086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/17/2020] [Indexed: 12/02/2022] Open
Abstract
The use of agrochemicals in vegetable production could influence the selection for insecticide resistance in malaria vectors. Unfortunately, there is a dearth of information on the potential contribution of agrochemicals to insecticide resistance in Anopheles mosquitoes breeding on vegetable farms in southern Benin. A Knowledge, Attitudes and Practices study was conducted with 75 vegetable farmers from Houeyiho and Seme to determine the main agrochemicals used in vegetable production, and the concentration and frequency of application, among other details. Mosquitoes and breeding water were sampled from the farms for analysis. Bioassays were conducted on mosquitoes, while breeding water was screened for heavy metal and pesticide residue contamination. Lambda-cyhalothrin was the main insecticide (97.5%) used by farmers, and Anopheles coluzzii was the main mosquito identified. This mosquito species was resistant (30-63% mortality rate) to λ-cyhalothrin. It was also observed that 16.7% of the examined breeding sites were contaminated with λ-cyhalothrin residues. Furthermore, copper contamination detected in mosquito breeding sites showed a positive correlation (r = 0.81; P = 0.0017) with mosquito resistance to λ-cyhalothrin. The presence of copper in λ-cyhalothrin-free breeding sites, where mosquitoes have developed resistance to λ-cyhalothrin, suggests the involvement of copper in the insecticide resistance of malaria vectors; this, however, needs further investigation.
Collapse
Affiliation(s)
- Armand Defo Talom
- University of Dschang, Vector Borne Diseases Laboratory (VBID), Po Box 067, Dschang, Cameroon.
- International Institute of Tropical Agriculture, Yaoundé, Cameroon.
| | - Michele Agnes Essoung
- University of Dschang, Vector Borne Diseases Laboratory (VBID), Po Box 067, Dschang, Cameroon
- International Institute of Tropical Agriculture, Yaoundé, Cameroon
| | - Adam Gbankoto
- University of Abomey Calavi, Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology BP 526, Cotonou, Benin
| | - Genevieve Tchigossou
- University of Abomey Calavi, Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology BP 526, Cotonou, Benin
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
| | - Romaric Akoton
- University of Abomey Calavi, Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology BP 526, Cotonou, Benin
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
| | | | - Seun Michael Atoyebi
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, P.O. Box 5116, Oyo State, Nigeria
| | | | - Rudi L Verspoor
- University of Liverpool, Institute of Integrative Biology, Liverpool, L697ZB, United Kingdom
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
| | - Timoleon Tchuinkam
- University of Dschang, Vector Borne Diseases Laboratory (VBID), Po Box 067, Dschang, Cameroon
| | | | - Jo Lines
- London School of Hygiene & Tropical Medicine, London, UK
| | - Charles S Wondji
- International Institute of Tropical Agriculture, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin.
| |
Collapse
|
90
|
Sharma RK, Singh P, Setia A, Sharma AK. Insecticides and ovarian functions. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:369-392. [PMID: 31916619 DOI: 10.1002/em.22355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Insecticides, a heterogeneous group of chemicals, are widely used in agriculture and household practices to avoid insect-inflicted damage. Extensive use of insecticides has contributed substantially to agricultural production and the prevention of deadly diseases by destroying their vectors. On the contrary, many of the insecticides are associated with several adverse health effects like neurological and psychological diseases, metabolic disorders, hormonal imbalance, and even cancer in non-target species, including humans. Reproduction, a very selective process that ensures the continuity of species, is affected to a greater extent by the rampant use of insecticides. In females, exposure to insecticides leads to reproductive incapacitation primarily through disturbances in ovarian physiology. Disturbed ovarian activities encompass the alterations in hormone synthesis, follicular maturation, ovulation process, and ovarian cycle, which eventually lead to decline in fertility, prolonged time-to-conceive, spontaneous abortion, stillbirths, and developmental defects. Insecticide-induced ovarian toxicity is effectuated by endocrine disruption and oxidative stress. Oxidative stress, which occurs due to suppression of antioxidant defense system, and upsurge of reactive oxygen and nitrogen species, potentiates DNA damage and expression of apoptotic and inflammatory markers. Insecticide exposure, in part, is responsible for ovarian malfunctioning through disruption of hypothalamic-pituitary-gonadal axis. The current article is focused on the adverse effects of insecticides on ovarian functioning, and consequently, on the reproductive efficacy of females. The possible strategies to combat insecticide-induced toxicity are also discussed in the latter part of this review. Environ. Mol. Mutagen. 61:369-392, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajnesh Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Priyanka Singh
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aarzoo Setia
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Aman Kumar Sharma
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
91
|
Kudom AA. Entomological surveillance to assess potential outbreak of Aedes-borne arboviruses and insecticide resistance status of Aedes aegypti from Cape Coast, Ghana. Acta Trop 2020; 202:105257. [PMID: 31682813 DOI: 10.1016/j.actatropica.2019.105257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/26/2022]
Abstract
This study was conducted in Cape Coast, a major tourist destination in Ghana to assess the risk of an outbreak of Aedes-borne arboviruses based on entomological indicators and determine their susceptibility to pyrethroid insecticides. A larval survey was conducted in 414 houses between April and July 2017. Larvae collected were reared to adult for WHO susceptibility bioassay against four pyrethroid insecticides (Deltamethrin 0.05%, Permethrin 0.75%, Cyfluthrin 0.15%, Etofenprox 0.5%) and three different brands of mosquito coil; Heaven® (Dimefluthrin 0.03%), Sasso® (Esbiothrin 0.25%), and Fastkit® (D-allethrin 0.25%) as well as four enzyme-activities and F1534C kdr-mutation. Some physicochemical parameters were also measured in Aedes breeding sites. Three larval indices and water quality index (WQI) were calculated. The estimated larval indices were: House index - 68%, Container index - 44%, and Breteau index - 2.4. The level of resistance of the vector to the different pyrethroid insecticides and mosquito coils varied. F1534C kdr-mutation with an allele frequency of 35% and metabolic detoxifying enzyme activities are suspected to be the cause of resistance. Ae. aegypti breeding sites were found to contain organic and other anthropogenic pollutants. Based on the larval indices estimated, the population density of Ae. aegypti in Cape Coast was found to be sufficient to promote an outbreak of arboviruses. Pyrethroid resistance in the vector population could compromise the effectiveness of pyrethroid-based control strategies as was seen with the reduced efficacy of mosquito coils. With large number of international travellers to the city, there is a need to put in place a regular Aedes surveillance program for early response to any potential outbreaks.
Collapse
|
92
|
Lien NTK, Ngoc NTH, Lan NN, Hien NT, Tung NV, Ngan NTT, Hoang NH, Binh NTH. Transcriptome Sequencing and Analysis of Changes Associated with Insecticide Resistance in the Dengue Mosquito ( Aedes aegypti) in Vietnam. Am J Trop Med Hyg 2020; 100:1240-1248. [PMID: 30834881 DOI: 10.4269/ajtmh.18-0607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The mosquito Aedes aegypti is a transmission vector for dangerous epidemic diseases in humans. Insecticides have been used as the most general vector control method in the world. However, Ae. aegypti have developed many resistant mechanisms such as reduced neuronal sensitivity to insecticides (target-site resistance), enhanced insecticide metabolism (metabolic resistance), altered transport, sequestration, and other mechanisms. It has become a major problem for vector control programs. Transcriptome sequencing and bioinformatic analysis were used to compare transcription levels between a susceptible strain (Bora7) and a resistant strain (KhanhHoa7) collected from the field. A total of 161 million Illumina reads, including 66,076,678 reads from the Bora7 strain and 69,606,654 reads from the KhanhHoa7 strain, were generated and assembled into 11,174 genes. A comparison of the KhanhHoa7 transcriptome to that of Bora7 showed 672 upregulated genes and 488 downregulated genes. We identified the highly upregulated genes: cytochrome P450 4C1, 4C3, 4C21, 4D1, 4D1 isoform X2, 4D2, 4D2 isoform X2, 4G15, 6A2, 6A8, 6D3, and 9E2; Glutathione S transferase (GST1), UGT1-3, 1-7, 2B15, and 2B37; binding cassette transporter (ABC) transporter F family member 4 and ABC transporter G family member 20. Interestingly, there was a significant increase in the expression of the genes such as CYP9E2 (8.3-fold), CYP6A8 (5.9-fold), CYP6D3 (5.4-fold), CYP4C21 (5.4-fold), CYP4G15 (5.2-fold), GST1 (3.5-fold), and ABC transporter 4 (2.1-fold). Our results suggested a potential relationship between the expression of the genes in metabolic processes and insecticide resistance in the studied strain. These results may contribute to the understanding of the mechanisms of insecticide resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Nguyen Ngoc Lan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thu Hien
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Thanh Ngan
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | |
Collapse
|
93
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. Second generation effects of larval metal pollutant exposure on reproduction, longevity and insecticide tolerance in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2020; 13:4. [PMID: 31910892 PMCID: PMC6947826 DOI: 10.1186/s13071-020-3886-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background Members of the Anopheles gambiae complex breed in clean, sunlit temporary bodies of water. Anthropogenic pollution is, however, altering the breeding sites of the vectors with numerous biological effects. Although the effects of larval metal pollution have previously been examined, this study aims to assess the transgenerational effects of larval metal pollution on the major malaria vector An. arabiensis. Methods Two laboratory strains of An. arabiensis, SENN (insecticide-susceptible) and SENN-DDT (insecticide-resistant), were used in this study. After being bred in water polluted with either cadmium chloride, copper nitrate or lead nitrate, several life history characteristics that can have epidemiological implications (fertility, apoptotic damage to reproductive structures, adult longevity and insecticide tolerance) were examined in the adults and compared to those of adults bred in clean water. Results All metal treatments reduced fecundity in SENN, but only lead treatment reduced fertility in SENN-DDT. Cadmium chloride exposure resulted in apoptosis and deformation of the testes in both strains. After breeding generation F0 in polluted water, F1 larvae bred in clean water showed an increase in longevity in SENN-DDT adult females. In contrast, after breeding the F0 generation in polluted water, longevity was reduced after cadmium and copper exposure in the F1 generation. Larval metal exposure resulted in an increase in insecticide tolerance in adults of the SENN strain, with SENN-DDT adults gaining the greatest fold increase in insecticide tolerance. Conclusions This study demonstrates that a single exposure to metal pollution can have transgenerational effects that are not negated by subsequent breeding in clean water. ![]()
Collapse
Affiliation(s)
- Alexander C S N Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. .,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
94
|
Bilal M, Iqbal HMN, Barceló D. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133896. [PMID: 31756868 DOI: 10.1016/j.scitotenv.2019.133896] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 02/05/2023]
Abstract
Inevitable use of pesticides due to modern agricultural practices and the associated worldwide environmental pollution has called the special attention of the researchers to overcome the persistence, recalcitrance, and multi-faceted toxicity of pesticides-based emerging contaminants. Some restricted use pesticides (RUPs) are highly toxic and carcinogenic chemicals that can be easily accumulated into non-target organisms, including humans, aquatic invertebrates, algae, and microbes. With regard to physicochemical strategies, enzymes-mediated bioremediation is a compelling and meaningful strategy for biodegradation and biotransformation of pesticides into harmless chemical species. Oxidoreductases hydrolases and transferases are among the most representative classes of enzymes pursued and engineered for this purpose. Ligninolytic enzymes, particularly laccases, are of exceptional interest due to high efficiency, specificity, eco-sustainability, and wide-ranging substrates. However, the use of native enzymes is often hindered in industrial processes for the effective removal of refractory compounds by their high cost and susceptibility. Many of these drawbacks can be addressed by enzyme immobilization on some suitable support materials. Increase in stability, reusability, reduction of product inhibition, enhanced activity, specificity, and easier product separation are amid the desirable characteristics of immobilization to construct biocatalysts for continuous systems. This review summarizes recent and up-to-date literature on the use of enzymes, explicitly, free as well as immobilized laccases in the degradation of different pesticides. In the first part, source and occurrence of pesticides in the environment, their types, and associated detrimental effects on the ecosystem/human health are comprehensively described. Afterward, we highlighted the use of different enzymes with a particular emphasis on laccase for the degradation and detoxification of an array of pesticides. Finally, the review is closed with concluding remarks, and possible future direction is proposed in this very important research arena. In conclusion, it is envisioned that effective deployment of laccase-assisted biocatalytic systems for the degradation or removal of diverse pesticides and related contaminants will help to better understand the persistence and removal fate of these hazardous pollutants. Moreover, the current research thrust presented in this review will additionally evoke researcher to engineer robust and sustainable processes to remediate pesticides-contaminated environmental matrices effectively.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
95
|
Maciel LG, Oliveira AA, Romão TP, Leal LLL, Guido RVC, Silva-Filha MHNL, Dos Anjos JV, Soares TA. Discovery of 1,2,4-oxadiazole derivatives as a novel class of noncompetitive inhibitors of 3-hydroxykynurenine transaminase (HKT) from Aedes aegypti. Bioorg Med Chem 2019; 28:115252. [PMID: 31864777 DOI: 10.1016/j.bmc.2019.115252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
The mosquito Aedes aegypti is the vector of arboviruses such as Zika, Chikungunya, dengue and yellow fever. These infectious diseases have a major impact on public health. The unavailability of effective vaccines or drugs to prevent or treat most of these diseases makes vector control the main form of prevention. One strategy to promote mosquito population control is the use of synthetic insecticides to inhibit key enzymes in the metabolic pathway of these insects, particularly during larval stages. One of the main targets of the kynurenine detoxification pathway in mosquitoes is the enzyme 3-hydroxykynurenine transaminase (HKT), which catalyzes the conversion of 3-hydroxykynurenine (3-HK) into xanthurenic acid (XA). In this work, we report eleven newly synthesized oxadiazole derivatives and demonstrate that these compounds are potent noncompetitive inhibitors of HKT from Ae. aegypti. The present data provide direct evidence that HKT can be explored as a molecular target for the discovery of novel larvicides against Ae. aegypti. More importantly, it ensures that structural information derived from the HKT 3D-structure can be used to guide the development of more potent inhibitors.
Collapse
Affiliation(s)
- Larissa G Maciel
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Andrew A Oliveira
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | - Tatiany P Romão
- Institute Aggeu Magalhães (IAM) - FIOCRUZ, Av. Professor Moraes Rego s/n°, Recife, PE 50740-560 Brazil
| | - Laylla L L Leal
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil
| | - Rafael V C Guido
- Sao Carlos Institute of Physics - University of São Paulo, Av. Joao Dagnone, 1100 Jardim Santa Angelina, São Carlos, SP 13563-120, Brazil
| | | | - Janaína V Dos Anjos
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| | - Thereza A Soares
- Department of Fundamental Chemistry - Federal University of Pernambuco, Av. Jornalista Aníbal Fernandes, s/n°Cidade Universitária - Recife, PE 50740-560, Brazil.
| |
Collapse
|
96
|
Pesticides and the evolution of the genetic structure of Anopheles coluzzii populations in some localities in Benin (West Africa). Malar J 2019; 18:407. [PMID: 31805939 PMCID: PMC6896764 DOI: 10.1186/s12936-019-3036-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023] Open
Abstract
Background Changes in the natural habitats of insect groups are determined the genetic polymorphisms between individuals. The objective of this study was to establish the genetic structure of the Anopheles coluzzii populations in four localities of Benin. Methods Insecticide surveys and larval sampling were conducted on 4 study localities, including Cotonou, Ketou, Zagnanado, and Sô-Ava. Molecular characterizations were performed on the Anopheles mosquitoes collected with the allelic and genotypic frequencies of kdr gene determined. The multiple comparison Chi square test for proportions was performed with R version 3.3.3. Next, the observed heterozygosity, expected heterozygosity, and indices of fixation, and genetic differentiation were estimated. Finally, the Hardy–Weinberg equilibrium (EHW) was determined to assess whether panmixia exists in the different populations of mosquitoes of the agroecological zones under study. Results Carbamates, pyrethroids, organophosphorus and organochlorines use have been reported in all localities except Sô-Ava. Anopheles coluzzii was strongly represented across all study localities. The L1014F allele was observed in the localities of Kétou, Cotonou and Zagnanado. Likewise, insecticide selection pressure of homozygous resistant individuals (L1014F/L1014F) was significantly higher in Kétou, Cotonou and Zagnanado (p value < 0.05). Surprisingly in Sô-Ava, a relatively high frequency of the L1014F allele despite the reported absence of pesticide use was observed. All mosquito populations were found to be deficient in heterozygosity across the study sites (FIS< 0). No genetic differentiation (FST< 0) was observed in the localities of Zagnanado and Kétou. Conclusion The survey on the use of insecticides showed that insecticide selection pressures differ across the investigated localities. It would be desirable to rotate or apply formulations of combined products with different modes of action. Doing so would enable a better management of resistant homozygous individuals, and mitigate the resistance effect of commonly used insecticides.
Collapse
|
97
|
Dusfour I, Vontas J, David JP, Weetman D, Fonseca DM, Corbel V, Raghavendra K, Coulibaly MB, Martins AJ, Kasai S, Chandre F. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl Trop Dis 2019; 13:e0007615. [PMID: 31600206 PMCID: PMC6786541 DOI: 10.1371/journal.pntd.0007615] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The landscape of mosquito-borne disease risk has changed dramatically in recent decades, due to the emergence and reemergence of urban transmission cycles driven by invasive Aedes aegypti and Ae. albopictus. Insecticide resistance is already widespread in the yellow fever mosquito, Ae. Aegypti; is emerging in the Asian tiger mosquito Ae. Albopictus; and is now threatening the global fight against human arboviral diseases such as dengue, yellow fever, chikungunya, and Zika. Because the panel of insecticides available for public health is limited, it is of primary importance to preserve the efficacy of existing and upcoming active ingredients. Timely implementation of insecticide resistance management (IRM) is crucial to maintain the arsenal of effective public health insecticides and sustain arbovirus vector control. METHODOLOGY AND PRINCIPAL FINDINGS This Review is one of a series being generated by the Worldwide Insecticide resistance Network (WIN) and aims at defining the principles and concepts underlying IRM, identifying the main factors affecting the evolution of resistance, and evaluating the value of existing tools for resistance monitoring. Based on the lessons taken from resistance strategies used for other vector species and agricultural pests, we propose a framework for the implementation of IRM strategies for Aedes mosquito vectors. CONCLUSIONS AND SIGNIFICANCE Although IRM should be a fixture of all vector control programs, it is currently often absent from the strategic plans to control mosquito-borne diseases, especially arboviruses. Experiences from other public health disease vectors and agricultural pests underscore the need for urgent action in implementing IRM for invasive Aedes mosquitoes. Based on a plan developed for malaria vectors, here we propose some key activities to establish a global plan for IRM in Aedes spp.
Collapse
Affiliation(s)
- Isabelle Dusfour
- Laboratoire d’Entomologie Médicale, Institut Pasteur de la Guyane, Cayenne, French Guiana, France
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
- Pesticide Science Laboratory, Agricultural University of Athens, Athens, Greece
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine (LECA), Centre National de la Recherche Scientifique (CNRS), Université Grenoble-Alpes, Grenoble, France
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University (RU), New Brunswick, New Jersey, United States of America
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Kamaraju Raghavendra
- Department of Health Research, National Institute of Malaria Research, Dwarka, Delhi, India
| | - Mamadou B. Coulibaly
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Ademir J. Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Shinji Kasai
- Laboratory of Pesticide Science, Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fabrice Chandre
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
98
|
Verheyen J, Stoks R. Shrinking Body Size and Physiology Contribute to Geographic Variation and the Higher Toxicity of Pesticides in a Warming World. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11515-11523. [PMID: 31498598 DOI: 10.1021/acs.est.9b03806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To improve current and future risk assessment of pesticides under global warming, mechanistic insights and consideration of daily temperature fluctuations (DTFs) are needed. One overlooked mechanism how both higher mean temperatures and DTFs may increase toxicity is by reducing body size (temperature-size-rule). We studied whether a higher mean temperature and DTF magnified chlorpyrifos toxicity in Ischnura elegans damselfly larvae, and whether this was mediated by temperature-induced reductions in body size and/or physiological changes. The lethal effects of chlorpyrifos were magnified at the high mean temperature (up to ∼15%) and under DTF (up to ∼33%), and especially at their combination (up to ∼46%) indicating synergisms. This highlights that not only considering DTFs, but also their interaction with higher mean temperatures is pivotal for realistic predictions of pesticide toxicity. Both higher temperatures and DTFs resulted in smaller larvae, which were more sensitive to chlorpyrifos. Notably, the DTF-induced smaller body sizes, as well as the higher oxidative damage to lipids, contributed to the higher chlorpyrifos toxicity under DTF. By integrating the temperature-size rule and size-pesticide sensitivity pattern we provide proof-of-principle for a novel, likely general mechanism contributing to geographic variation and the higher toxicity of pesticides in a warming world.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology , University of Leuven , Charles Deberiotstraat 32 , B-3000 Leuven , Belgium
| |
Collapse
|
99
|
Lu K, Li W, Cheng Y, Ni H, Chen X, Li Y, Tang B, Sun X, Li Y, Liu T, Qin N, Chen D, Zeng R, Song Y. Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:127-135. [PMID: 31519247 DOI: 10.1016/j.pestbp.2019.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Environmental xenobiotics can influence the tolerance of insects to chemical insecticides. Heavy metals are widespread distributed, can be easily bio-accumulated in plants and subsequently within phytophagous insects via the food chains. However, less attention has been paid to the effect of heavy metal exposure on their insecticide tolerance. In this study, pre-exposure of copper (Cu, 25-100 mg kg-1) significantly enhanced the subsequent tolerance of Spodoptera litura to β-cypermethrin, a widely used pyrethroid insecticide in crop field. Cytochrome P450 monooxygenases (CYPs) activities were cross-induced in larvae exposed to Cu and β-cypermethrin, while the activities of glutathione S-transferase (GST) and carboxylesterase (CarE) were not affected. Application of piperonyl butoxide (PBO), a P450 synergist, effectively impaired the tolerance to β-cypermethrin in Cu-exposed S. litura larvae with a synergistic ratio of 1.72, indicating that P450s contribute to larval tolerance to β-cypermethrin induced by Cu exposure. Among the four CYP6AB family genes examined, only larval midgut-specific CYP6AB12 was found to be cross-induced by Cu and β-cypermethrin. RNA interference (RNAi)-mediated silencing of CYP6AB12 effectively decreased the mRNA levels of the target gene, and significantly reduced the larval tolerance to β-cypermethrin following exposure to Cu. These results showed that pre-exposure of heavy metal Cu enhanced larval tolerance to β-cypermethrin in S. litura, possibly through the cross-induction of P450s. Our findings provide new insights on the relationship between heavy metals and chemical insecticides that may benefit both the risk evaluation of heavy metal contamination and development of pest management strategies.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Hanfang Ni
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xia Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yue Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Bingjie Tang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaomin Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yimin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tingting Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ningning Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
100
|
Matowo NS, Abbasi S, Munhenga G, Tanner M, Mapua SA, Oullo D, Koekemoer LL, Kaindoa E, Ngowo HS, Coetzee M, Utzinger J, Okumu FO. Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit Vectors 2019; 12:413. [PMID: 31443737 PMCID: PMC6708135 DOI: 10.1186/s13071-019-3676-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Culex mosquitoes cause considerable biting nuisance and sporadic transmission of arboviral and filarial diseases. METHODS Using standard World Health Organization procedures, insecticide resistance profiles and underlying mechanisms were investigated during dry and wet seasons of 2015 and 2016 in Culex pipiens complex from three neighbouring administrative wards in Ulanga District, Tanzania. Synergist tests with piperonyl butoxide, diethyl maleate, and triphenyl phosphate, were employed to investigate mechanisms of the observed resistance phenotypes. Proportional biting densities of Culex species, relative to other taxa, were determined from indoor surveillance data collected in 2012, 2013, and 2015. RESULTS Insecticide resistance varied significantly between wards and seasons. For example, female mosquitoes in one ward were susceptible to bendiocarb and fenitrothion in the wet season, but resistant during the dry season, while in neighbouring ward, the mosquitoes were fully susceptible to these pesticides in both seasons. Similar variations occurred against bendiocarb, DDT, deltamethrin, and lambda-cyhalothrin. Surprisingly, with the exception of one ward in the wet season, the Culex populations were susceptible to permethrin, commonly used on bednets in the area. No insecticide resistance was observed against the organophosphates, pirimiphos-methyl and malathion, except for one incident of reduced susceptibility in the dry season. Synergist assays revealed possible involvement of monooxygenases, esterases, and glutathione S-transferase in pyrethroid and DDT resistance. Morphology-based identification and molecular assays of adult Culex revealed that 94% were Cx. pipiens complex, of which 81% were Cx. quinquefasciatus, 2% Cx. pipiens, and 3% hybrids. About 14% of the specimens were non-amplified during molecular identifications. Female adults collected indoors were 100% Cx. pipiens complex, and constituted 79% of the overall biting risk. CONCLUSIONS The Cx. pipiens complex constituted the greatest biting nuisance inside people's houses, and showed resistance to most public health insecticides possible. Resistance varied at a fine geographical scale, between adjacent wards, and seasons, which warrants some modifications to current insecticide resistance monitoring strategies. Resistance phenotypes are partly mediated by metabolic mechanisms, but require further evaluation through biochemical and molecular techniques. The high densities and resistance in Culex could negatively influence the acceptability of other interventions such as those used against malaria mosquitoes.
Collapse
Affiliation(s)
- Nancy S. Matowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Said Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Givemore Munhenga
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Salum A. Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - David Oullo
- US Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Emanuel Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S. Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Wits/SAMRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|