51
|
Serra S, De Simeis D. One-pot process for the biotransformation of vegetable oils into natural deca- and dodecalactones. J Biotechnol 2024; 382:70-77. [PMID: 38295955 DOI: 10.1016/j.jbiotec.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Deca- and dodecalactones are highly desired natural compounds that are essential for creating flavor formulations with fruity, peachy, creamy, and floral notes. Although natural ingredients are preferred by consumers, these lactones cannot be extracted from natural sources. Therefore, the biotechnological processes that produce these compounds in their natural form are crucial for the flavor industry. Here, we report a study on the biotransformation of vegetable oils into natural deca- and dodecalactones. The proposed process is performed one-pot, through the sequential use of three different biotransformation steps, namely the lipase-mediated hydrolysis of the triglycerides, the use of probiotic bacteria for the hydration of the unsaturated fatty acids and the transformation of the obtained hydroxy-fatty acids into lactones derivatives employing Yarrowia lipolytica. By using a specific vegetable oil in combination with a selected bacterial strain, it is possible to obtain a preferred lactone derivative such as γ-dodecalactone, dairy lactone, tuberose lactone, or δ-decalactone in a concentration ranging from 0.9 to 1.5 g/L. Overall, our method is suitable for the industrial production of these lactones as it is easily scalable, it can be performed in only one bioreactor and it makes use of generally recognized as safe (GRAS) microorganisms.
Collapse
Affiliation(s)
- Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano 20131, Italy.
| | - Davide De Simeis
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - Consiglio Nazionale delle Ricerche (SCITEC-CNR), via Luigi Mancinelli 7, Milano 20131, Italy.
| |
Collapse
|
52
|
Bachtarzi N, Gomri MA, Meradji M, Gil-Cardoso K, Ortega N, Chomiciute G, Del Bas JM, López Q, Martínez V, Kharroub K. In vitro assessment of biofunctional properties of Lactiplantibacillus plantarum strain Jb21-11 and the characterization of its exopolysaccharide. Int Microbiol 2024; 27:239-256. [PMID: 37286917 DOI: 10.1007/s10123-023-00387-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
ABSTACT The microbiota of traditional food provides a rich reservoir of biodiversity to find new strains with interesting features for novel functional food formulation. Therefore, this study aimed to investigate the biofunctional potential of the lactic acid bacteria (LAB) strain Jb21-11 isolated from Jben, a traditional Algerian fresh cheese. This isolate was selected out of a collection of 154 LAB based on its exopolysaccharide (EPS) phenotype and was preliminarily identified by polyphasic characterization as Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) and its biofunctional properties were then assessed in vitro. The tested strain demonstrated good resistance to gastric juice, acidity around pH 2, and 2% (v/v) bile salts, which are important characteristics for potential biofunctional LAB candidates. It also showed a good production of ropy EPS with 674 mg/L on MRS medium. However, this ability appears to compromise the adhesion of the strain to Caco-2 cells (less than 1%), which according to our results, seems not to be related to autoaggregation and hydrophobicity (44.88 ± 0.028% and 16.59 ± 0.012%). Furthermore, promising antimicrobial activity against three pathogenic bacteria (Escherichia coli, Staphylococcus aureus, and Salmonella) was detected probably due to antimicrobial metabolites excreted during fermentation process into the medium. Moreover, the strain L. plantarum Jb21-11 displayed a therapeutic functionality with both anti-inflammatory and immunomodulatory action using RAW 264.7 cells. The chemical features of the novel ropy Jb21-11-EPS were also investigated revealing the presence of three monosaccharides, namely, mannose, galactose, and glucose, with a molar ratio of 5.42:1.00:4.52 linked together by α- and β-glycosidic bonds, presenting a relatively high molecular weight of 1.08 × 105 Da of interest for a texturing potential. Therefore, the new producing EPS strain Jb21-11 is a promising candidate for use as an adjunct culture for improving the texture of functional food.
Collapse
Affiliation(s)
- Nadia Bachtarzi
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria.
| | - Mohamed Amine Gomri
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Meriem Meradji
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Nàdia Ortega
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Gertruda Chomiciute
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Quiro López
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Vanesa Martínez
- Creaciones Aromáticas Industriales SA, Cuatrecasas i Arimí, 2, 08192, Sant Quirze del Vallès, Barcelona, Spain
| | - Karima Kharroub
- Laboratory of Biotechnology and Food Quality (BIOQUAL), Institute of Nutrition, Food and Agri-Food Technologies (INATAA), University of Mentouri Brother's Constantine 1 (UFMC1), Road of Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
53
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
54
|
Hizume T, Sato Y, Iwaki H, Honda K, Okano K. Subtractive modification of bacterial consortium using antisense peptide nucleic acids. Front Microbiol 2024; 14:1321428. [PMID: 38260881 PMCID: PMC10800778 DOI: 10.3389/fmicb.2023.1321428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Microbiome engineering is an emerging research field that aims to design an artificial microbiome and modulate its function. In particular, subtractive modification of the microbiome allows us to create an artificial microbiome without the microorganism of interest and to evaluate its functions and interactions with other constituent bacteria. However, few techniques that can specifically remove only a single species from a large number of microorganisms and can be applied universally to a variety of microorganisms have been developed. Antisense peptide nucleic acid (PNA) is a potent designable antimicrobial agent that can be delivered into microbial cells by conjugating with a cell-penetrating peptide (CPP). Here, we tested the efficacy of the conjugate of CPP and PNA (CPP-PNA) as microbiome modifiers. The addition of CPP-PNA specifically inhibited the growth of Escherichia coli and Pseudomonas putida in an artificial bacterial consortium comprising E. coli, P. putida, Pseudomonas fluorescens, and Lactiplantibacillus plantarum. Moreover, the growth inhibition of P. putida promoted the growth of P. fluorescens and inhibited the growth of L. plantarum. These results indicate that CPP-PNA can be used not only for precise microbiome engineering but also for analyzing the growth relationships among constituent microorganisms in the microbiome.
Collapse
Affiliation(s)
- Tatsuya Hizume
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yu Sato
- Division of Life Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kenji Okano
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
55
|
Jha P, Dangi N, Sharma S. Probiotics Show Promise as a Novel Natural Treatment for Neurological Disorders. Curr Pharm Biotechnol 2024; 25:799-806. [PMID: 37877144 DOI: 10.2174/0113892010261604230919170143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/26/2023]
Abstract
Probiotics are beneficial microorganisms shown to improve human health when consumed regularly and in sufficient quantities. Numerous health benefits can be attained by possessing important metabolites with nutritional and medicinal qualities. It has been shown through scientific research that these living microbial consortiums can influence a variety of mental health outcomes, including but not limited to anxiety, depression, cognitive processes, stress responses, and behavioral patterns. Selected strains of bacteria and yeasts control how the central nervous system (CNS) communicates with the gut-brain axis (GBA) through neuronal, humoral, and metabolic pathways to ease mood. Psychobiotics are substances that can affect the digestive system as well as mood and anxiety. There is scant evidence to validate the beneficial effects of psychiatric drugs in treating neurological diseases or disorders. The therapeutic method of research into psychobiotics opens exciting prospects for the future of the field of development. This review compiles the current evidence available in the scientific literature on the use of probiotics to influence neurological disorders.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Biotechnology, Amity Institute of Biotechnology, Amity University, Jaipur, 303002, Rajasthan, India
| | - Neha Dangi
- Department of Pharmaceutical Sciences, Alwar Pharmacy College, M.I.A., Alwar, 301030, Rajasthan, India
| | - Shikha Sharma
- Department of Pharmaceutical Science, Lords University, Alwar, 301028, Rajasthan, India
| |
Collapse
|
56
|
Yadav M, Sehrawat N, Sharma AK, Kumar S, Singh R, Kumar A, Kumar A. Synbiotics as potent functional food: recent updates on therapeutic potential and mechanistic insight. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1-15. [PMID: 38192708 PMCID: PMC10771572 DOI: 10.1007/s13197-022-05621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
Abstract
Synbiotics are the specific mixtures of prebiotics with probiotics intended to give health benefits to the host by stabilizing and supporting the gut microbiota.The prebiotic substance used in the synbiotics selectively favors the growth and metabolite production of probiotics. Gut microbiome dysbiosis may lead to generation and progression of various chronic diseases. Synbiotics act synergistically to modulate the gut ecosystem for improvement of metabolic health of the host. Probiotics have been found promising against various diseases being safer, effective, as an alternative or combinatorial therapy. Specific combinations of probiotics with suitable prebiotic substrate as synbiotics, may be the more effective therapeutic agents that can provide all benefits of probiotics as well as prebiotics. Though, effective combinations, dosage, mechanism of action, safety, cost effectiveness and other clinical investigations are required to be established along with other relevant aspects. Synbiotics have the potential to be functional food of importance in future. Present review summarizes the mechanistic overview of synbiotics related to gut microbiota, therapeutic potential and promising health benefits for human illnesses according to the available literature. In present scenario, synbiotics are more promising future alternatives as therapeutics to maintain healthy microbiota inside the host gut which directly affects the onset or development ofrelated disorders or diseases.
Collapse
Affiliation(s)
- Mukesh Yadav
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Nirmala Sehrawat
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Anil Kumar Sharma
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana India
| | - Sunil Kumar
- Department of Microbiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka, Uganda
| | - Rajbir Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana India
| | - Ashwani Kumar
- Department of Biotechnology, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021 India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P. India
| |
Collapse
|
57
|
Wang K, Ni J, Tian X, Xiang S, Li H, Shang W, Liu B, Tan M, Su W. Survivability of probiotics in Pickering emulsion gels stabilized by salmon by-product protein / sodium alginate soluble complexes at neutral pH. Int J Biol Macromol 2024; 255:128190. [PMID: 37979738 DOI: 10.1016/j.ijbiomac.2023.128190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions. The emulsion gels were stabilized by the soluble complexes of salmon by-product protein (SP) and sodium alginate (ALG), and the aqueous phase was solidified by the addition of calcium. The interaction between SP and ALG and the effect of ALG concentration on emulsifying ability and emulsion stability were studied. The results from optical imaging, nuclear magnetic resonance, and rheological properties showed that the stability and viscosity of the emulsions gradually increased with the increased ALG concentration, while the droplet size of the emulsions and the content of free water in the system decreased significantly. Especially when the concentration of ALG was 1 %, the emulsion system was stable under the environment of high temperature and high ionic strength, and the water holding capacity was the highest. Through pasteurization and gastrointestinal digestion experiments, it was found that the survival rate of probiotics encapsulated in emulsion gels was significantly higher than that encapsulated in emulsions or hydrogels, which benefited from the dual action of oil droplets and calcium alginate gels network. These results provide a new strategy for the processing of probiotics and the high-value utilization of marine fish by-products.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jialu Ni
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wenbo Shang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bo Liu
- Dalian Rich Foods Co.,Ltd, Dalian 116113, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
58
|
Lyu Q, Chen RA, Chuang HL, Zou HB, Liu L, Sung LK, Liu PY, Wu HY, Chang HY, Cheng WJ, Wu WK, Wu MS, Hsu CC. Bifidobacterium alleviate metabolic disorders via converting methionine to 5'-methylthioadenosine. Gut Microbes 2024; 16:2300847. [PMID: 38439565 PMCID: PMC10936671 DOI: 10.1080/19490976.2023.2300847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024] Open
Abstract
Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Rou-An Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories Research Institute, Taipei, Taiwan
| | - Hsin-Bai Zou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Lihong Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Kang Sung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yuan Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wan-Ju Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| |
Collapse
|
59
|
Rathi A, Pagare R. Efficacy and Safety of Bacillus coagulans LBSC in Drug Induced Constipation Associated With Functional Gastrointestinal Disorder: A Double-Blind, Randomized, Interventional, Parallel, Controlled Trial a Clinical Study on Bacillus coagulans LBSC for Drug Induced Constipation Associated With FGIDs. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241286511. [PMID: 39295947 PMCID: PMC11409293 DOI: 10.1177/27536130241286511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/21/2024]
Abstract
Background Active drugs and nutraceutical supplements commonly induce various gastrointestinal illnesses, and constipation is a major gastrointestinal symptom accompanied with functional gastrointestinal disorders. Drug-induced imbalance in gut microbiota may play critical role in such physiological disturbances. Probiotics have been known for resuming normal and healthy gut microbiome. Objective To investigate the clinical efficacy and safety of Bacillus coagulans LBSC in the treatment of drug induced constipation associated with functional gastrointestinal disorder (FGID) symptoms. Methods A prospective, interventional, randomized, double-blind, parallel, multi-arm, controlled trial with 168 patients experiencing drug induced constipation associated with FGID symptoms (DICAWFGID) screened through Rome IV criteria were randomized into 2 arms, i.e. placebo arm (n = 28) and atorvastatin, atenolol, metformin, amitriptyline, and calcium in test arm (n = 28/arm). Patients in both arms received similar dosages (1 g sachet, 3 times a day) for 35 days. The occurrence of constipation using Bristol Stool Form Scale, assessment of degree of constipation on 4-point Likert scale, occurrence of hard stool and degree of stool expulsion on 3-point scale, and defecation frequency were primary endpoints. While, secondary outcomes consisted of the changes in severity of FGID symptoms, visual analogue scale and tolerance to IP, along with reports of adverse events (AEs) and severe adverse events (SAEs). Results There was a significant reduction in occurrence of constipation (≥98.6% and P-value <0.05) in test arm over the placebo arm. Assessment of co-primary endpoints showed significant improvements in degree of stool consistency (P-value 0.0232; CI: 0.1870, 1.1629), borderline significantly superior in degree of stool expulsion (P-value 0.0553; CI: 0.0378, -0.4939), while the other co-primary efficacy endpoints displayed considerably improved advancement (non-significant, P-value ≥0.05). The intra group analysis of symptoms at start of treatment (SOT) and end of treatment (EOT) revealed a significant reduction in scores for occurrence of constipation and degree of constipation, whereas significant improvement in the scores for degree of stool consistency and degree of stool expulsion (P-value <0.001) after the intervention period. In secondary endpoints, the processed responses clearly signified a considerable positive improvement (non-significant, P-value ≥0.05) in other symptoms of constipation associated with FGIDs as determined by the changes in the EOT-SOT score. The study data also highlighted the safety of Bacillus coagulans LBSC at the studied dose. No AEs and/or SAEs were documented during the investigation. Conclusion At the studied dose, Bacillus coagulans LBSC was safe for oral consumption and effective in the management of the drug induced constipation associated with FGIDs symptoms.
Collapse
Affiliation(s)
- Ankit Rathi
- Department of Biological Sciences, School of Science, Sandip University, Nashik, Maharashtra, India
| | - Ravikiran Pagare
- Department of Biological Sciences, School of Science, Sandip University, Nashik, Maharashtra, India
| |
Collapse
|
60
|
Xu F, Chen Z, Xie L, Yang S, Li Y, Wu J, Wu Y, Li S, Zhang X, Ma Y, Liu Y, Zeng A, Xu Z. Lactobacillus plantarum ST-III culture supernatant protects against acute alcohol-induced liver and intestinal injury. Aging (Albany NY) 2023; 16:2077-2089. [PMID: 38126998 PMCID: PMC10911357 DOI: 10.18632/aging.205331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, their potential mechanisms are unclear. An objective of the current study was to examine the effects of extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment.
Collapse
Affiliation(s)
- Feng Xu
- Department of Gastroenterology, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Zengqiang Chen
- Healthcare Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Longteng Xie
- Department of Infection Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | - Shizhuo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Ruian People's Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325200, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Yanyan Ma
- Department of Gastroenterology, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Aibing Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zeping Xu
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| |
Collapse
|
61
|
Prajapati N, Patel J, Singh S, Yadav VK, Joshi C, Patani A, Prajapati D, Sahoo DK, Patel A. Postbiotic production: harnessing the power of microbial metabolites for health applications. Front Microbiol 2023; 14:1306192. [PMID: 38169918 PMCID: PMC10758465 DOI: 10.3389/fmicb.2023.1306192] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Postbiotics, which are bioactive substances derived from the metabolic processes of beneficial microbes, have received considerable attention in the field of microbiome science in recent years, presenting a promising path for exploration and innovation. This comprehensive analysis looks into the multidimensional terrain of postbiotic production, including an extensive examination of diverse postbiotic classes, revealing their sophisticated mechanisms of action and highlighting future applications that might significantly affect human health. The authors thoroughly investigate the various mechanisms that support postbiotic production, ranging from conventional fermentation procedures to cutting-edge enzyme conversion and synthetic biology approaches. The review, as an acknowledgment of the field's developing nature, not only highlights current achievements but also navigates through the problems inherent in postbiotic production. In order to successfully include postbiotics in therapeutic interventions and the production of functional food ingredients, emphasis is given to critical elements, including improving yields, bolstering stability, and assuring safety. The knowledge presented herein sheds light on the expanding field of postbiotics and their potential to revolutionize the development of novel therapeutics and functional food ingredients.
Collapse
Affiliation(s)
- Nidhi Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Jinil Patel
- Department of Microbiology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
- Department of Biotechnology, School of Energy and Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Chinmayi Joshi
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Anil Patani
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Dharmendra Prajapati
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
62
|
Datta S, Aggarwal D, Sehrawat N, Yadav M, Sharma V, Sharma A, Zghair AN, Dhama K, Sharma A, Kumar V, Sharma AK, Wang H. Hepatoprotective effects of natural drugs: Current trends, scope, relevance and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155100. [PMID: 37801892 DOI: 10.1016/j.phymed.2023.155100] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The liver is a well-known player in the metabolism and removal of drugs. Drug metabolizing enzymes in the liver detoxify drugs and xenobiotics, ultimately leading to the acquisition of homeostasis. However, liver toxicity and cell damage are not only related to the nature and dosage of a particular drug but are also influenced by other factors such as aging, immune status, environmental contaminants, microbial metabolites, gender, obesity, and expression of individual genes Furthermore, factors such as drugs, alcohol, and environmental contaminants could induce oxidative stress, thereby impairing the regenerative potential of the liver and causing several diseases. Persons suffering from other ailments and those with comorbidities are found to be more prone to drug-induced toxicities. Moreover, drug composition and drug-drug interactions could further aggravate the risk of drug-induced hepatotoxicity. A plethora of mechanisms are responsible for initiating liver cell damage and further aggravating liver cell injury, followed by impairment of homeostasis, ultimately leading to the generation of reactive oxygen species, immune-suppression, and oxidative stress. OBJECTIVE To summarize the potential of phytochemicals and natural bioactive compounds to treat hepatotoxicity and other liver diseases. STUDY DESIGN A deductive qualitative content analysis approach was employed to assess the overall outcomes of the research and review articles pertaining to hepatoprotection induced by natural drugs, along with analysis of the interventions. METHODS An extensive literature search of bibliographic databases, including Web of Science, PUBMED, SCOPUS, GOOGLE SCHOLAR, etc., was carried out to understand the role of hepatoprotective effects of natural drugs. RESULTS Bioactive natural products, including curcumin, resveratrol, etc., have been seen as neutralizing agents against the side effects induced by the drugs. Moreover, these natural products are dietary and are readily available; thus, could be supplemented along with drugs to reduce toxicity to cells. Probiotics, prebiotics, and synbiotics have shown promise of improving overall liver functioning, and these should be evaluated more extensively for their hepatoprotective potential. Therefore, selecting an appropriate natural product or a bioactive compound that is free of toxicity and offers a reliable solution for drug-induced liver toxicity is quintessential. CONCLUSIONS The current review highlights the role of natural bioactive products in neutralizing drug-induced hepatotoxicity. Efforts have been made to delineate the possible underlying mechanism associated with the neutralization process.
Collapse
Affiliation(s)
- Sonal Datta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Nirmala Sehrawat
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India
| | - Abdulrazzaq N Zghair
- College of Health and Medical Techniques, Middle Technical University, Baghdad, Iraq
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India
| | - Aanchal Sharma
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Vikas Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector-82-A, IT City Road, Mohali, Punjab 140306, India.
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
63
|
Kruszewska H, Zawistowska-Rojek A, Tyski S. Do NSAIDs and Other Pain Relief Drugs Can Inhibit the Growth of Lactobacillaceae? Pol J Microbiol 2023; 72:507-513. [PMID: 37816501 PMCID: PMC10725164 DOI: 10.33073/pjm-2023-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) commonly used in clinical practice may cause gastrointestinal injuries and influence the gut microbiota. This study investigated the effects of various NSAIDs and some analgesics on the viability of Lactobacillaceae strains (including probiotic strains) in vitro. It was found that diclofenac, ibuprofen, ketoprofen, dexketoprofen, flurbiprofen, and acetylsalicylic acid inhibited the growth of lactobacilli at a concentration of 0.05-3.2 mg/ml. These MICs of NSAIDs are well above therapeutic plasma concentrations achieved in humans, indicating that the tested drugs should not inhibit the growth of lactobacilli in the human digestive tract.
Collapse
Affiliation(s)
- Hanna Kruszewska
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
64
|
Batista KS, de Albuquerque JG, de Vasconcelos MHA, Bezerra MLR, da Silva Barbalho MB, Pinheiro RO, Aquino JDS. Probiotics and prebiotics: potential prevention and therapeutic target for nutritional management of COVID-19? Nutr Res Rev 2023; 36:181-198. [PMID: 34668465 PMCID: PMC8593414 DOI: 10.1017/s0954422421000317] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/21/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Scientists are working to identify prevention/treatment methods and clinical outcomes of coronavirus disease 2019 (COVID-19). Nutritional status and diet have a major impact on the COVID-19 disease process, mainly because of the bidirectional interaction between gut microbiota and lung, that is, the gut-lung axis. Individuals with inadequate nutritional status have a pre-existing imbalance in the gut microbiota and immunity as seen in obesity, diabetes, hypertension and other chronic diseases. Communication between the gut microbiota and lungs or other organs and systems may trigger worse clinical outcomes in viral respiratory infections. Thus, this review addresses new insights into the use of probiotics and prebiotics as a preventive nutritional strategy in managing respiratory infections such as COVID-19 and highlighting their anti-inflammatory effects against the main signs and symptoms associated with COVID-19. Literature search was performed through PubMed, Cochrane Library, Scopus and Web of Science databases; relevant clinical articles were included. Significant randomised clinical trials suggest that specific probiotics and/or prebiotics reduce diarrhoea, abdominal pain, vomiting, headache, cough, sore throat, fever, and viral infection complications such as acute respiratory distress syndrome. These beneficial effects are linked with modulation of the microbiota, products of microbial metabolism with antiviral activity, and immune-regulatory properties of specific probiotics and prebiotics through Treg cell production and function. There is a need to conduct clinical and pre-clinical trials to assess the combined effect of consuming these components and undergoing current therapies for COVID-19.
Collapse
Affiliation(s)
- Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Juliana Gondim de Albuquerque
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Pernambuco (UFPE), Cidade Universitária s/n, Recife, Brazil
- Post Graduate in Biotechnology, Division of Biological and Health Sciences, Universidad Autónoma Metropolitana (UAM), Ciudad de Mexico, Mexico
| | - Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Maria Luiza Rolim Bezerra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Mariany Bernardino da Silva Barbalho
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
65
|
Shintani T, Shintani H, Sato M, Ashida H. Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension. GeroScience 2023; 45:3475-3490. [PMID: 37389698 PMCID: PMC10643761 DOI: 10.1007/s11357-023-00851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023] Open
Abstract
Calorie restriction (CR) can prolong human lifespan, but enforcing long-term CR is difficult. Thus, a drug that reproduces the effects of CR without CR is required. More than 10 drugs have been listed as CR mimetics (CRM), and some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, whereas the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Intriguingly, recent reports have revealed the beneficial effects of CRMs on the body such as improving the host body condition via intestinal bacteria and their metabolites. This beneficial effect of gut microbiota may lead to lifespan extension. Thus, CRMs may have a dual effect on longevity. However, no reports have collectively discussed them as CRMs; hence, our knowledge about CRM and its physiological effects on the host remains fragmentary. This study is the first to present and collectively discuss the accumulative evidence of CRMs improving the gut environments for healthy lifespan extension, after enumerating the latest scientific findings related to the gut microbiome and CR. The conclusion drawn from this discussion is that CRM may partially extend the lifespan through its effect on the gut microbiota. CRMs increase beneficial bacteria abundance by decreasing harmful bacteria rather than increasing the diversity of the microbiome. Thus, the effect of CRMs on the gut could be different from that of conventional prebiotics and seemed similar to that of next-generation prebiotics.
Collapse
Affiliation(s)
- Tomoya Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-Cho, Nada, Kobe, Hyogo, 657-8501, Japan.
- The Japanese Clinical Nutrition Association, 2-16-28 Ohashi, Meguro, Tokyo, 153-0044, Japan.
| | - Hideya Shintani
- Department of Internal Medicine, Towa Hospital, 4-13-15 Tanabe, Higashisumiyoshi, Osaka, 546-0031, Japan
- Department of Internal Medicine, Osaka Saiseikai Izuo Hospital, 3-4-5 Kitamura, Taisho, Osaka, 551-0032, Japan
| | - Masashi Sato
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0701, Japan
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| |
Collapse
|
66
|
Ullah M, Rizwan M, Raza A, Xia Y, Han J, Ma Y, Chen H. Snapshot of the Probiotic Potential of Kluveromyces marxianus DMKU-1042 Using a Comparative Probiogenomics Approach. Foods 2023; 12:4329. [PMID: 38231794 DOI: 10.3390/foods12234329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Kluyveromyces marxianus is a rapidly growing thermotolerant yeast that secretes a variety of lytic enzymes, utilizes different sugars, and produces ethanol. The probiotic potential of this yeast has not been well explored. To evaluate its probiotic potential, the yeast strain Kluyveromyces marxianus DMKU3-1042 was analyzed using next-generation sequencing technology. Analysis of the genomes showed that the yeast isolates had a GC content of 40.10-40.59%. The isolates had many genes related to glycerol and mannose metabolism, as well as genes for acetoin and butanediol metabolism, acetolactate synthase subunits, and lactic acid fermentation. The strain isolates were also found to possess genes for the synthesis of different vitamins and Coenzyme A. Genes related to heat and hyperosmotic shock tolerance, as well as protection against reactive oxygen species were also found. Additionally, the isolates contained genes for the synthesis of lysine, threonine, methionine, and cysteine, as well as genes with anticoagulation and anti-inflammatory properties. Based on our analysis, we concluded that the strain DMKU3-1042 possesses probiotic properties that make it suitable for use in food and feed supplementation.
Collapse
Affiliation(s)
- Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Ali Raza
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yutong Xia
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yi Ma
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
67
|
Luo J, Wu YX, Ma LT, Zhang MY, Li FT, Cai YY, Zheng F, Yue H. Immunomodulatory effect of Liangyi paste on the gut microbiota of mice. J Pharm Biomed Anal 2023; 236:115706. [PMID: 37738734 DOI: 10.1016/j.jpba.2023.115706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
Liangyi paste (LY) is a traditional Chinese medicine made from a mixture of Ginseng and Rehmanniae radix praeparata. The present study aimed to investigate the effects of LY on gut microbiota diversity in immunocompromised mice. The chemical composition of LY extract was analyzed using UPLC-Q-Orbitrap-MS/MS, and the differences in the structure and diversity of the intestinal microbiota of LY extract were examined using 16S rRNA. In this study, identified and analyzed 66 compounds from the LY. These compounds included 11 iridoids, 6 oligosaccharides, 21 protopanaxtriols, 23 protopanaxadiols, 2 OLE, 1 Ionone and 2 phenylethanoside, using advanced UPLC-Q-Orbitrap-MS/MS technology. Through the use of 16S rRNA analysis, the study found that LY significantly increased the relative abundance of the Firmicutes phylum in immunocompromised mice, while decreasing the abundance of the Proteobacteria and Actinobacteria phyla. At the genus level, LY significantly increased the relative abundance of beneficial bacteria such as Clostridium_sensu_stricto_l, Lactobacillus, and Limosilactobacillus in immunocompromised mice. Conversely, the paste extract decreased the relative abundance of harmful bacteria such as Enterococcus and Escherichia Shigella in immunocompromised mice. These findings highlight the potential of LY to serve as a natural dietary supplement for enhancing gut microbiota diversity and promoting gut health. The identification of numerous compounds within the paste extract demonstrates its complexity and potential as a source for further research and development. Additionally, the LY extract exerted a significant influence on both nucleotide and amino acid metabolism. To sum up, the findings suggest that the LY extract has the potential to modulate the structure and diversity of gut microbiota, as well as promote metabolic balance in immunocompromised mice.
Collapse
Affiliation(s)
- Jing Luo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yong-Xi Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Li-Ting Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Mei-Yu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Fang-Tong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yong-Yu Cai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| |
Collapse
|
68
|
Alam MZ, Markantonis JE, Fallon JT. Host Immune Responses to Clostridioides difficile Infection and Potential Novel Therapeutic Approaches. Trop Med Infect Dis 2023; 8:506. [PMID: 38133438 PMCID: PMC10747268 DOI: 10.3390/tropicalmed8120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a leading nosocomial infection, posing a substantial public health challenge within the United States and globally. CDI typically occurs in hospitalized elderly patients who have been administered antibiotics; however, there has been a rise in the occurrence of CDI in the community among young adults who have not been exposed to antibiotics. C. difficile releases toxins, which damage large intestinal epithelium, leading to toxic megacolon, sepsis, and even death. Unfortunately, existing antibiotic therapies do not always prevent these consequences, with up to one-third of treated patients experiencing a recurrence of the infection. Host factors play a crucial role in the pathogenesis of CDI, and accumulating evidence shows that modulation of host immune responses may potentially alter the disease outcome. In this review, we provide an overview of our current knowledge regarding the role of innate and adaptive immune responses on CDI outcomes. Moreover, we present a summary of non-antibiotic microbiome-based therapies that can effectively influence host immune responses, along with immunization strategies that are intended to tackle both the treatment and prevention of CDI.
Collapse
Affiliation(s)
- Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | | | | |
Collapse
|
69
|
Hugon AM, Deblois CL, Simmons HA, Mejia A, Schotzo ML, Czuprynski CJ, Suen G, Golos TG. Listeria monocytogenes infection in pregnant macaques alters the maternal gut microbiome†. Biol Reprod 2023; 109:618-634. [PMID: 37665249 PMCID: PMC10651077 DOI: 10.1093/biolre/ioad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzo
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
70
|
Wang K, Huang S, Xing S, Wu S, Li H, Zhong X, Na X, Tan M, Su W. On-Chip Precisely Controlled Preparation of Uniform Core-Shell Salmon Byproduct Protein/Polysaccharide Microcapsules for Enhancing Probiotic Survivability in Fruit Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16702-16714. [PMID: 37885404 DOI: 10.1021/acs.jafc.3c05373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The increasing demand for probiotic-fortified fruit juices stems from the dietary requirements of individuals with dairy allergies, lactose intolerance, and vegetarian diets. However, a notable obstacle arises from the degradation of probiotics in fruit juices due to their low pH levels and harsh gastrointestinal conditions. In response, this study proposes an innovative approach utilizing a microfluidic chip to create core-shell microcapsules that contain Lactobacillus plantarum Lp90. This method, based on internal-external gelation, forms highly uniform microcapsules that fully enclose the core, which consists of oil-in-water Pickering emulsions stabilized by salmon byproduct protein and sodium alginate. These emulsions remain stable for up to 72 h at a 1% sodium alginate concentration. The shell layer incorporates kelp nanocellulose and sodium alginate, thus improving the thermal properties. Furthermore, compared to free probiotics, the multilayer structure of the core-shell microcapsules provides a robust barrier, resulting in significantly enhanced probiotic stability. These findings introduce a novel strategy for augmenting probiotic delivery in functional fruit juice beverages, promising solutions to the challenges encountered during their development.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shasha Huang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Shida Wu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xu Zhong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Xin Na
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian116034, Liaoning, China
- SKL of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian116034, Liaoning, China
| |
Collapse
|
71
|
Ralli T, Saifi Z, Tyagi N, Vidyadhari A, Aeri V, Kohli K. Deciphering the role of gut metabolites in non-alcoholic fatty liver disease. Crit Rev Microbiol 2023; 49:815-833. [PMID: 36394607 DOI: 10.1080/1040841x.2022.2142091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Perturbations in microbial abundance or diversity in the intestinal lumen leads to intestinal inflammation and disruption of intestinal membrane which eventually facilitates the translocation of microbial metabolites or whole microbes to the liver and other organs through portal vein. This process of translocation finally leads to multitude of health disorders. In this review, we are going to focus on the mechanisms by which gut metabolites like SCFAs, tryptophan (Trp) metabolites, bile acids (BAs), ethanol, and choline can either cause the development/progression of non-alcoholic fatty liver disease (NAFLD) or serves as a therapeutic treatment for the disease. Alterations in some metabolites like SCFAs, Trp metabolites, etc., can serve as biomarker molecules whereas presence of specific metabolites like ethanol definitely leads to disease progression. Thus, proper understanding of these mechanisms will subsequently help in designing of microbiome-based therapeutic approaches. Furthermore, we have also focussed on the role of dysbiosis on the mucosal immune system. In addition, we would also compile up the microbiome-based clinical trials which are currently undergoing for the treatment of NAFLD and non-alcoholic steatohepatitis (NASH). It has been observed that the use of microbiome-based approaches like prebiotics, probiotics, symbiotics, etc., can act as a beneficial treatment option but more research needs to be done to know how to manipulate the composition of gut microbes.
Collapse
Affiliation(s)
- Tanya Ralli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zoya Saifi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Neha Tyagi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Arya Vidyadhari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Vidhu Aeri
- Department of Pharmacognosy, School of Pharmaceutical Education and Research, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
- Research and Publications, Llyod Institute of Management and Technology, Greater Noida, India
| |
Collapse
|
72
|
Liu S, Zhao Y, Feng X, Xu H. SARS-CoV-2 infection threatening intestinal health: A review of potential mechanisms and treatment strategies. Crit Rev Food Sci Nutr 2023; 63:12578-12596. [PMID: 35894645 DOI: 10.1080/10408398.2022.2103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The outbreak of the COVID-19 pandemic has brought great problems to mankind, including economic recession and poor health. COVID-19 patients are frequently reported with gastrointestinal symptoms such as diarrhea and vomiting in clinical diagnosis. Maintaining intestinal health is the key guarantee to maintain the normal function of multiple organs, otherwise it will be a disaster. Therefore, the purpose of this review was deeply understanded the potential mechanism of SARS-CoV-2 infection threatening intestinal health and put forward reasonable treatment strategies. Combined with the existing researches, we summarized the mechanism of SARS-CoV-2 infection threatening intestinal health, including intestinal microbiome disruption, intestinal barrier dysfunction, intestinal oxidative stress and intestinal cytokine storm. These adverse intestinal events may affect other organs through the circulatory system or aggravate the course of the disease. Typically, intestinal disadvantage may promote the progression of SARS-CoV-2 through the gut-lung axis and increase the disease degree of COVID-19 patients. In view of the lack of specific drugs to inhibit SARS-CoV-2 replication, the current review described new strategies of probiotics, prebiotics, postbiotics and nutrients to combat SARS-CoV-2 infection and maintain intestinal health. To provide new insights for the prevention and treatment of gastrointestinal symptoms and pneumonia in patients with COVID-19.
Collapse
Affiliation(s)
- Shanji Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
73
|
Guo P, Wang S, Yue H, Zhang X, Ma G, Li X, Wei W. Advancement of Engineered Bacteria for Orally Delivered Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302702. [PMID: 37537714 DOI: 10.1002/smll.202302702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Indexed: 08/05/2023]
Abstract
The use of bacteria and their biotic components as therapeutics has shown great potential in the treatment of diseases. Orally delivered bacteria improve patient compliance compared with injection-administered bacteria and are considered the preferred mode. However, due to the harsh gastrointestinal environment, the viability and therapeutic efficacy of orally delivered bacteria are significantly reduced in vivo. In recent years, with the rapid development of synthetic biology and nanotechnology, bacteria and biotic components have been engineered to achieve directed genetic reprogramming for construction and precise spatiotemporal control in the gastrointestinal tract, which can improve viability and therapeutic efficiency. Herein, a state-of-the-art review on the current progress of engineered bacterial systems for oral delivery is provided. The different types of bacterial and biotic components for oral administration are first summarized. The engineering strategies of these bacteria and biotic components and their treatment of diseases are next systematically summarized. Finally, the current challenges and prospects of these bacterial therapeutics are highlighted that will contribute to the development of next-generation orally delivered bacteriotherapy.
Collapse
Affiliation(s)
- Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
74
|
Naseem Z, Mir SA, Wani SM, Rouf MA, Bashir I, Zehra A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition 2023; 115:112154. [PMID: 37536023 DOI: 10.1016/j.nut.2023.112154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Consumers' growing interest in using foods that improve health has motivated researchers and the food industry to develop new functional products, such as foods containing probiotics or live microbes. Probiotics have functional attributes that could satisfy most basic nutritional and therapeutic supplementation requirements. These microbes positively respond to clinical therapies against diseases and illnesses such as rotavirus-associated diarrhea, irritable bowel syndrome, and food allergies. Moreover, the role of probiotics in the prevention and treatment of obesity, diabetes, cancer, and diseases related to pathogenic microbes is an exciting and rapidly advancing research arena. Probiotic supplementation usually involves dairy products. However, because of the growing number of individuals affected by lactose intolerance and/or vegans, other food matrices like fruits, vegetables, cereals, and so on, have been studied as potential carriers for these microorganisms, presenting an alternative and better source in the process of assessing novel probiotic strains. The present review discusses the various factors affecting the survival of probiotics during storage in fruit juices, the possible effect of probiotics on sensory attributes and the overall acceptance of the products, and future technologies to improve the viability of probiotics.
Collapse
Affiliation(s)
- Zahida Naseem
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Sajad Ahmad Mir
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India.
| | - Molvi Abdul Rouf
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Iqra Bashir
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Aiman Zehra
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| |
Collapse
|
75
|
Xie Q, Cui D, Zhu Q, Qin X, Ren D, Xu X. Supplementing maternal diet with milk oligosaccharides and probiotics helps develop the immune system and intestinal flora of offsprings. Food Sci Nutr 2023; 11:6868-6877. [PMID: 37970377 PMCID: PMC10630837 DOI: 10.1002/fsn3.3579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Intestinal flora is very important for improving the development of the immune system in newborns. Maternal diet during pregnancy and lactation is one of the key factors affecting the growth and development of offspring. The objective of the present study was to examine whether supplementation of maternal diet with milk oligosaccharides and Bifidobacterium could influence the development of the intestinal flora and immune system of neonatal mice. In total, 30 pregnant Institute of Cancer Research (ICR) mice were randomly divided into six groups: a control group (basal diet) and five intervention groups (basal diet supplemented with different doses of 2'-fucosyllactose [2'-FL] and Bifidobacterium Bb12) during the pregnancy period. All female mice were monitored for physical health during gavage. After delivery, the number of mice in each litter, any deformity, and the development of the offspring were recorded. The spleen, blood, and fecal samples of six groups of 10-12 day-old offspring were collected. The results demonstrated that maternal milk oligosaccharides and probiotics conferred protective effects against lipopolysaccharide (LPS)-induced immunosuppression in mice offspring by significantly enhancing the immune organ indexes, splenocyte proliferation, immunoglobulin (immunoglobulin G, A, M) production as well as improving the macrophage phagocytosis (p < .05). The abundance of Lactobacilli and Bifidobacteria in the feces of offspring mice in the intervention groups was significantly higher than that of the offspring mice in the control group (p < .05). These findings suggest that the combination of 2'-FL and Bifidobacterium Bb12 displayed synergistic interactions between the two components that could promote the development of the immune system of the offsprings and improve their microbiota through maternal ingestion.
Collapse
Affiliation(s)
- Qinggang Xie
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| | | | - Qinchao Zhu
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xuewen Qin
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Daxi Ren
- Institute of Dairy Science, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xiaoxi Xu
- College of Food ScienceNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
76
|
Perdichizzi A, Meola M, Caccamo L, Caruso G, Gai F, Maricchiolo G. Live Yeast ( Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass ( Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters. Animals (Basel) 2023; 13:3383. [PMID: 37958138 PMCID: PMC10647322 DOI: 10.3390/ani13213383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The present study has been aimed at evaluating the effects of the dietary inclusion of the live yeasts, Saccharomyces cerevisiae var. boulardii (LSB) administered at increasing concentrations (0, 100, and 300 mg kg-1 of feed, here referred to as LSB 0, 100, 300) for 90 days, on the health conditions of European sea bass. The main zootechnical parameters, histological and morphological analyses, innate immunity response parameters (intestinal cytokine expression, lysozyme content, spontaneous hemolytic and hemagglutinating activities, antibacterial activities, and peroxidase activity) were measured as fish welfare parameters. LSB did not impair either growth parameters or the morphometric indexes. LSB down-regulated interleukin-1β transcription in the distal gut of fish treated with 5.4 × 105 CFU g-1 (LSB100) for 21 days. The interleukin-6 mRNA level decreased significantly in the proximal gut for both doses of yeast, after 21 days of feeding; the gene expression of interleukin-6 was significantly lower in the sea bass fed 10.81 × 105 CFU g-1 (LSB300) probiotic. The levels of TNF-α mRNA were not influenced by probiotic supplementation. Increases, although not significant, in the hematological and immunological parameters were also recorded. The data collected in the present study suggests that an LSB-supplemented diet acts on the gut immune system of sea bass by modulating the expression of the key inflammatory genes.
Collapse
Affiliation(s)
- Anna Perdichizzi
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| | - Martina Meola
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| | - Letteria Caccamo
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| | - Gabriella Caruso
- Institute of Polar Sciences (CNR), Spianata S. Raineri, 98122 Messina, Italy;
| | - Francesco Gai
- Institute of Sciences of Food Production (CNR), Largo Paolo Braccini, 10095 Grugliasco, Italy;
| | - Giulia Maricchiolo
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| |
Collapse
|
77
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
78
|
Kamala K, Sivaperumal P. Prevalence of enterotoxin genes of Staphylococcus sp. isolated from marine fish to reveal seafood contamination. MARINE POLLUTION BULLETIN 2023; 195:115464. [PMID: 37666137 DOI: 10.1016/j.marpolbul.2023.115464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Seafood is a valuable nutritional source, but it is highly susceptible to bacterial contamination, posing a severe health risk to humans. Enterotoxin-producing genes carrying Staphylococcus sp. are a significant concern in marine fish. This study aimed to investigate the prevalence of enterotoxin genes in Staphylococcus sp. isolated from 17 common fish species and emphasise the need for improving seafood quality and hygiene. The potential risks of contamination by enterotoxin-producing Staphylococcus sp. were assessed. The results indicated the risk associated with the consumption of contaminated seafood, especially from marketed and frozen samples. Gene expression analysis on a heat map revealed that samples stored in markets are heavily loaded with Staphylococcus enterotoxin genes due to the unhygienic water that was used from the local markets for fish processing. To enhance seafood quality, effective measures on handling and storage should be regularly monitored, and they must be implemented throughout the local seafood markets.
Collapse
Affiliation(s)
- Kannan Kamala
- Centre for Marine Actinobacterial Research (CMAR), Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Centre for Marine Research and Conservation, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
79
|
Castro-López C, Romero-Luna HE, García HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob Proteins 2023; 15:1250-1270. [PMID: 36001271 DOI: 10.1007/s12602-022-09981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
The survival of probiotic microorganisms during their exposure to harsh environments plays a critical role in the fulfillment of their functional properties. In particular, transit through the human gastrointestinal tract (GIT) is considered one of the most challenging habitats that probiotics must endure, because of the particularly stressful conditions (e.g., oxygen level, pH variations, nutrient limitations, high osmolarity, oxidation, peristalsis) prevailing in the different sections of the GIT, which in turn can affect the growth, viability, physiological status, and functionality of microbial cells. Consequently, probiotics have developed a series of strategies, called "mechanisms of stress response," to protect themselves from these adverse conditions. Such mechanisms may include but are not limited to the induction of new metabolic pathways, formation/production of particular metabolites, and changes of transcription rates. It should be highlighted that some of such mechanisms can be conserved across several different strains or can be unique for specific genera. Hence, this review attempts to review the state-of-the-art knowledge of mechanisms of stress response displayed by potential probiotic strains during their transit through the GIT. In addition, evidence whether stress responses can compromise the biosafety of such strains is also discussed.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Haydee E Romero-Luna
- Instituto Tecnológico Superior de Xalapa/Tecnológico Nacional de México, Reserva Territorial s/n Sección 5, Santa Bárbara, Xalapa-Enríquez, Veracruz, 91096, México
| | - Hugo S García
- Unidad de Investigación Y Desarrollo de Alimentos, Instituto Tecnológico de Veracruz/Tecnológico Nacional de México, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, 91897, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
80
|
Kim NY, Kim JM, Son JY, Ra CH. Synbiotic Fermentation of Undaria pinnatifida and Lactobacillus brevis to Produce Prebiotics and Probiotics. Appl Biochem Biotechnol 2023; 195:6321-6333. [PMID: 36862333 DOI: 10.1007/s12010-023-04415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
It has been optimized thermal acid hydrolytic pretreatment and enzymatic saccharification (Es) in flask culture of Undaria pinnatifida seaweed, which is a prebiotic. The optimal hydrolytic conditions were a slurry content of 8% (w/v), 180 mM H2SO4, and 121°C for 30 min. Es using Celluclast 1.5 L at 8 U/mL produced 2.7 g/L glucose with an efficiency of 96.2%. The concentration of fucose (a prebiotic) was 0.48 g/L after pretreatment and saccharification. The fucose concentration decreased slightly during fermentation. Monosodium glutamate (MSG) (3%, w/v) and pyridoxal 5'-phosphate (PLP) (30 μM) were added to enhance gamma-aminobutyric acid (GABA) production. To further improve the consumption of mixed monosaccharides, adaptation of Lactobacillus brevis KCL010 to high concentrations of mannitol improved the synbiotic fermentation efficiency of U. pinnatifida hydrolysates.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Ji Min Kim
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Jong-Youn Son
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea.
| |
Collapse
|
81
|
Chen H, Wang C, Bai J, Song J, Bu L, Liang M, Suo H. Targeting microbiota to alleviate the harm caused by sleep deprivation. Microbiol Res 2023; 275:127467. [PMID: 37549451 DOI: 10.1016/j.micres.2023.127467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Sleep deprivation has become a common health hazard, affecting 37-58% of the population and promoting the occurrence and development of many diseases. To date, effective treatment strategies are still elusive. Accumulating evidence indicates that modulating the intestinal microbiota harbors significant potential for alleviating the deleterious impacts of sleep deprivation. This paper first reviews the effects of sleep deprivation on gastrointestinal diseases, metabolic diseases, and neuropsychiatric diseases, discussing its specific mechanisms of influence. We then focus on summarizing existing interventions, including probiotics, melatonin, prebiotics, diet, and fecal microbiota transplantation (FMT). Finally, we have discussed the advantages and limitations of each strategy. Compared with other strategies, probiotics showed a high potential in alleviating sleep deprivation-related hazards due to their reduced risk and high security. We suggest that future research should focus on the specific mechanisms by which probiotics mitigate the harms of sleep deprivation, such insights may unveil novel pathways for treating diseases exacerbated by insufficient sleep.
Collapse
Affiliation(s)
- Hongyu Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Junying Bai
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Linli Bu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
82
|
Aziz T, Xingyu H, Sarwar A, Naveed M, Shabbir MA, Khan AA, Ulhaq T, Shahzad M, Zhennai Y, Shami A, Sameeh MY, Alshareef SA, Tashkandi MA, Jalal RS. Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir. Front Microbiol 2023; 14:1265188. [PMID: 37817753 PMCID: PMC10560984 DOI: 10.3389/fmicb.2023.1265188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
Sufficient intake of probiotics has been shown to help in the digestion, protect the body against pathogenic microorganisms and boost the immune system. Recently, due to high prevalence of milk allergies and lactose intolerance in population, the non-dairy based probiotic alternative are becoming increasing popular. In this context, the oat milk and soya milk-based fermented products can be an ideal alternative for the development of Lactic acid bacteria bacteria based probiotics. These bacteria can not only improve the product's flavor and bioavailability but also increases its antibacterial and antioxidant capabilities due to fermentation process. The purpose of the resent work was to assess the antioxidant and probiotic properties of oat and soy milk that had been fermented with three different strains of Lactiplantibacillus plantarum (L. plantarum) including L. plantarum 12-3, L. plantarum K25, and L. plantarum YW11 isolated from Tibetan Kefir. Different validated assays were used to evaluate the probiotic properties, adhesion and survival in the digestive system (stomach, acid and bile salts resistance), antioxidant and antimicrobial activities and safety (ABTS and DPPH scavenging assays) of these strains. Results of the study showed that soya milk and oat milk fermented with L. plantarum strains possess promising probiotic, antibacterial and antioxidant properties. These results can be helpful to produce dairy-free probiotic replacements, which are beneficial for those who are unable to consume dairy products due to dietary or allergic restrictions.
Collapse
Affiliation(s)
- Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Hu Xingyu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Aqib Shabbir
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Taqweem Ulhaq
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Yang Zhennai
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Rewaa S. Jalal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
83
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
84
|
Hussain A, Akram S, Ahmad D, Rehman M, Ahmed A, Ali SA. Molecular Assessment and Validation of the Selected Enterococcal Strains as Probiotics. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10163-6. [PMID: 37731160 DOI: 10.1007/s12602-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Probiotics are live microorganisms which confer health benefits to the host. Lactic acid bacteria (LAB) are used as probiotics since decades. Enterococci being the member of LAB have proven probiotic strains; therefore, this study was aimed at finding out the potential probiotic candidates from the pool of locally isolated strains. For initial screening, one hundred and twenty-two strains were selected and subjected to different confirmatory and phenotypic tests to choose the best strains that have potential probiotic criteria, i.e., no potential virulence traits, antibiotic resistance, and having tolerance properties. Keeping this criterion, only eleven strains (n = 11) were selected for further assessment. All virulence traits such as production of hemolysin, gelatinase, biofilm, and DNase were performed and not found in the tested strains. The molecular assessment indicates the presence of few virulence-associated genes in Enterococcus faecalis strains with variable frequency. The phenotypic and genotypic assessments of antibiotic resistance profile indicate that the selected strain was susceptible to ten commonly used antibiotics, and there were no transferrable antibiotic resistance genes. The presence of CRISPR-Cas genes also confirmed the absence of antibiotic resistance genes. Various enterocin-producing genes like EntP, EntB, EntA, and EntQ were also identified in the selected strains which make them promising probiotic lead strains. Different tolerance assays like acid, NaCl, and gastric juice tolerance that mimic host conditions was also evaluated by providing artificial conditions. Cellular adhesion and aggregation properties like auto- and co-aggregation were also checked and their results reflect all in the favor of lead probiotic strains.
Collapse
Affiliation(s)
- Abrar Hussain
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saira Akram
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Diyar Ahmad
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Marium Rehman
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
85
|
Haldar S, Jadhav SR, Gulati V, Beale DJ, Balkrishna A, Varshney A, Palombo EA, Karpe AV, Shah RM. Unravelling the gut-lung axis: insights into microbiome interactions and Traditional Indian Medicine's perspective on optimal health. FEMS Microbiol Ecol 2023; 99:fiad103. [PMID: 37656879 PMCID: PMC10508358 DOI: 10.1093/femsec/fiad103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
The microbiome of the human gut is a complex assemblage of microorganisms that are in a symbiotic relationship with one another and profoundly influence every aspect of human health. According to converging evidence, the human gut is a nodal point for the physiological performance matrixes of the vital organs on several axes (i.e. gut-brain, gut-lung, etc). As a result of COVID-19, the importance of gut-lung dysbiosis (balance or imbalance) has been realised. In view of this, it is of utmost importance to develop a comprehensive understanding of the microbiome, as well as its dysbiosis. In this review, we provide an overview of the gut-lung axial microbiome and its importance in maintaining optimal health. Human populations have successfully adapted to geophysical conditions through traditional dietary practices from around the world. In this context, a section has been devoted to the traditional Indian system of medicine and its theories and practices regarding the maintenance of optimally customized gut health.
Collapse
Affiliation(s)
- Swati Haldar
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
| | - Snehal R Jadhav
- Consumer-Analytical-Safety-Sensory (CASS) Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Vandana Gulati
- Biomedical Science, School of Science and Technology Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar 249405, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Avinash V Karpe
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT 2601, Australia
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| |
Collapse
|
86
|
Ford T, McAdams ZL, Townsend KS, Martin LM, Johnson PJ, Ericsson AC. Effect of Sugar Beet Pulp on the Composition and Predicted Function of Equine Fecal Microbiota. BIOLOGY 2023; 12:1254. [PMID: 37759653 PMCID: PMC10525916 DOI: 10.3390/biology12091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The purpose of this study is to determine the effect of the partial replacement of dietary hay with sugar beet pulp (SBP) on the composition and predicted function of the fecal microbiota of healthy adult horses. Fecal samples were collected daily for 12 days from six adult horses after removal from pasture, including a five-day acclimation period, and a seven-day period following the introduction of SBP into their diet, and compared to six untreated horses over a comparable period. Fecal DNA was subjected to 16S rRNA amplicon sequencing and a longitudinal analysis was performed comparing the composition and predicted function. While no significant treatment-associated changes in the richness, alpha diversity, or beta diversity were detected, random forest regression identified several high-importance taxonomic features associated with change over time in horses receiving SBP. A similar analysis of the predicted functional pathways identified several high-importance pathways, including those involved in the production of L-methionine and butyrate. These data suggest that feeding SBP to healthy adult horses acutely increases the relative abundance of several Gram-positive taxa, including Cellulosilyticum sp., Moryella sp., and Weissella sp., and mitigates the predicted functional changes associated with removal from pasture. Large-scale studies are needed to assess the protective effect of SBP on the incidence of the gastrointestinal conditions of horses.
Collapse
Affiliation(s)
- Tamara Ford
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Zachary L. McAdams
- Molecular Pathogenesis and Therapeutics (MPT) Program, University of Missouri (MU), Columbia, MO 65201, USA
| | - Kile S. Townsend
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Lynn M. Martin
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Philip J. Johnson
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Aaron C. Ericsson
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Molecular Pathogenesis and Therapeutics (MPT) Program, University of Missouri (MU), Columbia, MO 65201, USA
- MU Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65201, USA
| |
Collapse
|
87
|
Ruiz-Ramírez Y, Valadez-Blanco R, Calderón-García C, Chikindas ML, Ponce-Alquicira E. Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications. Front Microbiol 2023; 14:1241581. [PMID: 37779722 PMCID: PMC10536145 DOI: 10.3389/fmicb.2023.1241581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good β-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.
Collapse
Affiliation(s)
- Yesica Ruiz-Ramírez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | | | | | - Michael Leonidas Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| |
Collapse
|
88
|
Pacyga-Prus K, Jakubczyk D, Sandström C, Šrůtková D, Pyclik MJ, Leszczyńska K, Ciekot J, Razim A, Schwarzer M, Górska S. Polysaccharide BAP1 of Bifidobacterium adolescentis CCDM 368 is a biologically active molecule with immunomodulatory properties. Carbohydr Polym 2023; 315:120980. [PMID: 37230638 DOI: 10.1016/j.carbpol.2023.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Bifidobacteria are among the most common bacteria used for their probiotic properties and their impact on the maturation and function of the immune system has been well-described. Recently, scientific interest is shifting from live bacteria to defined bacteria-derived biologically active molecules. Their greatest advantage over probiotics is the defined structure and the effect independent of the viability status of the bacteria. Here, we aim to characterize Bifidobacterium adolescentis CCDM 368 surface antigens that include polysaccharides (PSs), lipoteichoic acids (LTAs), and peptidoglycan (PG). Among them, Bad368.1 PS was observed to modulate OVA-induced cytokine production in cells isolated from OVA-sensitized mice by increasing the production of Th1-related IFN-γ and inhibition of Th2-related IL-5 and IL-13 cytokines (in vitro). Moreover, Bad368.1 PS (BAP1) is efficiently engulfed and transferred between epithelial and dendritic cells. Therefore, we propose that the Bad368.1 PS (BAP1) can be used for the modulation of allergic diseases in humans. Structural studies revealed that Bad368.1 PS has an average molecular mass of approximately 9,99 × 106 Da and it consists of glucose, galactose, and rhamnose residues that are creating the following repeating unit: →2)-β-D-Glcp-1→3-β-L-Rhap-1→4-β-D-Glcp-1→3-α-L-Rhap-1→4-β-D-Glcp-1→3-α-D-Galp-(1→n.
Collapse
Affiliation(s)
- Katarzyna Pacyga-Prus
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Dominika Jakubczyk
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Corine Sandström
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Dagmar Šrůtková
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| | - Marcelina Joanna Pyclik
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Katarzyna Leszczyńska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Jarosław Ciekot
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Agnieszka Razim
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| | - Sabina Górska
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland.
| |
Collapse
|
89
|
La Rosa GRM, Pedullà E. Effectiveness of probiotics in apical periodontitis progression: A scoping review and implications for research. AUST ENDOD J 2023; 49 Suppl 1:528-536. [PMID: 36524834 DOI: 10.1111/aej.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
To synthesise the current knowledge on the effects of probiotics in apical periodontitis progression by a scoping review of animal and human studies. Reporting was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews. The literature search and screening was performed on PubMed and Scopus databases by two independent reviewers selecting human and animal studies that evaluated the effectiveness of probiotics in reducing the severity of apical periodontitis. Two animal studies with 3 publications met the eligibility criteria for qualitative synthesis. The most common probiotics were Lactobacillus rhamnosus and Lactobacillus acidophilus orally administered for gavage in Wistar rats with induced apical periodontitis. Overall, probiotics significantly reduced inflammation and bone resorption with an improvement in the apical periodontitis progression. Although results in animal studies are promising, the use of probiotics in apical periodontitis progression requires caution due to the insufficient available evidence.
Collapse
Affiliation(s)
- Giusy Rita Maria La Rosa
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Eugenio Pedullà
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
90
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
91
|
Zhao J, Liao Y, Wei C, Ma Y, Wang F, Chen Y, Zhao B, Ji H, Wang D, Tang D. Potential Ability of Probiotics in the Prevention and Treatment of Colorectal Cancer. Clin Med Insights Oncol 2023; 17:11795549231188225. [PMID: 37601319 PMCID: PMC10437046 DOI: 10.1177/11795549231188225] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, and its incidence rate and mortality are on the rise in many countries. In recent years, with the improvement of economic conditions, people's living habits have changed, including lack of physical activity, poor diet patterns and circadian rhythm disorder. These risk factors can change the colon environment and the composition of intestinal microbiota. This state is called intestinal imbalance, which increases the risk of cancer. Probiotics, a class of microorganisms that help maintain gut microbial homeostasis and alleviate dysbiosis, may help prevent inflammation and colorectal cancer. These probiotics inhibit or ameliorate the effects of dysbiosis through the production of short-chain fatty acids (SCFAs), modulation of immunity, maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and other mechanisms. This review aims to explain the interaction between probiotics, the gut microenvironment and the gut microbiota, and summarize reports on the possibility of probiotics in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiahao Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chen Wei
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yichao Ma
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Fei Wang
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Bin Zhao
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Hao Ji
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
92
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
93
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
94
|
Huang CL, Chu HF, Wu CC, Deng FS, Wen PJ, Chien SP, Chao CH, Chen YT, Lu MK, Tsai YC. Exopolysaccharide is the potential effector of Lactobacillus fermentum PS150, a hypnotic psychobiotic strain. Front Microbiol 2023; 14:1209067. [PMID: 37469436 PMCID: PMC10352126 DOI: 10.3389/fmicb.2023.1209067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Psychobiotics are a class of probiotics that confer beneficial effects on the mental health of the host. We have previously reported hypnotic effects of a psychobiotic strain, Lactobacillus fermentum PS150 (PS150), which significantly shortens sleep latency in experimental mice, and effectively ameliorate sleep disturbances caused by either caffeine consumption or a novel environment. In the present study, we discovered a L. fermentum strain, GR1009, isolated from the same source of PS150, and found that GR1009 is phenotypically distinct but genetically similar to PS150. Compared with PS150, GR1009 have no significant hypnotic effects in the pentobarbital-induced sleep test in mice. In addition, we found that heat-killed PS150 exhibited hypnotic effects and altered the gut microbiota in a manner similar to live bacteria, suggesting that a heat-stable effector, such as exopolysaccharide (EPS), could be responsible for these effects. Our comparative genomics analysis also revealed distinct genetic characteristics in EPS biosynthesis between GR1009 and PS150. Furthermore, scanning electron microscopy imaging showed a sheet-like EPS structure in PS150, while GR1009 displayed no apparent EPS structure. Using the phenol-sulfate assay, we found that the sugar content value of the crude extract containing EPS (C-EPS) from PS150 was approximately five times higher than that of GR1009, indicating that GR1009 has a lower EPS production activity than PS150. Through the pentobarbital-induced sleep test, we confirmed the hypnotic effects of the C-EPS isolated from PS150, as evidenced by a significant reduction in sleep latency and recovery time following oral administration in mice. In summary, we utilized a comparative approach to delineate differences between PS150 and GR1009 and proposed that EPS may serve as a key factor that mediates the observed hypnotic effect.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Bened Biomedical Co., Ltd., Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | | | | | - Shao-Ping Chien
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Tsong Chen
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
95
|
Olmo R, Wetzels SU, Berg G, Cocolin L, Hartmann M, Hugas M, Kostic T, Rattei T, Ruthsatz M, Rybakova D, Sessitsch A, Shortt C, Timmis K, Selberherr E, Wagner M. Food systems microbiome-related educational needs. Microb Biotechnol 2023; 16:1412-1422. [PMID: 37338855 PMCID: PMC10281364 DOI: 10.1111/1751-7915.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 06/21/2023] Open
Abstract
Within the European-funded Coordination and Support Action MicrobiomeSupport (https://www.microbiomesupport.eu/), the Workshop 'Education in Food Systems Microbiome Related Sciences: Needs for Universities, Industry and Public Health Systems' brought together over 70 researchers, public health and industry partners from all over the world to work on elaborating microbiome-related educational needs in food systems. This publication provides a summary of discussions held during and after the workshop and the resulting recommendations.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Gabriele Berg
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
- Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Luca Cocolin
- Department of Agricultural, Forest and Food SciencesUniversity of TurinTurinItaly
| | - Moritz Hartmann
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Marta Hugas
- European Food Safety Authority (EFSA), EUParmaItaly
| | - Tanja Kostic
- Bioresouces Unit, Center for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | | | - Daria Rybakova
- Institute of Environmental BiotechnologyGraz University of TechnologyGrazAustria
| | - Angela Sessitsch
- Bioresouces Unit, Center for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | | | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Evelyne Selberherr
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - Martin Wagner
- FFoQSI GmbH ‐ Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
96
|
Sobstyl A, Chałupnik A, Mertowska P, Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:10920. [PMID: 37446108 DOI: 10.3390/ijms241310920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Microorganisms inhabiting the human body play an extremely key role in its proper functioning, as well as in the development of the immune system, which, by maintaining the immune balance, allows you to enjoy health. Dysbiosis of the intestinal microbiota, or in the oral cavity or reproductive tract, understood as a change in the number and diversity of all microorganisms inhabiting them, may correlate with the development of many diseases, including endometriosis, as researchers have emphasized. Endometriosis is an inflammatory, estrogen-dependent gynecological condition defined by the growth of endometrial cells outside the uterine cavity. Deregulation of immune homeostasis resulting from microbiological disorders may generate chronic inflammation, thus creating an environment conducive to the increased adhesion and angiogenesis involved in the development of endometriosis. In addition, research in recent years has implicated bacterial contamination and immune activation, reduced gastrointestinal function by cytokines, altered estrogen metabolism and signaling, and abnormal progenitor and stem cell homeostasis, in the pathogenesis of endometriosis. The aim of this review was to present the influence of intestinal, oral and genital microbiota dysbiosis in the metabolic regulation and immunopathogenesis of endometriosis.
Collapse
Affiliation(s)
- Anna Sobstyl
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
97
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
98
|
Memon H, Abdulla F, Reljic T, Alnuaimi S, Serdarevic F, Asimi ZV, Kumar A, Semiz S. Effects of combined treatment of probiotics and metformin in management of Type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2023:110806. [PMID: 37369280 DOI: 10.1016/j.diabres.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Lifestyle changes and dietary intervention, including the use of probiotics, can modulate dysbiosis of gut microbiome and contribute to the management of type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis aim to assess the efficacy of metformin plus probiotics versus metformin alone on outcomes in patients with T2DM. METHODS We searched MEDLINE and EMBASE from inception to February 2023 to identify all randomized controlled trials (RCTs), which compared the use of metformin plus probiotics versus metformin alone in adult patients with T2DM. Data were summarized as mean differences (MD) with 95% confidence interval (CI) and pooled under the random effects model. Findings Fourteen RCTs (17 comparisons, 1009 patients) were included in this systematic review. Pooled results show a significant decrease in fasting glucose (FG) (MD=-0.64, 95% CI=-1.06, -0.22) and HbA1c (MD=-0.29, 95% CI=-0.47, -0.10) levels in patients with T2DM treated with metformin plus probiotics versus metformin alone. The addition of probiotics to metformin resulted in lower odds of gastrointestinal adverse events (Odds ratio=0.18, 95% CI=0.09, 0.3.8; I2=0%). CONCLUSIONS The addition of probiotics to metformin therapy is associated with improvement in T2DM outcomes. However, high-quality and adequately reported RCTs are needed in the future to confirm our findings.
Collapse
Affiliation(s)
- Hamda Memon
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fatima Abdulla
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Tea Reljic
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Saif Alnuaimi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fadila Serdarevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina; Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zelija Velija Asimi
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Ambuj Kumar
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
99
|
Alsubaiei SRM, Alfawaz HA, Bhat RS, El-Ansary A. Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups. Metabolites 2023; 13:738. [PMID: 37367896 DOI: 10.3390/metabo13060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.
Collapse
Affiliation(s)
- Sana Razhan M Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
100
|
Yapa D, Rasika D, Weerathilake W, Siriwardhana J, Priyashantha H. Effects of fermenting with Lacticaseibacillus rhamnosus GG on quality attributes and storage stability of buffalo milk yogurt incorporated with bael (Aegle marmelos) fruit pulp. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|