51
|
Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening. Structure 2015; 23:2377-2386. [PMID: 26526849 DOI: 10.1016/j.str.2015.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Recent benchmark studies have demonstrated the difficulties in obtaining accurate predictions of ligand binding conformations to comparative models of G-protein-coupled receptors. We have developed a data-driven optimization protocol, which integrates mutational data and structural information from multiple X-ray receptor structures in combination with a fully flexible ligand docking protocol to determine the binding conformation of AR231453, a small-molecule agonist, in the GPR119 receptor. Resulting models converge to one conformation that explains the majority of data from mutation studies and is consistent with the structure-activity relationship for a large number of AR231453 analogs. Another key property of the refined models is their success in separating active ligands from decoys in a large-scale virtual screening. These results demonstrate that mutation-guided receptor modeling can provide predictions of practical value for describing receptor-ligand interactions and drug discovery.
Collapse
|
52
|
Bhattacharya S, Vaidehi N. Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophys J 2015; 107:422-434. [PMID: 25028884 DOI: 10.1016/j.bpj.2014.06.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California.
| |
Collapse
|
53
|
Conformational thermostabilisation of corticotropin releasing factor receptor 1. Sci Rep 2015; 5:11954. [PMID: 26159865 PMCID: PMC4498186 DOI: 10.1038/srep11954] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/11/2015] [Indexed: 01/16/2023] Open
Abstract
Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation.
Collapse
|
54
|
Heydenreich FM, Vuckovic Z, Matkovic M, Veprintsev DB. Stabilization of G protein-coupled receptors by point mutations. Front Pharmacol 2015; 6:82. [PMID: 25941489 PMCID: PMC4403299 DOI: 10.3389/fphar.2015.00082] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/31/2015] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are flexible integral membrane proteins involved in transmembrane signaling. Their involvement in many physiological processes makes them interesting targets for drug development. Determination of the structure of these receptors will help to design more specific drugs, however, their structural characterization has so far been hampered by the low expression and their inherent instability in detergents which made protein engineering indispensable for structural and biophysical characterization. Several approaches to stabilize the receptors in a particular conformation have led to breakthroughs in GPCR structure determination. These include truncations of the flexible regions, stabilization by antibodies and nanobodies, fusion partners, high affinity and covalently bound ligands as well as conformational stabilization by mutagenesis. In this review we focus on stabilization of GPCRs by insertion of point mutations, which lead to increased conformational and thermal stability as well as improved expression levels. We summarize existing mutagenesis strategies with different coverage of GPCR sequence space and depth of information, design and transferability of mutations and the molecular basis for stabilization. We also discuss whether mutations alter the structure and pharmacological properties of GPCRs.
Collapse
Affiliation(s)
- Franziska M Heydenreich
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Ziva Vuckovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Milos Matkovic
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut Villigen, Switzerland ; Department of Biology, ETH Zürich Zürich, Switzerland
| |
Collapse
|
55
|
Thomas JA, Tate CG. Quality control in eukaryotic membrane protein overproduction. J Mol Biol 2015; 426:4139-4154. [PMID: 25454020 PMCID: PMC4271737 DOI: 10.1016/j.jmb.2014.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/12/2014] [Accepted: 10/13/2014] [Indexed: 10/25/2022]
Abstract
The overexpression of authentically folded eukaryotic membrane proteins in milligramme quantities is a fundamental prerequisite for structural studies. One of the most commonly used expression systems for the production of mammalian membrane proteins is the baculovirus expression system in insect cells. However, a detailed analysis by radioligand binding and comparative Western blotting of G protein-coupled receptors and a transporter produced in insect cells showed that a considerable proportion of the expressed protein was misfolded and incapable of ligand binding. In contrast, production of the same membrane proteins in stable inducible mammalian cell lines suggested that the majority was folded correctly. It was noted that detergent solubilisation of the misfolded membrane proteins using either digitonin or dodecylmaltoside was considerablyless efficient than using sodium dodecyl sulfate or foscholine-12, whilst these detergents were equally efficient at solubilising correctly folded membrane proteins. This provides a simple and rapid test to suggest whether heterologously expressed mammalian membrane proteins are indeed correctly folded, without requiring radioligand binding assays. This will greatly facilitate the high-throughput production of fully functional membrane proteins for structural studies.
Collapse
Affiliation(s)
- Jennifer A Thomas
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
56
|
Milić D, Veprintsev DB. Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015; 6:66. [PMID: 25873898 PMCID: PMC4379943 DOI: 10.3389/fphar.2015.00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 01/26/2023] Open
Abstract
Structural studies of G protein-coupled receptors (GPCRs) gave insights into molecular mechanisms of their action and contributed significantly to molecular pharmacology. This is primarily due to technical advances in protein engineering, production and crystallization of these important receptor targets. On the other hand, NMR spectroscopy of GPCRs, which can provide information about their dynamics, still remains challenging due to difficulties in preparation of isotopically labeled receptors and their low long-term stabilities. In this review, we discuss methods used for expression and purification of GPCRs for crystallographic and NMR studies. We also summarize protein engineering methods that played a crucial role in obtaining GPCR crystal structures.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen Switzerland ; Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich Switzerland
| |
Collapse
|
57
|
Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1545-51. [PMID: 25838126 PMCID: PMC4557063 DOI: 10.1016/j.bbamem.2015.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.
Collapse
|
58
|
Hirozane Y, Motoyaji T, Maru T, Okada K, Tarui N. Generating thermostabilized agonist-bound GPR40/FFAR1 using virus-like particles and a label-free binding assay. Mol Membr Biol 2015; 31:168-75. [PMID: 25068810 DOI: 10.3109/09687688.2014.923588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Elucidating the detailed mechanism of activation of membrane protein receptors and their ligand binding is essential for structure-based drug design. Membrane protein crystal structure analysis successfully aids in understanding these fundamental molecular interactions. However, protein crystal structure analysis of the G-protein-coupled receptor (GPCR) remains challenging, even for the class of GPCRs which have been included in the majority of structure analysis reports among membrane proteins, due to the substantial instability of these receptors when extracted from lipid bilayer membranes. It is known that increased thermostability tends to decrease conformational flexibility, which contributes to the generation of diffraction quality crystals. However, this is still not straightforward, and significant effort is required to identify thermostabilized mutants that are optimal for crystallography. To address this issue, a versatile screening platform based on a label-free ligand binding assay combined with transient overexpression in virus-like particles was developed. This platform was used to generate thermostabilized GPR40 [also known as free fatty acid receptor 1 (FFAR1)] for fasiglifam (TAK-875). This demonstrated that the thermostabilized mutant GPR40 (L42A/F88A/G103A/Y202F) was successfully used for crystal structure analysis.
Collapse
Affiliation(s)
- Yoshihiko Hirozane
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd , Fujisawa, Kanagawa , Japan
| | | | | | | | | |
Collapse
|
59
|
Lebon G, Edwards PC, Leslie AGW, Tate CG. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor. Mol Pharmacol 2015; 87:907-15. [PMID: 25762024 DOI: 10.1124/mol.114.097360] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/11/2015] [Indexed: 11/22/2022] Open
Abstract
The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.
Collapse
Affiliation(s)
- Guillaume Lebon
- Institut de Génomique Fonctionelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Sante et de la Recherche Medicale U1191, Université de Montpellier, Montpellier, France (G.L.); and Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (P.C.E., A.G.W.L., C.G.T.)
| | - Patricia C Edwards
- Institut de Génomique Fonctionelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Sante et de la Recherche Medicale U1191, Université de Montpellier, Montpellier, France (G.L.); and Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (P.C.E., A.G.W.L., C.G.T.)
| | - Andrew G W Leslie
- Institut de Génomique Fonctionelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Sante et de la Recherche Medicale U1191, Université de Montpellier, Montpellier, France (G.L.); and Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (P.C.E., A.G.W.L., C.G.T.)
| | - Christopher G Tate
- Institut de Génomique Fonctionelle, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5203, Institut National de la Sante et de la Recherche Medicale U1191, Université de Montpellier, Montpellier, France (G.L.); and Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom (P.C.E., A.G.W.L., C.G.T.)
| |
Collapse
|
60
|
Zuber J, Danial SA, Connelly SM, Naider F, Dumont ME. Identification of destabilizing and stabilizing mutations of Ste2p, a G protein-coupled receptor in Saccharomyces cerevisiae. Biochemistry 2015; 54:1787-806. [PMID: 25647246 DOI: 10.1021/bi501314t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The isolation of mutations affecting the stabilities of transmembrane proteins is useful for enhancing the suitability of proteins for structural characterization and identification of determinants of membrane protein stability. We have pursued a strategy for the identification of stabilized variants of the yeast α-factor receptor Ste2p. Because it was not possible to screen directly for mutations providing thermal stabilization, we first isolated a battery of destabilized temperature-sensitive variants, based on loss of signaling function and decreased levels of binding of the fluorescent ligand, and then screened for intragenic second-site suppressors of these phenotypes. The initial screens recovered singly and multiply substituted mutations conferring temperature sensitivity throughout the predicted transmembrane helices of the receptor. All of the singly substituted variants exhibit decreases in cell-surface expression. We then screened randomly mutagenized libraries of clones expressing temperature-sensitive variants for second-site suppressors that restore elevated levels of binding sites for fluorescent ligand. To determine whether any of these were global suppressors, and thus likely stabilizing mutations, they were combined with different temperature-sensitive mutations. Eight of the suppressors exhibited the ability to reverse the defect in ligand binding of multiple temperature-sensitive mutations. Combining certain suppressors into a single allele resulted in levels of suppression greater than that seen with either suppressor alone. Solubilized receptors containing suppressor mutations in the absence of temperature-sensitive mutations exhibit a reduced tendency to aggregate during immobilization on an affinity matrix. Several of the suppressors also exhibit allele-specific behavior indicative of specific intramolecular interactions in the receptor.
Collapse
Affiliation(s)
- Jeffrey Zuber
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry , P.O. Box 712, Rochester, New York 14642, United States
| | | | | | | | | |
Collapse
|
61
|
Tate CG, Lebon G. Purification and Crystallization of a Thermostabilized Agonist-Bound Conformation of the Human Adenosine A(2A) Receptor. Methods Mol Biol 2015; 1335:17-27. [PMID: 26260591 DOI: 10.1007/978-1-4939-2914-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Crystallization of G protein-coupled receptors (GPCRs) is successful due to the development of generic protein engineering strategies, which has resulted in the structure determination of more than 25 GPCRs, including representatives from class A, B, C, and F. Most of the X-ray structures available correspond to an inactive conformation of the receptor bound to an antagonist. Only a few high-resolution structures of agonist-bound conformations of GPCRs have been determined over the last 6 years. Here, we describe the purification and crystallization protocols of a thermostabilized agonist-bound conformation of the human adenosine A2A receptor.
Collapse
Affiliation(s)
- Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK,
| | | |
Collapse
|
62
|
Bhattacharya S, Lee S, Grisshammer R, Tate CG, Vaidehi N. Rapid Computational Prediction of Thermostabilizing Mutations for G Protein-Coupled Receptors. J Chem Theory Comput 2014; 10:5149-5160. [PMID: 25400524 PMCID: PMC4230369 DOI: 10.1021/ct500616v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 01/22/2023]
Abstract
![]()
G protein-coupled
receptors (GPCRs) are highly dynamic and often
denature when extracted in detergents. Deriving thermostable mutants
has been a successful strategy to stabilize GPCRs in detergents, but
this process is experimentally tedious. We have developed a computational
method to predict the position of the thermostabilizing mutations
for a given GPCR sequence. We have validated the method against experimentally
measured thermostability data for single mutants of the β1-adrenergic receptor (β1AR), adenosine A2A receptor (A2AR) and neurotensin receptor 1 (NTSR1).
To make these predictions we started from homology models of these
receptors of varying accuracies and generated an ensemble of conformations
by sampling the rigid body degrees of freedom of transmembrane helices.
Then, an all-atom force field function was used to calculate the enthalpy
gain, known as the “stability score” upon mutation of
every residue, in these receptor structures, to alanine. For all three
receptors, β1AR, A2AR, and NTSR1, we observed
that mutations of hydrophobic residues in the transmembrane domain
to alanine that have high stability scores correlate with high experimental
thermostability. The prediction using the stability score improves
when using an ensemble of receptor conformations compared to a single
structure, showing that receptor flexibility is important. We also
find that our previously developed LITiCon method for generating conformation
ensembles is similar in performance to predictions using ensembles
obtained from microseconds of molecular dynamics simulations (which
is computationally hundred times slower than LITiCon). We improved
the thermostability prediction by including other properties such
as residue-based stress and the extent of allosteric communication
by each residue in the stability score. Our method is the first step
toward a computational method for rapid prediction of thermostable
mutants of GPCRs.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Division of Immunology, Beckman Research Institute of the City of Hope , 1500 East Duarte Rd, Duarte, California 91010, United States
| | - Sangbae Lee
- Division of Immunology, Beckman Research Institute of the City of Hope , 1500 East Duarte Rd, Duarte, California 91010, United States
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Department of Health and Human Services, Rockville, Maryland 20852, United States
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus , Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope , 1500 East Duarte Rd, Duarte, California 91010, United States
| |
Collapse
|
63
|
Keränen H, Gutiérrez-de-Terán H, Åqvist J. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding. PLoS One 2014; 9:e108492. [PMID: 25285959 PMCID: PMC4186821 DOI: 10.1371/journal.pone.0108492] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022] Open
Abstract
To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A) adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.
Collapse
Affiliation(s)
- Henrik Keränen
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
64
|
Congreve M, Dias JM, Marshall FH. Structure-based drug design for G protein-coupled receptors. PROGRESS IN MEDICINAL CHEMISTRY 2014; 53:1-63. [PMID: 24418607 DOI: 10.1016/b978-0-444-63380-4.00001-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed.
Collapse
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - João M Dias
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| |
Collapse
|
65
|
Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Appl Microbiol Biotechnol 2014; 98:7671-98. [PMID: 25070595 DOI: 10.1007/s00253-014-5948-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 02/08/2023]
Abstract
Heterologous expression and characterisation of the membrane proteins of higher eukaryotes is of paramount interest in fundamental and applied research. Due to the rather simple and well-established methods for their genetic modification and cultivation, yeast cells are attractive host systems for recombinant protein production. This review provides an overview on the remarkable progress, and discusses pitfalls, in applying various yeast host strains for high-level expression of eukaryotic membrane proteins. In contrast to the cell lines of higher eukaryotes, yeasts permit efficient library screening methods. Modified yeasts are used as high-throughput screening tools for heterologous membrane protein functions or as benchmark for analysing drug-target relationships, e.g., by using yeasts as sensors. Furthermore, yeasts are powerful hosts for revealing interactions stabilising and/or activating membrane proteins. We also discuss the stress responses of yeasts upon heterologous expression of membrane proteins. Through co-expression of chaperones and/or optimising yeast cultivation and expression strategies, yield-optimised hosts have been created for membrane protein crystallography or efficient whole-cell production of fine chemicals.
Collapse
Affiliation(s)
- Anita Emmerstorfer
- ACIB-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | | | | | | |
Collapse
|
66
|
Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 2014; 511:557-62. [DOI: 10.1038/nature13396] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
|
67
|
Miller-Gallacher JL, Nehmé R, Warne T, Edwards PC, Schertler GFX, Leslie AGW, Tate CG. The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 2014; 9:e92727. [PMID: 24663151 PMCID: PMC3963952 DOI: 10.1371/journal.pone.0092727] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
The β1-adrenoceptor (β1AR) is a G protein-coupled receptor (GPCR) that is activated by the endogenous agonists adrenaline and noradrenaline. We have determined the structure of an ultra-thermostable β1AR mutant bound to the weak partial agonist cyanopindolol to 2.1 Å resolution. High-quality crystals (100 μm plates) were grown in lipidic cubic phase without the assistance of a T4 lysozyme or BRIL fusion in cytoplasmic loop 3, which is commonly employed for GPCR crystallisation. An intramembrane Na+ ion was identified co-ordinated to Asp872.50, Ser1283.39 and 3 water molecules, which is part of a more extensive network of water molecules in a cavity formed between transmembrane helices 1, 2, 3, 6 and 7. Remarkably, this water network and Na+ ion is highly conserved between β1AR and the adenosine A2A receptor (rmsd of 0.3 Å), despite an overall rmsd of 2.4 Å for all Cα atoms and only 23% amino acid identity in the transmembrane regions. The affinity of agonist binding and nanobody Nb80 binding to β1AR is unaffected by Na+ ions, but the stability of the receptor is decreased by 7.5°C in the absence of Na+. Mutation of amino acid side chains that are involved in the co-ordination of either Na+ or water molecules in the network decreases the stability of β1AR by 5–10°C. The data suggest that the intramembrane Na+ and associated water network stabilise the ligand-free state of β1AR, but still permits the receptor to form the activated state which involves the collapse of the Na+ binding pocket on agonist binding.
Collapse
Affiliation(s)
| | - Rony Nehmé
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Tony Warne
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Patricia C. Edwards
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Gebhard F. X. Schertler
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Andrew G. W. Leslie
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher G. Tate
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom
- * E-mail:
| |
Collapse
|
68
|
Lee S, Bhattacharya S, Grisshammer R, Tate C, Vaidehi N. Dynamic behavior of the active and inactive states of the adenosine A(2A) receptor. J Phys Chem B 2014; 118:3355-65. [PMID: 24579769 PMCID: PMC3983344 DOI: 10.1021/jp411618h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
The adenosine A2A receptor
(A2AR) belongs
to the superfamily of membrane proteins called the G-protein-coupled
receptors (GPCRs) that form one of the largest superfamilies of drug
targets. Deriving thermostable mutants has been one of the strategies
used for crystallization of A2AR in both the agonist and
antagonist bound conformational states. The crystal structures do
not reveal differences in the activation mechanism of the mutant receptors
compared to the wild type receptor, that have been observed experimentally.
These differences stem from the dynamic behavior of the mutant receptors.
Furthermore, it is not understood how the mutations confer thermostability.
Since these details are difficult to obtain from experiments, we have
used atomic level simulations to elucidate the dynamic behavior of
the agonist and antagonist bound mutants as well the wild type A2AR. We found that significant enthalpic contribution leads
to stabilization of both the inactive state (StaR2) and active-like
state (GL31) thermostable mutants of A2AR. Stabilization
resulting from mutations of bulky residues to alanine is due to the
formation of interhelical hydrogen bonds and van der Waals packing
that improves the transmembrane domain packing. The thermostable mutant
GL31 shows less movement of the transmembrane helix TM6 with respect
to TM3 than the wild type receptor. While restricted dynamics of GL31
is advantageous in its purification and crystallization, it could
also be the reason why these mutants are not efficient in activating
the G proteins. We observed that the calculated stress on each residue
is higher in the wild type receptor compared to the thermostable mutants,
and this stress is required for activation to occur. Thus, reduced
dynamic behavior of the thermostable mutants leading to lowered activation
of these receptors originates from reduced stress on each residue.
Finally, accurate calculation of the change in free energy for single
mutations shows good correlation with the change in the measured thermostability.
These results provide insights into the effect of mutations that can
be incorporated in deriving thermostable mutants for other GPCRs.
Collapse
Affiliation(s)
- Sangbae Lee
- Division of Immunology, Beckman Research Institute of the City of Hope , 1500 East Duarte Road, Duarte, California 91010, United States
| | | | | | | | | |
Collapse
|
69
|
Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS. Unifying family A GPCR theories of activation. Pharmacol Ther 2014; 143:51-60. [PMID: 24561131 DOI: 10.1016/j.pharmthera.2014.02.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Several new pairs of active and inactive GPCR structures have recently been solved enabling detailed structural insight into the activation process, not only of rhodopsin but now also of the β2 adrenergic, M2 muscarinic and adenosine A2A receptors. Combined with structural analyses they have enabled us to examine the different recent theories proposed for GPCR activation and show that they are all indeed parts of the same process, and are intrinsically related through their effect on the central hydrophobic core of GPCRs. This new unifying general process of activation is consistent with the identification of known constitutively active mutants and an in-depth conservational analysis of significant residues implicated in the process.
Collapse
Affiliation(s)
- Benjamin G Tehan
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom.
| | - Andrea Bortolato
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| | - Frank E Blaney
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| | - Malcolm P Weir
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| | - Jonathan S Mason
- Heptares Therapeutics BioPark, Broadwater Road, Welwyn Garden City AL7 3AX United Kingdom
| |
Collapse
|
70
|
Vaidehi N, Bhattacharya S, Larsen AB. Structure and dynamics of G-protein coupled receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:37-54. [PMID: 24158800 DOI: 10.1007/978-94-007-7423-0_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein coupled receptors (GPCRs) are seven helical transmembrane proteins that mediate cell-to-cell communication. They also form the largest superfamily of drug targets. Hence detailed studies of the three dimensional structure and dynamics are critical to understanding the functional role of GPCRs in signal transduction pathways, and for drug design. In this chapter we compare the features of the crystal structures of various biogenic amine receptors, such as β1 and β2 adrenergic receptors, dopamine D3 receptor, M2 and M3 muscarinic acetylcholine receptors. This analysis revealed that conserved residues are located facing the inside of the transmembrane domain in these GPCRs improving the efficiency of packing of these structures. The NMR structure of the chemokine receptor CXCR1 without any ligand bound, shows significant dynamics of the transmembrane domain, especially the helical kink angle on the transmembrane helix6. The activation mechanism of the β2-adrenergic receptor has been studied using multiscale computational methods. The results of these studies showed that the receptor without any ligand bound, samples conformations that resemble some of the structural characteristics of the active state of the receptor. Ligand binding stabilizes some of the conformations already sampled by the apo receptor. This was later observed in the NMR study of the dynamics of human β2-adrenergic receptor. The dynamic nature of GPCRs leads to a challenge in obtaining purified receptors for biophysical studies. Deriving thermostable mutants of GPCRs has been a successful strategy to reduce the conformational heterogeneity and stabilize the receptors. This has lead to several crystal structures of GPCRs. However, the cause of how these mutations lead to thermostability is not clear. Computational studies are beginning to shed some insight into the possible structural basis for the thermostability. Molecular Dynamics simulations studying the conformational ensemble of thermostable mutants have shown that the stability could arise from both enthalpic and entropic factors. There are regions of high stress in the wild type GPCR that gets relieved upon mutation conferring thermostability.
Collapse
Affiliation(s)
- Nagarajan Vaidehi
- Division of Immunology, Beckman Research Institute of the City of Hope, 1500, E. Duarte Road, Duarte, CA, 91010, USA,
| | | | | |
Collapse
|
71
|
Veronesi M, Romeo E, Lambruschini C, Piomelli D, Bandiera T, Scarpelli R, Garau G, Dalvit C. Fluorine NMR-Based Screening on Cell Membrane Extracts. ChemMedChem 2013; 9:286-9. [DOI: 10.1002/cmdc.201300438] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Indexed: 11/12/2022]
|
72
|
Martínez-Archundia M, Correa-Basurto J. Molecular dynamics simulations reveal initial structural and dynamic features for the A2AR as a result of ligand binding. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.835485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
73
|
Abdul-Hussein S, Andréll J, Tate CG. Thermostabilisation of the serotonin transporter in a cocaine-bound conformation. J Mol Biol 2013; 425:2198-207. [PMID: 23706649 PMCID: PMC3678023 DOI: 10.1016/j.jmb.2013.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/25/2013] [Accepted: 03/12/2013] [Indexed: 11/15/2022]
Abstract
Structure determination of mammalian integral membrane proteins is challenging due to their instability upon detergent solubilisation and purification. Recent successes in the structure determination of G-protein-coupled receptors (GPCRs) resulted from the development of GPCR-specific protein engineering strategies. One of these, conformational thermostabilisation, could in theory facilitate structure determination of other membrane proteins by improving their tolerance to detergents and locking them in a specific conformation. We have therefore used this approach on the cocaine-sensitive rat serotonin transporter (SERT). Out of a panel of 554 point mutants throughout SERT, 10 were found to improve its thermostability. The most stabilising mutations were combined to make the thermostabilised mutants SAH6 (L99A + G278A + A505L) and SAH7 (L405A + P499A + A505L) that were more stable than SERT by 18 °C and 16 °C, respectively. Inhibitor binding assays showed that both of the thermostabilised SERT mutants bound [125I]RTI55 (β-CIT) with affinity similar to that of the wild-type transporter, although cocaine bound with increased affinity (17- to 56-fold) whilst ibogaine, imipramine and paroxetine all bound with lower affinity (up to 90-fold). Neither SAH6 nor SAH7 was capable of transporting [3H]serotonin into HEK293 cell lines stably expressing the mutants, although serotonin bound to them with an apparent Ki of 155 μM or 82 μM, respectively. These data combined suggest that SAH6 and SAH7 are thermostabilised in a specific cocaine-bound conformation, making them promising candidates for crystallisation. Conformational thermostabilisation is thus equally applicable to membrane proteins that are transporters in addition to those that are GPCRs.
Collapse
|
74
|
Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, Jazayeri A, Cooke RM, Weir M, Marshall FH. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 2013; 499:438-43. [PMID: 23863939 DOI: 10.1038/nature12357] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022]
Abstract
Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.
Collapse
Affiliation(s)
- Kaspar Hollenstein
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City AL7 3AX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Locatelli-Hoops S, Yeliseev AA, Gawrisch K, Gorshkova I. Surface plasmon resonance applied to G protein-coupled receptors. BIOMEDICAL SPECTROSCOPY AND IMAGING 2013; 2:155-181. [PMID: 24466506 PMCID: PMC3898597 DOI: 10.3233/bsi-130045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies.
Collapse
Affiliation(s)
- Silvia Locatelli-Hoops
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Alexei A. Yeliseev
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Klaus Gawrisch
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Inna Gorshkova
- Biomedical Engineering and Physical Science Shared Resource,
National Institute of Biomedical Imaging and Bioengineering, National Institutes of
Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
76
|
Bortolato A, Tehan BG, Bodnarchuk MS, Essex JW, Mason JS. Water Network Perturbation in Ligand Binding: Adenosine A2A Antagonists as a Case Study. J Chem Inf Model 2013; 53:1700-13. [DOI: 10.1021/ci4001458] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Bortolato
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Herts,
AL7 3AX, U.K
| | - Ben G. Tehan
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Herts,
AL7 3AX, U.K
| | - Michael S. Bodnarchuk
- School of
Chemistry, University of Southampton, Highfield,
Southampton,
Hampshire, SO17 1BJ, U.K
| | - Jonathan W. Essex
- School of
Chemistry, University of Southampton, Highfield,
Southampton,
Hampshire, SO17 1BJ, U.K
| | - Jonathan S. Mason
- Heptares Therapeutics Ltd, BioPark, Broadwater Road, Welwyn Garden City, Herts,
AL7 3AX, U.K
| |
Collapse
|
77
|
Maeda S, Schertler GFX. Production of GPCR and GPCR complexes for structure determination. Curr Opin Struct Biol 2013; 23:381-92. [PMID: 23707225 DOI: 10.1016/j.sbi.2013.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/12/2023]
Abstract
Since the first high-resolution structure of the beta 2 adrenergic receptor (b2AR) in 2007, we have seen a growing number of G-protein-coupled receptor (GPCR) structures coming to the repertory, providing a significant progress in our understanding of the structural basis of their function. This has been achieved by the interdisciplinary collaborative work between scientists with various expertise and the development of new methodologies as well as combining and optimizing existing techniques.
Collapse
Affiliation(s)
- Shoji Maeda
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
78
|
Abstract
Membrane proteins have essential cellular functions and are therefore of high interest in both academia and industry. Many efforts have been made on producing those targets in yields allowing crystallization experiments aiming for high resolution structures and mechanistic understanding. The first step of production provides a crucial barrier to overcome, but what we now see, is great progress in membrane protein structural determination in a relatively short time. Achievements on recombinant protein production have been essential for this development and the yeast Pichia pastoris is the most commonly used host for eukaryotic membrane proteins. High-resolution structures nicely illustrate the successes in protein production, and this is the measure used by Ramón and Marin in their review "Advances in the production of membrane proteins in Pichia pastoris" from 2011. Here, additional advances on production and crystallization of eukaryotic membrane proteins are described and reflected on.
Collapse
Affiliation(s)
- Kristina Hedfalk
- Department of Chemistry and Molecular Biology; University of Gothenburg; Göteborg, Sweden
| |
Collapse
|
79
|
Lai JY, Poon YS, Kaiser JT, Rees DC. Open and shut: crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from Escherichia coli and Helicobacter pylori at 4.4 Å and 4.1 Å resolutions. Protein Sci 2013; 22:502-9. [PMID: 23339071 DOI: 10.1002/pro.2222] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 01/03/2023]
Abstract
The mechanosensitive channel of small conductance (MscS) contributes to the survival of bacteria during osmotic downshock by transiently opening large diameter pores for the efflux of cellular contents before the membrane ruptures. Two crystal structures of the Escherichia coli MscS are currently available, the wild type protein in a nonconducting state at 3.7 Å resolution (Bass et al., Science 2002; 298:1582-1587) and the Ala106Val variant in an open state at 3.45 Å resolution (Wang et al., Science 2008; 321:1179-1183). Both structures used protein solubilized in the detergent fos-choline-14. We report here crystal structures of MscS from E. coli and Helicobacter pylori solubilized in the detergent β-dodecylmaltoside at resolutions of 4.4 and 4.2 Å, respectively. While the cytoplasmic domains are unchanged in these structures, distinct conformations of the transmembrane domains are observed. Intriguingly, β-dodecylmaltoside solubilized wild type E. coli MscS adopts the open state structure of A106V E. coli MscS, while H. pylori MscS resembles the nonconducting state structure observed for fos-choline-14 solubilized E. coli MscS. These results highlight the sensitivity of membrane protein conformational equilibria to variations in detergent, crystallization conditions, and protein sequence.
Collapse
Affiliation(s)
- Jeffrey Y Lai
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
80
|
Bennett KA, Tehan B, Lebon G, Tate CG, Weir M, Marshall FH, Langmead CJ. Pharmacology and structure of isolated conformations of the adenosine A₂A receptor define ligand efficacy. Mol Pharmacol 2013; 83:949-58. [PMID: 23429888 DOI: 10.1124/mol.112.084509] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using isolated receptor conformations crystal structures of the adenosine A₂A receptor have been solved in active and inactive states. Studying the change in affinity of ligands at these conformations allowed qualitative prediction of compound efficacy in vitro in a system-independent manner. Agonist 5'-N-ethylcarboxamidoadenosine displayed a clear preference to bind to the active state receptor; inverse agonists (xanthine amine congener, ZM241385, SCH58261, and preladenant) bound preferentially to the inactive state, whereas neutral antagonists (theophylline, caffeine, and istradefylline) demonstrated equal affinity for active and inactive states. Ligand docking into the known crystal structures of the A₂A receptor rationalized the pharmacology observed; inverse agonists, unlike neutral antagonists, cannot be accommodated within the agonist-binding site of the receptor. The availability of isolated receptor conformations opens the door to the concept of "reverse pharmacology" whereby the functional pharmacology of ligands can be characterized in a system-independent manner by their affinity for a pair (or set) of G protein-coupled receptor conformations.
Collapse
Affiliation(s)
- Kirstie A Bennett
- Heptares Therapeutics Ltd, Welwyn Garden City, Hertfordshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
81
|
Shibata Y, Gvozdenovic-Jeremic J, Love J, Kloss B, White JF, Grisshammer R, Tate CG. Optimising the combination of thermostabilising mutations in the neurotensin receptor for structure determination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1293-301. [PMID: 23337476 DOI: 10.1016/j.bbamem.2013.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Conformational thermostabilisation of G protein-coupled receptors is a successful approach for their structure determination. We have recently determined the structure of a thermostabilised neurotensin receptor NTS1 in complex with its peptide agonist and here we describe the strategy for the identification and combination of the 6 thermostabilising mutations essential for crystallisation. First, thermostability assays were performed on a panel of 340 detergent-solubilised Ala/Leu NTS1 mutants and the best 16 thermostabilising mutations were identified. These mutations were combined pair-wise in nearly all combinations (119 out of a possible 120 combinations) and each mutant was expressed and its thermostability was experimentally determined. A theoretical stability score was calculated from the sum of the stabilities measured for each double mutant and applied to develop 24 triple mutants, which in turn led to the construction of 14 quadruple mutants. Use of the thermostability data for the double mutants to predict further mutant combinations resulted in a greater percentage of the triple and quadruple mutants showing improved thermostability than if only the thermostability data for the single mutations was considered. The best quadruple mutant (NTS1-Nag36k) was further improved by including an additional 2 mutations (resulting in NTS1-GW5) that were identified from a complete Ala/Leu scan of Nag36k by testing the thermostability of the mutants in situ in whole bacteria. NTS1-GW5 had excellent stability in short chain detergents and could be readily purified as a homogenous sample that ultimately allowed crystallisation and structure determination.
Collapse
Affiliation(s)
- Yoko Shibata
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | |
Collapse
|
82
|
Andrews SP, Tehan B. Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20164j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first example of structure-based drug design with stabilised GPCRs has enabled the identification of a preclinical candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Benjamin Tehan
- Heptares Therapeutics Limited
- BioPark
- Welwyn Garden City
- UK
| |
Collapse
|
83
|
Chen D, Errey JC, Heitman LH, Marshall FH, IJzerman AP, Siegal G. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity. ACS Chem Biol 2012; 7:2064-73. [PMID: 23013674 DOI: 10.1021/cb300436c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program.
Collapse
Affiliation(s)
- Dan Chen
- ZoBio BV, Leiden 2300RA, The Netherlands
| | - James C. Errey
- Heptares Therapeutics Limited, BioPark, Broadwater Road, Welwyn Garden City,
Hertfordshire AL7 3AX, U.K
| | | | - Fiona H. Marshall
- Heptares Therapeutics Limited, BioPark, Broadwater Road, Welwyn Garden City,
Hertfordshire AL7 3AX, U.K
| | | | | |
Collapse
|
84
|
Ebersbach H, Geisse S. Antigen generation and display in therapeutic antibody drug discovery -- a neglected but critical player. Biotechnol J 2012; 7:1433-43. [PMID: 23139179 DOI: 10.1002/biot.201200066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/26/2012] [Accepted: 09/25/2012] [Indexed: 01/17/2023]
Abstract
Disease intervention by targeting a critical pathway molecule through a blocking antibody or interference by therapeutic proteins is currently en vogue. Generation of blocking antibodies or therapeutic proteins inevitably requires the production of recombinant proteins or cell-based immunogens. Thus, one could call the antigen molecule the neglected player in antibody drug discovery. The variety of methods available for making recombinant proteins or recombinant cell lines that present the target on the cell surface is extensive. These need to be addressed in conjunction with biochemical and biophysical quality criteria and the experimental application intended. Fundamentally, successful production and isolation of monoclonal antibodies requires optimized antigen preparation and presentation to the immune host. This review summarizes the most important aspects of antigen generation and display, enabling logical decision making to give rise to potent high-affinity antibodies.
Collapse
Affiliation(s)
- Hilmar Ebersbach
- NBC/NT, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | |
Collapse
|
85
|
Abstract
G protein-coupled receptors (GPCR) are the largest family of integral membrane proteins found in the plasma membrane of mammalian cells. GPCR respond to a large variety of ligands such as amines, lipids, hormones and amino-acids, which are involved in inter-cellular signalling events in a multitude of physiological and pathological processes. GPCRs are therefore key regulators of signal transduction by which cells respond to variations in their environment. During the last five years, striking progress has been made to solve high-resolution structure of GPCR. The most recent successes are the structures of the β(1) and β(2) adrenoreceptors and the adenosine A(2A) receptor bound to a variety of agonists. Most importantly, the structure of the β(2) adrenoreceptor in complex with a trimeric G protein, Gs, was recently reported. This review will present an overview of the X-ray structure determination of the GPCR and of their activation mechanism.
Collapse
Affiliation(s)
- Guillaume Lebon
- Département de Pharmacologie Moléculaire, Universités de Montpellier I et II, Montpellier, France.
| | | |
Collapse
|
86
|
Caffrey M, Li D, Dukkipati A. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 2012; 51:6266-88. [PMID: 22783824 DOI: 10.1021/bi300010w] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The crystal structure of the β(2)-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been determined. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signaling event across the membrane, and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of 13 distinct receptor types have been determined in the past 5 years. In addition to receptors, the method has proven to be useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, light-harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen, however, the reluctance to adopt it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals are also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nanoliter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates that provide unparalleled optical quality and sensitivity to nascent crystals have been built. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this work, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
87
|
Fay JF, Farrens DL. A key agonist-induced conformational change in the cannabinoid receptor CB1 is blocked by the allosteric ligand Org 27569. J Biol Chem 2012; 287:33873-82. [PMID: 22846992 DOI: 10.1074/jbc.m112.352328] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allosteric ligands that modulate how G protein-coupled receptors respond to traditional orthosteric drugs are an exciting and rapidly expanding field of pharmacology. An allosteric ligand for the cannabinoid receptor CB1, Org 27569, exhibits an intriguing effect; it increases agonist binding, yet blocks agonist-induced CB1 signaling. Here we explored the mechanism behind this behavior, using a site-directed fluorescence labeling approach. Our results show that Org 27569 blocks conformational changes in CB1 that accompany G protein binding and/or activation, and thus inhibit formation of a fully active CB1 structure. The underlying mechanism behind this behavior is that simultaneous binding of Org 27569 produces a unique agonist-bound conformation, one that may resemble an intermediate structure formed on the pathway to full receptor activation.
Collapse
Affiliation(s)
- Jonathan F Fay
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | |
Collapse
|
88
|
Abstract
GPCRs (G-protein-coupled receptors) are seven-transmembrane helix proteins that transduce exogenous and endogenous signals to modulate the activity of downstream effectors inside the cell. Despite the relevance of these proteins in human physiology and pharmaceutical research, we only recently started to understand the structural basis of their activation mechanism. In the period 2008-2011, nine active-like structures of GPCRs were solved. Among them, we have determined the structure of light-activated rhodopsin with all the features of the active metarhodopsin-II, which represents so far the most native-like model of an active GPCR. This structure, together with the structures of other inactive, intermediate and active states of rhodopsin constitutes a unique structural framework on which to understand the conserved aspects of the activation mechanism of GPCRs. This mechanism can be summarized as follows: retinal isomerization triggers a series of local structural changes in the binding site that are amplified into three intramolecular activation pathways through TM (transmembrane helix) 5/TM3, TM6 and TM7/TM2. Sequence analysis strongly suggests that these pathways are conserved in other GPCRs. Differential activation of these pathways by ligands could be translated into the stabilization of different active states of the receptor with specific signalling properties.
Collapse
|
89
|
G-protein-coupled receptor dynamics: dimerization and activation models compared with experiment. Biochem Soc Trans 2012; 40:394-9. [PMID: 22435818 DOI: 10.1042/bst20110755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previously derived models of the active state of the β2-adrenergic receptor are compared with recently published X-ray crystallographic structures of activated GPCRs (G-protein-coupled receptors). These molecular dynamics-based models using experimental data derived from biophysical experiments on activation were used to restrain the receptor to an active state that gave high enrichment for agonists in virtual screening. The β2-adrenergic receptor active model and X-ray structures are in good agreement over both the transmembrane region and the orthosteric binding site, although in some regions the active model is more similar to the active rhodopsin X-ray structures. The general features of the microswitches were well reproduced, but with minor differences, partly because of the unexpected X-ray results for the rotamer toggle switch. In addition, most of the interacting residues between the receptor and the G-protein were identified. This analysis of the modelling has also given important additional insight into GPCR dimerization: re-analysis of results on photoaffinity analogues of rhodopsin provided additional evidence that TM4 (transmembrane helix 4) resides at the dimer interface and that ligands such as bivalent ligands may pass between the mobile helices. A comparison, and discussion, is also carried out between the use of implicit and explicit solvent for active-state modelling.
Collapse
|
90
|
A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem Sci 2012; 37:343-52. [PMID: 22784935 DOI: 10.1016/j.tibs.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/21/2022]
Abstract
G-protein-coupled receptors (GPCRs) are medically important membrane proteins that are targeted by over 30% of small molecule drugs. At the time of writing, 15 unique GPCR structures have been determined, with 77 structures deposited in the PDB database, which offers new opportunities for drug development and for understanding the molecular mechanisms of GPCR activation. Many different factors have contributed to this success, but if there is one single factor that can be singled out as the foundation for producing well-diffracting GPCR crystals, it is the stabilisation of the detergent-solubilised receptor-ligand complex. This review will focus predominantly on one of the successful strategies for the stabilisation of GPCRs, namely the thermostabilisation of GPCRs using systematic mutagenesis coupled with thermostability assays. Structures of thermostabilised GPCRs bound to a wide variety of ligands have been determined, which has led to an understanding of ligand specificity; why some ligands act as agonists as opposed to partial or inverse agonists; and the structural basis for receptor activation.
Collapse
|
91
|
Shiroishi M, Tsujimoto H, Makyio H, Asada H, Yurugi-Kobayashi T, Shimamura T, Murata T, Nomura N, Haga T, Iwata S, Kobayashi T. Platform for the rapid construction and evaluation of GPCRs for crystallography in Saccharomyces cerevisiae. Microb Cell Fact 2012; 11:78. [PMID: 22694812 PMCID: PMC3495400 DOI: 10.1186/1475-2859-11-78] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent successes in the determination of G-protein coupled receptor (GPCR) structures have relied on the ability of receptor variants to overcome difficulties in expression and purification. Therefore, the quick screening of functionally expressed stable receptor variants is vital. RESULTS We developed a platform using Saccharomyces cerevisiae for the rapid construction and evaluation of functional GPCR variants for structural studies. This platform enables us to perform a screening cycle from construction to evaluation of variants within 6-7 days. We firstly confirmed the functional expression of 25 full-length class A GPCRs in this platform. Then, in order to improve the expression level and stability, we generated and evaluated the variants of the four GPCRs (hADRB2, hCHRM2, hHRH1 and hNTSR1). These stabilized receptor variants improved both functional activity and monodispersity. Finally, the expression level of the stabilized hHRH1 in Pichia pastoris was improved up to 65 pmol/mg from negligible expression of the functional full-length receptor in S. cerevisiae at first screening. The stabilized hHRH1 was able to be purified for use in crystallization trials. CONCLUSIONS We demonstrated that the S. cerevisiae system should serve as an easy-to-handle and rapid platform for the construction and evaluation of GPCR variants. This platform can be a powerful prescreening method to identify a suitable GPCR variant for crystallography.
Collapse
Affiliation(s)
- Mitsunori Shiroishi
- Iwata Human Receptor Crystallography project, ERATO, JST, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Perez-Aguilar JM, Saven JG. Computational design of membrane proteins. Structure 2012; 20:5-14. [PMID: 22244752 DOI: 10.1016/j.str.2011.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/21/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
Membrane proteins are involved in a wide variety of cellular processes, and are typically part of the first interaction a cell has with extracellular molecules. As a result, these proteins comprise a majority of known drug targets. Membrane proteins are among the most difficult proteins to obtain and characterize, and a structure-based understanding of their properties can be difficult to elucidate. Notwithstanding, the design of membrane proteins can provide stringent tests of our understanding of these crucial biological systems, as well as introduce novel or targeted functionalities. Computational design methods have been particularly helpful in addressing these issues, and this review discusses recent studies that tailor membrane proteins to display specific structures or functions and examines how redesigned membrane proteins are being used to facilitate structural and functional studies.
Collapse
|
93
|
Lebon G, Warne T, Tate CG. Agonist-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 2012; 22:482-90. [PMID: 22480933 DOI: 10.1016/j.sbi.2012.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) play a major role in intercellular communication by binding small diffusible ligands (agonists) at the extracellular surface. Agonist-binding induces a conformational change in the receptor, which results in the binding and activation of heterotrimeric G proteins within the cell. Ten agonist-bound structures of non-rhodopsin GPCRs published last year defined for the first time the molecular details of receptor activated states and how inverse agonists, partial agonists and full agonists bind to produce different effects on the receptor. In addition, the structure of the β(2)-adrenoceptor coupled to a heterotrimeric G protein showed how the opening of a cleft in the cytoplasmic face of the receptor as a consequence of agonist binding results in G protein coupling and activation of the G protein.
Collapse
Affiliation(s)
- Guillaume Lebon
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS - U 661 INSERM - Univ. Montpellier I & II, 141, rue de la cardonille, 34094 Montpellier Cedex 05, France
| | | | | |
Collapse
|
94
|
Abstract
G-protein-coupled receptors (GPCRs) are one of the most challenging targets in structural biology. To successfully solve a high-resolution GPCR structure, several experimental obstacles must be overcome, including expression, extraction, purification, and crystallization. As a result, there are only a handful of unique structures reported from this protein superfamily, which consists of over 800 members. In the past few years, however, there has been an increase in the amount of solved GPCR structures, and a few high-impact structures have been determined: the peptide receptor CXCR4, the agonist bound receptors, and the GPCR-G protein complex. The dramatic progress in GPCR structural studies is not due to the development of any single technique, but a combination of new techniques, new tools and new concepts. Here, we summarize the progress made for GPCR expression, purification, and crystallization, and we highlight the technical advances that will facilitate the future determination of GPCR structures.
Collapse
|
95
|
Bruno A, Costantino G. Molecular Dynamics Simulations of G Protein-Coupled Receptors. Mol Inform 2012; 31:222-30. [DOI: 10.1002/minf.201100138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/18/2011] [Indexed: 12/14/2022]
|
96
|
Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 2011; 19:1283-93. [PMID: 21885291 DOI: 10.1016/j.str.2011.06.014] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 02/01/2023]
Abstract
Methylxanthines, including caffeine and theophylline, are among the most widely consumed stimulant drugs in the world. These effects are mediated primarily via blockade of adenosine receptors. Xanthine analogs with improved properties have been developed as potential treatments for diseases such as Parkinson's disease. Here we report the structures of a thermostabilized adenosine A(2A) receptor in complex with the xanthines xanthine amine congener and caffeine, as well as the A(2A) selective inverse agonist ZM241385. The receptor is crystallized in the inactive state conformation as defined by the presence of a salt bridge known as the ionic lock. The complete third intracellular loop, responsible for G protein coupling, is visible consisting of extended helices 5 and 6. The structures provide new insight into the features that define the ligand binding pocket of the adenosine receptor for ligands of diverse chemotypes as well as the cytoplasmic regions that interact with signal transduction proteins.
Collapse
Affiliation(s)
- Andrew S Doré
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Herts, AL7 3AX, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc Natl Acad Sci U S A 2011; 109:119-24. [PMID: 22198838 DOI: 10.1073/pnas.1114089108] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCR) are seven transmembrane helix proteins that couple binding of extracellular ligands to conformational changes and activation of intracellular G proteins, GPCR kinases, and arrestins. Constitutively active mutants are ubiquitously found among GPCRs and increase the inherent basal activity of the receptor, which often correlates with a pathological outcome. Here, we have used the M257Y(6.40) constitutively active mutant of the photoreceptor rhodopsin in combination with the specific binding of a C-terminal fragment from the G protein alpha subunit (GαCT) to trap a light activated state for crystallization. The structure of the M257Y/GαCT complex contains the agonist all-trans-retinal covalently bound to the native binding pocket and resembles the G protein binding metarhodopsin-II conformation obtained by the natural activation mechanism; i.e., illumination of the prebound chromophore 11-cis-retinal. The structure further suggests a molecular basis for the constitutive activity of 6.40 substitutions and the strong effect of the introduced tyrosine based on specific interactions with Y223(5.58) in helix 5, Y306(7.53) of the NPxxY motif and R135(3.50) of the E(D)RY motif, highly conserved residues of the G protein binding site.
Collapse
|
98
|
Abstract
Prokaryotic diacylglycerol kinase (DAGK) and undecaprenol kinase (UDPK) are the lone members of a family of multispan membrane enzymes that are very small, lack relationships to any other family of proteins-including water soluble kinases-and exhibit an unusual structure and active site architecture. Escherichia coli DAGK plays an important role in recycling diacylglycerol produced as a by-product of biosynthesis of molecules located in the periplasmic space. UDPK seems to play an analogous role in gram-positive bacteria, where its importance is evident because UDPK is essential for biofilm formation by the oral pathogen Streptococcus mutans. DAGK has also long served as a model system for studies of membrane protein biocatalysis, folding, stability, and structure. This review explores our current understanding of the microbial physiology, enzymology, structural biology, and folding of the prokaryotic DAGK family, which is based on over 40 years of studies.
Collapse
Affiliation(s)
- Wade D Van Horn
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
99
|
Lebon G, Tate CG. [Structure of the adenosine-bound conformation of the human adenosine A(2A) receptor]. Med Sci (Paris) 2011; 27:926-8. [PMID: 22130015 DOI: 10.1051/medsci/20112711004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
100
|
Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M. Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques. PLoS Comput Biol 2011; 7:e1002193. [PMID: 22022248 PMCID: PMC3192824 DOI: 10.1371/journal.pcbi.1002193] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 07/27/2011] [Indexed: 01/14/2023] Open
Abstract
Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Marta Camacho Artacho
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ana Negri
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Juan Carlos Mobarec
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Marta Filizola
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|