51
|
Barbosa RSD, Vieira-Coelho MA. Probiotics and prebiotics: focus on psychiatric disorders - a systematic review. Nutr Rev 2020; 78:437-450. [PMID: 31769847 DOI: 10.1093/nutrit/nuz080] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT The gut-brain axis and microbial dysbiosis may play a role in psychiatric diseases. In this view, the gut microbiota has been considered a potential therapeutic target using probiotics and prebiotics. OBJECTIVE This systematic review aims to find the existing clinical evidence that may justify the use of probiotics or prebiotics in psychiatric patients. DATA SOURCES PRISMA guidelines were followed for a systematic literature review of randomized controlled trials that assessed the effect of prebiotics or probiotics in patients diagnosed with a classified psychiatric disorder. DATA EXTRACTION From a total of 212 studies screened, 11 were included in the final systematic review. Quality assessment of the included trials was assessed by the Jadad scale. RESULTS Probiotics seem to offer some benefit in major depressive disorder and Alzheimer's disease. One study showed that probiotics reduced rehospitalization in patients with acute mania. In autism spectrum disorders, the results were controversial; however a single study found that early administration of probiotics showed a preventive role. No benefits were found for patients with schizophrenia. In most studies, no major adverse effects were reported. CONCLUSIONS Although recent findings in specific psychiatric disorders are encouraging, the use of prebiotics and probiotics in clinical practice stills lacks sufficiently robust evidence.
Collapse
Affiliation(s)
- Renata S D Barbosa
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine-University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics Unit, Faculty of Medicine-University of Porto, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health Faculty of Medicine-University of Porto, Porto, Portugal
| |
Collapse
|
52
|
Jiang X, Lu N, Zhao H, Yuan H, Xia D, Lei H. The Microbiome-Metabolome Response in the Colon of Piglets Under the Status of Weaning Stress. Front Microbiol 2020; 11:2055. [PMID: 32983040 PMCID: PMC7483555 DOI: 10.3389/fmicb.2020.02055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Weaning is stressful for piglets involving nutritional, physiological, and psychological challenges, leading to an increase in the secretion of cortisol, changes in gut microbiome and metabolites, whereas the underlying relationships remain unclear. To elucidate this, 14 Meishan female piglets were divided into the weaning group and the suckling group at the age of 21 days paired by litter and body weight. After 48 h of experiment, weaned piglets had lower body weight, but higher salivary cortisol level than that of their suckling litter mates (P < 0.05). The composition of the colonic bacterial community and metabolites were different between the two groups, and the first predominant genus of the suckling and weaned piglets colonic microbiome were Bacteroides and Prevotellaceae-NK3B31 group respectively. The suckling piglets had higher proportions of phylum Bacteroidetes and Lentisphaerae, and genus Bacteroides and Lactobacillus in the colonic microbial community, but lower abundance of genus Prevotellaceae-NK3B31 group than that of the weaned piglets (P < 0.05). Accordingly, there were 15 colonic metabolites differed between the two groups, in which 2 metabolites (phenylacetic acid and phenol) negatively related to the abundant of Lactobacillus genus (P < 0.05), while 9 metabolites (acetic acid, arabitol, benzoic acid, caprylic acid, cholesterol, dihydrocholesterol, galactinol, glucose phenol, phenylacetic acid, and oxamic acid, glycerol, propionic acid) positively associated with the proportion of Prevotellaceae-NK3B31 group genus (P < 0.05). Furthermore, the salivary cortisol level negatively associated with the abundance of phylum Lentisphaerae, but positively associated with the phylum Bacteroidetes and the genus Prevotellaceae-NK3B31 group (P < 0.05) respectively. These results provide us with new insights into the cause of the gut microbiome and stress, and the contributions of gut microbiome in metabolic and physiological regulation in response to weaning stress.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Naisheng Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haichao Zhao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Department of Pharmaceutical Microbiology, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Yuan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dong Xia
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hulong Lei
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
53
|
Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y, Yang H, Li M, Zhou L, Tao C. Long-Term Exposure to Ceftriaxone Sodium Induces Alteration of Gut Microbiota Accompanied by Abnormal Behaviors in Mice. Front Cell Infect Microbiol 2020; 10:258. [PMID: 32714875 PMCID: PMC7344183 DOI: 10.3389/fcimb.2020.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/04/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Growing evidence points out that a disturbance of gut microbiota may also disturb the gut–brain communication. However, it is not clear to what extent the alteration of microbiota composition can modulate brain function, affecting host behaviors. Here, we investigated the effects of gut microbiota depletion on emotional behaviors. Methods: Mice in the experimental group were orally administered ceftriaxone sodium solution (250 mg/ml, 0.2 ml/d) for 11 weeks. The open-field test and tail-suspension test were employed for the neurobehavioral assessment of the mice. Fecal samples were collected for 16s rDNA sequencing. The serum levels of cytokines and corticosterone were quantified using enzyme-linked immunosorbent assays. The immunohistochemistry method was used for the detection of brain-derived neurotrophic factor (BDNF) and c-Fos protein. Results: The gut microbiota for antibiotic-treated mice showed lower richness and diversity compared with normal controls. This effect was accompanied by increased anxiety-like, depression-like, and aggressive behaviors. We found these changes to be possibly associated with a dysregulation of the immune system, abnormal activity of the hypothalamic-pituitary-adrenal axis, and an alteration of neurochemistry. Conclusions: The findings demonstrate the indispensable role of microbiota in the gut–brain communication and suggest that the absence of conventional gut microbiota could affect the nervous system, influencing brain function.
Collapse
Affiliation(s)
- Zhongyi Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Baoning Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liyuan Mu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongren Wang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingjing Luo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingyuan Li
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Linlin Zhou
- Department of Microbiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
54
|
Soroko M, Zaborski D. Investigation of the effects of probiotic, Bacillus subtilis on stress reactions in laying hens using infrared thermography. PLoS One 2020; 15:e0234117. [PMID: 32525895 PMCID: PMC7292008 DOI: 10.1371/journal.pone.0234117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The goal of the study was to assess whether tonic immobility (TI)-induced stress reactions in laying hens can be reduced by probiotic supplementation and if the changes in body surface temperature, as a stress indicator, are genetically dependent and can be detected using infrared thermography (IRT). Seventy-one white and 70 brown hens were used. Hens were randomly assigned to three treatments at 1-day-old: beak trimmed and fed a regular diet; non-beak trimmed and fed a regular diet; and non-beak trimmed and fed a diet supplemented with probiotics, Bacillus subtilis. At 40 weeks of age, hens were tested for TI reactions. Eye and face temperatures were measured with IRT immediately before and after TI testing. Results revealed that the probiotic supplementation did not affect hens' stress responses to TI testing; the left and right eye temperatures increased by 0.26s°C and 0.15°C, respectively, while right face temperature tended to increase following TI testing. However, the right eye (32.60°C for white, and 32.35°C for brown) and face (39.51°C for white, and 39.36°C for brown) temperatures differed significantly among genetic lines. There was a positive correlation between TI duration and the changes of the left and right eye temperatures after TI testing in white hens. Based on these results, hens experienced TI-induced surface temperature changes that were detectable using IRT. White hens experienced greater stress reactions in response to TI than brown hens. However, supplementation with Bacillus subtilis did not attenuate hens' reaction to TI testing.
Collapse
Affiliation(s)
- Maria Soroko
- Department of Horse Breeding and Equestrian Studies, Institute of Animal
Breeding, Wroclaw University of Environmental and Life Sciences, Wroclaw,
Poland
| | - Daniel Zaborski
- Department of Ruminants Science, West Pomeranian University of
Technology, Szczecin, Poland
| |
Collapse
|
55
|
Potential therapeutic applications of the gut microbiome in obesity: from brain function to body detoxification. Int J Obes (Lond) 2020; 44:1818-1831. [PMID: 32523034 DOI: 10.1038/s41366-020-0618-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
Abstract
The prevalence of obesity is rising every year and associated comorbidities such as cardiovascular diseases are among the leading causes of death worldwide. The gut microbiota has recently emerged as a potential target for therapeutic applications to prevent and treat those comorbidities. In this review, we focus on three conditions related to obesity in which the use of gut microbiota modulators could have benefits; mood disorders, eating behaviors, and body detoxification of persistent organic pollutants (POPs). On one hand, modulation of gut-derived signals to the brain in a context of obesity is involved in the development of neuroinflammation and can subsequently alter behaviors. An altered gut microbiome could change these signals and alleviate their consequences. On the other hand, obesity is associated with an increased accumulation of lipophilic contaminants, such as POPs. Targeting the microbiota could help body detoxication by reducing bioavailability, enhancing degradation by bioremediation or their excretion through the enterohepatic circulation. Thus, a supplementation of prebiotics, probiotics, or synbiotics could represent a complementary strategy to current ones, such as medication and lifestyle modifications, to decrease depression, alter eating behaviors, and lower body burden of pollutants considering the actual obesity epidemic our society is facing.
Collapse
|
56
|
Pascale A, Marchesi N, Govoni S, Barbieri A. Targeting the microbiota in pharmacology of psychiatric disorders. Pharmacol Res 2020; 157:104856. [PMID: 32389857 DOI: 10.1016/j.phrs.2020.104856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
There is increasing interest in the role of the gut microbiota in health and disease. In particular, gut microbiota influences the Central Nervous System (CNS) development and homeostasis through neural pathways or routes involving the immune and circulatory systems. The CNS, in turn, shapes the intestinal flora through endocrine or stress-mediated responses. These overall bidirectional interactions, known as gut microbiota-brain axis, profoundly affect some brain functions, such as neurogenesis and the production of neurotransmitters, up to influence behavioral aspects of healthy subjects. Consequently, a dysfunction within this axis, as observed in case of dysbiosis, can have an impact on the behavior of a given individual (e.g. anxiety and depression) or on the development of pathologies affecting the CNS, such as autism spectrum disorders and neurodegenerative diseases (e.g. Alzheimer's disease and Parkinson's disease). It should be considered that the whole microbiota has a significant role not only on aspects concerning human physiology, such as harvesting of nutrients and energy from the ingested food or production of a wide range of bioactive compounds, but also has positive effects on the gastrointestinal barrier function and actively contributes to the pharmacokinetics of several compounds including neuropsychiatric drugs. Indeed, the microbiota is able to affect drug absorption and metabolism up to have an impact on drug activity and/or toxicity. On the other hand, drugs are able to shape the human gut microbiota itself, where these changes may contribute to their pharmacologic profile. Therefore, the emerging picture on the complex drug-microbiota bidirectional interplay will have considerable implications in the future not only in terms of clinical practice but also, upstream, on drug development.
Collapse
Affiliation(s)
- Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy.
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| |
Collapse
|
57
|
Tahmasebi S, Oryan S, Mohajerani HR, Akbari N, Palizvan MR. Probiotics and Nigella sativa extract supplementation improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behav 2020; 104:106897. [PMID: 32028126 DOI: 10.1016/j.yebeh.2019.106897] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/26/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epilepsy is a most common neurological disorder that has negative effects on cognition. In the present study, we investigated the protective effect of Nigella sativa (NS) and probiotics on seizure activity, cognitive performance, and synaptic plasticity in pentylenetetrazole (PTZ) kindling model of epilepsy. METHODS One hundred and forty-four rats were divided into 2 experiments: In experiment 1, animals were grouped and treated as follows: 1) control (PTZ + saline), 2) NS treatment, 3) probiotic treatment, and 4) NS and probiotic treatment. Six weeks after the treatment, PTZ kindling were performed, and 48 h after kindling, spatial learning and memory were measured in Morris water maze (MWM) test. Animals in experiment 2 received the same treatment as experiment 1: in control nonkindled groups, control animals were treated with probiotics, NS, and probiotics + NS. Six weeks after the treatment, PTZ kindling were performed, and 48 h after kindling, field potentials were recorded from the dentate gyrus area of the hippocampus; synaptic transmission and long-term potentiation (LTP) was measured. RESULTS The results showed that the probiotic and NS supplementation significantly reduces kindling development so that animals in PTZ + NS + probiotic did not show full kindling. In MWM test, the escape latency and traveled path in the kindled group were significantly higher than the control group. In PTZ + NS + probiotics, these parameters were significantly lower than those in the PTZ + saline group. Adding probiotic and NS supplementation significantly reduced population spike (PS)-LTP as compared with the PTZ + saline group. CONCLUSION Probiotic and NS supplementation have some protection against seizure, seizure-induced cognitive impairment, and hippocampal LTP in kindled rats.
Collapse
Affiliation(s)
- Saeed Tahmasebi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Science, Kharazmy University, Tehran, Iran.
| | | | - Neda Akbari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Mohammad Reza Palizvan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
58
|
Psychobiotics Regulate the Anxiety Symptoms in Carriers of Allele A of IL-1 β Gene: A Randomized, Placebo-Controlled Clinical Trial. Mediators Inflamm 2020; 2020:2346126. [PMID: 32377159 PMCID: PMC7199572 DOI: 10.1155/2020/2346126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background Probiotic oral intake, via modulation of the microbiota-gut-brain axis, can impact brain activity, mood, and behavior; therefore, it may be beneficial against psychological distress and anxiety disorders. Inflammatory cytokines can influence the onset and progression of several neurodegenerative mood disorders, and the IL-1β rs16944 SNP is related to high cytokine levels and potentially affects mood disorders. The aim of this study was to examine the combined effect of IL-1β polymorphism and probiotic administration in mood disorder phenotypes in the Italian population. Methods 150 subjects were randomized into two different groups, probiotic oral suspension group (POSG) and placebo control group (PCG), and received the relative treatment for 12 weeks. Psychological profile assessment by Hamilton Anxiety Rating Scale (HAM-A), Body Uneasiness Test (BUT), and Symptom Checklist 90-Revised (SCL90R) was administered to all volunteers. Genotyping was performed on DNA extracted from salivary samples. Results After 12 weeks of intervention, a significant reduction of HAM-A total score was detected in the POSG (p < 0.01), compared to the PCG. Furthermore, IL-1β carriers have moderate risk to develop anxiety (OR = 5.90), and in POSG IL-1β carriers, we observed a reduction of HAM-A score (p = 0.02). Conclusions Consumption of probiotics mitigates anxiety symptoms, especially in healthy adults with the minor A allele of rs16944 as a risk factor. Our results encourage the use of probiotics in anxiety disorders and suggest genetic association studies for psychobiotic-personalized therapy.
Collapse
|
59
|
Abstract
Stress is a nonspecific response of the body to any demand imposed upon it, disrupting the body homoeostasis and manifested with symptoms such as anxiety, depression or even headache. These responses are quite frequent in the present competitive world. The aim of this review is to explore the effect of stress on gut microbiota. First, we summarize evidence of where the microbiota composition has changed as a response to a stressful situation, and thereby the effect of the stress response. Likewise, we review different interventions that can modulate microbiota and could modulate the stress according to the underlying mechanisms whereby the gut-brain axis influences stress. Finally, we review both preclinical and clinical studies that provide evidence of the effect of gut modulation on stress. In conclusion, the influence of stress on gut microbiota and gut microbiota on stress modulation is clear for different stressors, but although the preclinical evidence is so extensive, the clinical evidence is more limited. A better understanding of the mechanism underlying stress modulation through the microbiota may open new avenues for the design of therapeutics that could boost the pursued clinical benefits. These new designs should not only focus on stress but also on stress-related disorders such as anxiety and depression, in both healthy individuals and different populations.
Collapse
|
60
|
Gu F, Wu Y, Liu Y, Dou M, Jiang Y, Liang H. Lactobacillus casei improves depression-like behavior in chronic unpredictable mild stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota. Food Funct 2020; 11:6148-6157. [DOI: 10.1039/d0fo00373e] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L. casei improves depression-like behavior in stress-induced rats by the BDNF-TrkB signal pathway and the intestinal microbiota.
Collapse
Affiliation(s)
- Fang Gu
- College of Mechanical and Electronic Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Yanyan Wu
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| | - Ying Liu
- College of Basic Medicine
- Qingdao University
- Qingdao 266071
- China
| | - Mei Dou
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| | - Yushan Jiang
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| | - Hui Liang
- Department of Human Nutrition
- College of Public Health
- Qingdao University
- Qingdao 266071
- China
| |
Collapse
|
61
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Chen H, Huang S, Xiao T, Shang D, Wen Y. Bibliometric and Visual Analysis of Research on the Links Between the Gut Microbiota and Depression From 1999 to 2019. Front Psychiatry 2020; 11:587670. [PMID: 33488420 PMCID: PMC7819979 DOI: 10.3389/fpsyt.2020.587670] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: There is a crucial link between the gut microbiota and the host central nervous system, and the communication between them occurs via a bidirectional pathway termed the "microbiota-gut-brain axis." The gut microbiome in the modern environment has markedly changed in response to environmental factors. These changes may affect a broad range of host psychiatric disorders, such as depression, by interacting with the host through metabolic, immune, neural, and endocrine pathways. Nevertheless, the general aspects of the links between the gut microbiota and depression have not been systematically investigated through bibliometric analysis. Aim: This study aimed to analyze the current status and developing trends in gut microbiota research in the depression field through bibliometric and visual analysis. Methods: A total of 1,962 publications published between 1999 and 2019 were retrieved from the Web of Science Core Collection. CiteSpace (5.6 R5) was used to perform collaboration network analysis, co-citation analysis, co-occurrence analysis, and citation burst detection. Results: The number of publications has been rapidly growing since 2010. The collaboration network analysis revealed that the USA, University College Cork, and John F. Cryan were the most influential country, institute, and scholar, respectively. The most productive and co-cited journals were Brain Behavior and Immunity and Proceedings of the National Academy of Sciences of the United States of America, respectively. The co-citation analysis of references revealed that the most recent research focus was in the largest theme cluster, "cytokines," thus reflecting the important research foundation in this field. The co-occurrence analysis of keywords revealed that "fecal microbiota" and "microbiome" have become the top two research hotspots since 2013. The citation burst detection for keywords identified several keywords, including "Parkinson's disease," "microbiota-gut-brain axis," "microbiome," "dysbiosis," "bipolar disorder," "impact," "C reactive protein," and "immune system," as new research frontiers, which have currently ongoing bursts. Conclusions: These results provide an instructive perspective on the current research and future directions in the study of the links between the gut microbiota and depression, which may help researchers choose suitable cooperators or journals, and promote their research illustrating the underlying molecular mechanisms of depression, including its etiology, prevention, and treatment.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
62
|
Smith KS, Greene MW, Babu JR, Frugé AD. Psychobiotics as treatment for anxiety, depression, and related symptoms: a systematic review. Nutr Neurosci 2019; 24:963-977. [PMID: 31858898 DOI: 10.1080/1028415x.2019.1701220] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective: Altering the gut microflora may produce health benefits in individuals suffering from mood disorders. The purpose of this review was to evaluate the efficacy of probiotics, prebiotics, or synbiotics as a potential treatment for symptoms of depression, anxiety, and stress (as psychobiotics).Methods: Google Scholar, PubMed, PsychINFO, and Web of Science were utilized to identify and evaluate studies through October 31, 2019. Studies were included if subjects were evaluated for altered mood or stress levels at start of the study and consumed probiotics, prebiotics, and/or synbiotics for intervention.Results: Search results yielded 142 articles, while only 12 studies met all inclusion criteria. Nine of the 12 studies identified evaluated the efficacy of various probiotic strains, while only two evaluated synbiotics and one evaluated prebiotics. Six out of 12 studies found probiotics to reduce depression, while two studies found probiotics to reduce anxiety.Discussion: Translational research in this field is limited and further investigation of the efficacy of psychobiotics in mood disorders is warranted.
Collapse
Affiliation(s)
- Kristen S Smith
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Michael W Greene
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Andrew D Frugé
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| |
Collapse
|
63
|
|
64
|
Neijat M, Shirley RB, Welsher A, Barton J, Thiery P, Kiarie E. Growth performance, apparent retention of components, and excreta dry matter content in Shaver White pullets (5 to 16 week of age) in response to dietary supplementation of graded levels of a single strain Bacillus subtilis probiotic. Poult Sci 2019; 98:3777-3786. [PMID: 30839091 DOI: 10.3382/ps/pez080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Administered in adequate amounts, probiotics can be an alternative to antibiotic growth promoters in poultry production. This study evaluated dose response of a single strain of Bacillus subtilis (SSB, DSM29784) on growth performance, apparent retention (AR) of components, and excreta DM content in pullets. A basal corn-soybean meal diet was formulated to meet the specifications for grower (week 5 to 10) and developer (week 11 to 16) phases. In each phase, SSB was added to the basal diet to create 4 test diets: 0 (control, CON), 1.1E+08 (low; LSSB), 2.2E+08 (medium; MSSB), or 1.1E+09 (high; HSSB) CFU of SSB/kg of feed. All diets had TiO2 (0.5%) as a digestibility marker. A total of 720 day-old Shaver White chicks were placed in 48 cages (15 pullets per cage) and reared on a commercial antibiotic free diet for a 4-wk period. At the beginning of week 5, treatments were allocated based on cage BW (n = 12). Birds had free access to feed and water throughout. The BW, BW uniformity, feed intake (FI) and FCR were obtained weekly. Excreta was collected at the end of each phase for AR of DM, organic matter, CP, neutral detergent fiber, minerals, and AME, as well as excreta DM content. In response to SSB inclusion, BW improved in a linear (P < 0.005) and quadratic (P < 0.0001) manner in grower. FI decreased in a linear and quadratic pattern (P < 0.05, week 8 to 10) in grower, and linearly (P < 0.05) across the developer phase. Overall FCR improved in linear and quadratic pattern (P < 0.01) in the grower phase. In both the phases, AME improved in a quadratic pattern (P < 0.05). Inclusion of SSB had a linear reduction (P < 0.0001) in excreta moisture content in the grower phase. In summary, these results demonstrate that B. subtilis probiotic improved performance through enhanced nutrient utilization and reduced excreta moisture content indicating improved pullet gut health.
Collapse
Affiliation(s)
- M Neijat
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - A Welsher
- Adisseo USA Inc. Alpharetta, GA 30022
| | - J Barton
- Adisseo USA Inc. Alpharetta, GA 30022
| | - P Thiery
- Adisseo France, SAS, 92160 Antony, France
| | - E Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
65
|
Wang Q, Jia M, Zhao Y, Hui Y, Pan J, Yu H, Yan S, Dai X, Liu X, Liu Z. Supplementation of Sesamin Alleviates Stress-Induced Behavioral and Psychological Disorders via Reshaping the Gut Microbiota Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12441-12451. [PMID: 31674783 DOI: 10.1021/acs.jafc.9b03652] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sesamin, a lignan from sesame seed, has been reported to attenuate chronic mild stress-induced depressive-like behaviors. Gut microbiota play pivotal roles in mediating psychological behaviors by regulating gut barrier integrity and systemic inflammatory responses. Here, we found that oral sesamin administration (50 mg/kg·bodyweight/day) significantly attenuated depressive, aversive, repetitive, and anxiety-like behaviors in a long-term multiple nonsocial stress-treated mice model. Sesamin inhibited stress-induced gut barrier integrity damage, reduced circulating lipopolysaccharide (LPS) levels, and suppressed neuroinflammatory responses. Moreover, sesamin treatment also restructured the gut microbiome by enhancing the relative abundances of Bacteroidales and S24-7. The correlation analysis indicated that the microbiota composition changes were strongly correlated with behavioral disorders, serotonin, norepinephrine, and LPS levels. In conclusion, sesamin has preventive effects on stress-induced behavioral and psychological disorders, which might be highly related to the reshaped microbiota composition. This study provides a clue for understanding the systemic mechanism of anti-depression effects of sesamin.
Collapse
Affiliation(s)
- Qianxu Wang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Mengzhen Jia
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Yihang Zhao
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Yan Hui
- Department of Food Science , University of Copenhagen , Copenhagen 1958 , Denmark
- BGI Institute of Applied Agriculture , BGI-Shenzhen , Shenzhen 518120 , China
| | - Junru Pan
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Hongfei Yu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Shikai Yan
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture , BGI-Shenzhen , Shenzhen 518120 , China
| | - Xuebo Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| | - Zhigang Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , China
| |
Collapse
|
66
|
Khayyatzadeh SS, Firouzi S, Askari M, Mohammadi F, Nikbakht-Jam I, Ghazimoradi M, Mohammadzadeh M, Ferns GA, Ghayour-Mobarhan M. Dietary intake of carotenoids and fiber is inversely associated with aggression score in adolescent girls. Nutr Health 2019; 25:203-208. [PMID: 31025598 DOI: 10.1177/0260106019844689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Violence and aggression are considered to be important public health issues. There is limited data on the association between dietary intake and aggression score. AIM We aimed to examine the relationship between the dietary intake and aggressive behavior in Iranian adolescent girls. METHODS The study was carried out among 670 girls aged 12-18 years. A valid and reliable food frequency questionnaire (FFQ) containing 147 food items was used to estimate dietary intake of the study participants. Aggression score was determined using a validated Persian version of the Buss-Perry questionnaire. We analyzed our data using crude and adjusted models. RESULTS Participants in the fourth quartile of aggression score had significantly higher energy intake compared with those in the first quartile (2808±949 vs 2629±819, p-trend = 0.01). Dietary intakes of soluble fiber (0.42±0.37 vs 0.35±0.29, p = 0.03) and insoluble fiber (2.17±1.65 vs 1.82±1.36, p = 0.02) were significantly higher in the first quartile than in the fourth quartile. In addition, the strongest negative correlations were found between aggression score and dietary soluble fiber (p = 0.003) and insoluble fiber intake (p = 0.001). Moreover, aggression score was negatively correlated with dietary α-carotene (p = 0.02) and β-carotene (p = 0.04) intake. These associations remained significant even after adjustment for potential confounders. CONCLUSIONS Our results indicated that dietary intakes of fiber, α-carotene, and β-carotene were inversely associated with aggression score. Moreover, a significant positive association was observed between energy intake and aggression score in adolescent girls.
Collapse
Affiliation(s)
- Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Safieh Firouzi
- Department of Nutrition, Mashhad University of Medical Sciences, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Iran
| | - Maral Askari
- Student Research Committee, Mashhad University of Medical Sciences, Iran
| | - Farzane Mohammadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Iran
| | | | - Maryam Ghazimoradi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Iran
| | | | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Iran
- Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Iran
| |
Collapse
|
67
|
Nishida K, Sawada D, Kuwano Y, Tanaka H, Rokutan K. Health Benefits of Lactobacillus gasseri CP2305 Tablets in Young Adults Exposed to Chronic Stress: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019; 11:nu11081859. [PMID: 31405122 PMCID: PMC6723420 DOI: 10.3390/nu11081859] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Short-term administration of Lactobacillus gasseri CP2305 improves stress-associated symptoms and clinical symptoms in healthy young adults and in patients with irritable bowel syndrome, respectively. We evaluated the efficacy and health benefits of the long-term use of a tablet containing heat-inactivated, washed Lactobacillus gasseri CP2305 (CP2305) in healthy young adults. Sixty Japanese medical students (41 men and 19 women) preparing for the national examination for medical practitioners ingested CP2305-containing or placebo tablets once daily for 24 weeks. Intake of the CP2305 tablet significantly reduced anxiety and sleep disturbance relative to placebo, as quantitated by the Spielberger State-Trait Anxiety Inventory and the Pittsburgh Sleep Quality Index. Single-channel sleep electroencephalograms show that CP2305 significantly shortened sleep latency and wake time after sleep onset and increased the delta power ratio in the first sleep cycle. CP2305 also significantly lowered salivary chromogranin A levels compared with placebo. Furthermore, 16S rRNA gene sequencing of participant feces demonstrated that CP2305 administration attenuated the stress-induced decline of Bifidobacterium spp. and the stress-induced elevation of Streptococcus spp. We conclude that the long-term use of CP2305-containing tablets may improve the mental state, sleep quality, and gut microbiota of healthy adults under stressful conditions.
Collapse
Affiliation(s)
- Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan.
| | - Daisuke Sawada
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd., 11-10, 5 Chome, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-0206, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Hiroki Tanaka
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
68
|
Chahwan B, Kwan S, Isik A, van Hemert S, Burke C, Roberts L. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J Affect Disord 2019; 253:317-326. [PMID: 31078831 DOI: 10.1016/j.jad.2019.04.097] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Depression is the leading cause of disability worldwide; with evidence suggesting that decreased gut barrier function and inflammation are correlated with depressive symptoms. We conducted a clinical trial to determine the effect of consumption of probiotic supplements (Winclove's Ecologic® Barrier) on depressive symptoms in a sample of participants with mild to severe depression. METHOD 71 participants were randomly allocated to either probiotic or placebo, which was, consumed daily over eight weeks. Pre- and post-intervention measures of symptoms and vulnerability markers of depression as well as gut microbiota composition were compared. Clinical trial participants were also compared on psychological variables and gut microbiota composition to a non-depressed group (n = 20). RESULTS All clinical trial participants demonstrated improvement in symptoms, suggesting non-specific therapeutic effects associated with weekly monitoring visits. Participants in the probiotic group demonstrated a significantly greater reduction in cognitive reactivity compared with the placebo group, particularly in the mild/moderate subgroup. Probiotics did not significantly alter the microbiota of depressed individuals, however, a significant correlation was found between Ruminococcus gnavus and one depression metric. LIMITATIONS There was a high attrition rate, which may be attributed to weekly monitoring visits. Additionally, modulation of the gut microbiota may need more specific testing to distinguish subtle changes. CONCLUSIONS While microbiota composition was similar between all groups, probiotics did affect a psychological variable associated with susceptibility to depression. Further research is needed to investigate how probiotics can be utilised to modify mental wellbeing, and whether they can act as an adjunct to existing treatments.
Collapse
Affiliation(s)
- Bahia Chahwan
- School of Life Sciences, University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia
| | - Sophia Kwan
- Discipline of Clinical Psychology, Graduate School of Health, University of Technology Sydney, Australia
| | - Ashling Isik
- Discipline of Clinical Psychology, Graduate School of Health, University of Technology Sydney, Australia
| | | | - Catherine Burke
- School of Life Sciences, University of Technology Sydney, PO Box 123 Broadway, NSW 2007, Australia.
| | - Lynette Roberts
- Discipline of Clinical Psychology, Graduate School of Health, University of Technology Sydney, Australia.
| |
Collapse
|
69
|
Hao Z, Wang W, Guo R, Liu H. Faecalibacterium prausnitzii (ATCC 27766) has preventive and therapeutic effects on chronic unpredictable mild stress-induced depression-like and anxiety-like behavior in rats. Psychoneuroendocrinology 2019; 104:132-142. [PMID: 30844607 DOI: 10.1016/j.psyneuen.2019.02.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 01/19/2023]
Abstract
The realization that the microbiota-gut-brain axis plays a critical role in health and disease,including neuropsychiatric disorders, is rapidly advancing.An abundance of preclinical studies have shown that psychobiotics acting via the brain-gut-axis can affect brain development, function and behavior. Here we tested whether potential psychobiotics Faecalibacterium prausnitzii (ATCC 27766) has anxiolytic and antidepressant-like effects and reverse the impact of chronic unpredictable mild stress (CUMS) in rats. The experiment was divided into two phases, the first stage was CUMS procedure period and the second stage was convalescence period. SD male rats were administered Faecalibacterium prausnitzii for 4 weeks prior to testing during each period. Behavior, growth status, SCFAs produced, plasma cytokine, endocrinology and bone mineral density (BMD) were assessed. Our findings indicate that the administration of F. prausnitzii had preventive and therapeutic effects on CUMS-induced depression-like and anxiety-like behavior. In addition, F. prausnitzii administration could significantly prevent the reduction of the whole-body, femur and tibia BMD during the recovery phase. Moreover, the growth status of rats fed the F. prausnitzii was better than the rats by CUMS. And F. prausnitzii administration led to higher levels of SCFAs in the cecum and higher levels of cytokines interleukin-10 (IL-10) in the plasma, prevented the effects on corticosterone, C-reaction protein and cytokines interleukin-6 (IL-6) release induced by CUMS, changes that were associated with the effects seen on behavior. These results provide further evidence that gut microflora play a role in anxiety and depression. Subject to the confirmation of these results, probiotics might offer a useful novel therapeutic approach to neuropathological disorders and/or as adjunct therapies in psychiatric disorders and support the recent broadening of the definition of psychobiotic. Finally, this study supports F. prausnitzii has significant potential as a psychobiotic.
Collapse
Affiliation(s)
- Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 102402, China
| | - Wei Wang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 102402, China
| | - Rong Guo
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 102402, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 102402, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 100083, China; International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Room 516, YiFu Building, 37# XueYuan, Haidian District, Beijing, 100083, China.
| |
Collapse
|
70
|
Komanduri M, Gondalia S, Scholey A, Stough C. The microbiome and cognitive aging: a review of mechanisms. Psychopharmacology (Berl) 2019; 236:1559-1571. [PMID: 31055629 DOI: 10.1007/s00213-019-05231-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Abstract
Gut microbiota plays an intrinsic role in communication between the gut and the brain and is capable of influencing the host brain by producing neurotransmitters and neurotrophins, the modulation of inflammatory processes amongst other key mechanisms. Increased age is also associated with changes in these key biological processes and impairments in a range of cognitive processes. We hypothesise several mechanisms in which gut microbiota may modulate changes in cognitive function with age. In this review, we discuss issues related to the measurement of cognition in the elderly and in particular outline a standardised model of cognition that could be utilised to better understand cognitive outcomes in future studies examining the relationship between gut microbiota and cognition in the elderly. We then review biological processes such as oxidative stress and inflammation which are related to cognitive changes with age and which are also influenced by our gut microbiota. Finally, we outline other potential mechanisms by which the gut microbiota may influence cognition.
Collapse
Affiliation(s)
- Mrudhula Komanduri
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Victoria, Australia.
| |
Collapse
|
71
|
Nadeem I, Rahman MZ, Ad-Dab'bagh Y, Akhtar M. Effect of probiotic interventions on depressive symptoms: A narrative review evaluating systematic reviews. Psychiatry Clin Neurosci 2019; 73:154-162. [PMID: 30499231 DOI: 10.1111/pcn.12804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 12/12/2022]
Abstract
Depression is one of the most prevalent mental illnesses and is often associated with various other medical disorders. Since the 1980s, the primary pharmacological treatment has been antidepressants, but due to the recent discovery of the association between the gut microbiome and mental health, probiotics have been proposed as an adjunctive or alternate treatment. In this narrative review, we aim to provide a holistic perspective by synthesizing and evaluating existing evidence, discussing key biological mechanisms, exploring the history of probiotic use, and appreciating the influence of modern diet on mental health. Five online databases were searched for relevant studies up to December 2017. Systematic reviews that included randomized controlled trials assessing the efficacy of probiotics in the treatment of depressive symptoms were included. Seven systematic reviews met the inclusion criteria. Three of these reviews conducted meta-analyses, out of which, two concluded that probiotics improved depressive symptoms in the sample population. Out of the four reviews that conducted qualitative analysis, three reviews concluded that probiotics have the potential to be used as a treatment. Due to the differences in clinical trials, a definitive effect of probiotics on depressive symptoms cannot be concluded. Nonetheless, probiotics seem to potentially produce a significant therapeutic effect for subjects with pre-existing depressive symptoms. Further studies are warranted for definitive conclusions.
Collapse
Affiliation(s)
- Ibrahim Nadeem
- Faculty of Bachelor of Health Sciences, McMaster University, Hamilton, Canada
| | - Mohammed Z Rahman
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Yasser Ad-Dab'bagh
- Mental Health Department, Neuroscience Center, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia.,Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mahmood Akhtar
- Faculty of Bachelor of Health Sciences, McMaster University, Hamilton, Canada.,Mental Health Department, Neuroscience Center, King Fahad Specialist Hospital-Dammam, Dammam, Saudi Arabia
| |
Collapse
|
72
|
Xu Z, Wang C, Dong X, Hu T, Wang L, Zhao W, Zhu S, Li G, Hu Y, Gao Q, Wan J, Liu Z, Sun J. Chronic alcohol exposure induced gut microbiota dysbiosis and its correlations with neuropsychic behaviors and brain BDNF/Gabra1 changes in mice. Biofactors 2019; 45:187-199. [PMID: 30417952 DOI: 10.1002/biof.1469] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022]
Abstract
Alcohol addiction can cause brain dysfunction and many other diseases. Recently, increasing evidences have suggested that gut microbiota plays a vital role in regulating alcohol addiction. However, the exact mechanism has not yet been elucidated. Here, our study focused on the intestinal bacteria alternations and their correlations with alcohol-induced neuropsychic behaviors. When consuming alcohol over 3-week period, animals gradually displayed anxiety/depression-like behaviors. Moreover, 16S rRNA sequencing showed significant intestinal microflora dysbiosis and distinct community composition. Actinobacteria and Cyanobacteria were both increased at the phylum level. At the genus level, Adlercreutzia spp., Allobaculum spp., and Turicibacter spp. were increased whereas Helicobacter spp. was decreased. We also found that the distances in inner zone measured by open field test and 4% (v/v) alcohol preference percentages were significantly correlated with Adlercreutzia spp. The possible mechanisms were explored and we found the expression of brain-derived neurotrophic factor (BDNF) and α1 subunit of γ-aminobutyric acid A receptor (Gabra1) were both decreased in prefrontal cortex (PFC). Especially, further correlation analyses demonstrated that decreased Adlercreutzia spp. was positively correlated with alcohol preference and negatively correlated with anxiety-like behavior and BDNF/Gabra1 changes in PFC. Similar relationships were observed between Allobaculum spp. and alcohol preference and BDNF changes. Helicobacter spp. and Turicibacter spp. were also correlated with PFC BDNF and hippocampus Gabra1 level. Taken together, our study showed that gut microbiota dysbiosis during chronic alcohol exposure was closely correlated with alcohol-induced neuropsychic behaviors and BDNF/Gabra1 expression, which provides a new perspective for understanding underlying mechanisms in alcohol addiction. © 2018 BioFactors, 45(2):187-199, 2019.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Can Wang
- School of Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoguang Dong
- Department of Orthopedic, Osteological Hospital of Yishengjian, Qingdao, Shandong, China
| | - Tao Hu
- Department of Orthopedic, Osteological Hospital of Yishengjian, Qingdao, Shandong, China
| | - Lingling Wang
- Department of Hematology, School of Nursing Shandong University, Jinan, Shandong, China
| | - Wenbo Zhao
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Shaowei Zhu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Guibao Li
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Yanlai Hu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Qing Gao
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Jiale Wan
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Zengxun Liu
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| | - Jinhao Sun
- Department of Anatomy, Shandong University School of Basic medicine, Jinan, Shandong, China
| |
Collapse
|
73
|
Mathias M. Autointoxication and historical precursors of the microbiome-gut-brain axis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2018; 29:1548249. [PMID: 30510497 PMCID: PMC6263106 DOI: 10.1080/16512235.2018.1548249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
This article focuses on autointoxication, a discredited medical theory from the late nineteenth century that provides important points of reflection for today's research on the role of microbes in the human gut for mental health. It considers how the theory of autointoxication, which came into great prominence amongst physicians and the general public worldwide, fell from grace by the middle of the twentieth century, and briefly asks why studies of the human microbiome are now back in vogue. It departs from earlier articles on the topic firstly by arguing that autointoxication theory was especially prevalent in France, and secondly by focusing on the application of this theory to mental health. Bringing to light medical treatises and theses from this period which have so far remained unexamined, it shows that examining the development and reception of medical theories form the past can help us today in understanding both the pitfalls and promise of research in this area.
Collapse
Affiliation(s)
- Manon Mathias
- School of Modern Languages and Cultures, University of Glasgow, Glasgow, UK
| |
Collapse
|
74
|
Lombardi VC, De Meirleir KL, Subramanian K, Nourani SM, Dagda RK, Delaney SL, Palotás A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J Nutr Biochem 2018; 61:1-16. [PMID: 29886183 PMCID: PMC6195483 DOI: 10.1016/j.jnutbio.2018.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota and, in turn, the mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA; University of Nevada, Reno, School of Medicine, Department of Pathology, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA.
| | - Kenny L De Meirleir
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Krishnamurthy Subramanian
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Sam M Nourani
- University of Nevada, Reno, School of Medicine, Department of Internal Medicine, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA; Advanced Therapeutic, General Gastroenterology & Hepatology Digestive Health Associates, Reno, NV, USA.
| | - Ruben K Dagda
- University of Nevada, Reno, School of Medicine, Department of Pharmacology, 1664 N. Virginia St. MS 0318, Reno, NV, 89557, USA.
| | | | - András Palotás
- Kazan Federal University, Institute of Fundamental Medicine and Biology, (Volga Region) 18 Kremlyovskaya St., Kazan, 420008, Republic of Tatarstan, Russian Federation; Asklepios-Med (private medical practice and research center), Kossuth Lajos sgt. 23, Szeged, H-6722, Hungary.
| |
Collapse
|
75
|
Kato K, Ishida S, Tanaka M, Mitsuyama E, Xiao JZ, Odamaki T. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS One 2018; 13:e0206189. [PMID: 30339693 PMCID: PMC6195297 DOI: 10.1371/journal.pone.0206189] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that Japanese people exhibit a higher abundance of Bifidobacterium compared to people from other countries. Among the possible factors affecting the gut microbiota composition, an association of functional lactase gene variants with a higher abundance of Bifidobacterium in the gut has been proposed in some reports. However, no Japanese subjects were included in these studies. In this study, we investigated the possible contribution of functional lactase loci to the high abundance of Bifidobacterium in Japanese populations. Based on a data analysis assessing 1,068 healthy Japanese adults, a number of subjects is at least seven times greater than that reported in available online data. all subjects possessed CC genotype at rs4988235 and the GG at rs182549, which are associated with low lactase activity. We observed a positive correlation between dairy product intake and Bifidobacterium abundance in the gut. Considering previous reports, which revealed that four additional functional lactase loci, rs145946881, rs41380347, rs41525747 and rs869051967 (ss820486563), are also associated with low lactase activity in Japanese people, our findings imply the possible contribution of host genetic variation-associated low lactase activity to the high abundance of Bifidobacterium in the Japanese population.
Collapse
Affiliation(s)
- Kumiko Kato
- Next Generation Science Institute, Morinaga Milk Industry Co., LTD., Kanagawa, Japan
- * E-mail:
| | - Sachiko Ishida
- Business Planning Group, Next Generation Science Institute, DeNA Life Science, Inc., Tokyo, Japan
| | | | - Eri Mitsuyama
- Next Generation Science Institute, Morinaga Milk Industry Co., LTD., Kanagawa, Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., LTD., Kanagawa, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., LTD., Kanagawa, Japan
| |
Collapse
|
76
|
Xu N, Fan W, Zhou X, Liu Y, Ma P, Qi S, Gu B. Probiotics decrease depressive behaviors induced by constipation via activating the AKT signaling pathway. Metab Brain Dis 2018; 33:1625-1633. [PMID: 29948655 DOI: 10.1007/s11011-018-0269-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022]
Abstract
Chronic constipation is often accompanied by emotional disorders such as depression and anxiety. The aim of this study was to determine whether administration of a multispecies probiotic can decrease depressive behaviors through the gut-brain axis and identify any underlying mechanisms. A mouse model of constipation induced by loperamide (5 mg·kg-1,i.p.) was used. For that purpose, 36 ICR male mice were divided into three groups: control, constipation and probiotic groups. The probiotic group received treatment with a probiotic once per day for 14 days via a gavage. All other groups were given an equal volume of normal saline. The fecal parameters and intestinal transit ratio were recorded. The forced swimming test and tail suspension test were used to detect changes in depressive behaviors. Total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) levels were measured by assay kits. We also detected neuronal survival, as well as phosphorylated Ser/Thr protein kinase (p-AKT), Bcl-2, Bcl-2 associated X protein (Bax) and cleaved caspase-3 levels in the hippocampus. The results showed that administration of a probiotic could ameliorate depressive behaviors and relieve neuronal cell injury in the hippocampal CA3 regions. Moreover, probiotic treatment decreased MDA levels and increased SOD activity. Furthermore, probiotic administration increased p-AKT and Bcl-2 levels in the hippocampus of the constipated mice, while decreasing the concentrations of Bax and cleaved caspase-3, so as to inhibit the neural apoptosis. In the present study, we confirm that probiotics can alleviate depression induced by constipation through protecting neuronal health via activation of the AKT signaling pathway.
Collapse
Affiliation(s)
- Nana Xu
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Wenting Fan
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Yaping Liu
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Ping Ma
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China
| | - Suhua Qi
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
| | - Bing Gu
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| |
Collapse
|
77
|
Clostridium butyricum MIYAIRI 588 as Adjunctive Therapy for Treatment-Resistant Major Depressive Disorder: A Prospective Open-Label Trial. Clin Neuropharmacol 2018; 41:151-155. [DOI: 10.1097/wnf.0000000000000299] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
A Pilot Randomized Controlled Trial to Explore Cognitive and Emotional Effects of Probiotics in Fibromyalgia. Sci Rep 2018; 8:10965. [PMID: 30026567 PMCID: PMC6053373 DOI: 10.1038/s41598-018-29388-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
It has recently been found that microbes in the gut may regulate brain processes through the gut microbiota–brain axis, which modulates affection, motivation and higher cognitive functions. According to this finding, the use of probiotics may be a potential treatment to improve physical, psychological and cognitive status in clinical populations with altered microbiota balance such as those with fibromyalgia (FMS). Thus, the aim of the present pilot study with a double-blind, placebo-controlled, randomised design was to test whether a multispecies probiotic may improve cognition, emotional symptoms and functional state in a sample of patients diagnosed with FMS. Pain, impact of FMS, quality of life, anxiety and depressive symptoms were measured during the pre- and post-intervention phases; participants also completed two computerised cognitive tasks to assess impulsive choice and decision-making. Finally, urinary cortisol concentration was determined. To our knowledge, this is the first study that explore the effect of a multispecies probiotic in FMS patients. Our results indicated that probiotics improved impulsivity and decision-making in these patients. However, more research is needed to further explore the potential effects of probiotics on other cognitive functions affected in FMS as well as in other clinical populations.
Collapse
|
79
|
Gao K, Pi Y, Mu CL, Peng Y, Huang Z, Zhu WY. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J Neurochem 2018. [DOI: 10.1111/jnc.14333] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kan Gao
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Yu Pi
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Chun-Long Mu
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Yu Peng
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Zan Huang
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| | - Wei-Yun Zhu
- Laboratory of Gastrointestinal Microbiology; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health; National Center for International Research on Animal Gut Nutrition; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing Jiangsu China
| |
Collapse
|
80
|
Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing Depression from the Microbiota⁻Gut⁻Brain Axis. Int J Mol Sci 2018; 19:ijms19061592. [PMID: 29843470 PMCID: PMC6032096 DOI: 10.3390/ijms19061592] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Major depression is one of the leading causes of disability, morbidity, and mortality worldwide. The brain⁻gut axis functions are disturbed, revealed by a dysfunction of the brain, immune system, endocrine system, and gut. Traditional depression treatments all target the brain, with different drugs and/or psychotherapy. Unfortunately, most of the patients have never received any treatment. Studies indicate that gut microbiota could be a direct cause for the disorder. Abnormal microbiota and the microbiota⁻gut⁻brain dysfunction may cause mental disorders, while correcting these disturbance could alleviate depression. Nowadays, the gut microbiota modulation has become a hot topic in treatment research of mental disorders. Depression is closely related with the health condition of the brain⁻gut axis, and maintaining/restoring the normal condition of gut microbiota helps in the prevention/therapy of mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
81
|
McVey Neufeld KA, Kay S, Bienenstock J. Mouse Strain Affects Behavioral and Neuroendocrine Stress Responses Following Administration of Probiotic Lactobacillus rhamnosus JB-1 or Traditional Antidepressant Fluoxetine. Front Neurosci 2018; 12:294. [PMID: 29867313 PMCID: PMC5952003 DOI: 10.3389/fnins.2018.00294] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Currently, there is keen interest in the development of alternative therapies in the treatment of depression. Given the explosion of research focused on the microbiota-gut-brain axis, consideration has turned to the potential of certain probiotics to improve patient outcomes for those suffering from mood disorders. Here we examine the abilities of a known antidepressant, fluoxetine, and the probiotic Lactobacillus rhamnosus JB-1™, to attenuate responses to two established criteria for depressive-like behavior in animal models, the tail suspension test (TST) and the corticosterone response to an acute restraint stressor. We examine two different strains of mice known to differ in the extent to which they express both anxiety-like behavior and measures of despair—BALB/c and Swiss Webster—with respectively high and normal behavioral phenotypes for each. While adult male BALB/c mice responded with increased antidepressive-like behavior to both fluoxetine and L. rhamnosus JB-1 in both the TST and the corticosterone stress response, SW mice did not respond to either treatment as compared to controls. These findings highlight the importance of investigating putative antidepressants in mouse strains known to express face validity for some markers of depression. Clinical studies examining the activity of L. rhamnosus JB-1 in patients suffering from mood disorders are warranted, as well as further pre-clinical work examining how interactions between host genotype and intestinal microbial alterations may impact behavioral responses. This study adds to the literature supporting the possibility that modifying the intestinal microbiota via probiotics represents a promising potential therapeutic breakthrough in the treatment of psychiatric disease.
Collapse
Affiliation(s)
- Karen-Anne McVey Neufeld
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Brain-Body Institute, St. Joseph's Healthcare at McMaster University, Hamilton, ON, Canada
| | - Sebastian Kay
- Brain-Body Institute, St. Joseph's Healthcare at McMaster University, Hamilton, ON, Canada
| | - John Bienenstock
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Brain-Body Institute, St. Joseph's Healthcare at McMaster University, Hamilton, ON, Canada
| |
Collapse
|
82
|
Dysbiotic drift and biopsychosocial medicine: how the microbiome links personal, public and planetary health. Biopsychosoc Med 2018; 12:7. [PMID: 29743938 PMCID: PMC5932796 DOI: 10.1186/s13030-018-0126-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
The emerging concept of planetary health emphasizes that the health of human civilization is intricately connected to the health of natural systems within the Earth’s biosphere; here, we focus on the rapidly progressing microbiome science - the microbiota-mental health research in particular - as a way to illustrate the pathways by which exposure to biodiversity supports health. Microbiome science is illuminating the ways in which stress, socioeconomic disadvantage and social polices interact with lifestyle and behaviour to influence the micro and macro-level biodiversity that otherwise mediates health. Although the unfolding microbiome and mental health research is dominated by optimism in biomedical solutions (e.g. probiotics, prebiotics), we focus on the upstream psychosocial and ecological factors implicated in dysbiosis; we connect grand scale biodiversity in the external environment with differences in human-associated microbiota, and, by extension, differences in immune function and mental outlook. We argue that the success of planetary health as a new concept will be strengthened by a more sophisticated understanding of the ways in which individuals develop emotional connections to nature (nature relatedness) and the social policies and practices which facilitate or inhibit the pro-environmental values that otherwise support personal, public and planetary health.
Collapse
|
83
|
Dou J, Bennett MR. Synthetic Biology and the Gut Microbiome. Biotechnol J 2018; 13:e1700159. [PMID: 28976641 PMCID: PMC5882594 DOI: 10.1002/biot.201700159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/23/2017] [Indexed: 12/19/2022]
Abstract
The gut microbiome plays a crucial role in maintaining human health. Functions performed by gastrointestinal microbes range from regulating metabolism to modulating immune and nervous system development. Scientists have attempted to exploit this importance through the development of engineered probiotics that are capable of producing and delivering small molecule therapeutics within the gut. However, existing synthetic probiotics are simplistic and fail to replicate the complexity and adaptability of native homeostatic mechanisms. In this review, the ways in which the tools and approaches of synthetic biology have been applied to improve the efficacy of therapeutic probiotics, and the ways in which they might be applied in the future is discussed. Simple devices, such as a bistable switches and integrase memory arrays, have been successfully implemented in the mammalian gut, and models for targeted delivery in this environment have also been developed. In the future, it will be necessary to introduce concepts such as logic-gating and biocontainment mechanisms into synthetic probiotics, as well as to expand the collection of relevant biosensors. Ideally, this will bring us closer to a reality in which engineered therapeutic microbes will be able to accurately diagnose and effectively respond to a variety of disease states.
Collapse
Affiliation(s)
- Jennifer Dou
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Matthew R. Bennett
- Department of Biosciences, Rice University, Houston, TX 77005
- Department of Bioengineering, Rice University, Houston, TX 77005
| |
Collapse
|
84
|
Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, Sanz Y. Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Front Neurosci 2018; 12:155. [PMID: 29615850 PMCID: PMC5864897 DOI: 10.3389/fnins.2018.00155] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity continues to be one of the major public health problems due to its high prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic disorders but also mood and cognitive disorders. Obese subjects often show deficits in memory, learning and executive functions compared to normal weight subjects. Epidemiological studies also indicate that obesity is associated with a higher risk of developing depression and anxiety, and vice versa. These associations between pathologies that presumably have different etiologies suggest shared pathological mechanisms. Gut microbiota is a mediating factor between the environmental pressures (e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the cross-link between those pathologies. Westernized dietary patterns are known to be a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the gut microbiota; this, in turn, seems to contribute to obesity-related complications. Experimental studies in animal models and, to a lesser extent, in humans suggest that the obesity-associated microbiota may contribute to the endocrine, neurochemical and inflammatory alterations underlying obesity and its comorbidities. These include dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates current knowledge about the role and mode of action of the gut microbiota in the cross-link between energy metabolism, mood and cognitive function.
Collapse
Affiliation(s)
- Ana Agustí
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria P García-Pardo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Inmaculada López-Almela
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Isabel Campillo
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Marina Romaní-Pérez
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology and Nutrition Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
85
|
Schachter J, Martel J, Lin CS, Chang CJ, Wu TR, Lu CC, Ko YF, Lai HC, Ojcius DM, Young JD. Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav Immun 2018; 69:1-8. [PMID: 28888668 DOI: 10.1016/j.bbi.2017.08.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Depression is a mental disorder associated with environmental, genetic and psychological factors. Recent studies indicate that chronic neuro-inflammation may affect brain physiology and alter mood and behavior. Consumption of a high-fat diet leads to obesity and chronic systemic inflammation. The gut microbiota mediates many effects of a high-fat diet on human physiology and may also influence the mood and behavior of the host. We review here recent studies suggesting the existence of a link between obesity, the gut microbiota and depression, focusing on the mechanisms underlying the effects of a high-fat diet on chronic inflammation and brain physiology. This body of research suggests that modulating the composition of the gut microbiota using prebiotics and probiotics may produce beneficial effects on anxiety and depression.
Collapse
Affiliation(s)
- Julieta Schachter
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal de Rio de Janeiro, 21941-902, 373 Avenida Carlos Chagas Filho, Cidade Universitária - Ilha do Fundão, Rio de Janeiro, Brazil; Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan
| | - Chuan-Sheng Lin
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Tsung-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, 510 Zhong-Zheng Street, New Taipei City 24205, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Chang Gung Biotechnology Corporation, 201 Tung-Hua North Road, Taipei 10508, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Research Center of Bacterial Pathogenesis, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, 261 Wen-Hua First Road, Taoyuan 33303, Taiwan; Graduate Institute of Health Industry and Technology, College of Human Ecology, Chang Gung University of Science and Technology, 261 Wen-Hua First Road, Taoyuan 33303, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, 155 Fifth Street, San Francisco, CA 94103, USA
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, 259 Wen-Hua First Road, Taoyuan 33302, Taiwan; Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Taoyuan 33305, Taiwan; Chang Gung Biotechnology Corporation, 201 Tung-Hua North Road, Taipei 10508, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, 84 Gungjuan Road, New Taipei City 24301, Taiwan; Laboratory of Cellular Physiology and Immunology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
86
|
Abstract
Gut microbiomes may have a significant impact on mood and cognition, which is leading experts towards a new frontier in neuroscience. Studies have shown that increase in the amount of good bacteria in the gut can curb inflammation and cortisol level, reduces symptoms of depression and anxiety, lowers stress reactivity, improves memory and even lessens neuroticism and social anxiety. This shows that, probably the beneficial gut bacteria or probiotics function mechanistically as delivery vehicles for neuroactive compounds. Thus, a psychobiotic is a live organism, when ingested in adequate amounts, produces a health benefit in patients suffering from psychiatric illness. Study of these novel class of probiotics may open up the possibility of rearrangement of intestinal microbiota for effective management of various psychiatric disorders.
Collapse
Affiliation(s)
- Snigdha Misra
- a Department of Nutrition and Dietetics, School of Health Sciences , International Medical University , Kuala Lumpur , Malaysia
| | - Debapriya Mohanty
- b Department of Microbiology , Centre for Post Graduate Studies, Orissa University of Agriculture and Technology , Bhubaneswar , Odisha , India
| |
Collapse
|
87
|
O'Hagan C, Li JV, Marchesi JR, Plummer S, Garaiova I, Good MA. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats. Neurobiol Learn Mem 2017; 144:36-47. [DOI: 10.1016/j.nlm.2017.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
|
88
|
Katzman MA, Logan AC. Quo Vadis, Probiotics? Human Research Supports Further Study of Beneficial Microbes in Mental Health. EBioMedicine 2017; 24:14-15. [PMID: 28958605 PMCID: PMC5652133 DOI: 10.1016/j.ebiom.2017.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Martin A Katzman
- Clinic Director, Stress Trauma Anxiety Rehabilitation and Treatment (START) Clinic for Mood and Anxiety Disorders, 32 Park Road, Toronto, ON M4W 2N4, Canada; Department of Psychiatry, Northern Ontario School of Medicine, Canada; Department of Psychology, Adler Graduate Professional School, Canada; Department of Psychology, Lakehead University, Canada; Chair, Scientific Advisory Board, Anxiety Disorders Association of Canada/Association (ADAC/ACTA), Canada; Treasurer, American Professional Society of ADHD and Related Disorders (APSARD), United States.
| | - Alan C Logan
- FLAME Global Network, Research Group of the Worldwide Universities Network (WUN), 6010 Park Ave, Suite #4081, West New York, NJ 07093, United States.
| |
Collapse
|
89
|
Agusti A, Moya-Pérez A, Campillo I, Montserrat-de la Paz S, Cerrudo V, Perez-Villalba A, Sanz Y. Bifidobacterium pseudocatenulatum CECT 7765 Ameliorates Neuroendocrine Alterations Associated with an Exaggerated Stress Response and Anhedonia in Obese Mice. Mol Neurobiol 2017; 55:5337-5352. [PMID: 28921462 DOI: 10.1007/s12035-017-0768-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023]
Abstract
Obesity, besides being a problem of metabolic dysfunction, constitutes a risk factor for psychological disorders. Experimental models of diet-induced obesity have revealed that obese animals are prone to anxious and depressive-like behaviors. The present study aimed to evaluate whether Bifidobacterium pseudocatenulatum CECT 7765 could reverse the neurobehavioral consequences of obesity in a high-fat diet (HFD) fed mouse model via regulation of the gut-brain axis. Adult male wild-type C57BL-6 mice were fed a standard diet or HFD, supplemented with either placebo or the bifidobacterial strain for 13 weeks. Behavioral tests were performed, and immune and neuroendocrine parameters were analyzed including leptin and corticosterone and their receptors, Toll-like receptor 2 (TLR2) and neurotransmitters. We found that obese mice showed anhedonia (p < 0.050) indicative of a depressive-like behavior and an exaggerated hypothalamic-pituitary axis (HPA)-mediated stress response to acute physical (p < 0.001) and social stress (p < 0.050), but these alterations were ameliorated by B. pseudocatenulatum CECT 7765 (p < 0.050). These behavioral effects were parallel to reductions of the obesity-associated hyperleptinemia (p < 0.001) and restoration of leptin signaling (p < 0.050), along with fat mass loss (p < 0.010). B. pseudocatenulatum CECT 7765 administration also led to restoration of the obesity-induced reductions in adrenaline in the hypothalamus (p < 0.010), involved in the hypothalamic control of energy balance. Furthermore, the bifidobacterial strain reduced the obesity-induced upregulation of TLR2 protein or gene expression in the intestine (p < 0.010) and the hippocampus (p < 0.050) and restored the alterations of 5-HT levels in the hippocampus (p < 0.050), which could contribute to attenuating the obesity-associated depressive-like behavior (p < 0.050). In summary, the results indicate that B. pseudocatenulatum CECT 7765 could play a role in depressive behavior comorbid with obesity via regulation of endocrine and immune mediators of the gut-brain axis.
Collapse
Affiliation(s)
- Ana Agusti
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain.
| | - A Moya-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain
| | - I Campillo
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain
| | - S Montserrat-de la Paz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain
| | - V Cerrudo
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain
| | - A Perez-Villalba
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), C/ Catedratico Agustin Escardino 7, 46980, Paterna-Valencia, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Cell Biology Department, University of Valencia, Valencia, Spain.
| |
Collapse
|
90
|
Slykerman RF, Hood F, Wickens K, Thompson JMD, Barthow C, Murphy R, Kang J, Rowden J, Stone P, Crane J, Stanley T, Abels P, Purdie G, Maude R, Mitchell EA. Effect of Lactobacillus rhamnosus HN001 in Pregnancy on Postpartum Symptoms of Depression and Anxiety: A Randomised Double-blind Placebo-controlled Trial. EBioMedicine 2017; 24:159-165. [PMID: 28943228 PMCID: PMC5652021 DOI: 10.1016/j.ebiom.2017.09.013] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Probiotics may help to prevent symptoms of anxiety and depression through several putative mechanisms. Objective The aim of this study was to evaluate the effect of Lactobacillus rhamnosus HN001 (HN001) given in pregnancy and postpartum on symptoms of maternal depression and anxiety in the postpartum period. This was a secondary outcome, the primary outcome being eczema in the offspring at 12 months of age. Design, Setting, Participants A randomised, double-blind, placebo-controlled trial of the effect of HN001 on postnatal mood was conducted in 423 women in Auckland and Wellington, New Zealand. Women were recruited at 14–16 weeks gestation. Intervention Women were randomised to receive either placebo or HN001 daily from enrolment until 6 months postpartum if breastfeeding. Outcome Measures Modified versions of the Edinburgh Postnatal Depression Scale and State Trait Anxiety Inventory were used to assess symptoms of depression and anxiety postpartum. Trial Registration Australia NZ Clinical Trials Registry: ACTRN12612000196842. Findings 423 women were recruited between December 2012 and November 2014. 212 women were randomised to HN001 and 211 to placebo. 380 women (89.8%) completed the questionnaire on psychological outcomes, 193 (91.0%) in the treatment group and 187 (88.6%) in the placebo group. Mothers in the probiotic treatment group reported significantly lower depression scores (HN001 mean = 7·7 (SD = 5·4), placebo 9·0 (6·0); effect size -1·2, (95% CI -2·3, -0·1), p = 0·037) and anxiety scores (HN001 12·0 (4·0), placebo 13·0 (4·0); effect size -1·0 (-1·9, -0·2), p = 0·014) than those in the placebo group. Rates of clinically relevant anxiety on screening (score > 15) were significantly lower in the HN001 treated mothers (OR = 0·44 (0·26, 0·73), p = 0·002). Interpretation Women who received HN001 had significantly lower depression and anxiety scores in the postpartum period. This probiotic may be useful for the prevention or treatment of symptoms of depression and anxiety postpartum. Funding Source Health Research Council of New Zealand (11/318) and Fonterra Co-operative Group Ltd. The microbiome-gut-brain axis may be important for mental health. We conducted a study of probiotic supplementation in pregnancy and 6 months after delivery if breastfeeding. The probiotic treatment group reported significantly lower depression and anxiety scores than those in the placebo group.
There is mounting evidence from animal studies that the microbiome-gut-brain axis may be important for mental health. Depression and anxiety in pregnancy and after birth affects 10–15% of women, although many are not recognised or treated. We conducted a double-blind placebo-controlled study of probiotic (Lactobacillus rhamnosus HN001) supplementation (from early pregnancy through to 6 months after delivery if breastfeeding) on postnatal symptoms of depression and anxiety in a group (n = 380) of healthy women. Mothers in the probiotic treatment group reported significantly lower depression and anxiety scores than those in the placebo group.
Collapse
Affiliation(s)
- R F Slykerman
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - F Hood
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - K Wickens
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - J M D Thompson
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - C Barthow
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - R Murphy
- Department of Medicine, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J Kang
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - J Rowden
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - P Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - J Crane
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - T Stanley
- Department of Paediatrics, University of Otago, P O Box 7343, Wellington, New Zealand
| | - P Abels
- Department of Medicine, University of Otago, P O Box 7343, Wellington, New Zealand
| | - G Purdie
- Dean's Office, University of Otago, P O Box 7343, Wellington, New Zealand
| | - R Maude
- Graduate School of Nursing, Midwifery, and Health, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - E A Mitchell
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | |
Collapse
|
91
|
Habitual yoghurt consumption and depressive symptoms in a general population study of 19,596 adults. Eur J Nutr 2017; 57:2621-2628. [PMID: 28856430 DOI: 10.1007/s00394-017-1532-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Epidemiological studies directly examining the association between habitual yoghurt consumption and mental health remain scarce. The aim of this study is to investigate the association of yoghurt consumption with depressive symptoms in adults. METHODS This is a cross-sectional study of 19,596 Chinese adults (mean age 41.2, standard deviation 11.8 years; males, 54.3%). Depressive symptoms were assessed using the Self-Rating Depression Scale (SDS). Dietary intake was obtained through a valid food frequency questionnaire. Multiple logistic regression analysis was conducted to assess the association between yoghurt consumption and depressive symptoms. A number of potential confounders were adjusted in the model. RESULTS The prevalence of elevated depressive symptoms was 17.1% (SDS ≥45). The multivariable adjusted odds ratios (95% CI) of having elevated depressive symptoms by increasing levels of yoghurt consumption (1-3 times/week, 4-7 times/week, and ≥twice/day) were 1.05 (0.96, 1.15), 1.02 (0.91, 1.15), and 2.10 (1.61, 2.73) in comparison with lowest consumption group (<once/week or hardly ever). CONCLUSIONS These findings suggest no significant association between habitual yoghurt consumption and self-reported depressive symptoms, while the relatively high frequency of yoghurt consumption (≥twice/day), which was seen in a small subset of subjects, was associated with increased depressive symptoms. These results need to be interpreted with caution because of the cross-sectional nature of the data.
Collapse
|
92
|
Prescott SL, Larcombe DL, Logan AC, West C, Burks W, Caraballo L, Levin M, Etten EV, Horwitz P, Kozyrskyj A, Campbell DE. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J 2017; 10:29. [PMID: 28855974 PMCID: PMC5568566 DOI: 10.1186/s40413-017-0160-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023] Open
Abstract
Skin barrier structure and function is essential to human health. Hitherto unrecognized functions of epidermal keratinocytes show that the skin plays an important role in adapting whole-body physiology to changing environments, including the capacity to produce a wide variety of hormones, neurotransmitters and cytokine that can potentially influence whole-body states, and quite possibly, even emotions. Skin microbiota play an integral role in the maturation and homeostatic regulation of keratinocytes and host immune networks with systemic implications. As our primary interface with the external environment, the biodiversity of skin habitats is heavily influenced by the biodiversity of the ecosystems in which we reside. Thus, factors which alter the establishment and health of the skin microbiome have the potential to predispose to not only cutaneous disease, but also other inflammatory non-communicable diseases (NCDs). Indeed, disturbances of the stratum corneum have been noted in allergic diseases (eczema and food allergy), psoriasis, rosacea, acne vulgaris and with the skin aging process. The built environment, global biodiversity losses and declining nature relatedness are contributing to erosion of diversity at a micro-ecological level, including our own microbial habitats. This emphasises the importance of ecological perspectives in overcoming the factors that drive dysbiosis and the risk of inflammatory diseases across the life course.
Collapse
Affiliation(s)
- Susan L Prescott
- School of Paediatrics and Child Health, University of Western Australia and Princess Margaret Hospital for Children, PO Box D184, Perth, WA 6001 Australia.,In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA
| | - Danica-Lea Larcombe
- In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA.,School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 Australia
| | - Alan C Logan
- In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA
| | - Christina West
- In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA.,Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Wesley Burks
- University of North Carolina School of Medicine, Chapel Hill, North Carolina USA
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Michael Levin
- In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA.,Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Eddie Van Etten
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 Australia
| | - Pierre Horwitz
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 Australia
| | - Anita Kozyrskyj
- In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA.,Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Dianne E Campbell
- In-FLAME Global Network, of the World Universities Network (WUN), West New York, USA.,Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
93
|
Romijn AR, Rucklidge JJ, Kuijer RG, Frampton C. A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression. Aust N Z J Psychiatry 2017; 51:810-821. [PMID: 28068788 PMCID: PMC5518919 DOI: 10.1177/0004867416686694] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES This trial investigated whether probiotics improved mood, stress and anxiety in a sample selected for low mood. We also tested whether the presence or severity of irritable bowel syndrome symptoms, and levels of proinflammatory cytokines, brain-derived neurotrophic factor and other blood markers, would predict or impact treatment response. METHOD Seventy-nine participants (10 dropouts) not currently taking psychotropic medications with at least moderate scores on self-report mood measures were randomly allocated to receive either a probiotic preparation (containing Lactobacillus helveticus and Bifidobacterium longum) or a matched placebo, in a double-blind trial for 8 weeks. Data were analysed as intent-to-treat. RESULTS No significant difference was found between the probiotic and placebo groups on any psychological outcome measure (Cohen's d range = 0.07-0.16) or any blood-based biomarker. At end-point, 9 (23%) of those in the probiotic group showed a ⩾60% change on the Montgomery-Åsberg Depression Rating Scale (responders), compared to 10 (26%) of those in the placebo group ([Formula: see text], p = ns). Baseline vitamin D level was found to moderate treatment effect on several outcome measures. Dry mouth and sleep disruption were reported more frequently in the placebo group. CONCLUSIONS This study found no evidence that the probiotic formulation is effective in treating low mood, or in moderating the levels of inflammatory and other biomarkers. The lack of observed effect on mood symptoms may be due to the severity, chronicity or treatment resistance of the sample; recruiting an antidepressant-naive sample experiencing mild, acute symptoms of low mood, may well yield a different result. Future studies taking a preventative approach or using probiotics as an adjuvant treatment may also be more effective. Vitamin D levels should be monitored in future studies in the area. The results of this trial are preliminary; future studies in the area should not be discouraged.
Collapse
Affiliation(s)
- Amy R Romijn
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
- School of Psychology, Early Years and Therapeutic Studies, University of South Wales, Pontypridd, UK
| | - Julia J Rucklidge
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Roeline G Kuijer
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Chris Frampton
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
94
|
Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. An exposome perspective: Early-life events and immune development in a changing world. J Allergy Clin Immunol 2017; 140:24-40. [DOI: 10.1016/j.jaci.2017.05.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/09/2023]
|
95
|
Mechanism of development of depression and probiotics as adjuvant therapy for its prevention and management. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.mhp.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
96
|
Lima-Ojeda JM, Rupprecht R, Baghai TC. "I Am I and My Bacterial Circumstances": Linking Gut Microbiome, Neurodevelopment, and Depression. Front Psychiatry 2017; 8:153. [PMID: 28878696 PMCID: PMC5572414 DOI: 10.3389/fpsyt.2017.00153] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract-or gut microbiota-are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental-diet, exposition to antibiotics, and infections-and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome-gut-brain (MGB) axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches.
Collapse
Affiliation(s)
- Juan M Lima-Ojeda
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas C Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
97
|
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry 2017; 16:14. [PMID: 28239408 PMCID: PMC5319175 DOI: 10.1186/s12991-017-0138-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Patients suffering from depression experience significant mood, anxiety, and cognitive symptoms. Currently, most antidepressants work by altering neurotransmitter activity in the brain to improve these symptoms. However, in the last decade, research has revealed an extensive bidirectional communication network between the gastrointestinal tract and the central nervous system, referred to as the "gut-brain axis." Advances in this field have linked psychiatric disorders to changes in the microbiome, making it a potential target for novel antidepressant treatments. The aim of this review is to analyze the current body of research assessing the effects of probiotics, on symptoms of depression in humans. METHODS A systematic search of five databases was performed and study selection was completed using the preferred reporting items for systematic reviews and meta-analyses process. RESULTS Ten studies met criteria and were analyzed for effects on mood, anxiety, and cognition. Five studies assessed mood symptoms, seven studies assessed anxiety symptoms, and three studies assessed cognition. The majority of the studies found positive results on all measures of depressive symptoms; however, the strain of probiotic, the dosing, and duration of treatment varied widely and no studies assessed sleep. CONCLUSION The evidence for probiotics alleviating depressive symptoms is compelling but additional double-blind randomized control trials in clinical populations are warranted to further assess efficacy.
Collapse
Affiliation(s)
- Caroline J K Wallace
- Department of Psychiatry, Queen's University, 752 King Street West, Kingston, ON K7L 4X3 Canada
| | - Roumen Milev
- Department of Psychiatry, Queen's University, 752 King Street West, Kingston, ON K7L 4X3 Canada
| |
Collapse
|
98
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
99
|
Sayar GH, Cetin M. Psychobiotics: The Potential Therapeutic Promise of Microbes in Psychiatry. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20160531111208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gokben Hizli Sayar
- Uskudar University NP Istanbul Hospital, Psychiatry Clinic, Istanbul - Turkey
| | - Mesut Cetin
- Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Pychopharmacology, Istanbul - Turkey
| |
Collapse
|
100
|
Manook A, Hiergeist A, Rupprecht R, Baghai TC. Dickdarmmikrobiom und Depression. DER NERVENARZT 2016; 87:1227-1240. [DOI: 10.1007/s00115-016-0230-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|