51
|
Barateiro A, Junior ARC, Epiphanio S, Marinho CRF. Homeostasis Maintenance in Plasmodium-Infected Placentas: Is There a Role for Placental Autophagy During Malaria in Pregnancy? Front Immunol 2022; 13:931034. [PMID: 35898514 PMCID: PMC9309427 DOI: 10.3389/fimmu.2022.931034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria represents a significant public health burden to populations living in developing countries. The disease takes a relevant toll on pregnant women, who are more prone to developing severe clinical manifestations. Inflammation triggered in response to P. falciparum sequestration inside the placenta leads to physiological and structural changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events have been associated with poor gestational outcomes, such as intrauterine growth restriction and premature delivery, contributing to the parturition of thousands of African children with low birth weight. Despite significant advances in the field, the molecular mechanisms that govern these outcomes are still poorly understood. Herein, we discuss the idea of how some housekeeping molecular mechanisms, such as those related to autophagy, might be intertwined with the outcomes of malaria in pregnancy. We contextualize previous findings suggesting that placental autophagy is dysregulated in P. falciparum-infected pregnant women with complementary research describing the importance of autophagy in healthy pregnancies. Since the functional role of autophagy in pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for circumventing inflammation-induced stress in the placenta, acting as a cytoprotective mechanism that attempts to ensure local homeostasis and better gestational prognosis in women with malaria in pregnancy.
Collapse
Affiliation(s)
- André Barateiro
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | | | - Sabrina Epiphanio
- School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil
| | - Claudio Romero Farias Marinho
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudio Romero Farias Marinho,
| |
Collapse
|
52
|
The environmental enrichment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive decline by inducing autophagy-mediated inflammation inhibition. Brain Res Bull 2022; 187:98-110. [DOI: 10.1016/j.brainresbull.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
|
53
|
Pan Y, Yang Y, Fan M, Chen C, Jiang R, Liang L, Xian M, Kuang B, Geng N, Feng N, Deng L, Zheng W, Zhang F, Li X, Guo F. Progranulin regulation of autophagy contributes to its chondroprotective effect in osteoarthritis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
54
|
Zhou J, Huang Q, Wang L, Li E, Huang W, Xiang Z. Autophagy Protects Ocular Surface Against Overactivated Inflammation by Degrading Retinoic Acid-Induced Gene-I in Human Conjunctival Epithelial Cells. J Ocul Pharmacol Ther 2022; 38:331-338. [PMID: 35613408 DOI: 10.1089/jop.2021.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Purpose: To evaluate the pathological role of autophagy in dry eye diseases by detecting the autophagic degradation of RIG-I, a master RNA-sensing receptor in cells. Methods: RNA-sequencing analysis and qPCR analysis of the expression level of genes related to IFN-I signaling pathway was used to evaluate the inflammatory level of cells overexpressed with RIG-I or empty vector, which was further confirmed by WB analysis. Chemical treatment (3-methyladenine, chloroquine, NH4Cl, rapamycin, torin 1 or trehalose) or gene knockdown was used to modulate autophagy. When the autophagy level was regulated, the autophagic degradation of RIG-I and its pathological role in dry eye diseases were determined by detecting the protein level of RIG-I and the level of cell inflammation. Results: Cells that overexpressed RIG-I showed increased expression of genes involved in the IFN-I signaling pathway compared with cells transfected with an empty vector. Inhibition of autophagy leaded to the accumulation of RIG-I in HCECs, combined with the aggravation of the RIG-I-mediated IFN-I signaling pathway. Contrarily, promoting the autophagic degradation of RIG-I by trehalose treatment could alleviate IFN-I signaling pathway. Conclusions: Autophagy could protect the ocular surface against IFN-I signaling pathway by degrading RIG-I in HCECs. This process may restrict the overactivation of inflammation in the pathological development of dry eye disease.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Qinzhu Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Ledan Wang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Enhui Li
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Wenjuan Huang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| | - Zhenyang Xiang
- Department of Ophthalmology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, China
| |
Collapse
|
55
|
Abd El-Khalik SR, Nasif E, Arakeep HM, Rabah H. The Prospective Ameliorative Role of Zinc Oxide Nanoparticles in STZ-Induced Diabetic Nephropathy in Rats: Mechanistic Targeting of Autophagy and Regulating Nrf2/TXNIP/NLRP3 Inflammasome Signaling. Biol Trace Elem Res 2022; 200:1677-1687. [PMID: 34241775 DOI: 10.1007/s12011-021-02773-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy (DN) as one of the common microvascular complications of diabetes mellitus, is the main cause of end-stage renal disease. Zinc oxide nanoparticles (ZnO NPs) have been employed in several biomedical aspects. This study purposed to explore the mechanistic renoprotective effects of ZnO NPs in STZ-induced DN. Sixty male Wistar rats were allocated into four equal groups: control, ZnO NPs control, STZ, and STZ + ZnO NPs groups. At the end of the experiment, blood and urine biochemical parameters were assayed. Renal tissue level of advanced glycation end products (AGEs) was assayed spectrofluorometrically, moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) DNA-binding activity and IL-1β levels were detected by ELISA. The gene expression levels of thioredoxin-interacting protein (TXNIP) and NOD-like receptor family pyrin domain containing 3 (NLRP3) were detected by quantitative real-time PCR. Oxidative stress markers were determined spectrophotometrically. Also, renal tissue histopathological and immunohistochemical analyses were determined. After 6 weeks of treatment, ZnO NPs markedly improved the biochemical, renal functions, and histopathological findings. Furthermore, ZnO NPs significantly increased Nrf2-DNA-binding activity and downregulated TXNIP gene expression leading to restoration of the redox status. Additionally, ZnO NPs ameliorated AGEs levels, enhanced autophagy activity, and attenuated inflammasome activation via downregulation of NLRP3 expression and reducing IL-1β levels. Based on our results, we concluded that ZnO NPs can be considered as a promising agent for slowing the progression of DN via interplay between autophagy and Nrf2/TXNIP/NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
| | - Elham Nasif
- Medical Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M Arakeep
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hanem Rabah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
56
|
Ren F, Xu J, Zhang J, Xu X, Huang L, Sun W, Li R, Li F. PM2.5 induced lung injury through upregulating ROS-Dependent NLRP3 Inflammasome-Mediated Pyroptosis. Immunobiology 2022; 227:152207. [DOI: 10.1016/j.imbio.2022.152207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
|
57
|
Badr A, Eltobgy M, Krause K, Hamilton K, Estfanous S, Daily KP, Abu Khweek A, Hegazi A, Anne MNK, Carafice C, Robledo-Avila F, Saqr Y, Zhang X, Bonfield TL, Gavrilin MA, Partida-Sanchez S, Seveau S, Cormet-Boyaka E, Amer AO. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages. Front Cell Infect Microbiol 2022; 12:819554. [PMID: 35252032 PMCID: PMC8890004 DOI: 10.3389/fcimb.2022.819554] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kylene P. Daily
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Ahmad Hegazi
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Midhun N. K. Anne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Youssra Saqr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, United States
| | - Tracey L. Bonfield
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mikhail A. Gavrilin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Columbus, OH, United States
| | | | - Stephanie Seveau
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
58
|
All-Trans Retinoic Acid-Preconditioned Mesenchymal Stem Cells Improve Motor Function and Alleviate Tissue Damage After Spinal Cord Injury by Inhibition of HMGB1/NF-κB/NLRP3 Pathway Through Autophagy Activation. J Mol Neurosci 2022; 72:947-962. [PMID: 35147911 DOI: 10.1007/s12031-022-01977-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a significant public health issue that imposes numerous burdens on patients and society. Uncontrolled excessive inflammation in the second pathological phase of SCI can aggravate the injury. In this paper, we hypothesized that suppressing inflammatory pathways via autophagy could aid functional recovery, and prevent spinal cord tissue degeneration following SCI. To this end, we examined the effects of intrathecal injection of all-trans retinoic acid (ATRA)-preconditioned bone marrow mesenchymal stem cells (BM-MSCs) (ATRA-MSCs) on autophagy activity and the HMGB1/NF-κB/NLRP3 inflammatory pathway in an SCI rat model. This study demonstrated that SCI increased the expression of Beclin-1 (an autophagy-related gene) and NLRP3 inflammasome components such as NLRP3, ASC, Caspase-1, and pro-inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. Additionally, following SCI, the protein levels of key autophagy factors (Beclin-1 and LC3-II) and HMGB1/NF-κB/NLRP3 pathway factors (HMGB1, p-NF-κB, NLRP3, IL-1β, and TNF-α) increased. Our findings indicated that ATRA-MSCs enhanced Beclin-1 and LC3-II levels, regulated the HMGB1/NF-κB/NLRP3 pathway, and inhibited pro-inflammatory cytokines. These factors improved hind limb motor activity and aided in the survival of neurons. Furthermore, ATRA-MSCs demonstrated greater beneficial effects than MSCs in treating spinal cord injury. Overall, ATRA-MSC treatment revealed beneficial effects on the damaged spinal cord by suppressing excessive inflammation and activating autophagy. Further research and investigation of the pathways involved in SCI and the use of amplified stem cells may be beneficial for future clinical use.
Collapse
|
59
|
Sun X, Wang D, Ding L, Xu Y, Qi W, Zhao D, Liu L, Yin C, Cui C, Wang Z, Sun L, Sun L. Activation of Autophagy Through the NLRP3/mTOR Pathway: A Potential Mechanism for Alleviation of Pneumonia by QingFei Yin. Front Pharmacol 2022; 12:763160. [PMID: 35111047 PMCID: PMC8802069 DOI: 10.3389/fphar.2021.763160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
QingFei Yin (QFY), a Chinese traditional medicine recipe, is known for its excellent therapeutic pharmacological effects for the treatment of bacterial lung infections, although its molecular mechanism of action remains unknown. Here, QFY chemical composition was determined using a High-Performance Liquid Chromatography-Mass (HPLC-MS/MS)-based method then QFY was evaluated for protective pharmacological effects against pneumonia using two models: a Streptococcus pneumoniae-induced in vivo mouse model and an in vitro pneumolysin (PLY)-induced murine lung alveolar-derived MH-S cell line-based model. Notably, QFY exerted prominent anti-pneumonia effects both in vivo and in vitro. To further explore QFY protective effects, 4D label-free proteomics analysis, pathologic evaluation, and immunohistochemical (IHC) analysis were conducted to identify cellular pathways involved in QFY protection. Notably, our results indicated that NF-κB/NLRP3 and autophagy pathways may contribute to pharmacological effects associated with QFY-based protection. Briefly, QFY triggered autophagy via down-regulation of upstream NLRP3/mTOR signaling pathway events, resulting in the amelioration of inflammatory injury. Collectively, our results revealed molecular mechanisms underlying QFY protection against pneumonia as a foundation for the future development of novel treatments to combat this disease and reduce antibiotic abuse.
Collapse
Affiliation(s)
- Xiaozhou Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lizhong Ding
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Xu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Jilin Provincial Key Laboratory of Bio Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of Bio Macromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chengcheng Yin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Changsheng Cui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhongtian Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Liping Sun
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
60
|
Liu Y, Ding Q, Halderson SJ, Arriola Apelo SI, Jones AK, Pillai SM, Hoffman ML, Reed S, Govoni KE, Zinn SA, Guo W. Maternal Overnutrition During Gestation in Sheep Alters Autophagy Associated Pathways in Offspring Heart. Front Genet 2022; 12:742704. [PMID: 35173761 PMCID: PMC8841792 DOI: 10.3389/fgene.2021.742704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Poor maternal nutrition during gestation can negatively affect offspring growth, development, and health pre- and post-natally. Overfeeding during gestation or maternal obesity (MO) results in altered metabolism and imbalanced endocrine hormones in animals and humans which will have long-lasting and detrimental effects on offspring growth and health. In this study, we examined the effects of overnutrition during gestation on autophagy associated pathways in offspring heart muscles at two gestational and one early postnatal time point (n = 5 for treated and untreated male and female heart respectively at each time point). Two-way ANOVA was used to analyze the interaction between treatment and sex at each time point. Our results revealed significant interactions of maternal diet by developmental stages for offspring autophagy signaling. Overfeeding did not affect the autophagy signaling at mid-gestation day 90 (GD90) in both male and female offspring while the inflammatory cytokines were increased in GD90 MO male offsrping; however, overfeeding during gestation significantly increased autophagy signaling, but not inflammation level at a later developmental stage (GD135 and day 1 after birth) in both males and females. We also identified a sexual dimorphic response in which female progeny were more profoundly influenced by maternal diet than male progeny regardless of developmental stages. We also determined the cortisol concentrations in male and female hearts at three developmental stages. We did not observe cortisol changes between males and females or between overfeeding and control groups. Our exploratory studies imply that MO alters autophagy associated pathways in both male and female at later developmental stages with more profound effects in female. This finding need be confirmed with larger sample numbers in the future. Our results suggest that targeting on autophagy pathway could be a strategy for correction of adverse effects in offspring of over-fed ewes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Qiyue Ding
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Halderson
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Amanda K. Jones
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Sambhu M. Pillai
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Maria L. Hoffman
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Kristen E. Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Steven A. Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Wei Guo
- Department of Animal and Diary Sciences, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Wei Guo,
| |
Collapse
|
61
|
Xie D, Zhao T, Zhang X, Kui L, Wang Q, Wu Y, Zheng T, Ma P, Zhang Y, Molteni H, Geng R, Yang Y, Li B, Zheng QY. Autophagy Contributes to the Rapamycin-Induced Improvement of Otitis Media. Front Cell Neurosci 2022; 15:753369. [PMID: 35153674 PMCID: PMC8832103 DOI: 10.3389/fncel.2021.753369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/31/2021] [Indexed: 12/02/2022] Open
Abstract
Otitis media (OM) is a pervasive disease that involves hearing loss and severe complications. In our previous study, we successfully established a mouse model of human OM using Tlr2tm1Kir (TLR2-/-) mice with middle ear (ME) inoculation of streptococcal peptidoglycan-polysaccharide (PGPS). In this study, we found that hearing loss and OM infections in OM mice were significantly alleviated after treatment with rapamycin (RPM), a widely used mechanistic target of RPM complex 1 (mTORC1) inhibitor and autophagy inducer. First of all, we tested the activity of mTORC1 by evaluating p-S6, Raptor, and mTOR protein expression. The data suggested that the protein expression level of p-S6, Raptor and mTOR are decreased in TLR2-/- mice after the injection of PGPS. Furthermore, our data showed that both the autophagosome protein LC3-II, Beclin-1, ATG7, and autophagy substrate protein p62 accumulated at higher levels in mice with OM than in OM-negative mice. The expression of lysosomal-associated proteins LAMP1, Cathepsin B, and Cathepsin D increased in the OM mice compared with OM-negative mice. Rab7 and Syntaxin 17, which is necessary for the fusion of autophagosomes with lysosomes, are reduced in the OM mice. In addition, data also described that the protein expression level of p-S6, mTOR and Raptor are lower than PGPS group after RPM treatment. The accumulation of LC3-II, Beclin-1, and ATG7 are decreased, and the expression of Rab7 and Syntaxin 17 are increased significantly after RPM treatment. Our results suggest that autophagy impairment is involved in PGPS-induced OM and that RPM improves OM at least partly by relieving autophagy impairment. Modulating autophagic activity by RPM may be a possible effective treatment strategy for OM.
Collapse
Affiliation(s)
- Daoli Xie
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Xiaolin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Lihong Kui
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Qin Wang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Yuancheng Wu
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Department of Genetics, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Zhang
- Department of Otolaryngology, Head and Neck Surgery, Second Affiliated Hospital, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Helen Molteni
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Ying Yang
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Qing Yin Zheng
- Department of Otolaryngology, Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
62
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
63
|
Zhu L, Liu L. New Insights Into the Interplay Among Autophagy, the NLRP3 Inflammasome and Inflammation in Adipose Tissue. Front Endocrinol (Lausanne) 2022; 13:739882. [PMID: 35432210 PMCID: PMC9008752 DOI: 10.3389/fendo.2022.739882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a feature of metabolic syndrome with chronic inflammation in obese subjects, characterized by adipose tissue (AT) expansion, proinflammatory factor overexpression, and macrophage infiltration. Autophagy modulates inflammation in the enlargement of AT as an essential step for maintaining the balance in energy metabolism and waste elimination. Signaling originating from dysfunctional AT, such as AT containing hypertrophic adipocytes and surrounding macrophages, activates NOD-like receptor family 3 (NLRP3) inflammasome. There are interactions about altered autophagy and NLRP3 inflammasome activation during the progress in obesity. We summarize the current studies and potential mechanisms associated with autophagy and NLRP3 inflammasome in AT inflammation and aim to provide further evidence for research on obesity and obesity-related complications.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
- *Correspondence: Ling Liu,
| |
Collapse
|
64
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
65
|
Asatryan A, Calandria JM, Kautzmann MAI, Jun B, Gordon WC, Do KV, Bhattacharjee S, Pham TL, Bermúdez V, Mateos MV, Heap J, Bazan NG. New Retinal Pigment Epithelial Cell Model to Unravel Neuroprotection Sensors of Neurodegeneration in Retinal Disease. Front Neurosci 2022; 16:926629. [PMID: 35873810 PMCID: PMC9301569 DOI: 10.3389/fnins.2022.926629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells sustain photoreceptor integrity, and when this function is disrupted, retinal degenerations ensue. Herein, we characterize a new cell line from human RPE that we termed ABC. These cells remarkably recapitulate human eye native cells. Distinctive from other epithelia, RPE cells originate from the neural crest and follow a neural development but are terminally differentiated into "epithelial" type, thus sharing characteristics with their neuronal lineages counterparts. Additionally, they form microvilli, tight junctions, and honeycomb packing and express distinctive markers. In these cells, outer segment phagocytosis, phagolysosome fate, phospholipid metabolism, and lipid mediator release can be studied. ABC cells display higher resistance to oxidative stress and are protected from senescence through mTOR inhibition, making them more stable in culture. The cells are responsive to Neuroprotectin D1 (NPD1), which downregulates inflammasomes and upregulates antioxidant and anti-inflammatory genes. ABC gene expression profile displays close proximity to native RPE lineage, making them a reliable cell system to unravel signaling in uncompensated oxidative stress (UOS) and retinal degenerative disease to define neuroprotection sites.
Collapse
Affiliation(s)
- Aram Asatryan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Thang L Pham
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Vicente Bermúdez
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Melina Valeria Mateos
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Jessica Heap
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, United States
| |
Collapse
|
66
|
Sarmento A, Simões CD. Gut Microbiota Dysbiosis and Chronic Intestinal Inflammation. COMPREHENSIVE GUT MICROBIOTA 2022:423-441. [DOI: 10.1016/b978-0-12-819265-8.00057-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
67
|
Mao S, Chen P, Pan W, Gao L, Zhang M. Exacerbated post-infarct pathological myocardial remodelling in diabetes is associated with impaired autophagy and aggravated NLRP3 inflammasome activation. ESC Heart Fail 2021; 9:303-317. [PMID: 34964299 PMCID: PMC8787965 DOI: 10.1002/ehf2.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Background Diabetes mellitus (DM) patients surviving myocardial infarction (MI) have substantially higher mortality due to the more frequent development of subsequent pathological myocardial remodelling and concomitant functional deterioration. This study investigates the molecular pathways underlying accelerated cardiac remodelling in a well‐established mouse model of diabetes exposed to MI. Methods and results Myocardial infarction in DM mice was established by ligating the left anterior descending coronary artery. Cardiac function was assessed by echocardiography. Myocardial hypertrophy and cardiac fibrosis were determined histologically 6 weeks post‐MI or sham operation. Autophagy, the NLRP3 inflammasome, and caspase‐1 were evaluated by western blotting or immunofluorescence. Echocardiographic imaging revealed significantly increased left ventricular dilation in parallel with increased mortality after MI in DM mice (53.33%) compared with control mice (26.67%, P < 0.05). Immunoblotting, electron microscopy, and immunofluorescence staining for LC3 and p62 indicated impaired autophagy in DM + MI mice compared with control mice (P < 0.05). Furthermore, defective autophagy was associated with increased NLRP3 inflammasome and caspase‐1 hyperactivation in DM + MI mouse cardiomyocytes (P < 0.05). Consistent with NLRP3 inflammasome and caspase‐I hyperactivation, cardiomyocyte death and IL‐1β and IL‐18 secretion were increased in DM + MI mice (P < 0.05). Importantly, the autophagy inducer and the NLRP3 inhibitor attenuated the cardiac remodelling of DM mice after MI. Conclusion In summary, our results indicate that DM aggravates cardiac remodelling after MI through defective autophagy and associated exaggerated NLRP3 inflammasome activation, proinflammatory cytokine secretion, suggesting that restoring autophagy and inhibiting NLRP3 inflammasome activation may serve as novel targets for the prevention and treatment of post‐infarct remodelling in DM.
Collapse
Affiliation(s)
- Shuai Mao
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| | - Peipei Chen
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Wenjun Pan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Lei Gao
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Minzhou Zhang
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou, China
| |
Collapse
|
68
|
Li A, Wu X, Yang J, Li J, Guo H, Zhang Y, Jiang H, Huo T. Sub-chronic exposure to realgar induces liver injury via upregulating the TXNIP/NLRP3 pathway and disturbing bile acid homeostasis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114584. [PMID: 34469792 DOI: 10.1016/j.jep.2021.114584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar is a traditional Chinese medicine used in China for a long history. Long-time or excessive use of realgar causes liver injury. However, its underlying mechanism is not fully clarified. AIM OF THE STUDY In this study, we investigated the toxic effect of sub-chronic exposure to realgar on mice liver, and further revealed its underlying mechanism focused on the TXNIP/NLRP3 pathway and bile acid homeostasis. MATERIAL AND METHODS Mice were divided into control and different doses of sub-chronic realgar exposed groups. Total arsenic levels in the blood and liver were determined by atomic fluorescence spectrometry. The effect of realgar on liver function was evaluated by biochemical analysis and histopathological examination. Assay kits were applied for the measurement of oxidative stress indexes, MPO and plasma inflammatory cytokines. The mRNA and proteins involved in the TXNIP/NLRP3 and NF-κB pathways were determined by RT-qPCR, western blot, Immunofluorescence and Immunohistochemistry. UHPLC/MS/MS was used for the quantitative analysis of bile acids (BAs) in mice plasma, liver and urine. The genes related to BAs metabolism were measured by RT-qPCR. RESULTS Sub-chronic exposure to realgar led to arsenic accumulation and caused oxidative damage and inflammatory infiltration in mouse liver, finally resulting in liver injury. Realgar treatment activated the NF-κB pathway and significantly upregulated the TXNIP/NLRP3 pathway in mouse liver. Realgar altered the metabolic balance of BAs, which is related to the abnormal expression of BAs transporters and enzymes. CONCLUSION Sub-chronic exposure to realgar caused liver injury in mouse, and the mechanism may involve the upregulation of the TXNIP/NLRP3 pathway and disordered BAs homeostasis.
Collapse
Affiliation(s)
- Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Xinyu Wu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jing Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jian Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Haoqi Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Yuwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China; Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, 110122, PR China; Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
69
|
Zhou J, Li H, Wang F, Wang H, Chai R, Li J, Jia L, Wang K, Zhang P, Zhu L, Yang H. Effects of 2,4-dichlorophenoxyacetic acid on the expression of NLRP3 inflammasome and autophagy-related proteins as well as the protective effect of Lycium barbarum polysaccharide in neonatal rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2454-2466. [PMID: 34464015 DOI: 10.1002/tox.23358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) has neurotoxic effects, but its mechanism is not clear. In this study, a 2,4-D (75 mg/kg. b.w) exposure model was established in SD rats with colostrum. Lipopolysaccharide (1 mg/kg b.w) was used as the positive control, and Lycium barbarum polysaccharide (LBP, 50 mg/kg b.w) was used as an intervention factor to explore the neurotoxic effect of 2,4-D and the neuroprotective effect of LBP. Our research results show that 2,4-D causes a decrease in the number of hippocampal CA3 pyramidal cells and pyknosis in nuclei with a triangular or irregular shape and that rats show signs of anxiety or depression. In rat serum, superoxide dismutase, and glutathione peroxidase activity decreased, while malondialdehyde content increased. Protein and mRNA levels of TNFα, IL-6, IL-1β, IL-18, NLRP3, ASC, caspase-1, IL-1β, IL-18, and p62 increased, while those of LC3-II/LC3-I and Beclin-1 decreased in hippocampal tissues. In conclusion, 2,4-D increased the oxidative stress level, induced neuroinflammatory response, and decreased the autophagy level in experimental rats. LBP may have upregulated the autophagy level in the body by inhibiting the activation of the NLRP3 inflammasome, thus playing a neuroprotective role.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Honghui Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Faxuan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Hengquan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Ru Chai
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Jiangping Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Leina Jia
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Pengju Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Lingqin Zhu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
70
|
Chang P, Li H, Hu H, Li Y, Wang T. The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Front Immunol 2021; 12:763831. [PMID: 34777380 PMCID: PMC8578992 DOI: 10.3389/fimmu.2021.763831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
Collapse
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| | - Hao Li
- Department of Emergency, First Hospital of China Medical University, Shenyang, China
| | - Hui Hu
- Department of Traumatology, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
71
|
Interleukin-1 Links Autoimmune and Autoinflammatory Pathophysiology in Mixed-Pattern Psoriasis. Mediators Inflamm 2021; 2021:2503378. [PMID: 34697538 PMCID: PMC8541875 DOI: 10.1155/2021/2503378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
Autoinflammatory and autoimmune diseases are characterized by an oversensitive immune system with loss of the physiological endogenous regulation, involving multifactorial self-reactive pathological mechanisms of mono- or polygenic nature. Failure in regulatory mechanisms triggers a complex network of dynamic relationships between innate and adaptive immunity, leading to coexistent autoinflammatory and autoimmune processes. Sustained exposure to a trigger or a genetic alteration at the level of the receptors of the natural immune system may lead to abnormal activation of the innate immune system, adaptive system activation, loss of self-tolerance, and systemic inflammation. The IL-1 family members critically activate and regulate innate and adaptive immune responses' diversity and plasticity in autoimmune and/or autoinflammatory conditions. The IL-23/IL-17 axis is key in the communication between innate immunity (IL-23-producing myeloid cells) and adaptive immunity (Th17- and IL-17-expressing CD8+ T cells). In psoriasis, these cytokines are decisive to the different clinical presentations, whether as plaque psoriasis (psoriasis vulgaris), generalized pustular psoriasis (pustular psoriasis), or mixed forms. These forms reflect a gradient between autoimmune pathophysiology with predominant adaptive immune response and autoinflammatory pathophysiology with predominant innate immune response.
Collapse
|
72
|
Flores-Vega VR, Vargas-Roldán SY, Lezana-Fernández JL, Lascurain R, Santos-Preciado JI, Rosales-Reyes R. Bacterial Subversion of Autophagy in Cystic Fibrosis. Front Cell Infect Microbiol 2021; 11:760922. [PMID: 34692569 PMCID: PMC8531276 DOI: 10.3389/fcimb.2021.760922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease affecting more than 70,000 people worldwide. It is caused by a mutation in the cftr gene, a chloride ion transporter localized in the plasma membrane of lung epithelial cells and other organs. The loss of CFTR function alters chloride, bicarbonate, and water transport through the plasma membrane, promoting the production of a thick and sticky mucus in which bacteria including Pseudomonas aeruginosa and Burkholderia cenocepacia can produce chronic infections that eventually decrease the lung function and increase the risk of mortality. Autophagy is a well-conserved lysosomal degradation pathway that mediates pathogen clearance and plays an important role in the control of bacterial infections. In this mini-review, we describe the principal strategies used by P. aeruginosa and B. cenocepacia to survive and avoid microbicidal mechanisms within the autophagic pathway leading to the establishment of chronic inflammatory immune responses that gradually compromise the lung function and the life of CF patients.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Coyoacán, Mexico City, Mexico
| | - Silvia Yalid Vargas-Roldán
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Respiratoria y la Clínica de Fibrosis Quística, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Dirección Médica, Asociación Mexicana de Fibrosis Quística, Mexico City, Mexico
| | - Ricardo Lascurain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Ignacio Santos-Preciado
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
73
|
Dang R, Yang M, Cui C, Wang C, Zhang W, Geng C, Han W, Jiang P. Activation of angiotensin-converting enzyme 2/angiotensin (1-7)/mas receptor axis triggers autophagy and suppresses microglia proinflammatory polarization via forkhead box class O1 signaling. Aging Cell 2021; 20:e13480. [PMID: 34529881 PMCID: PMC8520723 DOI: 10.1111/acel.13480] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 07/03/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Brain renin‐angiotensin (Ang) system (RAS) is implicated in neuroinflammation, a major characteristic of aging process. Angiotensin (Ang) II, produced by angiotensin‐converting enzyme (ACE), activates immune system via angiotensin type 1 receptor (AT1), whereas Ang(1–7), generated by ACE2, binds with Mas receptor (MasR) to restrain excessive inflammatory response. Therefore, the present study aims to explore the relationship between RAS and neuroinflammation. We found that repeated lipopolysaccharide (LPS) treatment shifted the balance between ACE/Ang II/AT1 and ACE2/Ang(1–7)/MasR axis to the deleterious side and treatment with either MasR agonist, AVE0991 (AVE) or ACE2 activator, diminazene aceturate, exhibited strong neuroprotective actions. Mechanically, activation of ACE2/Ang(1–7)/MasR axis triggered the Forkhead box class O1 (FOXO1)‐autophagy pathway and induced superoxide dismutase (SOD) and catalase (CAT), the FOXO1‐targeted antioxidant enzymes. Meanwhile, knockdown of MasR or FOXO1 in BV2 cells, or using the selective FOXO1 inhibitor, AS1842856, in animals, suppressed FOXO1 translocation and compromised the autophagic process induced by MasR activation. We further used chloroquine (CQ) to block autophagy and showed that suppressing either FOXO1 or autophagy abrogated the anti‐inflammatory action of AVE. Likewise, Ang(1–7) also induced FOXO1 signaling and autophagic flux following LPS treatment in BV2 cells. Cotreatment with AS1842856 or CQ all led to autophagic inhibition and thereby abolished Ang(1–7)‐induced remission on NLRP3 inflammasome activation caused by LPS exposure, shifting the microglial polarization from M1 to M2 phenotype. Collectively, these results firstly illustrated the mechanism of ACE2/Ang(1–7)/MasR axis in neuroinflammation, strongly indicating the involvement of FOXO1‐mediated autophagy in the neuroimmune‐modulating effects triggered by MasR activation.
Collapse
Affiliation(s)
- Ruili Dang
- Institute of Clinical Pharmacy and Pharmacology Jining First People’s HospitalJining Medical University Jining China
| | - Mengqi Yang
- Institute of Clinical Pharmacy and Pharmacology Jining First People’s HospitalJining Medical University Jining China
| | - Changmeng Cui
- Department of Neurosurgery Affiliated Hospital of Jining Medical University Jining China
| | - Changshui Wang
- Department of Neurosurgery Affiliated Hospital of Jining Medical University Jining China
| | - Wenyuan Zhang
- Department of Pharmacy Zhongshan Affiliated Hospital of Zhongshan University Zhongshan China
| | - Chunmei Geng
- Institute of Clinical Pharmacy and Pharmacology Jining First People’s HospitalJining Medical University Jining China
| | - Wenxiu Han
- Institute of Clinical Pharmacy and Pharmacology Jining First People’s HospitalJining Medical University Jining China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology Jining First People’s HospitalJining Medical University Jining China
| |
Collapse
|
74
|
Widgerow AD, Ziegler ME, Casas LA. Topical Skin Treatment and Its Influence on Surgical Healing: Review of Literature and Underlying Physiology. Aesthet Surg J Open Forum 2021; 3:ojab029. [PMID: 34476397 PMCID: PMC8405846 DOI: 10.1093/asjof/ojab029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
TriHex Technology (Alastin Skincare, Carlsbad, CA) has been shown clinically to promote healing and outcomes post procedures and has been demonstrated clinically to improve lipid droplet dissolution and patient-reported outcomes post procedure. Histologically, the formulations have proven to regenerate collagen and elastin. The use of the technology to prepare the skin for surgical procedures combined with its use post procedure was assessed through clinical study outcomes, histological evidence, and gene expression analyses and demonstrated remodeling of the extracellular matrix (ECM), accelerating healing, and initiation of anti-inflammatory genes. While the improvement in clinical signs and outcomes has been validated, the changes taking place at a molecular level need to be explored. The interaction of cells (adipocytes, macrophages, fibroblasts) and the ECM proteins (collagen, elastin) secondary to the effects of the topical agent application are discussed. It appears that the manipulation of fat during body contouring surgery and the resultant adipocytolysis precipitates a molecular profile that can be positively directed toward hastened healing by using adjuvant topical applications as preconditioning prior to surgery and after the surgical procedure. Here, we review the literature and underlying physiology relating to these products and describe how interleukin 6 appears to be the primary facilitator of these effects.
Collapse
Affiliation(s)
| | - Mary E Ziegler
- Center for Tissue Engineering, University of California Irvine, Irvine, CA, USA
| | - Laurie A Casas
- Division of Plastic and Reconstructive Surgery, The University of Chicago Medicine and Biological Sciences, Glenview, IL, USA
| |
Collapse
|
75
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
76
|
Yin L, Lv M, Qiu X, Wang X, Zhang A, Yang K, Zhou H. IFN-γ Manipulates NOD1-Mediated Interaction of Autophagy and Edwardsiella piscicida to Augment Intracellular Clearance in Fish. THE JOURNAL OF IMMUNOLOGY 2021; 207:1087-1098. [PMID: 34341174 DOI: 10.4049/jimmunol.2100151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Edwardsiella piscicida is an intracellular pathogenic bacterium accounting for significant losses in farmed fish. Currently, cellular and molecular mechanisms underlying E. piscicida-host cross-talk remain obscure. In this study, we revealed that E. piscicida could increase microtubule-associated protein L chain 3 (LC3) puncta in grass carp (Ctenopharyngodon idella) monocytes/macrophages and a carp cell line, Epithelioma papulosum cyprini The autophagic response was confirmed by detecting the colocalization of E. piscicida with LC3-positive autophagosomes and LysoTracker-probed lysosomes in the cells. Moreover, we unveiled the autophagic machinery targeting E. piscicida by which the nucleotide-binding oligomerization domain receptor 1 (NOD1) functioned as an intracellular sensor to interact and recruit autophagy-related gene (ATG) 16L1 to the bacteria. Meanwhile, E. piscicida decreased the mRNA and protein levels of NOD1 and ATG16L1 in an estrogen-related receptor-α-dependent manner, suggesting a possible mechanism for this bacterium escaping autophagy. Subsequently, we examined the effects of various E. piscicida virulence factors on NOD1 expression and found that two of them, EVPC and ESCB, could reduce NOD1 protein expression via ubiquitin-dependent proteasomal degradation. Furthermore, an intrinsic regulator IFN-γ was found to enhance the colocalization of E. piscicida with NOD1 or autophagosomes, suggesting its involvement in the interaction between autophagy and E. piscicida Along this line, a short-time treatment of IFN-γ caused intracellular E. piscicida clearance through an autophagy-dependent mechanism. Collectively, our works demonstrated NOD1-mediated autophagy-E. piscicida dialogues and uncovered the molecular mechanism involving autophagy against intracellular bacteria in fish.
Collapse
Affiliation(s)
- Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
77
|
Fang P, Chen C, Zheng F, Jia J, Chen T, Zhu J, Chang J, Zhang Z. NLRP3 inflammasome inhibition by histone acetylation ameliorates sevoflurane-induced cognitive impairment in aged mice by activating the autophagy pathway. Brain Res Bull 2021; 172:79-88. [PMID: 33895270 DOI: 10.1016/j.brainresbull.2021.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023]
Abstract
Age-related cognitive impairment is associated with diminished autophagy and progressively increased neuroinflammation. Histone acetylation has been shown to be a key process in sevoflurane-induced neurobehavioral abnormalities. Here, we investigated whether histone acetylation regulates the interaction between autophagy and the NLRP3 inflammasome in models of sevoflurane-induced cognitive impairment and explored the underlying molecular mechanisms. Aged C57BL/6 J mice and cultured primary hippocampal neurons were exposed to 3% sevoflurane for 2 h. Hippocampal tissue samples and hippocampal neurons were harvested. The processes of histone acetylation and autophagy and the activation of the NLRP3 inflammasome were observed using western blotting, immunofluorescence staining, and transmission electron microscopy. Suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylases, increased histone H3 and H4 acetylation in both the mouse hippocampus and primary neurons. Concomitantly, sevoflurane upregulated components of the NLRP3 inflammasome (NLRP3, cleaved caspase-1, and IL-1β) by promoting autophagic degradation in the aging brain. Cognitive deficits and inadequate autophagy induced by sevoflurane were reversed and NLRP3 inflammasome activation was inhibited by SAHA. Treatment with 3-MA, an autophagy inhibitor, eliminated the neuroprotective effects of SAHA on improving cognition in mice, activating autophagy and downregulating the NLRP3 inflammasome. Based on these results, histone acetylation activates autophagy plays an important role in inhibiting the activation of the NLRP3 inflammasome to protect the host from excessive neuroinflammation and sevoflurane-induced cognitive dysfunction in the aging brain.
Collapse
Affiliation(s)
- Peng Fang
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Department of Anaesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Chang Chen
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Feng Zheng
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Junke Jia
- Department of Anaesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Ting Chen
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jinpiao Zhu
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jing Chang
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zongze Zhang
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
78
|
Barrera MJ, Aguilera S, Castro I, Matus S, Carvajal P, Molina C, González S, Jara D, Hermoso M, González MJ. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: implications in Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:1951-1962. [PMID: 33216905 DOI: 10.1093/rheumatology/keaa670] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Altered homeostasis of salivary gland (SG) epithelial cells in Sjögren's syndrome (SS) could be the initiating factor that leads to inflammation, secretory dysfunction and autoimmunity. Autophagy is an important homeostatic mechanism, whose deficiency is associated with inflammation and accumulation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) components. We aimed to evaluate whether autophagy is altered in labial SG (LSG) epithelial cells from primary SS (pSS) patients and whether this contributes to inflammation through the JAK-STAT pathway. Furthermore, we investigated the anti-inflammatory effect of the JAK inhibitor tofacitinib in autophagy-deficient (ATG5 knockdown) three-dimensional (3D)-acini. METHODS We analysed LSG biopsies from 12 pSS patients with low focus score and 10 controls. ATG5-deficient 3D-acini were generated and incubated with IL-6 in the presence or absence of tofacitinib. Autophagy markers, pro-inflammatory cytokine expression, and JAK-STAT pathway activation were evaluated by PCR or western blot, along with correlation analyses between the evaluated markers and clinical parameters. RESULTS LSG from pSS patients showed increased p62 and decreased ATG5 expression, correlating negatively with increased activation of JAK-STAT pathway components (pSTAT1 and pSTAT3). Increased expression of STAT1 and IL-6 correlated with EULAR Sjögren's syndrome disease activity index and the presence of anti-Ro antibodies. ATG5-deficient 3D-acini reproduced the findings observed in LSG from pSS patients, showing increased expression of pro-inflammatory markers such as IL-6, which was reversed by tofacitinib. CONCLUSION Decreased expression of ATG5 in LSG epithelial cells from pSS patients possibly contributes to increased inflammation associated with JAK-STAT pathway activation, as evidenced in ATG5-deficient 3D-acini. Interestingly, these results suggest that tofacitinib could be used as an anti-inflammatory agent in pSS patients.
Collapse
Affiliation(s)
| | | | - Isabel Castro
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricia Carvajal
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Facultad de Odontología, Universidad San Sebastián, Santiago, Chile
| | - Sergio González
- Escuela de Odontología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Daniela Jara
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
79
|
Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2021; 10:antiox10071044. [PMID: 34209636 PMCID: PMC8300823 DOI: 10.3390/antiox10071044] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and inflammation triggered by increased oxidative stress are the cause of many chronic diseases. The lack of anti-inflammatory drugs without side-effects has stimulated the search for new active substances. Plant-derived compounds provide new potential anti-inflammatory and antioxidant molecules. Natural products are structurally optimized by evolution to serve particular biological functions, including the regulation of endogenous defense mechanisms and interaction with other organisms. This property explains their relevance for infectious diseases and cancer. Recently, among the various natural substances, polyphenols from extra virgin olive oil (EVOO), an important element of the Mediterranean diet, have aroused growing interest. Extensive studies have shown the potent therapeutic effects of these bioactive molecules against a series of chronic diseases, such as cardiovascular diseases, diabetes, neurodegenerative disorders and cancer. This review begins from the chemical structure, abundance and bioavailability of the main EVOO polyphenols to highlight the effects and the possible molecular mechanism(s) of action of these compounds against inflammation and oxidation, in vitro and in vivo. In addition, the mechanisms of inhibition of molecular signaling pathways activated by oxidative stress by EVOO polyphenols are discussed, together with their possible roles in inflammation-mediated chronic disorders, also taking into account meta-analysis of population studies and clinical trials.
Collapse
Affiliation(s)
- Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
- Correspondence:
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50134, Italy; (P.N.); (F.C.)
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50134, Italy; (P.N.); (F.C.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy; (M.L.); (M.S.)
| |
Collapse
|
80
|
The Extracts of Angelica sinensis and Cinnamomum cassia from Oriental Medicinal Foods Regulate Inflammatory and Autophagic Pathways against Neural Injury after Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9663208. [PMID: 34257822 PMCID: PMC8257381 DOI: 10.1155/2021/9663208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKβ and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1β, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.
Collapse
|
81
|
Ali M, Gupta M, Wani A, Sharma A, Abdullaha M, Kour D, Choudhary S, Bharate SB, Singh G, Kumar A. IIIM-941, a Stilbene Derivative Inhibits NLRP3 Inflammasome Activation by Inducing Autophagy. Front Pharmacol 2021; 12:695712. [PMID: 34248643 PMCID: PMC8267097 DOI: 10.3389/fphar.2021.695712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022] Open
Abstract
Aberrant activation of NLRP3 inflammasome has been implicated in several inflammatory diseases. Autophagy is one of the primary mechanisms that regulate NLRP3 inflammasome activity. In this study, we attempted to target NLRP3 inflammasome activity by a synthetic compound IIIM-941. We found that IIIM-941 inhibits ATP induced NLRP3 inflammasome by induction of autophagy through AMPK pathway in bone marrow derived macrophages (BMDMs) and J774A.1 cells. It was interesting to observe that IIIM-941 did not show any inhibitory activity against LPS induced pro-inflammatory cytokines TNF-α and IL-6. The anti-NLRP3 activity of IIIM-941 was significantly reversed when we attempted to block autophagy by using either pharmacological inhibitor bafilomycin A1or by using siRNA against AMPK. Further, we found that IIIM-941 downregulated the expression of NLRP3 and prevented the oligomerization of ASC to exert its anti-NLRP3 inflammasome effect in J774A.1 cells. We validated inhibitory activity of IIIM-941 against NLRP3 in three different mice models. The anti-inflammatory effect of IIIM-941 was highly significant in ATP induced peritoneal inflammation model. IIIM-941 was similarly effective in suppressing MSU induced IL-1β in the air pouch model of inflammation without affecting the levels of TNF-α and IL-6. Finally, oral efficacy of IIIM-941 was also proved in MSU indued foot paw edema model of inflammation in mice at 10 and 20 mg/kg (b.w.). The compounds like IIIM-941 can be explored further for the development of therapies against diseases such as Alzheimer's disease and Parkinson's disease, where hampered autophagy and NLRP3 activation play a crucial role in the pathological development.
Collapse
Affiliation(s)
- Mehboob Ali
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehak Gupta
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abubakar Wani
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Department of Immunology, St Jude Children’s Hospital, Memphis, TN, United States
| | - Ankita Sharma
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Abdullaha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Dilpreet Kour
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sushil Choudhary
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sandip B. Bharate
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Gurdarshan Singh
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajay Kumar
- PK-PD-Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
82
|
Pearson GL, Gingerich MA, Walker EM, Biden TJ, Soleimanpour SA. A Selective Look at Autophagy in Pancreatic β-Cells. Diabetes 2021; 70:1229-1241. [PMID: 34016598 PMCID: PMC8275885 DOI: 10.2337/dbi20-0014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Insulin-producing pancreatic β-cells are central to glucose homeostasis, and their failure is a principal driver of diabetes development. To preserve optimal health β-cells must withstand both intrinsic and extrinsic stressors, ranging from inflammation to increased peripheral insulin demand, in addition to maintaining insulin biosynthesis and secretory machinery. Autophagy is increasingly being appreciated as a critical β-cell quality control system vital for glycemic control. Here we focus on the underappreciated, yet crucial, roles for selective and organelle-specific forms of autophagy as mediators of β-cell health. We examine the unique molecular players underlying each distinct form of autophagy in β-cells, including selective autophagy of mitochondria, insulin granules, lipid, intracellular amyloid aggregates, endoplasmic reticulum, and peroxisomes. We also describe how defects in selective autophagy pathways contribute to the development of diabetes. As all forms of autophagy are not the same, a refined view of β-cell selective autophagy may inform new approaches to defend against the various insults leading to β-cell failure in diabetes.
Collapse
Affiliation(s)
- Gemma L Pearson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI
| |
Collapse
|
83
|
Xu L, Zhou J, Che J, Wang H, Yang W, Zhou W, Zhao H. Mitochondrial DNA enables AIM2 inflammasome activation and hepatocyte pyroptosis in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1034-G1044. [PMID: 33728991 DOI: 10.1152/ajpgi.00431.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitochondria damage exacerbates NAFLD through trigerring AIM2 inflammasome activation and hepatocyte pyroptosis. This study provides novel insights into the underlying mechanisms of mitochondrial DNA synthesis in NAFLD and also suggests potential therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Lu Xu
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Jingyang Zhou
- Class 182, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jinhui Che
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Haihong Wang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Weizhong Yang
- Department of Hepatopancreatobillary Surgery, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| | - Wuyuan Zhou
- Department of Hepatopancreatobiliary Surgery, Xuzhou City Cancer Hospital, Gulou District, Xuzhou City, Jiangsu, China
| | - Hongying Zhao
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
84
|
Bittencourt TL, da Silva Prata RB, de Andrade Silva BJ, de Mattos Barbosa MG, Dalcolmo MP, Pinheiro RO. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front Immunol 2021; 12:674241. [PMID: 34113346 PMCID: PMC8185338 DOI: 10.3389/fimmu.2021.674241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Pathogenic mycobacteria species may subvert the innate immune mechanisms and can modulate the activation of cells that cause disease in the skin. Cutaneous mycobacterial infection may present different clinical presentations and it is associated with stigma, deformity, and disability. The understanding of the immunopathogenic mechanisms related to mycobacterial infection in human skin is of pivotal importance to identify targets for new therapeutic strategies. The occurrence of reactional episodes and relapse in leprosy patients, the emergence of resistant mycobacteria strains, and the absence of effective drugs to treat mycobacterial cutaneous infection increased the interest in the development of therapies based on repurposed drugs against mycobacteria. The mechanism of action of many of these therapies evaluated is linked to the activation of autophagy. Autophagy is an evolutionary conserved lysosomal degradation pathway that has been associated with the control of the mycobacterial bacillary load. Here, we review the role of autophagy in the pathogenesis of cutaneous mycobacterial infection and discuss the perspectives of autophagy as a target for drug development and repurposing against cutaneous mycobacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Margareth Pretti Dalcolmo
- Helio Fraga Reference Center, Sergio Arouca National School of Public Health, Fiocruz, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
85
|
Zhu X, Li S, Lin Q, Shao X, Wu J, Zhang W, Cai H, Zhou W, Jiang N, Zhang Z, Shen J, Wang Q, Ni Z. αKlotho protein has therapeutic activity in contrast-induced acute kidney injury by limiting NLRP3 inflammasome-mediated pyroptosis and promoting autophagy. Pharmacol Res 2021; 167:105531. [PMID: 33675964 DOI: 10.1016/j.phrs.2021.105531] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a main cause of hospital-acquired renal failure. Nevertheless, limited measures have been shown to be effective for the treatment of CI-AKI. Here, we demonstrated that αKlotho, which is highly expressed in kidney, has therapeutic activity in CI-AKI. Our data showed that αKlotho expression levels were decreased both in the kidney and serum of CI-AKI mice. Administration of αKlotho protein protected the kidney and HK-2 cells against contrast-induced injury. Mechanistically, αKlotho reduced contrast-induced renal tubular cells pyroptosis by limiting NLRP3 inflammasome activation. Meanwhile, αKlotho up-regulated autophagy via inhibiting the AKT/mTOR pathway and decreased mitochondrial ROS level. Inhibition of autophagy blunted the suppression effect of αKlotho on NLRP3 inflammasome activation and cell pyroptosis in contrast-treated HK-2 cells. Taken together, our data suggest that αKlotho protein protects against CI-AKI through inhibiting NLRP3 inflammasome-mediated pyroptosis, which is likely by promoting autophagy. αKlotho may be a promising therapeutic strategy for CI-AKI.
Collapse
Affiliation(s)
- Xuying Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingkui Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiming Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Cai
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Jiang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiao Shen
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
86
|
Mi L, Wang Y, Xu H, Wang Y, Wu J, Dai H, Zhang Y. PRAK Promotes the Pathogen Clearance by Macrophage Through Regulating Autophagy and Inflammasome Activation. Front Immunol 2021; 12:618561. [PMID: 33936034 PMCID: PMC8085562 DOI: 10.3389/fimmu.2021.618561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
The p38 regulated/activated protein kinase (PRAK) is a protein kinase downstream of p38MAPK. The present study investigated its function in the macrophage. Myeloid-specific deletion of Prak resulted in a significant reduction in F4/80+CD11b+ peritoneal macrophages with decreased expression of MHC-II and CD80. Upon infection with Listeria monocytogenes, Prak-deficient mice demonstrated an increased mortality, which was accompanied by a higher bacterial load in multiple tissues and elevated levels of proinflammatory cytokines in the serum. While the Prak-deficient macrophage showed similar potency in phagocytosis assays, its bactericidal activity was severely impaired. Moreover, Prak deficiency was associated with defects in ROS production, inflammasome activation as well as autophagy induction. Therefore, PRAK critically contributes to the clearance of intracellular pathogens by affecting multiple aspects of the macrophage function.
Collapse
Affiliation(s)
- Ligu Mi
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Xu
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yu Wang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Jia Wu
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
87
|
Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells 2021; 10:cells10030625. [PMID: 33799835 PMCID: PMC7998923 DOI: 10.3390/cells10030625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial vessel wall and underlies the development of cardiovascular diseases, such as myocardial infarction and ischemic stroke. As such, atherosclerosis stands as the leading cause of death and disability worldwide and intensive scientific efforts are made to investigate its complex pathophysiology, which involves the deregulation of crucial intracellular pathways and intricate interactions between diverse cell types. A growing body of evidence, including in vitro and in vivo studies involving cell-specific deletion of autophagy-related genes (ATGs), has unveiled the mechanistic relevance of cell-specific (endothelial, smooth-muscle, and myeloid cells) defective autophagy in the processes of atherogenesis. In this review, we underscore the recent insights on autophagy's cell-type-dependent role in atherosclerosis development and progression, featuring the relevance of canonical catabolic functions and emerging noncanonical mechanisms, and highlighting the potential therapeutic implications for prevention and treatment of atherosclerosis and its complications.
Collapse
Affiliation(s)
- James M. Henderson
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
- Correspondence: (C.W.); (D.S.)
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), D-80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, D-80336 Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, I-09042 Milan, Italy
- Correspondence: (C.W.); (D.S.)
| |
Collapse
|
88
|
Shao BZ, Yao Y, Zhai JS, Zhu JH, Li JP, Wu K. The Role of Autophagy in Inflammatory Bowel Disease. Front Physiol 2021; 12:621132. [PMID: 33633585 PMCID: PMC7902040 DOI: 10.3389/fphys.2021.621132] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). The abnormality of inflammatory and immune responses in the intestine contributes to the pathogenesis and progression of IBD. Autophagy is a vital catabolic process in cells. Recent studies report that autophagy is highly involved in various kinds of diseases, especially inflammation-related diseases, such as IBD. In this review, the biological characteristics of autophagy and its role in IBD will be described and discussed based on recent literature. In addition, several therapies for IBD through modulating the inflammasome and intestinal microbiota taking advantage of autophagy regulation will be introduced. We aim to bring new insight in the exploration of mechanisms for IBD and development of novel therapeutic strategies against IBD.
Collapse
Affiliation(s)
- Bo-Zong Shao
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yi Yao
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jun-Shan Zhai
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jian-Hua Zhu
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jin-Ping Li
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Kai Wu
- The 8th Medical Center of General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
89
|
Zhou W, Xiao D, Zhao Y, Tan B, Long Z, Yu L, He G. Enhanced Autolysosomal Function Ameliorates the Inflammatory Response Mediated by the NLRP3 Inflammasome in Alzheimer's Disease. Front Aging Neurosci 2021; 13:629891. [PMID: 33708103 PMCID: PMC7940192 DOI: 10.3389/fnagi.2021.629891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) involves activation of many NLRP3 inflammatory bodies, which may be related to amyloid β peptide and aggregation of misfolded proteins. Autophagy is an important regulator of inflammatory bodies. However, autophagy shows dynamic changes in the development of AD, and its role in inflammation remains controversial. In this study, the key link between autophagic disorders and the NLRP3 inflammasome in AD was investigated. APP/PS1 double transgenic mice and C57 mice with Aβ25–35 injected into the lateral ventricle were used as two animal models of AD. Immunofluorescence staining and Western blot analysis showed that NLRP3 inflammasome-related proteins and inflammatory cytokines, such as IL-1α, IL-1β, IL-6, IL-12, and TNF-α, were increased and microglia were activated in the brains of both AD animal models. Endogenous overexpression of the APPswe gene and exogenous addition of Aβ25–35 increased the expression of NLRP3 inflammasome-related proteins, while exogenous Aβ25–35 intervention more significantly activated inflammation. Furthermore, LC3 was increased in the AD animal and cell models, and the level of Lamp1 decreased. After overexpression of the primary regulator of lysosomal biogenesis, TFEB, the lysosome protein Lamp1 was increased, and LC3 and inflammatory protein expression were decreased. These results suggest that the NLRP3 inflammasome-mediated inflammatory response is activated in AD animal and cell models, which may be related to the decline in autolysosome function. Overexpression of the TFEB protein can reduce the inflammatory response by improving autolysosome function in AD model cells.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Neurorehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Deng Xiao
- Department of Neurorehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhimin Long
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Department of Anatomy, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
90
|
Maphasa RE, Meyer M, Dube A. The Macrophage Response to Mycobacterium tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy. Front Cell Infect Microbiol 2021; 10:618414. [PMID: 33628745 PMCID: PMC7897680 DOI: 10.3389/fcimb.2020.618414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The major causative agent of tuberculosis (TB), i.e., Mycobacterium tuberculosis (Mtb), has developed mechanisms to evade host defense responses and persist within host cells for prolonged periods of time. Mtb is also increasingly resistant to existing anti-TB drugs. There is therefore an urgent need to develop new therapeutics for TB and host directed therapies (HDTs) hold potential as effective therapeutics for TB. There is growing interest in the induction of autophagy in Mtb host cells using autophagy inducing compounds (AICs). Nanoparticles (NPs) can enhance the effect of AICs, thus improving stability, enabling cell targeting and providing opportunities for multimodal therapy. In this review, we focus on the macrophage responses to Mtb infection, in particular, the mechanistic aspects of autophagy and the evasion of autophagy by intracellular Mtb. Due to the overlap between the onset of autophagy and apoptosis; we also focus on the relationship between apoptosis and autophagy. We will also review known AICs in the context of Mtb infection. Finally, we discuss the applications of NPs in inducing autophagy with the intention of sharing insights to encourage further research and development of nanomedicine HDTs for TB therapy.
Collapse
Affiliation(s)
- Retsepile E Maphasa
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
91
|
Lian J, Hua T, Xu J, Ding J, Liu Z, Fan Y. Interleukin-1β weakens paclitaxel sensitivity through regulating autophagy in the non-small cell lung cancer cell line A549. Exp Ther Med 2021; 21:293. [PMID: 33717236 PMCID: PMC7885084 DOI: 10.3892/etm.2021.9724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a threat to human health and paclitaxel chemotherapy has been approved for the treatment of this type of cancer. However, resistance to treatment severely compromises the survival rate and prognosis of patients with NSCLC. The aim of the present study was to investigate the role of IL-1β in paclitaxel sensitivity of NSCLC cells and elucidate the underlying mechanism. The expression of IL-1β was found to be upregulated in NSCLC tissues and cells compared with healthy adjacent tissues and a normal epithelial cell line, respectively, as detected by reverse transcription-quantitative PCR and western blot analyses. Subsequently, Cell Counting Kit-8 assay and flow cytometry revealed that IL-1β weakened the sensitivity of A549 cells to paclitaxel. It was subsequently demonstrated that IL-1β induced A549 cell autophagy, while tunicamycin-induced autophagy increased the IL-1β expression level and weakened paclitaxel sensitivity. Thus, the results revealed that IL-1β reduced the sensitivity to paclitaxel in A549 cells by promoting autophagy and suggested that IL-1β may be of value for improving the therapeutic efficacy of paclitaxel chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
92
|
Yang SR, Hua KF, Takahata A, Wu CY, Hsieh CY, Chiu HW, Chen CH, Mukhopadhyay D, Suzuki Y, Ka SM, Huang HS, Chen A. LCC18, a benzamide-linked small molecule, ameliorates IgA nephropathy in mice. J Pathol 2021; 253:427-441. [PMID: 33373038 DOI: 10.1002/path.5609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
IgA nephropathy (IgAN), an immune complex-mediated process and the most common primary glomerulonephritis, can progress to end-stage renal disease in up to 40% of patients. Accordingly, a therapeutic strategy targeting a specific molecular pathway is urgently warranted. Aided by structure characterisation and target identification, we predicted that a novel ring-fused 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (LCC18) targets the NLRP3 inflammasome, which participates in IgAN pathogenesis. We further developed biomarkers for the disease. We used two complementary IgAN models in C57BL/6 mice, involving TEPC-15 hybridoma-derived IgA, and in gddY mice. Moreover, we created specific cell models to validate therapeutic effects of LCC18 on IgAN and to explain its underlying mechanisms. IgAN mice benefited significantly from treatment with LCC18, showing dramatically improved renal function, including greatly reduced proteinuria and renal pathology. Mechanistic studies showed that the mode of action specifically involved: (1) blocking of the MAPKs/COX-2 axis-mediated priming of the NLRP3 inflammasome; (2) inhibition of ASC oligomerisation and NLRP3 inflammasome assembly by inhibiting NLRP3 binding to PKR, NEK7 and ASC; and (3) activation of autophagy. LCC18 exerts therapeutic effects on murine IgAN by differentially regulating NLRP3 inflammasome activation and autophagy induction, suggesting this new compound as a promising drug candidate to treat IgAN. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Akiko Takahata
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yu Hsieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
93
|
Wang Y, Li Z, Teng M, Liu J. Dihydroartemisinin inhibits activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by inducing autophagy in A431 human cutaneous squamous cell carcinoma cells. Int J Med Sci 2021; 18:2705-2715. [PMID: 34104103 PMCID: PMC8176175 DOI: 10.7150/ijms.57167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The therapeutic effect of dihydroartemisinin (DHA) against cutaneous squamous cell carcinoma (cSCC) has been previously demonstrated; however, the underlying mechanism remains unclear. This study sought to verify the therapeutic effect of DHA against cSCC and explore its underlying mechanism in A431 cSCC cells. This study reported that DHA inhibited A431 cells proliferation in a time- and concentration-dependent manner and promoted A431 cells apoptosis. Moreover, DHA inhibited the invasion and migration of A431 cells. Mechanistically, DHA promoted autophagy and inhibited activation of the absent in melanoma 2 (AIM2) inflammasome pathway and NF-κB/HIF-1α/VEGF pathway. Treatment of A431 cells with the mTOR inhibitor, and autophagy promoter, rapamycin also inhibited these two pathways. In conclusion, DHA inhibited activation of the AIM2 inflammasome pathway and NF-κB/HIF-1α/VEGF pathway by promoting autophagy in A431 cells, thus accounting for its therapeutic effect. Induction of autophagy by DHA may be mediated by inhibiting the mTOR pathway and promoting reactive oxygen species production.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, Guangdong, China
| | - Zhijia Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Muzhou Teng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, Guangdong, China
| | - Junlin Liu
- Department of Dermatology, the Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, Hainan, China
| |
Collapse
|
94
|
Wu CH, Gan CH, Li LH, Chang JC, Chen ST, Menon MP, Cheng SM, Yang SP, Ho CL, Chernikov OV, Lin CH, Lam Y, Hua KF. A Synthetic Small Molecule F240B Decreases NLRP3 Inflammasome Activation by Autophagy Induction. Front Immunol 2020; 11:607564. [PMID: 33424855 PMCID: PMC7793731 DOI: 10.3389/fimmu.2020.607564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022] Open
Abstract
Conjugated polyenes are a class of widely occurring natural products with various biological functions. We previously identified 4-hydroxy auxarconjugatin B (4-HAB) as anti‐inflammatory agent with an IC50 of ~20 µM. In this study, we synthesized a new anti‐inflammatory 4-HAB analogue, F240B, which has an IC50 of less than 1 µM. F240B dose-dependently induced autophagy by increasing autophagic flux, LC3 speck formation and acidic vesicular organelle formation. F240B inhibited NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome activation through autophagy induction. In a mechanistic study, F240B inhibited interleukin (IL)-1β (IL-1β) precursor expression, promoted degradation of NLRP3 and IL-1β, and reduced mitochondrial membrane integrity loss in an autophagy-dependent manner. Additionally, F240B inhibited apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation without affecting the interaction between NLRP3 and ASC or NIMA-related kinase 7 (NEK7) and double-stranded RNA-dependent kinase (PKR). Furthermore, F240B exerted in vivo anti-inflammatory activity by reducing the intraperitoneal influx of neutrophils and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in lavage fluids in a mouse model of uric acid crystal-induced peritonitis. In conclusion, F240B attenuated the NLRP3 inflammasome through autophagy induction and can be developed as an anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chin Heng Gan
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Che Chang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Shin-Tai Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Mridula P Menon
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, Russia
| | - Chi-Hung Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Department of Biological Science & Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Kuo-Feng Hua
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
95
|
Farré-Alins V, Narros-Fernández P, Palomino-Antolín A, Decouty-Pérez C, Lopez-Rodriguez AB, Parada E, Muñoz-Montero A, Gómez-Rangel V, López-Muñoz F, Ramos E, González-Rodríguez Á, Gandía L, Romero A, Egea J. Melatonin Reduces NLRP3 Inflammasome Activation by Increasing α7 nAChR-Mediated Autophagic Flux. Antioxidants (Basel) 2020; 9:antiox9121299. [PMID: 33353046 PMCID: PMC7767051 DOI: 10.3390/antiox9121299] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Microglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1β and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy. For this purpose, we have used pharmacological and genetic approaches in lipopolysaccharide (LPS)-induced inflammation models in both in vitro and in vivo models. In the BV2 cell line, LPS inhibited autophagy, which increased NLRP3 protein levels. However, melatonin promoted an increase in the autophagic flux. Treatment of glial cultures from wild-type (WT) mice with LPS followed by extracellular adenosine triphosphate (ATP) produced the release of IL-1β, which was reversed by melatonin pretreatment. In cultures from α7 nAChR knock-out (KO) mice, melatonin did not reduce IL-1β release. Furthermore, melatonin decreased the expression of inflammasome components and reactive oxygen species (ROS) induced by LPS; co-incubation of melatonin with α-bungarotoxin (α-bgt) or luzindole abolished the anti-inflammatory and antioxidant effects. In vivo, melatonin reverted LPS-induced cognitive decline, reduced NLRP3 levels and promoted autophagic flux in the hippocampi of WT mice, whereas in α7 nAChR KO mice melatonin effect was not observed. These results suggest that melatonin may modulate the complex interplay between α7 nAChR and autophagy signaling.
Collapse
Affiliation(s)
- Víctor Farré-Alins
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Paloma Narros-Fernández
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Alejandra Palomino-Antolín
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Céline Decouty-Pérez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Ana Belen Lopez-Rodriguez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Esther Parada
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Alicia Muñoz-Montero
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Vanessa Gómez-Rangel
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i+12), 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (E.R.); (A.R.)
| | - Águeda González-Rodríguez
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (E.R.); (A.R.)
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; (V.F.-A.); (P.N.-F.); (A.P.-A.); (C.D.-P.); (A.B.L.-R.); (E.P.); (V.G.-R.)
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, 28029 Madrid, Spain; (A.M.-M.); (L.G.)
- Correspondence: ; Tel.: +34-915574402
| |
Collapse
|
96
|
García-Pérez BE, González-Rojas JA, Salazar MI, Torres-Torres C, Castrejón-Jiménez NS. Taming the Autophagy as a Strategy for Treating COVID-19. Cells 2020; 9:E2679. [PMID: 33322168 PMCID: PMC7764362 DOI: 10.3390/cells9122679] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, an efficient treatment for COVID-19 is still unavailable, and people are continuing to die from complications associated with SARS-CoV-2 infection. Thus, the development of new therapeutic approaches is urgently needed, and one alternative is to target the mechanisms of autophagy. Due to its multifaceted role in physiological processes, many questions remain unanswered about the possible advantages of inhibiting or activating autophagy. Based on a search of the literature in this field, a novel analysis has been made to highlight the relation between the mechanisms of autophagy in antiviral and inflammatory activity in contrast with those of the pathogenesis of COVID-19. The present analysis reveals a remarkable coincidence between the uncontrolled inflammation triggered by SARS-CoV-2 and autophagy defects. Particularly, there is conclusive evidence about the substantial contribution of two concomitant factors to the development of severe COVID-19: a delayed or absent type I and III interferon (IFN-I and IFN-III) response together with robust cytokine and chemokine production. In addition, a negative interplay exists between autophagy and an IFN-I response. According to previous studies, the clinical decision to inhibit or activate autophagy should depend on the underlying context of the pathological timeline of COVID-19. Several treatment options are herein discussed as a guide for future research on this topic.
Collapse
Affiliation(s)
- Blanca Estela García-Pérez
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (J.A.G.-R.), (M.I.S.)
| | - Juan Antonio González-Rojas
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (J.A.G.-R.), (M.I.S.)
| | - Ma Isabel Salazar
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (J.A.G.-R.), (M.I.S.)
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Gustavo A. Madero, Mexico City 07738, Mexico;
| | - Nayeli Shantal Castrejón-Jiménez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1. Exhacienda de Aquetzalpa A.P. 32, Tulancingo, Hidalgo 43600, Mexico;
| |
Collapse
|
97
|
La Rosa F, Saresella M, Marventano I, Piancone F, Ripamonti E, Al-Daghri N, Bazzini C, Zoia CP, Conti E, Ferrarese C, Clerici M. Stavudine Reduces NLRP3 Inflammasome Activation and Modulates Amyloid-β Autophagy. J Alzheimers Dis 2020; 72:401-412. [PMID: 31594217 DOI: 10.3233/jad-181259] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with the accumulation of amyloid-β (Aβ) within senile plaques in the brain and neuroinflammation, possibly driven by the activation of the NLRP3 inflammasome. Nucleoside reverse transcriptase inhibitors (NRTI) hamper the NLRP3 inflammasome assembly. OBJECTIVE We utilized an in vitro model reproducing the Aβ-driven inflammation seen in AD to analyze whether stavudine (D4T), a prototypical NRTI, modulates Aβ-mediated inflammasome activation and the ability of macrophages to eliminate Aβ via phagocytosis and autophagy. METHODS THP-1-derived macrophages were stimulated in vitro with Aβ42 or with Aβ42 after LPS-priming in the presence/absence of D4T. NLRP3 and TREM2 expression was analyzed by RT-PCR; phagocytosis, as well as ASC-Speck formation, was analyzed by Amnis FlowSight Imaging; NLRP3-produced cytokines were quantified by ELISA and, finally, autophagy was analyzed by measuring p-ERK1/2, p-AKT, beclin, p70-S6Kinase, and Lamp by ELISA and western blot. RESULTS IL-1β, IL-18, and caspase-1 were increased whereas Aβ phagocytosis and TREM2 were reduced in LPS+Aβ42-stimulated cells. D4T reduced NLRP3 assembly as well as IL-18 and caspase-1 production, but did not affect IL-1β production and TREM2 expression. Notably, whereas D4T reduced Aβ phagocytosis, Aβ autophagy by macrophages was stimulated by D4T, as witnessed by the down-modulation of ERK1/2 and AKT phosphorylation and the upregulation of beclin, LAMP, and p70-S6K, their downstream targets. CONCLUSION In this in vitro model of AD, D4T reduces NLRP3 inflammasome-associated inflammation and stimulates Aβ autophagy by macrophages. It will be interesting to verify the possibly beneficial effects of D4T in the clinical scenario.
Collapse
Affiliation(s)
- Francesca La Rosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chiara Bazzini
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Chiara Paola Zoia
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Elisa Conti
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Laboratory of Neurobiology, School of Medicine and Surgery, Monza, Italy.,Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy.,Department of Neuroscience, S. Gerardo Hospital, Monza, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| |
Collapse
|
98
|
Ding W, Ding Z, Wang Y, Zhu Y, Gao Q, Cao W, Du R. Evodiamine Attenuates Experimental Colitis Injury Via Activating Autophagy and Inhibiting NLRP3 Inflammasome Assembly. Front Pharmacol 2020; 11:573870. [PMID: 33240089 PMCID: PMC7681073 DOI: 10.3389/fphar.2020.573870] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy and NLRP3 inflammasome were associated with the process of colitis. Drugs targeting NLRP3 inflammasome and autophagy to treat colitis are absent, and they are urgently required. Herein, we examine the effect of evodiamine, extracted from the fruit of Evodiae Fructus, on experimental colitis induced by dextran sulfate sodium and exposit whether evodiamine effects on autophagy and NLRP3 inflammasome. Our data indicated that colitis was ameliorated by evodiamine, including the improvement of mice body weight, colon length, histopathologic score, and the disease activity index. We also observed that evodiamine restrained the formation of the NLRP3 inflammasome by inhibiting the apoptosis-associated speck-like protein oligomerization and caspase-1 activity in THP-1 macrophages. Our results demonstrated evodiamine inhibit NLRP3 inflammasome activation via the induction of autophagosome-mediated degradation of inflammasome and the inhibition of NFκB pathway, which synergistically contribute to the effect of evodiamine in colitis. It indicates the potential use of evodiamine in inflammatory bowel diseases treatment.
Collapse
Affiliation(s)
- Wenwen Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhiquan Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qi Gao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Ronghui Du
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
99
|
Tezcan G, Garanina EE, Zhuravleva MN, Hamza S, Rizvanov AA, Khaiboullina SF. Rab GTPase Mediating Regulation of NALP3 in Colorectal Cancer. Molecules 2020; 25:molecules25204834. [PMID: 33092247 PMCID: PMC7587934 DOI: 10.3390/molecules25204834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
The NALP3 inflammasome signaling contributes to inflammation within tumor tissues. This inflammation may be promoted by the vesicle trafficking of inflammasome components and cytokines. Rab5, Rab7 and Rab11 regulate vesicle trafficking. However, the role of these proteins in the regulation of inflammasomes remains largely unknown. To elucidate the role of these Rab proteins in inflammasome regulation, HCT-116, a colorectal cancer (CRC) cell line expressing pDsRed-Rab5 wild type (WT), pDsRed-Rab5 dominant-negative (DN), pDsRed-Rab7 WT, pDsRed-Rab7 DN, pDsRed-Rab11 WT and pDsRed-Rab11 DN were treated with lipopolysaccharide (LPS)/nigericin. Inflammasome activation was analyzed by measuring the mRNA expression of NLRP3, Pro-CASP1, RAB39A and Pro-IL-1β, conducting immunofluorescence imaging and western blotting of caspase-1 and analysing the secretion levels of IL-1β using enzyme-linked immunosorbent assay (ELISA). The effects of Rabs on cytokine release were evaluated using MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel-Premixed 41 Plex. The findings showed that LPS/nigericin-treated cells expressing Rab5-WT indicated increased NALP3 expression and secretion of the IL-1β as compared to Rab5-DN cells. Caspase-1 was localized in the nucleus and cytosol of Rab5-WT cells but was localized in the cytosol in Rab5-DN cells. There were no any effects of Rab7 and Rab11 expression on the regulation of inflammasomes. Our results suggest that Rab5 may be a potential target for the regulation of NALP3 in the treatment of the CRC inflammation.
Collapse
Affiliation(s)
- Gülçin Tezcan
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
- Faculty of Dentistry, Department of Fundamental Sciences, Bursa Uludag University, Bursa 16240, Turkey
| | - Ekaterina E. Garanina
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Margarita N. Zhuravleva
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Shaimaa Hamza
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Albert A. Rizvanov
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
| | - Svetlana F. Khaiboullina
- Institution of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (G.T.); (E.E.G.); (M.N.Z.); (S.H.); (A.A.R.)
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA
- Correspondence: ; Fax: +1-775682-8258
| |
Collapse
|
100
|
Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res 2020; 43:997-1016. [PMID: 33078304 DOI: 10.1007/s12272-020-01274-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Aberrant production of adipokines, a group of adipocytes-derived hormones, is considered one of the most important pathological characteristics of obesity. In individuals with obesity, beneficial adipokines, such as adiponectin are downregulated, whereas leptin and other pro-inflammatory adipokines are highly upregulated. Hence, the imbalance in levels of these adipokines is thought to promote the development of obesity-linked complications. However, the mechanisms by which adipokines contribute to the pathogenesis of various diseases have not been clearly understood. Inflammasomes represent key signaling platform that triggers the inflammatory and immune responses through the processing of the interleukin family of pro-inflammatory cytokines in a caspase-1-dependent manner. Beyond their traditional function as a component of the innate immune system, inflammasomes have been recently integrated into the pathological process of multiple metabolism- and obesity-related disorders such as cardiovascular diseases, diabetes, fatty liver disease, and cancer. Interestingly, emerging evidence also highlights the role of adipokines in the modulation of inflammasomes activation, making it a promising mechanism underlying distinct biological actions of adipokines in diseases driven by inflammation and metabolic disorders. In this review, we summarize the effects of adipokines, in particular adiponectin, leptin, visfatin and apelin, on inflammasomes activation and their implications in the pathophysiology of obesity-linked complications.
Collapse
|