51
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
52
|
Siannoto M, Nugraha GI, Lesmana R, Goenawan H, Tarawan VM, Khairani AF. The Nutraceuticals and White Adipose Tissue in Browning Process. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999200731004318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity has become a prominent epidemic disease since its worldwide prevalence has
shown a continuous rise over the past few decades. The primary aim of obesity treatment is to effectively
reduce the intake of energy, while simultaneously increasing energy expenditure. Increasing
thermogenesis is one of the methods to increase energy expenditure. Thermogenesis, which primarily
occurs in brown adipose tissue, can also be produced by beige adipose tissue, through a process
known as browning. The browning process has recently been attracting a great deal of attention as
a potential anti-obesity agent. Many well-researched inducers of the browning process are readily
available, including cold exposure, agonist β3-adrenergic, agonist peroxisome proliferator activated
receptor γ, fibroblast growth factor 21, irisin and several nutraceuticals (including resveratrol,
curcumin, quercetin, fish oils, green tea, etc.). This mini review summarizes the current knowledge
and the latest research of some nutraceuticals that are potentially involved in the browning process.
Collapse
Affiliation(s)
- Melisa Siannoto
- Graduate Program of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Gaga I. Nugraha
- Division of Biochemistry and Biomolecular, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Vita M. Tarawan
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Astrid F. Khairani
- Graduate Program of Antiaging and Aesthetics Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
53
|
Ahmad B, Vohra MS, Saleemi MA, Serpell CJ, Fong IL, Wong EH. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021; 184:26-39. [PMID: 33548390 DOI: 10.1016/j.biochi.2021.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Brown and beige adipose tissues are the primary sites for adaptive non-shivering thermogenesis. Although they have been known principally for their thermogenic effects, in recent years, it has emerged that, just like white adipose tissue (WAT), brown and beige adipose tissues also play an important role in the regulation of metabolic health through secretion of various brown adipokines (batokines) in response to various physiological cues. These secreted batokines target distant organs and tissues such as the liver, heart, skeletal muscles, brain, WAT, and perform various local and systemic functions in an autocrine, paracrine, or endocrine manner. Brown and beige adipose tissues are therefore now receiving increasing levels of attention with respect to their effects on various other organs and tissues. Identification of novel secreted factors by these tissues may help in the discovery of drug candidates for the treatment of various metabolic disorders such as obesity, type-2 diabetes, skeletal deformities, cardiovascular diseases, dyslipidemia. In this review, we comprehensively describe the emerging secretory role of brown/beige adipose tissues and the metabolic effects of various brown/beige adipose tissues secreted factors on other organs and tissues in endocrine/paracrine manners, and as well as on brown/beige adipose tissue itself in an autocrine manner. This will provide insights into understanding the potential secretory role of brown/beige adipose tissues in improving metabolic health.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, 94300, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia.
| |
Collapse
|
54
|
Mendez-Gutierrez A, Osuna-Prieto FJ, Aguilera CM, Ruiz JR, Sanchez-Delgado G. Endocrine Mechanisms Connecting Exercise to Brown Adipose Tissue Metabolism: a Human Perspective. Curr Diab Rep 2020; 20:40. [PMID: 32725289 DOI: 10.1007/s11892-020-01319-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To summarize the state-of-the-art regarding the exercise-regulated endocrine signals that might modulate brown adipose tissue (BAT) activity and/or white adipose tissue (WAT) browning, or through which BAT communicates with other tissues, in humans. RECENT FINDINGS Exercise induces WAT browning in rodents by means of a variety of physiological mechanism. However, whether exercise induces WAT browning in humans is still unknown. Nonetheless, a number of protein hormones and metabolites, whose signaling can influence thermogenic adipocyte's metabolism, are secreted during and/or after exercise in humans from a variety of tissues and organs, such as the skeletal muscle, the adipose tissue, the liver, the adrenal glands, or the cardiac muscle. Overall, it seems plausible to hypothesize that, in humans, exercise secretes an endocrine cocktail that is likely to induce WAT browning, as it does in rodents. However, even if exercise elicits a pro-browning endocrine response, this might result in a negligible effect if blood flow is restricted in thermogenic adipocyte-rich areas during exercise, which is still to be determined. Future studies are needed to fully characterize the exercise-induced secretion (i.e., to determine the effect of the different exercise frequency, intensity, type, time, and volume) of endocrine signaling molecules that might modulate BAT activity and/or WAT browning or through which BAT communicates with other tissues, during exercise. The exercise effect on BAT metabolism and/or WAT browning could be one of the still unknown mechanisms by which exercise exerts beneficial health effects, and it might be pharmacologically mimicked.
Collapse
Affiliation(s)
- Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Francisco J Osuna-Prieto
- Department of Analytical Chemistry, Technology Centre for Functional Food Research and Development (CIDAF), University of Granada, Granada, Spain
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, Spain
- Biohealth Research Institute in Granada (ibs.GRANADA), Granada, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, University of Granada, Granada, Spain.
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Faculty of Sport Sciences, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, University of Granada, Granada, Spain.
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
55
|
Tong Y, Zhang Y, Shan Z, Xu Y, Gao X, Yao W. Improving high-fat diet-induced obesity and fatty liver by adipose tissue targeted delivery of vascular endothelial growth factor-B. Life Sci 2020; 253:117677. [DOI: 10.1016/j.lfs.2020.117677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
56
|
Critical Role of Matrix Metalloproteinase 14 in Adipose Tissue Remodeling during Obesity. Mol Cell Biol 2020; 40:MCB.00564-19. [PMID: 31988105 DOI: 10.1128/mcb.00564-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is recognized as the major pathological change in adipose tissue during the development of obesity. However, the detailed mechanisms governing the interactions between the fibrotic components and their modifiers remain largely unclear. Here, we reported that matrix metalloproteinase 14 (MMP14), a key pericellular collagenase, is dramatically upregulated in obese adipose tissue. We generated a doxycycline-inducible adipose tissue-specific MMP14 overexpression model to study its regulatory function. We found that overexpression of MMP14 in the established obese adipose tissue leads to enlarged adipocytes and increased body weights in transgenic mice. Furthermore, the mice exhibited decreased energy expenditure, impaired lipid metabolism, and insulin resistance. Mechanistically, we found that MMP14 digests collagen 6α3 to produce endotrophin, a potent costimulator of fibrosis and inflammation. Unexpectedly, when overexpressing MMP14 in the early-stage obese adipose tissue, the transgenic mice showed a healthier metabolic profile, including ameliorated fibrosis and inflammation, as well as improved lipid and glucose metabolism. This unique metabolic phenotype is likely due to digestion/modification of the dense adipose tissue extracellular matrix by MMP14, thereby releasing the mechanical stress to allow for its healthy expansion. Understanding these dichotomous impacts of MMP14 provides novel insights into strategies to treat obesity-related metabolic disorders.
Collapse
|
57
|
Taxerås SD, Galán M, Campderros L, Piquer‐Garcia I, Pellitero S, Martínez E, Puig R, Lucena I, Tarascó J, Moreno P, Balibrea J, Bel J, Murillo M, Martínez M, Ramon‐Krauel M, Puig‐Domingo M, Villarroya F, Lerin C, Sánchez‐Infantes D. Differential association between S100A4 levels and insulin resistance in prepubertal children and adult subjects with clinically severe obesity. Obes Sci Pract 2020; 6:99-106. [PMID: 32128247 PMCID: PMC7042100 DOI: 10.1002/osp4.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES S100A4 has been recently identified as an adipokine associated with insulin resistance (IR) in adult subjects with obesity. However, no data about its levels in children with obesity and only a few approaches regarding its potential mechanism of action have been reported. To obtain a deeper understanding of the role of S100A4 in obesity, (a) S100A4 levels were measured in prepubertal children and adult subjects with and without obesity and studied the relationship with IR and (b) the effects of S100A4 in cultured human adipocytes and vascular smooth muscle cells (VSMCs) were determined. METHODS Sixty-five children (50 with obesity, age 9.0 ±1.1 years and 15 normal weight, age 8.4 ±0.8 years) and fifty-nine adults (43 with severe obesity, age 46 ±11 years and 16 normal weight, age 45 ±9 years) were included. Blood from children and adults and adipose tissue samples from adults were obtained and analysed. Human adipocytes and VSMC were incubated with S100A4 to evaluate their response to this adipokine. RESULTS Circulating S100A4 levels were increased in both children (P = .002) and adults (P < .001) with obesity compared with their normal-weight controls. In subjects with obesity, S100A4 levels were associated with homeostatic model assessment-insulin resistance (HOMA-IR) in adults (βstd = .42, P = .008) but not in children (βstd = .12, P = .356). Human adipocytes were not sensitive to S100A4, while incubation with this adipokine significantly reduced inflammatory markers in VSMC. CONCLUSIONS Our human data demonstrate that higher S100A4 levels are a marker of IR in adults with obesity but not in prepubertal children. Furthermore, the in vitro results suggest that S100A4 might exert an anti-inflammatory effect. Further studies will be necessary to determine whether S100A4 can be a therapeutic target for obesity.
Collapse
Affiliation(s)
- Siri D. Taxerås
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - María Galán
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau‐Programa ICCCBarcelonaSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIIIMadridSpain
| | - Laura Campderros
- Department of Biochemistry and Molecular Biology, Institute of BiomedicineUniversity of BarcelonaBarcelonaSpain
- Biomedical Research Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| | - Irene Piquer‐Garcia
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Silvia Pellitero
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
- Biomedical Research Center (Red Fisiopatología de la Diabetes y enfermedades metabólicas) (CIBERDEM), ISCIIIMadridSpain
| | - Eva Martínez
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Rocío Puig
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Icíar Lucena
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Jordi Tarascó
- Department of SurgeryGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Pau Moreno
- Department of SurgeryGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - José Balibrea
- Metabolic and Bariatric Surgery Unit, EAC‐BS Center of ExcellenceVall d'Hebron University HospitalBarcelonaSpain
| | - Joan Bel
- Department of PediatricGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Marta Murillo
- Department of PediatricGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - María Martínez
- Department of PediatricGermans Trias i Pujol Research InstituteBarcelonaSpain
| | - Marta Ramon‐Krauel
- Endocrinology DepartmentInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Hospital Sant Joan de DéuBarcelonaSpain
| | - Manel Puig‐Domingo
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
- Biomedical Research Center (Red Fisiopatología de la Diabetes y enfermedades metabólicas) (CIBERDEM), ISCIIIMadridSpain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology, Institute of BiomedicineUniversity of BarcelonaBarcelonaSpain
- Biomedical Research Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| | - Carles Lerin
- Endocrinology DepartmentInstitut de Recerca Sant Joan de DéuBarcelonaSpain
- Hospital Sant Joan de DéuBarcelonaSpain
| | - David Sánchez‐Infantes
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBarcelonaSpain
- Biomedical Research Center (Red Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| |
Collapse
|
58
|
Abstract
Endothelial cells line all blood vessels in vertebrates. These cells contribute to whole-body nutrient distribution in a variety of ways, including regulation of local blood flow, regulation of trans-endothelial nutrient transport, and paracrine effects. Obesity elicits dramatic whole-body nutrient redistribution, in particular of fat. We briefly review here recent progress on understanding endothelial fat transport; the impact of obesity on the endothelium; and, conversely, how endothelial function can modulate obesity.
Collapse
Affiliation(s)
- Nora Yucel
- Perelman School of Medicine, University of Pennsylvania
| | - Zolt Arany
- Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
59
|
Abstract
Obesity is characterized by a state of chronic inflammation in adipose tissue mediated by the secretion of a range of inflammatory cytokines. In comparison to WAT, relatively little is known about the inflammatory status of brown adipose tissue (BAT) in physiology and pathophysiology. Because BAT and brown/beige adipocytes are specialized in energy expenditure they have protective roles against obesity and associated metabolic diseases. BAT appears to be is less susceptible to developing inflammation than WAT. However, there is increasing evidence that inflammation directly alters the thermogenic activity of brown fat by impairing its capacity for energy expenditure and glucose uptake. The inflammatory microenvironment can be affected by cytokines secreted by immune cells as well as by the brown adipocytes themselves. Therefore, pro-inflammatory signals represent an important component of the thermogenic potential of brown and beige adipocytes and may contribute their dysfunction in obesity.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
- *Correspondence: Mark Christian
| |
Collapse
|
60
|
Samuelson I, Vidal-Puig A. Studying Brown Adipose Tissue in a Human in vitro Context. Front Endocrinol (Lausanne) 2020; 11:629. [PMID: 33042008 PMCID: PMC7523498 DOI: 10.3389/fendo.2020.00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
New treatments for obesity and associated metabolic disease are increasingly warranted with the growth of the obesity pandemic. Brown adipose tissue (BAT) may represent a promising therapeutic target to treat obesity, as this tissue has been shown to regulate energy expenditure through non-shivering thermogenesis. Three different strategies could be employed for therapeutic targeting of human thermogenic adipocytes: increasing BAT mass through stimulation of BAT progenitors, increasing BAT function through regulatory pathways, and increasing WAT browning through promotion of beige adipocyte formation. However, these strategies require deeper understanding of human brown and beige adipocytes. While murine studies have greatly increased our understanding of BAT, it is becoming clear that human BAT does not exactly resemble that of the mouse, highlighting the need for human in vitro models of brown adipocytes. Several different human brown adipocyte models will be discussed here, along with the potential to improve brown adipocyte culture through recreation of the BAT microenvironment.
Collapse
Affiliation(s)
- Isabella Samuelson
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Department of Cellular Genetics, Wellcome Sanger Institute (WT), Hinxton, United Kingdom
- *Correspondence: Isabella Samuelson
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Department of Cellular Genetics, Wellcome Sanger Institute (WT), Hinxton, United Kingdom
| |
Collapse
|
61
|
Kim YJ, Ryu R, Choi JY, Choi MS. Platycodon grandiflorus Root Ethanol Extract Induces Lipid Excretion, Lipolysis, and Thermogenesis in Diet-Induced Obese Mice. J Med Food 2019; 22:1100-1109. [PMID: 31566484 DOI: 10.1089/jmf.2019.4443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipocytes regulate lipid metabolism according to physiological energy requirements. A dysfunctional lipid metabolism can lead to obesity and its complications such as hepatic steatosis, diabetes, and hyperlipidemia. In our study, the impact of Platycodon grandiflorus root ethanol extract (PGH) on lipid excretion and thermogenesis-related markers in diet-induced obesity mice was analyzed. Our data show that PGH elevated fatty acid uptake in epididymal adipose tissue by increasing Cd36, Slc27a1, Ffar2, and Ffar4 expression, which led to decreased blood free fatty acid concentrations. Moreover, PGH normalized body weight and fat mass in diet-induced obese mice by increasing lipolysis (Plin1, Atgl, and Hsl) and fatty acid oxidation. Changes in the levels of browning-related genes, enzyme activity of carnitine palmitoyltransferase, and the overall transcriptome (Bmp4, Cidec, Ucp3, Sirt3, and Cox4i1) led to promote brown adipose tissue-like features (browning) in epididymal white adipose tissue and enhanced energy expenditure. Our results suggest that PGH promotes lipid excretion and thermogenic function in high-fat diet-induced obese mice, which are mediated by regulation of fat metabolism.
Collapse
Affiliation(s)
- Ye Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyungpook National University, Daegu, Korea
| | - Ri Ryu
- Research Institute of Applied Animal Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Korea
| | - Ji-Young Choi
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea.,Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea
| |
Collapse
|
62
|
Switching on the furnace: Regulation of heat production in brown adipose tissue. Mol Aspects Med 2019; 68:60-73. [DOI: 10.1016/j.mam.2019.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
63
|
Fifty shades of brown: The functions, diverse regulation and evolution of brown adipose tissue. Mol Aspects Med 2019; 68:1-5. [PMID: 31325457 DOI: 10.1016/j.mam.2019.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Yetkin-Arik B, Vogels IMC, Neyazi N, van Duinen V, Houtkooper RH, van Noorden CJF, Klaassen I, Schlingemann RO. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Sci Rep 2019; 9:10414. [PMID: 31320669 PMCID: PMC6639367 DOI: 10.1038/s41598-019-46503-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/29/2019] [Indexed: 12/31/2022] Open
Abstract
Formation of new blood vessels by differentiated endothelial tip cells, stalk cells, and phalanx cells during angiogenesis is an energy-demanding process. How these specialized endothelial cell phenotypes generate their energy, and whether there are differences between these phenotypes, is unknown. This may be key to understand their functions, as (1) metabolic pathways are essentially involved in the regulation of angiogenesis, and (2) a metabolic switch has been associated with angiogenic endothelial cell differentiation. With the use of Seahorse flux analyses, we studied metabolic pathways in tip cell and non-tip cell human umbilical vein endothelial cell populations. Our study shows that both tip cells and non-tip cells use glycolysis as well as mitochondrial respiration for energy production. However, glycolysis is significantly lower in tip cells than in non-tip cells. Additionally, tip cells have a higher capacity to respond to metabolic stress. Finally, in non-tip cells, blocking of mitochondrial respiration inhibits endothelial cell proliferation. In conclusion, our data demonstrate that tip cells are less glycolytic than non-tip cells and that both endothelial cell phenotypes can adapt their metabolism depending on microenvironmental circumstances. Our results suggest that a balanced involvement of metabolic pathways is necessary for both endothelial cell phenotypes for proper functioning during angiogenesis.
Collapse
Affiliation(s)
- B Yetkin-Arik
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - I M C Vogels
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - N Neyazi
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - V van Duinen
- Department of Systems Biomedicine and Pharmacology, Leiden University, Leiden, The Netherlands.,Department of Internal Medicine, Division of Nephrology and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - R H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - C J F van Noorden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - I Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Department of Medical Biology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - R O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences and Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| |
Collapse
|
65
|
Jung SM, Sanchez-Gurmaches J, Guertin DA. Brown Adipose Tissue Development and Metabolism. Handb Exp Pharmacol 2019; 251:3-36. [PMID: 30203328 DOI: 10.1007/164_2018_168] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue is well known to be a thermoregulatory organ particularly important in small rodents and human infants, but it was only recently that its existence and significance to metabolic fitness in adult humans have been widely realized. The ability of active brown fat to expend high amounts of energy has raised interest in stimulating thermogenesis therapeutically to treat metabolic diseases related to obesity and type 2 diabetes. In parallel, there has been a surge of research aimed at understanding the biology of rodent and human brown fat development, its remarkable metabolic properties, and the phenomenon of white fat browning, in which white adipocytes can be converted into brown like adipocytes with similar thermogenic properties. Here, we review the current understanding of the developmental and metabolic pathways involved in forming thermogenic adipocytes, and highlight some of the many unknown functions of brown fat that make its study a rich and exciting area for future research.
Collapse
Affiliation(s)
- Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA. .,Molecular, Cell and Cancer Biology Program, University of Massachusetts Medical School, Worcester, MA, USA. .,Lei Weibo Institute for Rare Diseases, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
66
|
White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med 2019; 68:74-81. [PMID: 31228478 DOI: 10.1016/j.mam.2019.06.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023]
Abstract
Obesity is a disease that results from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose metabolism. Multiple studies have shown that activation of BAT using either pharmacological treatments or cold exposure had an acute effect to increase metabolic function and reduce adiposity. Recent preclinical investigations have explored whether increasing BAT mass or activation through transplantation models could improve glucose metabolism and metabolic health. Successful BAT transplantation models have shown improvements in glucose metabolism and insulin sensitivity, as well as reductions in body mass and decreased adiposity in recipients. BAT transplantation may confer its beneficial effects through several different mechanisms, including endocrine effects via the release of 'batokines'. More recent studies have demonstrated that beige and brown adipocytes isolated from human progenitor cells and transplanted into mouse models result in metabolic improvements similar to transplantation of whole BAT; this could represent a clinically translatable model. In this review we will discuss the impetus for both early and recent investigations utilizing BAT transplantation models, the outcomes of these studies, and review the mechanisms associated with the beneficial effects of BAT transplant to confer improvements in metabolic health.
Collapse
Affiliation(s)
- Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Revati S Dewal
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
67
|
Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med 2019; 8:jcm8060854. [PMID: 31208019 PMCID: PMC6617388 DOI: 10.3390/jcm8060854] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
: Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues-the white adipose tissue (WAT) and brown adipose tissue (BAT)-secrete bioactive peptides and proteins, known as "adipokines" and "batokines," respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, "exosomal microRNAs (miRNAs)" were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors-adipokines, batokines, and exosomal miRNA-in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.
Collapse
|
68
|
Gharakhanian R, Su S, Aprahamian T. Vascular Endothelial Growth Factor-A Deficiency in Perivascular Adipose Tissue Impairs Macrovascular Function. Front Physiol 2019; 10:687. [PMID: 31258484 PMCID: PMC6587635 DOI: 10.3389/fphys.2019.00687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023] Open
Abstract
Objective: Thoracic perivascular adipose tissue (PVAT) has been shown to release factors that influence the functioning of neighboring vascular tissue. Cardiovascular complications of obesity are on the rise; therefore, this study set out to determine if adipose-specific ablation of vascular endothelial growth factor-A (VEGF-A) plays a role in the maintenance of aortic structure and function. Methods: Adipose-specific VEGF-A-deficient mice were previously generated. Fabp4cre(+). VEGFflox/flox and Fabp4cre(−). VEGFflox/flox mice were maintained on chow diet. PVAT gene expression was measured with real-time quantitative PCR. Aortic vasomotor response was assessed with isometric tension measurements. Collagen deposition was analyzed histologically in the vascular media and compared using ratiometric pigment density. Results: PVAT-specific adiponectin expression was decreased in Fabp4cre(+). VEGFflox/flox mice. Isometric tension measurements revealed a dose-dependent dysfunction in response to acetylcholine within the distal aortic segment of Fabp4cre(+). VEGFflox/flox. Fabp4cre(+). VEGFflox/flox mice exhibited increased aortic deposition of collagen within the thoracic adventitial and medial spaces. Conclusion: These data demonstrate that decreased expression of VEGF-A within the surrounding adipose tissue microenvironment of the thoracic aorta has a detrimental effect on aortic integrity and vascular function. Modulation of angiogenic pathways within PVAT may offer an important avenue toward the treatment of adipose tissue dysfunction in obesity and its vascular complications.
Collapse
Affiliation(s)
- Raffi Gharakhanian
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, United States
| | - Shi Su
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, United States
| | - Tamar Aprahamian
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, United States.,Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,The Center for Metabolic Health, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
69
|
Wang G, Meyer JG, Cai W, Softic S, Li ME, Verdin E, Newgard C, Schilling B, Kahn CR. Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Mol Cell 2019; 74:844-857.e7. [PMID: 31000437 PMCID: PMC6525068 DOI: 10.1016/j.molcel.2019.03.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 11/23/2022]
Abstract
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Collapse
Affiliation(s)
- GuoXiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27708, USA
| | | | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
70
|
Liu Y, Fu W, Seese K, Yin A, Yin H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure. FASEB J 2019; 33:8822-8835. [PMID: 31059287 DOI: 10.1096/fj.201802162rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Brown adipose tissue (BAT) thermogenesis increases energy expenditure (EE). Expanding the volume of active BAT via transplantation holds promise as a therapeutic strategy for morbid obesity and diabetes. Brown adipose progenitor cells (BAPCs) can be isolated and expanded to generate autologous brown adipocyte implants. However, the transplantation of brown adipocytes is currently impeded by poor efficiency of BAT tissue formation in vivo and undesirably short engraftment time. In this study, we demonstrated that transplanting BAPCs into limb skeletal muscles consistently led to the ectopic formation of uncoupling protein 1 (UCP1)+pos adipose tissue with long-term engraftment (>4 mo). Combining VEGF with the BAPC transplant further improved BAT formation in muscle. Ectopic engraftment of BAPC-derived BAT in skeletal muscle augmented the EE of recipient mice. Although UCP1 expression declined in long-term BAT grafts, this deterioration can be reversed by swimming exercise because of sympathetic activation. This study suggests that intramuscular transplantation of BAPCs represents a promising approach to deriving functional BAT engraftment, which may be applied to therapeutic BAT transplantation and tissue engineering.-Liu, Y., Fu, W., Seese, K., Yin, A., Yin, H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure.
Collapse
Affiliation(s)
- Yang Liu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Wenyan Fu
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Kendall Seese
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Amelia Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hang Yin
- Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA; and.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
71
|
Abstract
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hamidah Abu Bakar
- Health Sciences Department, Universiti Selangor, 40000, Shah Alam, Selangor, Malaysia
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC)-a joint cooperation between the Charité-University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
- Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
72
|
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15:207-225. [PMID: 30733616 PMCID: PMC7073451 DOI: 10.1038/s41574-019-0165-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue comprises adipocytes and many other cell types that engage in dynamic crosstalk in a highly innervated and vascularized tissue matrix. Although adipose tissue has been studied for decades, it has been appreciated only in the past 5 years that extensive arborization of nerve fibres has a dominant role in regulating the function of adipose tissue. This Review summarizes the latest literature, which suggests that adipocytes signal to local sensory nerve fibres in response to perturbations in lipolysis and lipogenesis. Such adipocyte signalling to the central nervous system causes sympathetic output to distant adipose depots and potentially other metabolic tissues to regulate systemic glucose homeostasis. Paracrine factors identified in the past few years that mediate such adipocyte-neuron crosstalk are also reviewed. Similarly, immune cells and endothelial cells within adipose tissue communicate with local nerve fibres to modulate neurotransmitter tone, blood flow, adipocyte differentiation and energy expenditure, including adipose browning to produce heat. This understudied field of neurometabolism related to adipose tissue biology has great potential to reveal new mechanistic insights and potential therapeutic strategies for obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
73
|
Li X, Mao Z, Yang L, Sun K. Co-staining Blood Vessels and Nerve Fibers in Adipose Tissue. J Vis Exp 2019. [PMID: 30829339 DOI: 10.3791/59266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies have highlighted the critical role of angiogenesis and sympathetic innervation in adipose tissue remodeling during the development of obesity. Therefore, developing an easy and efficient method to document the dynamic changes in adipose tissue is necessary. Here, we describe a modified immunofluorescent approach that efficiently co-stains blood vessels and nerve fibers in adipose tissues. Compared to traditional and recently developed methods, our approach is relatively easy to follow and more efficient in labeling the blood vessels and nerve fibers with higher densities and less background. Moreover, the higher resolution of the images further allows us to accurately measure the area of the vessels, amount of branching, and length of the fibers by open source software. As a demonstration using our method, we show that brown adipose tissue (BAT) contains higher amounts of blood vessels and nerve fibers compared to white adipose tissue (WAT). We further find that among the WATs, subcutaneous WAT (sWAT) has more blood vessels and nerve fibers compared to epididymal WAT (eWAT). Our method thus provides a useful tool for investigating adipose tissue remodeling.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, the Brown Foundation of Institute of Molecular Medicine, University of Texas Health Science Center at Houston
| | - Zhengmei Mao
- Microscopy Core, the Brown Foundation of Institute of Molecular Medicine, University of Texas Health Science Center at Houston
| | - Li Yang
- Center for Metabolic and Degenerative Diseases, the Brown Foundation of Institute of Molecular Medicine, University of Texas Health Science Center at Houston
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, the Brown Foundation of Institute of Molecular Medicine, University of Texas Health Science Center at Houston;
| |
Collapse
|
74
|
Peres Valgas da Silva C, Hernández-Saavedra D, White JD, Stanford KI. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. BIOLOGY 2019; 8:biology8010009. [PMID: 30759802 PMCID: PMC6466122 DOI: 10.3390/biology8010009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
The rise in obesity over the last several decades has reached pandemic proportions. Brown adipose tissue (BAT) is a thermogenic organ that is involved in energy expenditure and represents an attractive target to combat both obesity and type 2 diabetes. Cold exposure and exercise training are two stimuli that have been investigated with respect to BAT activation, metabolism, and the contribution of BAT to metabolic health. These two stimuli are of great interest because they have both disparate and converging effects on BAT activation and metabolism. Cold exposure is an effective mechanism to stimulate BAT activity and increase glucose and lipid uptake through mitochondrial uncoupling, resulting in metabolic benefits including elevated energy expenditure and increased insulin sensitivity. Exercise is a therapeutic tool that has marked benefits on systemic metabolism and affects several tissues, including BAT. Compared to cold exposure, studies focused on BAT metabolism and exercise display conflicting results; the majority of studies in rodents and humans demonstrate a reduction in BAT activity and reduced glucose and lipid uptake and storage. In addition to investigations of energy uptake and utilization, recent studies have focused on the effects of cold exposure and exercise on the structural lipids in BAT and secreted factors released from BAT, termed batokines. Cold exposure and exercise induce opposite responses in terms of structural lipids, but an important overlap exists between the effects of cold and exercise on batokines. In this review, we will discuss the similarities and differences of cold exposure and exercise in relation to their effects on BAT activity and metabolism and its relevance for the prevention of obesity and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Carmem Peres Valgas da Silva
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
75
|
Chen Y, Zhao M, Zheng T, Adlat S, Jin H, Wang C, Li D, Zaw Myint MZ, Yao Y, Xu L, San M, Wen H, Zhang Y, Lu X, Yang L, Zhang L, Feng X, Zheng Y. Repression of adipose vascular endothelial growth factor reduces obesity through adipose browning. Am J Physiol Endocrinol Metab 2019; 316:E145-E155. [PMID: 30398903 DOI: 10.1152/ajpendo.00196.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is the result of excessive energy accumulation and is associated with many diseases. We previously reported that universal repression of vascular endothelial growth factor (VEGF) leads to brown-like adipocyte development in white adipose tissues, and that these mice are resistant to obesity (Lu X et al. Endocrinology 153: 3123-3132, 2012). Using an adipose-specific VEGF repression mouse model (aP2-rtTR-krabtg/+/VEGFtetO/tetO), we show that adipose-specific VEGF repression can repeat the previous phenotypes, including adipose browning, increased energy consumption, and reduction in body weight. Expression of brown adipose-associated genes is increased, and white adipose-associated genes are downregulated under VEGF repression. Our study demonstrates that adipose-specific VEGF repression can lead to antiobesity activity through adipose browning and has potential clinical value.
Collapse
Affiliation(s)
- Yang Chen
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Mingyue Zhao
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Tingting Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Salah Adlat
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Honghong Jin
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Chenhao Wang
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Dan Li
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - May Zun Zaw Myint
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Yapeng Yao
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Liu Xu
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Mingjun San
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Huaizhen Wen
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Yuntao Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Xiaodan Lu
- Transgenic Research Center, Northeast Normal University, Changchun, China
| | - Ling Yang
- Shanxi Medical University , Taiyuan , China
| | - Luqing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun , China
| | - Xuechao Feng
- Transgenic Research Center, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun , China
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun , China
| |
Collapse
|
76
|
Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol Rev 2019; 98:1911-1941. [PMID: 30067159 DOI: 10.1152/physrev.00034.2017] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue. Epi-/genetic factors regulate SAT adipogenesis and genetic predisposition for type 2 diabetes is associated with markers of an impaired SAT adipogenesis and development of hypertrophic obesity also in nonobese individuals. We here review mechanisms for the adipose precursor cells to enter adipogenesis, emphasizing the role of bone morphogenetic protein-4 (BMP-4) and its endogenous antagonist gremlin-1, which is increased in hypertrophic SAT in humans. Gremlin-1 is a secreted and a likely important mechanism for the impaired SAT adipogenesis in hypertrophic obesity. Transiently increasing BMP-4 enhances adipogenic commitment of the precursor cells while maintained BMP-4 signaling during differentiation induces a beige/brown oxidative phenotype in both human and murine adipose cells. Adipose tissue growth and development also requires increased angiogenesis, and BMP-4, as a proangiogenic molecule, may also be an important feedback regulator of this. Hypertrophic obesity is also associated with increased lipolysis. Reduced lipid storage and increased release of FFA by hypertrophic SAT are important mechanisms for the accumulation of ectopic fat in the liver and other places promoting insulin resistance. Taken together, the limited expansion and storage capacity of SAT is a major driver of the obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Ann Hammarstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Silvia Gogg
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Shahram Hedjazifar
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Annika Nerstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, the Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
77
|
Abstract
Brown adipokines are regulatory factors secreted by brown and beige adipocytes that exhibit endocrine, paracrine, and autocrine actions. Peptidic and non-peptidic molecules, including miRNAs and lipids, are constituents of brown adipokines. Brown adipose tissue remodeling to meet thermogenic needs is dependent on the secretory properties of brown/beige adipocytes. The association between brown fat activity and a healthy metabolic profile, in relation to energy balance and glucose and lipid homeostasis, is influenced by the endocrine actions of brown adipokines. A comprehensive knowledge of the brown adipocyte secretome is still lacking. Advancements in the identification and characterization of brown adipokines will facilitate therapeutic interventions for metabolic diseases, as these molecules are obvious candidates to therapeutic agents. Moreover, identification of brown adipokines as circulating biomarkers of brown adipose tissue activity may be particularly useful for noninvasive assessment of brown adipose tissue alterations in human pathologies.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
78
|
Zhou J, Mao L, Xu P, Wang Y. Effects of (-)-Epigallocatechin Gallate (EGCG) on Energy Expenditure and Microglia-Mediated Hypothalamic Inflammation in Mice Fed a High-Fat Diet. Nutrients 2018; 10:nu10111681. [PMID: 30400620 PMCID: PMC6266769 DOI: 10.3390/nu10111681] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Obesity is an escalating global epidemic caused by an imbalance between energy intake and expenditure. (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been reported to be conducive to preventing obesity and alleviating obesity-related chronic diseases. However, the role of EGCG in energy metabolism disorders and central nervous system dysfunction induced by a high-fat diet (HFD) remains to be elucidated. The aim of this study was to evaluate the effects of EGCG on brown adipose tissue (BAT) thermogenesis and neuroinflammation in HFD-induced obese C57BL/6J mice. Mice were randomly divided into four groups with different diets: normal chow diet (NCD), normal chow diet supplemented with 1% EGCG (NCD + EGCG), high-fat diet (HFD), and high-fat diet supplemented with 1% EGCG (HFD + EGCG). Investigations based on a four-week experiment were carried out including the BAT activity, energy consumption, mRNA expression of major inflammatory cytokines in the hypothalamus, nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) phosphorylation, and immunofluorescence staining of microglial marker Iba1 in hypothalamic arcuate nucleus (ARC). Experimental results demonstrated that dietary supplementation of EGCG significantly inhibited HFD-induced obesity by enhancing BAT thermogenesis, and attenuated the hypothalamic inflammation and microglia overactivation by regulating the NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Jihong Zhou
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Limin Mao
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
79
|
Transient Overexpression of Vascular Endothelial Growth Factor A in Adipose Tissue Promotes Energy Expenditure via Activation of the Sympathetic Nervous System. Mol Cell Biol 2018; 38:MCB.00242-18. [PMID: 30126894 DOI: 10.1128/mcb.00242-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Adipose-derived vascular endothelial growth factor A (VEGF-A) stimulates functional blood vessel formation in obese fat pads, which in turn facilitates healthy expansion of the adipose tissue. However, the detailed mechanism(s) governing the process remains largely unknown. Here, we investigated the role of sympathetic nervous system activation in the process. To this end, we induced overexpression of VEGF-A in an adipose tissue-specific doxycycline (Dox)-inducible transgenic mouse model for a short period of time during high-fat diet (HFD) feeding. We found that local overexpression of VEGF-A in adipose tissue stimulated lipolysis and browning rapidly after Dox induction. Immunofluorescence staining against tyrosine hydroxylase (TH) indicated higher levels of sympathetic innervation in adipose tissue of transgenic mice. In response to an increased norepinephrine (NE) level, expression of β3-adrenoceptor was significantly upregulated, and the downstream protein kinase A (PKA) pathway was activated, as indicated by enhanced phosphorylation of whole PKA substrates, in particular, the hormone-sensitive lipase (HSL) in adipocytes. As a result, the adipose tissue exhibited increased lipolysis, browning, and energy expenditure. Importantly, all of these effects were abolished upon treatment with the β3-adrenoceptor antagonist SR59230A. Collectively, these results demonstrate that transient overexpressed VEGF-A activates the sympathetic nervous system, which hence promotes lipolysis and browning in adipose tissue.
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN. RECENT FINDINGS Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN. New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.
Collapse
Affiliation(s)
- Eashita Das
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Microbiology, Siliguri College, North Bengal University, Siliguri, West Bengal, 734001, India
| | - Joon Ho Moon
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Zdenka Pausova
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
81
|
García MDC, Pazos P, Lima L, Diéguez C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int J Mol Sci 2018; 19:E2569. [PMID: 30158466 PMCID: PMC6164446 DOI: 10.3390/ijms19092569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity rates and the burden of metabolic associated diseases are escalating worldwide Energy burning brown and inducible beige adipocytes in human adipose tissues (ATs) have attracted considerable attention due to their therapeutic potential to counteract the deleterious metabolic effects of nutritional overload and overweight. Recent research has highlighted the relevance of resident and recruited ATs immune cell populations and their signalling mediators, cytokines, as modulators of the thermogenic activity of brown and beige ATs. In this review, we first provide an overview of the developmental, cellular and functional heterogeneity of the AT organ, as well as reported molecular switches of its heat-producing machinery. We also discuss the key contribution of various interleukins signalling pathways to energy and metabolic homeostasis and their roles in the biogenesis and function of brown and beige adipocytes. Besides local actions, attention is also drawn to their influence in the central nervous system (CNS) networks governing energy expenditure.
Collapse
Affiliation(s)
- María Del Carmen García
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Patricia Pazos
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| | - Luis Lima
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Carlos Diéguez
- Department of Physiology/Research Center of Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CB06/03), Instituto de Salud Carlos III (ISCIII, Ministerio de Economía y Competitividad (MINECO)), C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029 Madrid, Spain.
| |
Collapse
|
82
|
Sponton CH, Kajimura S. Multifaceted Roles of Beige Fat in Energy Homeostasis Beyond UCP1. Endocrinology 2018; 159:2545-2553. [PMID: 29757365 PMCID: PMC6692864 DOI: 10.1210/en.2018-00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023]
Abstract
Beige adipocytes are an inducible form of thermogenic adipose cells that emerge within the white adipose tissue in response to a variety of environmental stimuli, such as chronic cold acclimation. Similar to brown adipocytes that reside in brown adipose tissue depots, beige adipocytes are also thermogenic; however, beige adipocytes possess unique, distinguishing characteristics in their developmental regulation and biological function. This review highlights recent advances in our understanding of beige adipocytes, focusing on the diverse roles of beige fat in the regulation of energy homeostasis that are independent of the canonical thermogenic pathway via uncoupling protein 1.
Collapse
Affiliation(s)
- Carlos Henrique Sponton
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, California
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, San Francisco, California
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California
- Correspondence: Shingo Kajimura, PhD, Department of Cell and Tissue Biology, University of California, San Francisco, 35 Medical Center Way, RMB1023, Box 0669, San Francisco, California 94143. E-mail:
| |
Collapse
|
83
|
Carobbio S, Guénantin AC, Samuelson I, Bahri M, Vidal-Puig A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:37-50. [PMID: 29852279 DOI: 10.1016/j.bbalip.2018.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
The adipose organ portrays adipocytes of diverse tones: white, brown and beige, each type with distinct functions. Adipocytes orchestrate their adaptation and expansion to provide storage to excess nutrients, the quick mobilisation of fuel to supply peripheral functional demands, insulation, and, in their thermogenic form, heat generation to maintain core body temperature. Thermogenic adipocytes could be targets for anti-obesity and anti-diabetic therapeutic approaches aiming to restore adipose tissue functionality and increase energy dissipation. However, for thermogenic adipose tissue to become therapeutically relevant, a better understanding of its development and origins, its progenitors and their characteristics and the composition of its niche, is essential. Also crucial is the identification of stimuli and molecules promoting its specific differentiation and activation. Here we highlight the structural/cellular differences between human and rodent brown adipose tissue and discuss how obesity and metabolic complication affects brown and beige cells as well as how they could be targeted to improve their activation and improve global metabolic homeostasis. Finally, we describe the limitations of current research models and the advantages of new emerging approaches.
Collapse
Affiliation(s)
- Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Anne-Claire Guénantin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Isabella Samuelson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myriam Bahri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
84
|
cAMP-inducible coactivator CRTC3 attenuates brown adipose tissue thermogenesis. Proc Natl Acad Sci U S A 2018; 115:E5289-E5297. [PMID: 29784793 DOI: 10.1073/pnas.1805257115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In response to cold exposure, placental mammals maintain body temperature by increasing sympathetic nerve activity in brown adipose tissue (BAT). Triggering of β-adrenergic receptors on brown adipocytes stimulates thermogenesis via induction of the cAMP/PKA pathway. Although cAMP response element-binding protein (CREB) and its coactivators-the cAMP-regulated transcriptional coactivators (CRTCs)-mediate transcriptional effects of cAMP in most tissues, other transcription factors such as ATF2 appear critical for induction of thermogenic genes by cAMP in BAT. Brown adipocytes arise from Myf5-positive mesenchymal cells under the control of PRDM16, a coactivator that concurrently represses differentiation along the skeletal muscle lineage. Here, we show that the CREB coactivator CRTC3 is part of an inhibitory feedback pathway that antagonizes PRDM16-dependent differentiation. Mice with a knockout of CRTC3 in BAT (BKO) have increased cold tolerance and reduced adiposity, whereas mice overexpressing constitutively active CRTC3 in adipose tissue are more cold sensitive and have greater fat mass. CRTC3 reduced sympathetic nerve activity in BAT by up-regulating the expression of miR-206, a microRNA that promotes differentiation along the myogenic lineage and that we show here decreases the expression of VEGFA and neurotrophins critical for BAT innervation and vascularization. Sympathetic nerve activity to BAT was enhanced in BKO mice, leading to increases in catecholamine signaling that stimulated energy expenditure. As reexpression of miR-206 in BAT from BKO mice reversed the salutary effects of CRTC3 depletion on cold tolerance, our studies suggest that small-molecule inhibitors against this coactivator may provide therapeutic benefit to overweight individuals.
Collapse
|
85
|
Jin H, Li D, Wang X, Jia J, Chen Y, Yao Y, Zhao C, Lu X, Zhang S, Togo J, Ji Y, Zhang L, Feng X, Zheng Y. VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function. Endocrinology 2018; 159:2036-2049. [PMID: 29596616 DOI: 10.1210/en.2017-03246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/14/2018] [Indexed: 01/04/2023]
Abstract
Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.
Collapse
Affiliation(s)
- Honghong Jin
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Dan Li
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xutong Wang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Jia Jia
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yang Chen
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yapeng Yao
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chunlan Zhao
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xiaodan Lu
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Shujie Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jacques Togo
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yan Ji
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Xuechao Feng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
86
|
Uchinaka A, Kawashima Y, Sano Y, Ito S, Sano Y, Nagasawa K, Matsuura N, Yoneda M, Yamada Y, Murohara T, Nagata K. Effects of ramelteon on cardiac injury and adipose tissue pathology in rats with metabolic syndrome. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ayako Uchinaka
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuri Kawashima
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Yuki Sano
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Shogo Ito
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yusuke Sano
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kai Nagasawa
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Natsumi Matsuura
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mamoru Yoneda
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuichiro Yamada
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
87
|
Ludwig RG, Rocha AL, Mori MA. Circulating molecules that control brown/beige adipocyte differentiation and thermogenic capacity. Cell Biol Int 2018; 42:701-710. [PMID: 29384242 DOI: 10.1002/cbin.10946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/27/2018] [Indexed: 12/18/2022]
Abstract
Obesity may be counteracted by increased energy expenditure. Circulating molecules act in the adipose tissue to influence brown and beige adipocyte function, differentiation, and thermogenic capacity, which in turn affects substrate utilization and impacts energy balance at the organismal level. These molecules have been envisioned as biomarkers and potential candidates for pharmacological interventions to treat obesity. Here we summarize studies that demonstrate the roles of endogenous circulating molecules of a wide variety in regulating the thermogenic potential of brown and beige fat cells. This review describes the state-of-the-art in the field and helps researchers to prioritize their targets in future studies.
Collapse
Affiliation(s)
- Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
88
|
Abstract
The adult human adipose tissue is predominantly composed of white adipocytes. However, within certain depots, adipose tissue contains thermogenically active brown-like adipocytes, which have been evolutionarily conserved in mammals. This chapter will give a brief overview on the methods used to genetically target and trace both white and brown adipocytes using techniques such as bacterial artificial chromosome (BAC) cloning to create transgenic mouse models and the tools with which genetic recombination is mediated in vivo (e.g., Cre-loxP, CreERT, and Tet-On). The chapter furthermore critically discusses the strength and limitation of the various systems used to target mature white and brown adipocytes (ap2-Cre, Adipoq-Cre, and Ucp1-Cre). Based on these systems, it is evident that our knowledge of mature adipocyte categorization into brown, white, brite, or beige adipocytes is strongly influenced by the use of the various genetic mouse models described in this chapter. Our evaluation of different studies using the aforementioned systems focuses on key genes, which have been reported to maintain adipocyte's function (insulin receptor, Raptor, or Atgl).
Collapse
Affiliation(s)
- Christian Wolfrum
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
| | | |
Collapse
|
89
|
Tapia P, Fernández-Galilea M, Robledo F, Mardones P, Galgani JE, Cortés VA. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biol Rev Camb Philos Soc 2017; 93:1145-1164. [DOI: 10.1111/brv.12389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Pablo Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Marta Fernández-Galilea
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Pablo Mardones
- Research and Innovation Office, School of Engineering; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
- Departamento Ciencias de la Salud; Carrera de Nutrición y Dietética, Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Víctor A. Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| |
Collapse
|
90
|
Villarroya F, Gavaldà-Navarro A, Peyrou M, Villarroya J, Giralt M. The Lives and Times of Brown Adipokines. Trends Endocrinol Metab 2017; 28:855-867. [PMID: 29113711 DOI: 10.1016/j.tem.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Brown adipose tissue (BAT) is responsible for adaptive non-shivering thermogenesis. Moreover, brown fat secretes regulatory factors, so-called brown adipokines, that have autocrine, paracrine, and endocrine actions. Brown adipokines are either polypeptides or nonpeptidic molecules including lipid molecules and microRNAs. The secretory properties of brown fat are essential for tissue remodeling adaptations to thermogenic necessities. The endocrine properties of brown adipokines are thought to contribute to the association between BAT activity and a healthy metabolic profile in relation to glucose and lipid homeostasis. The identification and characterization of brown adipokines may allow the discovery of circulating biomarkers of BAT activity in humans, and will lead to the development of candidate tools for therapeutic interventions in metabolic diseases.
Collapse
Affiliation(s)
- Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red 'Fisiopatologia de la Obesidad y Nutrición', Madrid, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Catalonia, Spain
| |
Collapse
|
91
|
Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci Rep 2017; 7:16716. [PMID: 29196658 PMCID: PMC5711936 DOI: 10.1038/s41598-017-16686-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.
Collapse
|
92
|
Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol 2017; 816:82-92. [DOI: 10.1016/j.ejphar.2017.03.051] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
|
93
|
Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med 2017; 12:130-138. [PMID: 29119382 DOI: 10.1007/s11684-017-0555-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/29/2017] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) plays a fundamental role in maintaining body temperature by producing heat. BAT that had been know to exist only in mammals and the human neonate has received great attention for the treatment of obesity and diabetes due to its important function in energy metabolism, ever since it is recently reported that human adults have functional BAT. In addition, beige adipocytes, brown adipocytes in white adipose tissue (WAT), have also been shown to take part in whole body metabolism. Multiple lines of evidence demonstrated that transplantation or activation of BAT or/and beige adipocytes reversed obesity and improved insulin sensitivity. Furthermore, many genes involved in BATactivation and/or the recruitment of beige cells have been found, thereby providing new promising strategies for future clinical application of BAT activation to treat obesity and metabolic diseases. This review focuses on recent advances of BAT function in the metabolic aspect and the relationship between BAT and cancer cachexia, a pathological process accompanied with decreased body weight and increased energy expenditure in cancer patients. The underlying possible mechanisms to reduce BAT mass and its activity in the elderly are also discussed.
Collapse
Affiliation(s)
- Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, 363-764, Republic of Korea
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hyuek Jong Lee
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
94
|
Wang B, Fu X, Liang X, Deavila JM, Wang Z, Zhao L, Tian Q, Zhao J, Gomez NA, Trombetta SC, Zhu MJ, Du M. Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα + adipose progenitors. Cell Discov 2017; 3:17036. [PMID: 29021914 PMCID: PMC5633810 DOI: 10.1038/celldisc.2017.36] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
Formation of beige adipocytes within white adipose tissue enhances energy expenditure, which is a promising strategy to reduce obesity and prevent metabolic symptoms. Vitamin A and its bioactive metabolite, retinoic acid (RA), have regulatory roles in lipid metabolism. Here we report that RA induces white adipose tissue browning via activating vascular endothelial growth factor (VEGF) signaling. RA triggered angiogenesis and elicited de novo generation of platelet-derived growth factor receptor α positive (PDGFRα+) adipose precursor cells via VEGFA/VEGFR2 signaling. In addition, RA promoted beige/brown adipocyte formation from capillary networks in vitro. Using PDGFRα tracking mice, we found that the vascular system acted as an adipogenic repository by containing PDGFRα+ progenitors which differentiated into beige adipocytes under RA or VEGF164 treatments. Conditional knockout of VEGF receptors blocked RA-stimulated white adipose tissue browning. Moreover, the VEGFA and RA activated p38MAPK to enhance the binding of RA receptor to RA response elements of the Prdm16 promoter and upregulated Prdm16 transcription. In conclusion, RA induces white adipose tissue browning by increasing adipose vascularity and promoting beige adipogenesis of PDGFRα+ adipose progenitors.
Collapse
Affiliation(s)
- Bo Wang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA.,Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xing Fu
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Xingwei Liang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Jeanene M Deavila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Zhixiu Wang
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Liang Zhao
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Qiyu Tian
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Noe Alberto Gomez
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Sophie C Trombetta
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA.,Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
95
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
96
|
Park J, Kim M, Sun K, An YA, Gu X, Scherer PE. VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4-Independent Metabolic Improvements. Diabetes 2017; 66:1479-1490. [PMID: 28254844 PMCID: PMC5440018 DOI: 10.2337/db16-1081] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023]
Abstract
Adipocyte-derived vascular endothelial growth factor-A (VEGF-A) plays a crucial role in angiogenesis and contributes to adipocyte function and systemic metabolism, such as insulin resistance, chronic inflammation, and beiging of subcutaneous adipose tissue. Using a doxycycline-inducible adipocyte-specific VEGF-A-overexpressing mouse model, we investigated the dynamics of local VEGF-A effects on tissue beiging of adipose tissue transplants. VEGF-A overexpression in adipocytes triggers angiogenesis. We also observed a rapid appearance of beige fat cells in subcutaneous white adipose tissue as early as 2 days postinduction of VEGF-A. In contrast to conventional cold-induced beiging, VEGF-A-induced beiging is independent of interleukin-4. We subjected metabolically healthy VEGF-A-overexpressing adipose tissue to autologous transplantation. Transfer of subcutaneous adipose tissues taken from VEGF-A-overexpressing mice into diet-induced obese mice resulted in systemic metabolic benefits, associated with improved survival of adipocytes and a concomitant reduced inflammatory response. These effects of VEGF-A are tissue autonomous, inducing white adipose tissue beiging and angiogenesis within the transplanted tissue. Our findings indicate that manipulation of adipocyte functions with a bona fide angiogenic factor, such as VEGF-A, significantly improves the survival and volume retention of fat grafts and can convey metabolically favorable properties on the recipient on the basis of beiging.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Min Kim
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Inje University, and Cardiovascular and Metabolic Disease Center, Inje University, Busanjin-gu, Busan, South Korea
| | - Kai Sun
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX
| | - Yu Aaron An
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xue Gu
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
97
|
Fuster JJ, Ouchi N, Gokce N, Walsh K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ Res 2017; 118:1786-807. [PMID: 27230642 DOI: 10.1161/circresaha.115.306885] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023]
Abstract
Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the collateral damage of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of proinflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines.
Collapse
Affiliation(s)
- José J Fuster
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| | - Noriyuki Ouchi
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Noyan Gokce
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.)
| | - Kenneth Walsh
- From the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA (J.J.F., N.G., K.W.); and Department of Molecular Cardiology, Nagoya University School of Medicine, Nagoya, Japan (N.O.).
| |
Collapse
|
98
|
Parray HA, Yun JW. Combined inhibition of autophagy protein 5 and galectin-1 by thiodigalactoside reduces diet-induced obesity through induction of white fat browning. IUBMB Life 2017; 69:510-521. [DOI: 10.1002/iub.1634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/06/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Hilal Ahmad Parray
- Department of Biotechnology; Daegu University; Kyungsan Kyungbuk Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology; Daegu University; Kyungsan Kyungbuk Republic of Korea
| |
Collapse
|
99
|
Wang B, Fu X, Liang X, Wang Z, Yang Q, Zou T, Nie W, Zhao J, Gao P, Zhu MJ, de Avila JM, Maricelli J, Rodgers BD, Du M. Maternal Retinoids Increase PDGFRα + Progenitor Population and Beige Adipogenesis in Progeny by Stimulating Vascular Development. EBioMedicine 2017; 18:288-299. [PMID: 28408241 PMCID: PMC5405191 DOI: 10.1016/j.ebiom.2017.03.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/18/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Maternal vitamin A intake varies but its impact on offspring metabolic health is unknown. Here we found that maternal vitamin A or retinoic acid (RA) administration expanded PDGFRα+ adipose progenitor population in progeny, accompanied by increased blood vessel density and enhanced brown-like (beige) phenotype in adipose tissue, protecting offspring from obesity. Blockage of retinoic acid signaling by either BMS493 or negative RA receptor (RARαDN) over-expression abolished the increase in blood vessel density, adipose progenitor population, and beige adipogenesis stimulated by RA. Furthermore, RA-induced beige adipogenesis was blocked following vascular endothelial growth factor receptor (VEGFR) 2 knock out in PDGFRα+ cells, suggesting its mediatory role. Our data reveal an intrinsic link between maternal retinoid level and offspring health via promoting beige adipogenesis. Thus, enhancing maternal retinoids is an amiable therapeutic strategy to prevent obesity in offspring, especially for those born to obese mothers which account for one third of all pregnancies. Maternal vitamin A supplementation increases blood vessel density and expands adipose progenitor population in progeny. Maternal vitamin A supplementation enhances brown-like phenotype in adipose tissues. Maternal vitamin A supplementation protects offspring from diet induced obesity.
Vitamin A and its metabolite, retinoic acid, play key roles in adipogenesis and energy expenditure of adipose tissues. In mice and humans, vitamin A intake is inversely correlated with adiposity. This study has uncovered a role for maternal retinoids in fetal adipose development. Maternal vitamin A supplementation or RA administration increases adipose progenitor population and promotes beige adipogenesis, which protects offspring from diet induced obesity in later life.
Collapse
Affiliation(s)
- Bo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xing Fu
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Xingwei Liang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Zhixiu Wang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiyuan Yang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Tiande Zou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Wei Nie
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Junxing Zhao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Pengfei Gao
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mei-Jun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, 99164, United States
| | - Jeanene M de Avila
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Joseph Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States; College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
100
|
An YA, Sun K, Joffin N, Zhang F, Deng Y, Donzé O, Kusminski CM, Scherer PE. Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. eLife 2017; 6. [PMID: 28355132 PMCID: PMC5391203 DOI: 10.7554/elife.24071] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/28/2017] [Indexed: 01/12/2023] Open
Abstract
Despite many angiogenic factors playing crucial roles in metabolic homeostasis, effects of angiopoietin-2 (ANG-2) in adipose tissue (AT) remain unclear. Utilizing a doxycycline-inducible AT-specific ANG-2 overexpression mouse model, we assessed the effects of ANG-2 in AT expansion upon a high-fat diet (HFD) challenge. ANG-2 is significantly induced, with subcutaneous white AT (sWAT) displaying the highest ANG-2 expression. ANG-2 overexpressing mice show increased sWAT vascularization and are resistant to HFD-induced obesity. In addition, improved glucose and lipid metabolism are observed. Mechanistically, the sWAT displays a healthier expansion pattern with increased anti-inflammatory macrophage infiltration. Conversely, ANG-2 neutralization in HFD-challenged wild-type mice shows reduced vascularization in sWAT, associated with impaired glucose tolerance and lipid clearance. Blocking ANG-2 causes significant pro-inflammatory and pro-fibrotic changes, hallmarks of an unhealthy AT expansion. In contrast to other pro-angiogenic factors, such as vascular endothelial growth factor-A (VEGF-A), this is achieved without any enhanced beiging of white AT. DOI:http://dx.doi.org/10.7554/eLife.24071.001
Collapse
Affiliation(s)
- Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States.,Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Fang Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States.,Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | | | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|