51
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
52
|
Cai M, Wang R, Liu M, Du X, Xue K, Ji Y, Wang Z, Zhang Y, Guo L, Qin W, Zhu W, Fu J, Liu F. Disrupted local functional connectivity in schizophrenia: An updated and extended meta-analysis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:93. [PMID: 36347874 PMCID: PMC9643538 DOI: 10.1038/s41537-022-00311-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 06/06/2023]
Abstract
Neuroimaging studies have shown that schizophrenia is associated with disruption of resting-state local functional connectivity. However, these findings vary considerably, which hampers our understanding of the underlying pathophysiological mechanisms of schizophrenia. Here, we performed an updated and extended meta-analysis to identify the most consistent changes of local functional connectivity measured by regional homogeneity (ReHo) in schizophrenia. Specifically, a systematic search of ReHo studies in patients with schizophrenia in PubMed, Embase, and Web of Science identified 18 studies (20 datasets), including 652 patients and 596 healthy controls. In addition, we included three whole-brain statistical maps of ReHo differences calculated based on independent datasets (163 patients and 194 controls). A voxel-wise meta-analysis was then conducted to investigate ReHo alterations and their relationship with clinical characteristics using the newly developed seed-based d mapping with permutation of subject images (SDM-PSI) meta-analytic approach. Compared with healthy controls, patients with schizophrenia showed significantly higher ReHo in the bilateral medial superior frontal gyrus, while lower ReHo in the bilateral postcentral gyrus, right precentral gyrus, and right middle occipital gyrus. The following sensitivity analyses including jackknife analysis, subgroup analysis, heterogeneity test, and publication bias test demonstrated that our results were robust and highly reliable. Meta-regression analysis revealed that illness duration was negatively correlated with ReHo abnormalities in the right precentral/postcentral gyrus. This comprehensive meta-analysis not only identified consistent and reliably aberrant local functional connectivity in schizophrenia but also helped to further deepen our understanding of its pathophysiology.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Rui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaotong Du
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
53
|
Wallace TL, Martin WJ, Arnsten AF. Kappa opioid receptor antagonism protects working memory performance from mild stress exposure in Rhesus macaques. Neurobiol Stress 2022; 21:100493. [DOI: 10.1016/j.ynstr.2022.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
|
54
|
McBurney-Lin J, Vargova G, Garad M, Zagha E, Yang H. The locus coeruleus mediates behavioral flexibility. Cell Rep 2022; 41:111534. [PMID: 36288712 PMCID: PMC9662304 DOI: 10.1016/j.celrep.2022.111534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Behavioral flexibility is the ability to adjust behavioral strategies in response to changing environmental contingencies. A major hypothesis in the field posits that the activity of neurons in the locus coeruleus (LC) plays an important role in mediating behavioral flexibility. To test this hypothesis, we developed a tactile-based rule-shift detection task in which mice responded to left and right whisker deflections in a context-dependent manner and exhibited varying degrees of switching behavior. Recording spiking activity from optogenetically tagged neurons in the LC at millisecond precision during task performance revealed a prominent graded correlation between baseline LC activity and behavioral flexibility, where higher baseline activity following a rule change was associated with faster behavioral switching to the new rule. Increasing baseline LC activity with optogenetic activation accelerated task switching and improved task performance. Overall, our study provides important evidence to reveal the link between LC activity and behavioral flexibility.
Collapse
Affiliation(s)
- Jim McBurney-Lin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Greta Vargova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA,These authors contributed equally
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA,Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
55
|
Pittolo S, Yokoyama S, Willoughby DD, Taylor CR, Reitman ME, Tse V, Wu Z, Etchenique R, Li Y, Poskanzer KE. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Rep 2022; 40:111426. [PMID: 36170823 PMCID: PMC9555850 DOI: 10.1016/j.celrep.2022.111426] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/31/2022] Open
Abstract
The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is unclear. Here, we characterize divergent signaling signatures in mouse astrocytes of the PFC and primary sensory cortex, which show differential responsiveness to locomotion. We find that PFC astrocytes express receptors for dopamine but are unresponsive through the Gs/Gi-cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time locked to dopamine release and are mediated by α1-adrenergic receptors both ex vivo and in vivo. Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in the PFC, contributing to PFC function though neuromodulator receptor crosstalk. Pittolo et al. demonstrate that the neuromodulator dopamine targets astrocytes, a type of brain cell, via receptors specific to another neuromodulator—norepinephrine. This study provides groundwork on how dopamine affects non-neuronal brain cells and suggests that crosstalk between neuromodulatory pathways occurs in vivo, with possible clinical implications.
Collapse
Affiliation(s)
- Silvia Pittolo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Sae Yokoyama
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Drew D Willoughby
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
56
|
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biol Psychiatry 2022; 92:480-490. [PMID: 35305820 PMCID: PMC9372235 DOI: 10.1016/j.biopsych.2022.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Schizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress. A variety of genetic and/or environmental insults can lead to the same phenotype of weakened layer III connectivity, in which mechanisms that normally strengthen connectivity are impaired and those that normally weaken connectivity are intensified. Inflammatory mechanisms, such as increased kynurenic acid and glutamate carboxypeptidase II expression, are especially detrimental to layer III dlPFC neurotransmission and modulation, mimicking genetic insults. The combination of genetic and inflammatory insults may cross the threshold into pathology.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| | - Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Min Wang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| |
Collapse
|
57
|
Zarkali A, Luppi AI, Stamatakis EA, Reeves S, McColgan P, Leyland LA, Lees AJ, Weil RS. Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson's disease. Commun Biol 2022; 5:928. [PMID: 36075964 PMCID: PMC9458713 DOI: 10.1038/s42003-022-03903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hallucinations are a core feature of psychosis and common in Parkinson's. Their transient, unexpected nature suggests a change in dynamic brain states, but underlying causes are unknown. Here, we examine temporal dynamics and underlying structural connectivity in Parkinson's-hallucinations using a combination of functional and structural MRI, network control theory, neurotransmitter density and genetic analyses. We show that Parkinson's-hallucinators spent more time in a predominantly Segregated functional state with fewer between-state transitions. The transition from integrated-to-segregated state had lower energy cost in Parkinson's-hallucinators; and was therefore potentially preferable. The regional energy needed for this transition was correlated with regional neurotransmitter density and gene expression for serotoninergic, GABAergic, noradrenergic and cholinergic, but not dopaminergic, receptors. We show how the combination of neurochemistry and brain structure jointly shape functional brain dynamics leading to hallucinations and highlight potential therapeutic targets by linking these changes to neurotransmitter systems involved in early sensory and complex visual processing.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 149 Tottenham Court Rd, London, W1T 7BN, UK
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
58
|
Beyond mindfulness: Arousal-driven modulation of attentional control during arousal-based practices. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100053. [PMID: 36246552 PMCID: PMC9559070 DOI: 10.1016/j.crneur.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Here we report meditative techniques, which modulate attentional control by arousal-driven influences and not by monitoring continuous thought processes as during mindfulness-related practices. We focus on Vajrayana (Tantric Buddhism) practices, during which a sequence of generation (self-visualization as a deity - Yidam) or completion with sign (inner heat -Tummo) stages necessarily precedes non-dual awareness (NDA) Tantric Mahamudra. We compared the electrocardiographic and electroencephalographic correlates of Mahamudra performed after rest (non-Tantric Mahamudra) with Mahamudra performed after Yidam (Tantric Mahamudra) in 16 highly experienced Vajrayana practitioners, 10 of whom also performed Tummo. Both Yidam and Tummo developed the state of PNS withdrawal (arousal) and phasic alertness, as reflected by HF HRV decreases and Alpha2 power increases, later neurophysiologically employed in Tantric Mahamudra. The latter led to the unique state of high cortical excitability, “non-selective” focused attention, and significantly reduced attentional control, quantified by power reductions in all frequency bands, except Theta. In contrast, similar to mindfulness-related practices, non-Tantric Mahamudra was performed in a state of PNS dominance (relaxation), tonic alertness, and active monitoring, as suggested by Alpha1 power increases and less pronounced decreases in other frequency bands. A neurobiological model of meditation is proposed, differentiating arousal-based and mindfulness-related practices. Arousal-based meditations involve the state of PNS withdrawal and phasic alertness. Top-down control during arousal-based practices is modulated by arousal. Mindfulness-based practices involve the state of PNS dominance and tonic alertness. Top-down control during mindfulness-based practices is regulated by monitoring. NDA practices aim at non-selectivity of attention and reduction of top-down control.
Collapse
|
59
|
Viard J, Loe-Mie Y, Daudin R, Khelfaoui M, Plancon C, Boland A, Tejedor F, Huganir RL, Kim E, Kinoshita M, Liu G, Haucke V, Moncion T, Yu E, Hindie V, Bléhaut H, Mircher C, Herault Y, Deleuze JF, Rain JC, Simonneau M, Lepagnol-Bestel AM. Chr21 protein-protein interactions: enrichment in proteins involved in intellectual disability, autism, and late-onset Alzheimer's disease. Life Sci Alliance 2022; 5:e202101205. [PMID: 35914814 PMCID: PMC9348576 DOI: 10.26508/lsa.202101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Down syndrome (DS) is caused by human chromosome 21 (HSA21) trisomy. It is characterized by a poorly understood intellectual disability (ID). We studied two mouse models of DS, one with an extra copy of the <i>Dyrk1A</i> gene (189N3) and the other with an extra copy of the mouse Chr16 syntenic region (Dp(16)1Yey). RNA-seq analysis of the transcripts deregulated in the embryonic hippocampus revealed an enrichment in genes associated with chromatin for the 189N3 model, and synapses for the Dp(16)1Yey model. A large-scale yeast two-hybrid screen (82 different screens, including 72 HSA21 baits and 10 rebounds) of a human brain library containing at least 10<sup>7</sup> independent fragments identified 1,949 novel protein-protein interactions. The direct interactors of HSA21 baits and rebounds were significantly enriched in ID-related genes (<i>P</i>-value < 2.29 × 10<sup>-8</sup>). Proximity ligation assays showed that some of the proteins encoded by HSA21 were located at the dendritic spine postsynaptic density, in a protein network at the dendritic spine postsynapse. We located HSA21 DYRK1A and DSCAM, mutations of which increase the risk of autism spectrum disorder (ASD) 20-fold, in this postsynaptic network. We found that an intracellular domain of DSCAM bound either DLGs, which are multimeric scaffolds comprising receptors, ion channels and associated signaling proteins, or DYRK1A. The DYRK1A-DSCAM interaction domain is conserved in <i>Drosophila</i> and humans. The postsynaptic network was found to be enriched in proteins associated with ARC-related synaptic plasticity, ASD, and late-onset Alzheimer's disease. These results highlight links between DS and brain diseases with a complex genetic basis.
Collapse
Affiliation(s)
- Julia Viard
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Yann Loe-Mie
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Rachel Daudin
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Malik Khelfaoui
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
| | - Christine Plancon
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Anne Boland
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | - Francisco Tejedor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Universidad Miguel Hernandez-Campus de San Juan, San Juan, Spain
| | - Richard L Huganir
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Science, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Volker Haucke
- Department of Molecular Pharmacology and Cell Biology, Leibniz Institut für Molekulare Pharmakologie (FMP) and Freie Universität Berlin, Berlin, Germany
| | | | - Eugene Yu
- Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- INSERM, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- PHENOMIN, Institut Clinique de la Souris, ICS, GIE CERBM, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Jean-François Deleuze
- Laboratoire de Génomique Fonctionnelle, CNG, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Evry, France
| | | | - Michel Simonneau
- Centre Psychiatrie and Neurosciences, INSERM U894, Paris, France
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupélec, LuMIn, Gif sur Yvette, France
- Department of Biology, Ecole Normale Supérieure Paris-Saclay Université Paris-Saclay, Gif sur Yvette, France
| | | |
Collapse
|
60
|
Human inference reflects a normative balance of complexity and accuracy. Nat Hum Behav 2022; 6:1153-1168. [PMID: 35637296 PMCID: PMC9446026 DOI: 10.1038/s41562-022-01357-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/20/2022] [Indexed: 02/03/2023]
Abstract
We must often infer latent properties of the world from noisy and changing observations. Complex, probabilistic approaches to this challenge such as Bayesian inference are accurate but cognitively demanding, relying on extensive working memory and adaptive processing. Simple heuristics are easy to implement but may be less accurate. What is the appropriate balance between complexity and accuracy? Here we model a hierarchy of strategies of variable complexity and find a power law of diminishing returns: increasing complexity gives progressively smaller gains in accuracy. The rate of diminishing returns depends systematically on the statistical uncertainty in the world, such that complex strategies do not provide substantial benefits over simple ones when uncertainty is either too high or too low. In between, there is a complexity dividend. In two psychophysical experiments, we confirm specific model predictions about how working memory and adaptivity should be modulated by uncertainty.
Collapse
|
61
|
Carnovale C, Perrotta C, Baldelli S, Cattaneo D, Montrasio C, Barbieri SS, Pompilio G, Vantaggiato C, Clementi E, Pozzi M. Antihypertensive drugs and brain function: mechanisms underlying therapeutically beneficial and harmful neuropsychiatric effects. Cardiovasc Res 2022; 119:647-667. [PMID: 35895876 PMCID: PMC10153433 DOI: 10.1093/cvr/cvac110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
A bidirectional relationship exists between hypertension and psychiatric disorders, including unipolar and bipolar depression, anxiety, post-traumatic stress disorder (PTSD), psychosis, schizophrenia, mania, and dementia/cognitive decline. Repurposing of antihypertensive drugs to treat mental disorders is thus being explored. A systematic knowledge of the mechanisms of action and clinical consequences of the use of antihypertensive agents on neuropsychiatric functions has not been achieved yet. In this article, we review the putative role of antihypertensive agents in psychiatric disorders, discuss the targets and mechanisms of action, and examine how and to what extent specific drug classes/molecules may trigger, worsen, or mitigate psychiatric symptoms. In addition, we review pharmacokinetics (brain penetration of drugs) and pharmacogenetics data that add important information to assess risks and benefits of antihypertensive drugs in neuropsychiatric settings. The scientific literature shows robust evidence of a positive effect of α1 blockers on PTSD symptoms, nightmares and sleep quality, α2 agonists on core symptoms, executive function and quality of life in Attention-Deficit/Hyperactivity Disorder, PTSD, Tourette's syndrome, and β blockers on anxiety, aggression, working memory, and social communication. Renin-angiotensin system modulators exert protective effects on cognition, depression, and anxiety, and the loop diuretic bumetanide reduced the core symptoms of autism in a subset of patients. There is no evidence of clear benefits of calcium channel blockers in mood disorders in the scientific literature. These findings are mainly from preclinical studies; clinical data are still insufficient or of anecdotal nature, and seldom systematic. The information herewith provided can support a better therapeutic approach to hypertension, tailored to patients with, or with high susceptibility to, psychiatric illness. It may prompt clinical studies exploring the potential benefit of antihypertensive drugs in selected patients with neuropsychiatric comorbidities that include outcomes of neuropsychiatric interest and specifically assess undesirable effects or interactions.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli-Sacco University Hospital, 20157 Milano, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart axis: cellular and molecular mechanisms - Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine - Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università degli Studi di Milano, 20157 Milano, Italy.,Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| | - Marco Pozzi
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini (LC), Italy
| |
Collapse
|
62
|
Fan S, Li L, Liu L, Li H, Xian X, Li W. Ceftriaxone Suppresses Group II Metabotropic Glutamate Receptor Expression Contributing to Reversal of Recognition Memory Deficits of Amyloid Precursor Protein/Presenilin 1 AD Mice. Front Neurosci 2022; 16:905403. [PMID: 35860293 PMCID: PMC9289516 DOI: 10.3389/fnins.2022.905403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Group II metabotropic glutamate receptors (Group II mGluRs) are the peri-synaptic receptor of glutamatergic neurons and negatively regulate glutamate release from presynaptic neurons. Glutamate in the synaptic cleft is mainly taken into astrocytes by glutamate transporter-1 (GLT-1), which is primarily expressed in astrocytes. Increasing evidence showed that inhibiting or suppressing the activation of Group II mGluRs would contribute to the improvement of learning and memory deficits in Alzheimer’s disease (AD) animal models. Ceftriaxone (Cef) has been reported to alleviate the spatial memory deficits in AD model mice by improving GLT-1-related clearance and metabolism of glutamate. Therefore, the present study further investigates the improving effect of Cef on recognition memory deficits and the involvement of Group II mGluRs in the process using the APP/PS1 AD mouse model. Novel object recognition tests showed that the Cef treatment significantly improved the recognition memory deficits of the AD mice. The Western blot and immunohistochemistry analysis showed that the Cef treatment significantly suppressed the upregulation of Group II mGluRs expression in APP/PS1 AD mice. The above suppression effect of Cef was blocked by dihydrokainic acid, an inhibitor of GLT-1 uptake activity. Furthermore, the Cef treatment significantly restored the downregulation in the downstream molecules of Group II mGluRs activation, including the expression of PKA and phosphorylated SNAP-25 in the APP/PS1 AD mice. The Cef treatment had no effect on the content of Aβ40 and Aβ42 in the hippocampus of APP/PS1 AD mice. The above results suggested that the suppression of Group II mGluRs contributed to the Cef-induced reversal of the recognition memory deficits in APP/PS1 AD mice.
Collapse
Affiliation(s)
- ShuJuan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Li Li
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - LiRong Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - He Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - XiaoHui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- *Correspondence: XiaoHui Xian,
| | - WenBin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- WenBin Li,
| |
Collapse
|
63
|
Abstract
Voluntary attention selects behaviorally relevant signals for further processing while filtering out distracter signals. Neural correlates of voluntary visual attention have been reported across multiple areas of the primate visual processing streams, with the earliest and strongest effects isolated in the prefrontal cortex. In this article, I review evidence supporting the hypothesis that signals guiding the allocation of voluntary attention emerge in areas of the prefrontal cortex and reach upstream areas to modulate the processing of incoming visual information according to its behavioral relevance. Areas located anterior and dorsal to the arcuate sulcus and the frontal eye fields produce signals that guide the allocation of spatial attention. Areas located anterior and ventral to the arcuate sulcus produce signals for feature-based attention. Prefrontal microcircuits are particularly suited to supporting voluntary attention because of their ability to generate attentional template signals and implement signal gating and their extensive connectivity with the rest of the brain. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology, Pharmacology and Psychiatry, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada;
| |
Collapse
|
64
|
Audiffren M, André N, Baumeister RF. Training Willpower: Reducing Costs and Valuing Effort. Front Neurosci 2022; 16:699817. [PMID: 35573284 PMCID: PMC9095966 DOI: 10.3389/fnins.2022.699817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The integrative model of effortful control presented in a previous article aimed to specify the neurophysiological bases of mental effort. This model assumes that effort reflects three different inter-related aspects of the same adaptive function. First, a mechanism anchored in the salience network that makes decisions about the effort that should be engaged in the current task in view of costs and benefits associated with the achievement of the task goal. Second, a top-down control signal generated by the mechanism of effort that modulates neuronal activity in brain regions involved in the current task to filter pertinent information. Third, a feeling that emerges in awareness during effortful tasks and reflects the costs associated with goal-directed behavior. The aim of the present article is to complete this model by proposing that the capacity to exert effortful control can be improved through training programs. Two main questions relative to this possible strengthening of willpower are addressed in this paper. The first question concerns the existence of empirical evidence that supports gains in effortful control capacity through training. We conducted a review of 63 meta-analyses that shows training programs are effective in improving performance in effortful tasks tapping executive functions and/or self-control with a small to large effect size. Moreover, physical and mindfulness exercises could be two promising training methods that would deserve to be included in training programs aiming to strengthen willpower. The second question concerns the neural mechanisms that could explain these gains in effortful control capacity. Two plausible brain mechanisms are proposed: (1) a decrease in effort costs combined with a greater efficiency of brain regions involved in the task and (2) an increase in the value of effort through operant conditioning in the context of high effort and high reward. The first mechanism supports the hypothesis of a strengthening of the capacity to exert effortful control whereas the second mechanism supports the hypothesis of an increase in the motivation to exert this control. In the last part of the article, we made several recommendations to improve the effectiveness of interventional studies aiming to train this adaptive function."Keep the faculty of effort alive in you by a little gratuitous exercise every day."James (1918, p. 127).
Collapse
Affiliation(s)
- Michel Audiffren
- Research Centre on Cognition and Learning, Centre National de la Recherche Scientifique, University of Poitiers, Poitiers, France
| | - Nathalie André
- Research Centre on Cognition and Learning, Centre National de la Recherche Scientifique, University of Poitiers, Poitiers, France
| | - Roy F. Baumeister
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
65
|
van Kempen J, Brandt C, Distler C, Bellgrove MA, Thiele A. Dopamine influences attentional rate modulation in Macaque posterior parietal cortex. Sci Rep 2022; 12:6914. [PMID: 35484302 PMCID: PMC9050696 DOI: 10.1038/s41598-022-10634-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cognitive neuroscience has made great strides in understanding the neural substrates of attention, but our understanding of its neuropharmacology remains incomplete. Although dopamine has historically been studied in relation to frontal functioning, emerging evidence suggests important dopaminergic influences in parietal cortex. We recorded single- and multi-unit activity whilst iontophoretically administering dopaminergic agonists and antagonists while rhesus macaques performed a spatial attention task. Out of 88 units, 50 revealed activity modulation by drug administration. Dopamine inhibited firing rates according to an inverted-U shaped dose-response curve and increased gain variability. D1 receptor antagonists diminished firing rates according to a monotonic function and interacted with attention modulating gain variability. Finally, both drugs decreased the pupil light reflex. These data show that dopamine shapes neuronal responses and modulates aspects of attentional processing in parietal cortex.
Collapse
Affiliation(s)
- Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Christian Brandt
- Research Unit for ORL - Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Claudia Distler
- Allgemeine Zoologie Und Neurobiologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
66
|
Velichkovsky BM, Osipov GS, Nosovets ZA, Velichkovsky BB. Personal Meaning and Solving Creative Tasks: Contemporary Neurocognitive Studies. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2022. [DOI: 10.3103/s0147688221050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
67
|
Enwright III JF, Arion D, MacDonald WA, Elbakri R, Pan Y, Vyas G, Berndt A, Lewis DA. Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cereb Cortex 2022; 32:5216-5229. [PMID: 35106549 PMCID: PMC9667185 DOI: 10.1093/cercor/bhac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/03/2023] Open
Abstract
Visual spatial working memory (vsWM) is mediated by a distributed cortical network composed of multiple nodes, including primary visual (V1), posterior parietal (PPC), and dorsolateral prefrontal (DLPFC) cortices. Feedforward and feedback information is transferred among these nodes via projections furnished by pyramidal neurons (PNs) located primarily in cortical layer 3. Morphological and electrophysiological differences among layer 3 PNs across these nodes have been reported; however, the transcriptional signatures underlying these differences have not been examined in the human brain. Here we interrogated the transcriptomes of layer 3 PNs from 39 neurotypical human subjects across 3 critical nodes of the vsWM network. Over 8,000 differentially expressed genes were detected, with more than 6,000 transcriptional differences present between layer 3 PNs in V1 and those in PPC and DLPFC. Additionally, over 600 other genes differed in expression along the rostral-to-caudal hierarchy formed by these 3 nodes. Moreover, pathway analysis revealed enrichment of genes in V1 related to circadian rhythms and in DLPFC of genes involved in synaptic plasticity. Overall, these results show robust regional differences in the transcriptome of layer 3 PNs, which likely contribute to regional specialization in their morphological and physiological features and thus in their functional contributions to vsWM.
Collapse
Affiliation(s)
- John F Enwright III
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh Thomas Detre Hall 3811 O'Hara Street Pittsburgh, PA 15213 United States
| | - William A MacDonald
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Rania Elbakri
- Department of Pediatrics UPMC Children's Hospital of Pittsburgh 4401 Penn Avenue Pittsburgh, PA 15224-1334 United States,Health Sciences Sequencing Core 4401 Penn Avenue Rangos Research Building 8th Floor Pittsburgh, PA 15224 United States
| | - Yinghong Pan
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Gopi Vyas
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - Annerose Berndt
- The Institute for Precision Medicine 204 Craft Avenue, Room A412 Pittsburgh, PA 15213 United States
| | - David A Lewis
- Address correspondence to David A. Lewis, Department of Psychiatry, University of Pittsburgh, Biomedical Science Tower W1654, 3811 O’Hara Street, Pittsburgh, PA 15213-2593, United States.
| |
Collapse
|
68
|
Balanced expression of G protein-coupled receptor subtypes in the mouse, macaque, and human cerebral cortex. Neuroscience 2022; 487:107-119. [DOI: 10.1016/j.neuroscience.2022.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
|
69
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
70
|
Nestor PG, Levitt JJ, Ohtani T, Newell DT, Shenton ME, Niznikiewicz M. Loosening of Associations in Chronic Schizophrenia: Intersectionality of Verbal Learning, Negative Symptoms, and Brain Structure. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac004. [PMID: 35295655 PMCID: PMC8918213 DOI: 10.1093/schizbullopen/sgac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In 1908, Bleuler proposed a unitary theory of schizophrenia, hypothesizing a "loosening of associations" as the central mechanism underlying disturbances in thinking, motivation, and affective expression. Here, we test Bleuler's model in an archival sample of 79 healthy controls and 76 patients with chronic schizophrenia who had completed neuropsychological tests, including a measure of learning of novel word pairs, which was specifically selected to probe the structure and formation of new verbal associations. The patients also had positive and negative symptoms ratings, including measures of flat affect, anhedonia, and thought disorder. A subset of patients and controls (n = 39) had available prior archival 3-T magnetic resonance imaging (MRI) measures of prefrontal cortex (PFC) gray matter volumes. In relation to controls, patients showed evidence of a selective impairment in associative learning, independent of their overall reduced neuropsychological functioning. This neuropsychological impairment, in turn, correlated significantly with overall levels of negative but not positive symptoms, with the data showing an especially strong contribution of flattened emotional expression to verbal associate learning deficits in this patient sample. Moreover, the archival MRI data were consistent with prior research pointing to an important role of the PFC in supporting verbal associate learning and memory in patients and controls. Taken together, the current results provided evidence of a selective impairment in schizophrenia on a PFC-supported verbal associate learning and memory task, which was accompanied by negative symptoms in general, and flattened emotional expression, in particular.
Collapse
Affiliation(s)
- Paul G Nestor
- Department of Psychology, University of Massachusetts, Boston, MA, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| | - James J Levitt
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Toshiyuki Ohtani
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dominick T Newell
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, Veterans Affairs (VA) Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
71
|
Brocos-Mosquera I, Miranda-Azpiazu P, Muguruza C, Corzo-Monje V, Morentin B, Meana JJ, Callado LF, Rivero G. Differential brain ADRA2A and ADRA2C gene expression and epigenetic regulation in schizophrenia. Effect of antipsychotic drug treatment. Transl Psychiatry 2021; 11:643. [PMID: 34930904 PMCID: PMC8688495 DOI: 10.1038/s41398-021-01762-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/19/2023] Open
Abstract
Postsynaptic α2A-adrenoceptor density is enhanced in the dorsolateral prefrontal cortex (DLPFC) of antipsychotic-treated schizophrenia subjects. This alteration might be due to transcriptional activation, and could be regulated by epigenetic mechanisms such as histone posttranslational modifications (PTMs). The aim of this study was to evaluate ADRA2A and ADRA2C gene expression (codifying for α2-adrenoceptor subtypes), and permissive and repressive histone PTMs at gene promoter regions in the DLPFC of subjects with schizophrenia and matched controls (n = 24 pairs). We studied the effect of antipsychotic (AP) treatment in AP-free (n = 12) and AP-treated (n = 12) subgroups of schizophrenia subjects and in rats acutely and chronically treated with typical and atypical antipsychotics. ADRA2A mRNA expression was selectively upregulated in AP-treated schizophrenia subjects (+93%) whereas ADRA2C mRNA expression was upregulated in all schizophrenia subjects (+53%) regardless of antipsychotic treatment. Acute and chronic clozapine treatment in rats did not alter brain cortex Adra2a mRNA expression but increased Adra2c mRNA expression. Both ADRA2A and ADRA2C promoter regions showed epigenetic modification by histone methylation and acetylation in human DLPFC. The upregulation of ADRA2A expression in AP-treated schizophrenia subjects might be related to observed bivalent chromatin at ADRA2A promoter region in schizophrenia (depicted by increased permissive H3K4me3 and repressive H3K27me3) and could be triggered by the enhanced H4K16ac at ADRA2A promoter. In conclusion, epigenetic predisposition differentially modulated ADRA2A and ADRA2C mRNA expression in DLPFC of schizophrenia subjects.
Collapse
Affiliation(s)
- Iria Brocos-Mosquera
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Patricia Miranda-Azpiazu
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Carolina Muguruza
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain
| | - Virginia Corzo-Monje
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain ,grid.452310.1Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia Spain
| | - J. Javier Meana
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain ,grid.452310.1Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia Spain
| | - Luis F. Callado
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain ,grid.452310.1Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia Spain
| | - Guadalupe Rivero
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Leioa, Spain. .,Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
72
|
Gray SR, Ye L, Ye JY, Paukert M. Noradrenergic terminal short-term potentiation enables modality-selective integration of sensory input and vigilance state. SCIENCE ADVANCES 2021; 7:eabk1378. [PMID: 34919424 PMCID: PMC8682997 DOI: 10.1126/sciadv.abk1378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Recent years have seen compelling demonstrations of the importance of behavioral state on sensory processing and attention. Arousal plays a dominant role in controlling brain-wide neural activity patterns, particularly through modulation by norepinephrine. Noradrenergic brainstem nuclei, including locus coeruleus, can be activated by stimuli of multiple sensory modalities and broadcast modulatory signals via axonal projections throughout the brain. This organization might suggest proportional brain-wide norepinephrine release during states of heightened vigilance. Here, however, we have found that low-intensity, nonarousing visual stimuli enhanced vigilance-dependent noradrenergic signaling locally in visual cortex, revealed using dual-site fiber photometry to monitor noradrenergic Ca2+ responses of astroglia simultaneously in cerebellum and visual cortex and two-photon microscopy to monitor noradrenergic axonal terminal Ca2+ dynamics. Nitric oxide, following N-methyl-d-aspartate receptor activation in neuronal nitric oxide synthase-positive interneurons, mediated transient acceleration of norepinephrine-dependent astroglia Ca2+ activation. These findings reveal a candidate cortical microcircuit for sensory modality-selective modulation of attention.
Collapse
Affiliation(s)
- Shawn R. Gray
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Joint UTSA/UTHSCSA Graduate Program in Biomedical Engineering, San Antonio, TX, USA
| | - Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jing Yong Ye
- Joint UTSA/UTHSCSA Graduate Program in Biomedical Engineering, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Joint UTSA/UTHSCSA Graduate Program in Biomedical Engineering, San Antonio, TX, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
73
|
Jacob MS, Roach BJ, Sargent KS, Mathalon DH, Ford JM. Aperiodic measures of neural excitability are associated with anticorrelated hemodynamic networks at rest: A combined EEG-fMRI study. Neuroimage 2021; 245:118705. [PMID: 34798229 DOI: 10.1016/j.neuroimage.2021.118705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The hallmark of resting EEG spectra are distinct rhythms emerging from a broadband, aperiodic background. This aperiodic neural signature accounts for most of total EEG power, although its significance and relation to functional neuroanatomy remains obscure. We hypothesized that aperiodic EEG reflects a significant metabolic expenditure and therefore might be associated with the default mode network while at rest. During eyes-open, resting-state recordings of simultaneous EEG-fMRI, we find that aperiodic and periodic components of EEG power are only minimally associated with activity in the default mode network. However, a whole-brain analysis identifies increases in aperiodic power correlated with hemodynamic activity in an auditory-salience-cerebellar network, and decreases in aperiodic power are correlated with hemodynamic activity in prefrontal regions. Desynchronization in residual alpha and beta power is associated with visual and sensorimotor hemodynamic activity, respectively. These findings suggest that resting-state EEG signals acquired in an fMRI scanner reflect a balance of top-down and bottom-up stimulus processing, even in the absence of an explicit task.
Collapse
Affiliation(s)
- Michael S Jacob
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Kaia S Sargent
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States.
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, 4150 Clement St, San Francisco, CA 94121 United States; Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143 United States.
| |
Collapse
|
74
|
Abstract
Within populations, individuals show a variety of behavioral preferences, even in the absence of genetic or environmental variability. Neuromodulators affect these idiosyncratic preferences in a wide range of systems, however, the mechanism(s) by which they do so is unclear. I review the evidence supporting three broad mechanisms by which neuromodulators might affect variability in idiosyncratic behavioral preference: by being a source of variability directly upstream of behavior, by affecting the behavioral output of a circuit in a way that masks or accentuates underlying variability in that circuit, and by driving plasticity in circuits leading to either homeostatic convergence toward a given behavior or divergence from a developmental setpoint. I find evidence for each of these mechanisms and propose future directions to further understand the complex interplay between individual variability and neuromodulators.
Collapse
Affiliation(s)
- Ryan T Maloney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
75
|
Wainstein G, Rojas-Líbano D, Medel V, Alnæs D, Kolskår KK, Endestad T, Laeng B, Ossandon T, Crossley N, Matar E, Shine JM. The ascending arousal system promotes optimal performance through mesoscale network integration in a visuospatial attentional task. Netw Neurosci 2021; 5:890-910. [PMID: 35024535 PMCID: PMC8746119 DOI: 10.1162/netn_a_00205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/02/2021] [Indexed: 01/23/2023] Open
Abstract
Previous research has shown that the autonomic nervous system provides essential constraints over ongoing cognitive function. However, there is currently a relative lack of direct empirical evidence for how this interaction manifests in the brain at the macroscale level. Here, we examine the role of ascending arousal and attentional load on large-scale network dynamics by combining pupillometry, functional MRI, and graph theoretical analysis to analyze data from a visual motion-tracking task with a parametric load manipulation. We found that attentional load effects were observable in measures of pupil diameter and in a set of brain regions that parametrically modulated their BOLD activity and mesoscale network-level integration. In addition, the regional patterns of network reconfiguration were correlated with the spatial distribution of the α2a adrenergic receptor. Our results further solidify the relationship between ascending noradrenergic activity, large-scale network integration, and cognitive task performance.
Collapse
Affiliation(s)
| | - Daniel Rojas-Líbano
- Centro de Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Vicente Medel
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
- Bjørnnes College, Oslo, Norway
| | - Knut K. Kolskår
- NORMENT, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, Oslo, Norway
- Helgelandssykehuset Mosjøen, Helse Nord, Norway
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, Oslo, Norway
| | - Tomas Ossandon
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Elie Matar
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - James M. Shine
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Centre for Complexity, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
76
|
Roussy M, Mendoza-Halliday D, Martinez-Trujillo JC. Neural Substrates of Visual Perception and Working Memory: Two Sides of the Same Coin or Two Different Coins? Front Neural Circuits 2021; 15:764177. [PMID: 34899197 PMCID: PMC8662382 DOI: 10.3389/fncir.2021.764177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Visual perception occurs when a set of physical signals emanating from the environment enter the visual system and the brain interprets such signals as a percept. Visual working memory occurs when the brain produces and maintains a mental representation of a percept while the physical signals corresponding to that percept are not available. Early studies in humans and non-human primates demonstrated that lesions of the prefrontal cortex impair performance during visual working memory tasks but not during perceptual tasks. These studies attributed a fundamental role in working memory and a lesser role in visual perception to the prefrontal cortex. Indeed, single cell recording studies have found that neurons in the lateral prefrontal cortex of macaques encode working memory representations via persistent firing, validating the results of lesion studies. However, other studies have reported that neurons in some areas of the parietal and temporal lobe-classically associated with visual perception-similarly encode working memory representations via persistent firing. This prompted a line of enquiry about the role of the prefrontal and other associative cortices in working memory and perception. Here, we review evidence from single neuron studies in macaque monkeys examining working memory representations across different areas of the visual hierarchy and link them to studies examining the role of the same areas in visual perception. We conclude that neurons in early visual areas of both ventral (V1-V2-V4) and dorsal (V1-V3-MT) visual pathways of macaques mainly encode perceptual signals. On the other hand, areas downstream from V4 and MT contain subpopulations of neurons that encode both perceptual and/or working memory signals. Differences in cortical architecture (neuronal types, layer composition, and synaptic density and distribution) may be linked to the differential encoding of perceptual and working memory signals between early visual areas and higher association areas.
Collapse
Affiliation(s)
- Megan Roussy
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Julio C. Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
77
|
Leslie SN, Kanyo J, Datta D, Wilson RS, Zeiss C, Duque A, Lam TT, Arnsten AFT, Nairn AC. Simple, Single-Shot Phosphoproteomic Analysis of Heat-Stable Tau Identifies Age-Related Changes in pS235- and pS396-Tau Levels in Non-human Primates. Front Aging Neurosci 2021; 13:767322. [PMID: 34867294 PMCID: PMC8637411 DOI: 10.3389/fnagi.2021.767322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Age is the most significant risk factor for Alzheimer's disease (AD), and understanding its role in specific aspects of AD pathology will be critical for therapeutic development. Neurofibrillary tangles composed of hyperphosphorylated tau are a quintessential hallmark of AD. To study age-related changes in tau phosphorylation, we developed a simple, antibody-free approach for single shot analysis of tau phosphorylation across the entire protein by liquid-chromatography tandem mass spectrometry. This methodology is species independent; thus, while initially developed in a rodent model, we utilized this technique to analyze 36 phosphorylation sites on rhesus monkey tau from the prefrontal cortex (PFC), a region vulnerable to AD-linked degeneration. Data are available via ProteomeXchange with identifier PXD027971. We identified novel, age-related changes in tau phosphorylation in the rhesus monkey PFC and analyzed patterns of phosphorylation change across domains of the protein. We confirmed a significant increase and positive correlation with age of phosphorylated serine 235 tau and phosphorylated serine 396 tau levels in an expanded cohort of 14 monkeys. Histology showed robust labeling for tau phosphorylated at these sites in vulnerable layer III pyramidal cells in the PFC. The results presented in this study suggest an important role of the natural aging process in tau phosphorylation in rhesus monkey.
Collapse
Affiliation(s)
- Shannon N. Leslie
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Rashaun S. Wilson
- Keck MS & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Alvaro Duque
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Angus C. Nairn
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
78
|
Pallangyo P, Mkojera ZS, Komba M, Mgopa LR, Bhalia S, Mayala H, Wibonela S, Misidai N, Swai HJ, Millinga J, Chavala E, Kisenge PR, Janabi M. Burden and correlates of cognitive impairment among hypertensive patients in Tanzania: a cross-sectional study. BMC Neurol 2021; 21:433. [PMID: 34749692 PMCID: PMC8573988 DOI: 10.1186/s12883-021-02467-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The evolution of cognitive impairment of vascular origin is increasingly becoming a prominent health threat particularly in this era where hypertension is the leading contributor of global disease burden and overall health loss. Hypertension is associated with the alteration of the cerebral microcirculation coupled by unfavorable vascular remodeling with consequential slowing of mental processing speed, reduced abstract reasoning, loss of linguistic abilities, and attention and memory deficits. Owing to the rapidly rising burden of hypertension in Tanzania, we sought to assess the prevalence and correlates of cognitive impairment among hypertensive patients attending a tertiary cardiovascular hospital in Tanzania. METHODOLOGY A hospital-based cross-sectional study was conducted at Jakaya Kikwete Cardiac Institute, a tertiary care public teaching hospital in Dar es Salaam, Tanzania between March 2020 and February 2021. A consecutive sampling method was utilized to recruit consented hypertensive outpatients during their scheduled clinic visit. General Practitioner Assessment of Cognition (GPCOG) Score was utilized in the assessment of cognitive functions. All statistical analyses utilized STATA v11.0 software. Pearson Chi square and Student's T-test were used to compare categorical and continuous variables respectively. Logistic regression analyses were used to assess for factors associated with cognitive impairment. Odd ratios with 95% confidence intervals and p-values are reported. All tests were 2-sided and p < 0.05 was used to denote a statistical significance. RESULTS A total of 1201 hypertensive patients were enrolled in this study. The mean age was 58.1 years and females constituted nearly two-thirds of the study population. About three quarters had excess body weight, 16.6% had diabetes, 7.7% had history of stroke, 5.7% had heart failure, 16.7% had renal dysfunction, 53.7% had anemia, 27.7% had hypertriglyceridemia, 38.5% had elevated LDL, and 2.4% were HIV-infected. Nearly two-thirds of participants had uncontrolled blood pressure and 8.7% had orthostatic hypotension. Overall, 524 (43.6%) of participants had cognitive impairment. During bivariate analysis in a logistic regression model of 16 characteristics, 14 parameters showed association with cognitive functions. However, after controlling for confounders, multivariate analysis revealed ≤primary education (OR 3.5, 95%CI 2.4-5.2, p < 0.001), unemployed state (OR 1.7, 95%CI 1.2-2.6, p < 0.01), rural habitation (OR 1.8, 95%CI 1.1-2.9, p = 0.01) and renal dysfunction (OR 1.7, 95%CI 1.0-2.7, p = 0.04) to have independent association with cognitive impairment. CONCLUSION This present study underscore that cognitive decline is considerably prevalent among individuals with systemic hypertension. In view of this, it is pivotal to incorporate cognitive assessment in routine evaluation of hypertensive patients.
Collapse
Affiliation(s)
- Pedro Pallangyo
- PédPäl Research Initiative, P.O Box 65066, Dar es Salaam, Tanzania
- Directorate of Cardiology, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | | | - Makrina Komba
- PédPäl Research Initiative, P.O Box 65066, Dar es Salaam, Tanzania
| | - Lucy R. Mgopa
- PédPäl Research Initiative, P.O Box 65066, Dar es Salaam, Tanzania
- Department of Psychiatry and Mental Health, Muhimbili University of Health and Allied Sciences, P.O Box 65001, Dar es Salaam, Tanzania
| | - Smita Bhalia
- Directorate of Cardiology, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | - Henry Mayala
- Directorate of Clinical Support Services, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | - Salma Wibonela
- Directorate of Nursing, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | - Nsajigwa Misidai
- PédPäl Research Initiative, P.O Box 65066, Dar es Salaam, Tanzania
| | | | - Jalack Millinga
- PédPäl Research Initiative, P.O Box 65066, Dar es Salaam, Tanzania
- Directorate of Nursing, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | - Ester Chavala
- PédPäl Research Initiative, P.O Box 65066, Dar es Salaam, Tanzania
- Directorate of Nursing, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | - Peter R. Kisenge
- Directorate of Cardiology, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| | - Mohamed Janabi
- Directorate of Cardiology, Jakaya Kikwete Cardiac Institute, P.O Box 65141, Dar es Salaam, Tanzania
| |
Collapse
|
79
|
Lucantonio F, Kim E, Su Z, Chang AJ, Bari BA, Cohen JY. Aversive stimuli bias corticothalamic responses to motivationally significant cues. eLife 2021; 10:57634. [PMID: 34738905 PMCID: PMC8570692 DOI: 10.7554/elife.57634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Making predictions about future rewards or punishments is fundamental to adaptive behavior. These processes are influenced by prior experience. For example, prior exposure to aversive stimuli or stressors changes behavioral responses to negative- and positive-value predictive cues. Here, we demonstrate a role for medial prefrontal cortex (mPFC) neurons projecting to the paraventricular nucleus of the thalamus (PVT; mPFC→PVT) in this process. We found that a history of aversive stimuli negatively biased behavioral responses to motivationally relevant cues in mice and that this negative bias was associated with hyperactivity in mPFC→PVT neurons during exposure to those cues. Furthermore, artificially mimicking this hyperactive response with selective optogenetic excitation of the same pathway recapitulated the negative behavioral bias induced by aversive stimuli, whereas optogenetic inactivation of mPFC→PVT neurons prevented the development of the negative bias. Together, our results highlight how information flow within the mPFC→PVT circuit is critical for making predictions about motivationally-relevant outcomes as a function of prior experience.
Collapse
Affiliation(s)
- Federica Lucantonio
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Kim
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhixiao Su
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Anna J Chang
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Bilal A Bari
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jeremiah Y Cohen
- The Solomon H Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
80
|
Causse M, Lepron E, Mandrick K, Peysakhovich V, Berry I, Callan D, Rémy F. Facing successfully high mental workload and stressors: An fMRI study. Hum Brain Mapp 2021; 43:1011-1031. [PMID: 34738280 PMCID: PMC8764488 DOI: 10.1002/hbm.25703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The present fMRI study aimed at highlighting patterns of brain activations and autonomic activity when confronted with high mental workload and the threat of auditory stressors. Twenty participants performed a complex cognitive task in either safe or aversive conditions. Our results showed that increased mental workload induced recruitment of the lateral frontoparietal executive control network (ECN), along with disengagement of medial prefrontal and posterior cingulate regions of the default mode network (DMN). Mental workload also elicited an increase in heart rate and pupil diameter. Task performance did not decrease under the threat of stressors, most likely due to efficient inhibition of auditory regions, as reflected by a large decrement of activity in the superior temporal gyri. The threat of stressors was also accompanied with deactivations of limbic regions of the salience network (SN), possibly reflecting emotional regulation mechanisms through control from dorsal medial prefrontal and parietal regions, as indicated by functional connectivity analyses. Meanwhile, the threat of stressors induced enhanced ECN activity, likely for improved attentional and cognitive processes toward the task, as suggested by increased lateral prefrontal and parietal activations. These fMRI results suggest that measuring the balance between ECN, SN, and DMN recruitment could be used for objective mental state assessment. In this sense, an extra recruitment of task‐related regions and a high ratio of lateral versus medial prefrontal activity may represent a relevant marker of increased but efficient mental effort, while the opposite may indicate a disengagement from the task due to mental overload and/or stressors.
Collapse
Affiliation(s)
| | - Evelyne Lepron
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| | | | | | - Isabelle Berry
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| | - Daniel Callan
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | - Florence Rémy
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| |
Collapse
|
81
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
82
|
Brocos-Mosquera I, Gabilondo AM, Diez-Alarcia R, Muguruza C, Erdozain AM, Meana JJ, Callado LF. α 2A- and α 2C-adrenoceptor expression and functionality in postmortem prefrontal cortex of schizophrenia subjects. Eur Neuropsychopharmacol 2021; 52:3-11. [PMID: 34237656 DOI: 10.1016/j.euroneuro.2021.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/28/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Previous evidence suggests that α2-adrenoceptors (α2-AR) may be involved in the pathophysiology of schizophrenia. However, postmortem brain studies on α2-AR expression and functionality in schizophrenia are scarce. The aim of our work was to evaluate α2A-AR and α2C-AR expression in different subcellular fractions of prefrontal cortex postmortem tissue from antipsychotic-free (absence of antipsychotics in blood at the time of death) (n = 12) and antipsychotic-treated (n = 12) subjects with schizophrenia, and matched controls (n = 24). Functional coupling of α2-AR to Gα proteins induced by the agonist UK14304 was also tested. Additionally, Gα protein expression was also evaluated. In antipsychotic-free schizophrenia subjects, α2A-AR and α2C-AR protein expression was similar to controls in all the subcellular fractions. Conversely, in antipsychotic-treated schizophrenia subjects, increased α2A-AR expression was found in synaptosomal plasma membrane and postsynaptic density (PSD) fractions (+60% and +79% vs controls, respectively) with no significant changes in α2C-AR. [35S]GTPγS SPA experiments showed a significant lower stimulation of Gαi2 and Gαi3 proteins by UK14304 in antipsychotic-treated schizophrenia subjects, whereas stimulation in antipsychotic-free schizophrenia subjects remained unchanged. Gαo protein stimulation was significantly decreased in both antipsychotic-free and antipsychotic-treated schizophrenia subjects compared to controls. Expression of Gαi3 protein did not differ between groups, whereas Gαi2 levels were increased in PSD of schizophrenia subjects, both antipsychotic-free and antipsychotic-treated. Gαo protein expression was increased in PSD of antipsychotic-treated subjects and in the presynaptic fraction of antipsychotic-free schizophrenia subjects. The present results suggest that antipsychotic treatment is able to modify in opposite directions both the protein expression and the functionality of α2A-AR in the cortex of schizophrenia patients.
Collapse
Affiliation(s)
- Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Ane M Gabilondo
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Carolina Muguruza
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
83
|
Arnsten AFT, Datta D, Preuss TM. Studies of aging nonhuman primates illuminate the etiology of early-stage Alzheimer's-like neuropathology: An evolutionary perspective. Am J Primatol 2021; 83:e23254. [PMID: 33960505 PMCID: PMC8550995 DOI: 10.1002/ajp.23254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Tau pathology in Alzheimer's disease (AD) preferentially afflicts the limbic and recently enlarged association cortices, causing a progression of mnemonic and cognitive deficits. Although genetic mouse models have helped reveal mechanisms underlying the rare, autosomal-dominant forms of AD, the etiology of the more common, sporadic form of AD remains unknown, and is challenging to study in mice due to their limited association cortex and lifespan. It is also difficult to study in human brains, as early-stage tau phosphorylation can degrade postmortem. In contrast, rhesus monkeys have extensive association cortices, are long-lived, and can undergo perfusion fixation to capture early-stage tau phosphorylation in situ. Most importantly, rhesus monkeys naturally develop amyloid plaques, neurofibrillary tangles comprised of hyperphosphorylated tau, synaptic loss, and cognitive deficits with advancing age, and thus can be used to identify the early molecular events that initiate and propel neuropathology in the aging association cortices. Studies to date suggest that the particular molecular signaling events needed for higher cognition-for example, high levels of calcium to maintain persistent neuronal firing- lead to tau phosphorylation and inflammation when dysregulated with advancing age. The expression of NMDAR-NR2B (GluN2B)-the subunit that fluxes high levels of calcium-increases over the cortical hierarchy and with the expansion of association cortex in primate evolution, consistent with patterns of tau pathology. In the rhesus monkey dorsolateral prefrontal cortex, spines contain NMDAR-NR2B and the molecular machinery to magnify internal calcium release near the synapse, as well as phosphodiesterases, mGluR3, and calbindin to regulate calcium signaling. Loss of regulation with inflammation and/or aging appears to be a key factor in initiating tau pathology. The vast expansion in the numbers of these synapses over primate evolution is consistent with the degree of tau pathology seen across species: marmoset < rhesus monkey < chimpanzee < human, culminating in the vast neurodegeneration seen in humans with AD.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Dibyadeep Datta
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| | - Todd M. Preuss
- Division of Neuropharmacology and Neurologic Diseases, Department of Pathology, Yerkes National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
84
|
Entrainment of Astrocytic and Neuronal Ca 2+ Population Dynamics During Information Processing of Working Memory in Mice. Neurosci Bull 2021; 38:474-488. [PMID: 34699030 PMCID: PMC9106780 DOI: 10.1007/s12264-021-00782-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022] Open
Abstract
Astrocytes are increasingly recognized to play an active role in learning and memory, but whether neural inputs can trigger event-specific astrocytic Ca2+ dynamics in real time to participate in working memory remains unclear due to the difficulties in directly monitoring astrocytic Ca2+ dynamics in animals performing tasks. Here, using fiber photometry, we showed that population astrocytic Ca2+ dynamics in the hippocampus were gated by sensory inputs (centered at the turning point of the T-maze) and modified by the reward delivery during the encoding and retrieval phases. Notably, there was a strong inter-locked and antagonistic relationship between the astrocytic and neuronal Ca2+ dynamics with a 3-s phase difference. Furthermore, there was a robust synchronization of astrocytic Ca2+ at the population level among the hippocampus, medial prefrontal cortex, and striatum. The inter-locked, bidirectional communication between astrocytes and neurons at the population level may contribute to the modulation of information processing in working memory.
Collapse
|
85
|
Marvan T, Polák M, Bachmann T, Phillips WA. Apical amplification-a cellular mechanism of conscious perception? Neurosci Conscious 2021; 2021:niab036. [PMID: 34650815 PMCID: PMC8511476 DOI: 10.1093/nc/niab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Collapse
Affiliation(s)
- Tomáš Marvan
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Sedláčkova 19, Pilsen 306 14, Czech Republic
| | - Talis Bachmann
- School of Law and Cognitive Neuroscience Laboratory, University of Tartu (Tallinn branch), Kaarli pst 3, Tallinn 10119, Estonia
| | - William A Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
86
|
Jung M, Ryu S, Kang M, Javadi AH, Loprinzi PD. Evaluation of the transient hypofrontality theory in the context of exercise: A systematic review with meta-analysis. Q J Exp Psychol (Hove) 2021; 75:1193-1214. [PMID: 34523365 DOI: 10.1177/17470218211048807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating research suggests that, as a result of reduced neural activity in the prefrontal cortex (PFC), higher-order cognitive function may be compromised while engaging in high-intensity acute exercise, with this phenomenon referred to as the transient hypofrontality effect. However, findings in this field remain unclear and lack a thorough synthesis of the evidence. Therefore, the purpose of this meta-analysis was to evaluate the effects of in-task acute exercise on cognitive function, and further, to examine whether this effect is moderated by the specific type of cognition (i.e., PFC-dependent vs. non-PFC-dependent). Studies were identified by electronic databases in accordance with the PRISMA guidelines. In total, 22 studies met our inclusion criteria and intercept only meta-regression models with robust variance estimation were used to calculate the weighted average effect sizes across studies. Acute exercise at all intensities did not influence cognitive function (β = -0.16, 95% CI = [-0.58, 0.27], p = .45) when exercise occurred during the cognitive task, and no significant moderation effects emerged. However, there was evidence that cognitive task type (PFC-dependent vs. non-PFC-dependent) moderated the effect of high-intensity acute exercise on a concomitant cognitive performance (β = -0.81, 95% CI = [-1.60, -0.02], p = .04). Specifically, our findings suggest that PFC-dependent cognition is impaired while engaging in an acute bout of high-intensity exercise, providing support for the transient hypofrontality theory. We discuss these findings in the context of reticular-activating and cognitive-energetic perspectives.
Collapse
Affiliation(s)
- Myungjin Jung
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA.,Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Seungho Ryu
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury, UK.,Department of Experimental Psychology, Institute of Neuroscience, University College London, London, UK.,School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
87
|
Fietz J, Pöhlchen D, Binder FP, Czisch M, Sämann PG, Spoormaker VI. Pupillometry tracks cognitive load and salience network activity in a working memory functional magnetic resonance imaging task. Hum Brain Mapp 2021; 43:665-680. [PMID: 34622518 PMCID: PMC8720183 DOI: 10.1002/hbm.25678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 01/29/2023] Open
Abstract
The diameter of the human pupil tracks working memory processing and is associated with activity in the frontoparietal network. At the same time, recent neuroimaging research has linked human pupil fluctuations to activity in the salience network. In this combined functional magnetic resonance imaging (fMRI)/pupillometry study, we recorded the pupil size of healthy human participants while they performed a blockwise organized working memory task (N‐back) inside an MRI scanner in order to monitor the pupil fluctuations associated neural activity during working memory processing. We first confirmed that mean pupil size closely followed working memory load. Combining this with fMRI data, we focused on blood oxygen level dependent (BOLD) correlates of mean pupil size modeled onto the task blocks as a parametric modulation. Interrogating this modulated task regressor, we were able to retrieve the frontoparietal network. Next, to fully exploit the within‐block dynamics, we divided the blocks into 1 s time bins and filled these with corresponding pupil change values (first‐order derivative of pupil size). We found that pupil change within N‐back blocks was positively correlated with BOLD amplitudes in the areas of the salience network (namely bilateral insula, and anterior cingulate cortex). Taken together, fMRI with simultaneous measurement of pupil parameters constitutes a valuable tool to dissect working memory subprocesses related to both working memory load and salience of the presented stimuli.
Collapse
Affiliation(s)
- Julia Fietz
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | - Florian P Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Max Planck Institute of Psychiatry, Munich, Germany
| | -
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Victor I Spoormaker
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
88
|
Masilamoni GJ, Weinkle A, Papa SM, Smith Y. Cortical Serotonergic and Catecholaminergic Denervation in MPTP-Treated Parkinsonian Monkeys. Cereb Cortex 2021; 32:1804-1822. [PMID: 34519330 DOI: 10.1093/cercor/bhab313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/14/2022] Open
Abstract
Decreased cortical serotonergic and catecholaminergic innervation of the frontal cortex has been reported at early stages of Parkinson's disease (PD). However, the limited availability of animal models that exhibit these pathological features has hampered our understanding of the functional significance of these changes during the course of the disease. In the present study, we assessed longitudinal changes in cortical serotonin and catecholamine innervation in motor-symptomatic and asymptomatic monkeys chronically treated with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Densitometry and unbiased stereological techniques were used to quantify changes in serotonin and tyrosine hydroxylase (TH) immunoreactivity in frontal cortices of 3 control monkeys and 3 groups of MPTP-treated monkeys (motor-asymptomatic [N = 2], mild parkinsonian [N = 3], and moderate parkinsonian [N = 3]). Our findings revealed a significant decrease (P < 0.001) in serotonin innervation of motor (Areas 4 and 6), dorsolateral prefrontal (Areas 9 and 46), and limbic (Areas 24 and 25) cortical areas in motor-asymptomatic MPTP-treated monkeys. Both groups of symptomatic MPTP-treated animals displayed further serotonin denervation in these cortical regions (P < 0.0001). A significant loss of serotonin-positive dorsal raphe neurons was found in the moderate parkinsonian group. On the other hand, the intensity of cortical TH immunostaining was not significantly affected in motor asymptomatic MPTP-treated monkeys, but underwent a significant reduction in the moderate symptomatic group (P < 0.05). Our results indicate that chronic intoxication with MPTP induces early pathology in the corticopetal serotonergic system, which may contribute to early non-motor symptoms in PD.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison Weinkle
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
89
|
Woo E, Sansing LH, Arnsten AFT, Datta D. Chronic Stress Weakens Connectivity in the Prefrontal Cortex: Architectural and Molecular Changes. CHRONIC STRESS 2021; 5:24705470211029254. [PMID: 34485797 PMCID: PMC8408896 DOI: 10.1177/24705470211029254] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Chronic exposure to uncontrollable stress causes loss of spines and dendrites in the prefrontal cortex (PFC), a recently evolved brain region that provides top-down regulation of thought, action, and emotion. PFC neurons generate top-down goals through recurrent excitatory connections on spines. This persistent firing is the foundation for higher cognition, including working memory, and abstract thought. However, exposure to acute uncontrollable stress drives high levels of catecholamine release in the PFC, which activates feedforward calcium-cAMP signaling pathways to open nearby potassium channels, rapidly weakening synaptic connectivity to reduce persistent firing. Chronic stress exposures can further exacerbate these signaling events leading to loss of spines and resulting in marked cognitive impairment. In this review, we discuss how stress signaling mechanisms can lead to spine loss, including changes to BDNF-mTORC1 signaling, calcium homeostasis, actin dynamics, and mitochondrial actions that engage glial removal of spines through inflammatory signaling. Stress signaling events may be amplified in PFC spines due to cAMP magnification of internal calcium release. As PFC dendritic spine loss is a feature of many cognitive disorders, understanding how stress affects the structure and function of the PFC will help to inform strategies for treatment and prevention.
Collapse
Affiliation(s)
- Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA.,Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Lauren H Sansing
- Department of Neurology, Yale Medical School, New Haven, CT, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, CT, USA
| |
Collapse
|
90
|
Nitsch FJ, Sellitto M, Kalenscher T. The effects of acute and chronic stress on choice consistency. Psychoneuroendocrinology 2021; 131:105289. [PMID: 34091403 DOI: 10.1016/j.psyneuen.2021.105289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022]
Abstract
Important decisions are often made under some degree of stress. It is now well-established that acute stress affects preferences and priorities in our decisions. However, it is hard to make a general case on the net impact of stress on decision-making quality in a normative sense as evidence for or against a direct effect of stress on decision-making quality is sparse. Here, we used the revealed preference framework of choice consistency to investigate decision-making quality without the assumption of an objectively correct choice. Specifically, we tested whether acute stress influences choice consistency in a time dependent fashion. A sample of 144 participants solved a food choice task before, immediately after and in the aftermath of the Trier Social Stress Test (TSST) or a matched control procedure. We confirmed the effectiveness of our stress manipulation via an array of subjective and physiological stress measures. Using Bayesian statistics, we found strong evidence against an effect of acute stress on choice consistency. However, we found exploratory evidence for a negative association of self-reported chronic stress and choice consistency. We discuss our results in the context of previous findings of stress effects on choice consistency and preference changes.
Collapse
Affiliation(s)
- Felix J Nitsch
- Comparative Psychology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Manuela Sellitto
- Comparative Psychology, Heinrich-Heine-University Düsseldorf, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
91
|
Abi-Dargham A, Javitch JA, Slifstein M, Anticevic A, Calkins ME, Cho YT, Fonteneau C, Gil R, Girgis R, Gur RE, Gur RC, Grinband J, Kantrowitz J, Kohler C, Krystal J, Murray J, Ranganathan M, Santamauro N, Van Snellenberg J, Tamayo Z, Wolf D, Gray D, Lieberman J. Dopamine D1R Receptor Stimulation as a Mechanistic Pro-cognitive Target for Schizophrenia. Schizophr Bull 2021; 48:199-210. [PMID: 34423843 PMCID: PMC8781338 DOI: 10.1093/schbul/sbab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Decades of research have highlighted the importance of optimal stimulation of cortical dopaminergic receptors, particularly the D1R receptor (D1R), for prefrontal-mediated cognition. This mechanism is particularly relevant to the cognitive deficits in schizophrenia, given the abnormalities in cortical dopamine (DA) neurotransmission and in the expression of D1R. Despite the critical need for D1R-based therapeutics, many factors have complicated their development and prevented this important therapeutic target from being adequately interrogated. Challenges include determination of the optimal level of D1R stimulation needed to improve cognitive performance, especially when D1R expression levels, affinity states, DA levels, and the resulting D1R occupancy by DA, are not clearly known in schizophrenia, and may display great interindividual and intraindividual variability related to cognitive states and other physiological variables. These directly affect the selection of the level of stimulation necessary to correct the underlying neurobiology. The optimal mechanism for stimulation is also unknown and could include partial or full agonism, biased agonism, or positive allosteric modulation. Furthermore, the development of D1R targeting drugs has been complicated by complexities in extrapolating from in vitro affinity determinations to in vivo use. Prior D1R-targeted drugs have been unsuccessful due to poor bioavailability, pharmacokinetics, and insufficient target engagement at tolerable doses. Newer drugs have recently become available, and these must be tested in the context of carefully designed paradigms that address methodological challenges. In this paper, we discuss how a better understanding of these challenges has shaped our proposed experimental design for testing a new D1R/D5R partial agonist, PF-06412562, renamed CVL-562.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA,Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Cerevel Therapeutics Research and Development, Boston, MA, USA,To whom correspondence should be addressed; Tel: +(631) 885-0814; e-mail:
| | - Jonathan A Javitch
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Mark Slifstein
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Monica E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Clara Fonteneau
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Roberto Gil
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Ragy Girgis
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Joshua Kantrowitz
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| | - Christian Kohler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - John Murray
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | | | - Jared Van Snellenberg
- Department of Psychiatry, Stony Brook Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zailyn Tamayo
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Daniel Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Gray
- Cerevel Therapeutics Research and Development, Boston, MA, USA
| | - Jeffrey Lieberman
- Department of Psychiatry, New York State Psychaitric Institute, Columbia University, New York, NY, USA
| |
Collapse
|
92
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
93
|
Mäki-Marttunen V. Pupil-based States of Brain Integration across Cognitive States. Neuroscience 2021; 471:61-71. [PMID: 34303781 DOI: 10.1016/j.neuroscience.2021.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023]
Abstract
Arousal is a potent mechanism that provides the brain with functional flexibility and adaptability to external conditions. Within the wake state, arousal levels driven by activity in the neuromodulatory systems are related to specific signatures of neural activation and brain synchrony. However, direct evidence is still lacking on the varying effects of arousal on macroscopic brain characteristics and across a variety of cognitive states in humans. Using a concurrent fMRI-pupillometry approach, we used pupil size as a proxy for arousal and obtained patterns of brain integration associated with increasing arousal levels. We carried out this analysis on resting-state data and data from two attentional tasks implicating different cognitive processes. We found that an increasing level of arousal was related to a state of increased brain integration. This effect was prominent in the salience, visual and default-mode networks in all conditions, while other regions showed task-specificity. Increased integration in the salience network was also related to faster pupil dilation in the two attentional tasks. Furthermore, task performance was related to arousal level, with lower accuracy at higher level of arousal. Taken together, our study provides evidence in humans for pupil size as an index of brain network state, and supports the role of arousal as a switch that drives brain coordination in specific brain regions according to the cognitive state.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Department of Psychology, University of Oslo, Postboks 1094, Blindern, 0317 Oslo, Norway; Cognitive Psychology Unit, Faculty of Social Sciences, Leiden University, Pieter de la Court, Wassenaarseweg 52, 2333 AK Leiden, Netherlands.
| |
Collapse
|
94
|
The association of WTELS as a master motivator with higher executive functioning and better mental health. CURRENT PSYCHOLOGY 2021; 42:7309-7320. [PMID: 34276169 PMCID: PMC8272615 DOI: 10.1007/s12144-021-02078-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
The goal is to test the validity of the “Will to exist-live and survive (WTELS) as a master motivator that activates executive functions. A sample of 262 adults administered different measures that included WTELS and executive functions. We conducted hierarchical regressions with working memory deficits (WMD) and inhibition deficits (ID) as dependent variables. We entered in the last steps resilience and WTELS as independent variables. We conducted path analysis with WTELS as independent variables and WMD and ID as outcome variables and resilience and social support as mediating variables. WTELS accounted for the high effect size for lower working memory deficits and medium effect size for lower inhibition deficits. In path analysis, the effects of WTELS on decreased WMD were direct, while its effects on the ID were indirect. PROCESS analysis indicated that WTELS was directly associated with lower depression, anxiety, PTSD, and COVID-19 traumatic stress, and its indirect effects were mediated by lower executive function deficits (Kira et al., Psych 12:992-1024 2021c, Kira et al., in press). The path model discussed was generally superior to the alternative models and was strictly invariant across genders (male/ female).
Collapse
|
95
|
Samkaria A, Punjabi K, Sharma S, Joon S, Sandal K, Dasgupta T, Sharma P, Mandal PK. Brain Stress Mapping in COVID-19 Survivors Using MR Spectroscopy: New Avenue of Mental Health Status Monitoring$. J Alzheimers Dis 2021; 83:523-530. [PMID: 34250939 DOI: 10.3233/jad-210287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus (COVID-19) has emerged as a human catastrophe worldwide, and it has impacted human life more detrimentally than the combined effect of World Wars I and II. Various research studies reported that the disease is not confined to the respiratory system but also leads to neurological and neuropsychiatric disorders suggesting that the virus is potent to affect the central nervous system (CNS). Moreover, the damage to CNS may continue to rise even after the COVID-19 infection subsides which may further induce a long-term impact on the brain, resulting in cognitive impairment. Neuroimaging techniques is the ideal platform to detect and quantify pathological manifestations in the brain of COVID-19 survivors. In this context, a scheme based on structural, spectroscopic, and behavioral studies could be executed to monitor the gradual changes in the brain non-invasively due to COVID-19 which may further help in quantifying the impact of COVID-19 on the mental health of the survivors. Extensive research is required in this direction for identifying the mechanism and implications of COVID-19 in the brain. Cohort studies are urgently required for monitoring the effects of this pandemic on individuals of various subtypes longitudinally.
Collapse
Affiliation(s)
- Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Khushboo Punjabi
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Shallu Joon
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Kanika Sandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | | | - Pooja Sharma
- Medanta Institute of Education and Research, Medicity, Gurgaon, India
| | - Pravat K Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia
| |
Collapse
|
96
|
Hou Y, Chen M, Wang C, Liu L, Mao H, Qu X, Shen X, Yu B, Liu S. Electroacupuncture Attenuates Anxiety-Like Behaviors in a Rat Model of Post-traumatic Stress Disorder: The Role of the Ventromedial Prefrontal Cortex. Front Neurosci 2021; 15:690159. [PMID: 34248490 PMCID: PMC8264195 DOI: 10.3389/fnins.2021.690159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Electroacupuncture (EA) is a promising clinical approach to treating posttraumatic stress disorder (PTSD), yet the mechanisms whereby EA can alleviate anxiety and other PTSD symptoms have yet to be clarified. In the present report, rats underwent EA for 14 consecutive days following modified single prolonged stress (MSPS) exposure. These animals were then evaluated in open field and elevated plus maze tests (OFT and EPM), while Fos immunohistochemical staining was performed to assess ventromedial prefrontal cortex (vmPFC) functional activation. In addition, an extracellular recording and stimulation system was used to analyze vmPFC inputs into the ventral tegmental area (VTA) in these rats. Temporary vmPFC inactivation was further performed to assess whether this was sufficient to reverse the anxiolytic effects of EA. Overall, rats that underwent EA treatment spent more time in the central region (OFT) and the open arm (EPM) relative to MSPS model animals (P < 0.05). These MSPS model animals also exhibited significantly fewer activated Fos-positive nuclei in the vmPFC following behavioral testing, while EA was associated with a significant relative increase in c-Fos expression in this region. The transient inactivation of the vmPFC was sufficient to reverse the effects of EA treatment on anxiety-like behaviors in MSPS model rats. MSPS and SEA rats exhibiting no differences in bursting activity between baseline and vmPFC stimulation, whereas bursting activity rose relative to baseline upon ventral mPFC stimulation in EA treated and control rats. Together, these findings indicate that the vmPFC and its inputs into the VTA are functionally linked to the anxiolytic activity of EA, implicating this pathway in the EA-mediated treatment of PTSD.
Collapse
Affiliation(s)
- Yuchao Hou
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meiyu Chen
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Wang
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lumin Liu
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyi Qu
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Yu
- Department of Human Anatomy, School of Basic Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Department of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
97
|
Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nat Neurosci 2021; 24:646-657. [PMID: 33753944 DOI: 10.1038/s41593-021-00815-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
Children with autism spectrum disorder often exhibit delays in achieving motor developmental milestones such as crawling, walking and speech articulation. However, little is known about the neural mechanisms underlying motor-related deficits. Here, we reveal that mice with a syntenic deletion of the chromosome 16p11.2, a common copy number variation associated with autism spectrum disorder, also exhibit delayed motor learning without showing gross motor deficits. Using in vivo two-photon imaging in awake mice, we find that layer 2/3 excitatory neurons in the motor cortex of adult male 16p11.2-deletion mice show abnormally high activity during the initial phase of learning, and the process of learning-induced spine reorganization is prolonged. Pharmacogenetic activation of locus coeruleus noradrenergic neurons was sufficient to rescue the circuit deficits and the delayed motor learning in these mice. Our results unveil an unanticipated role of noradrenergic neuromodulation in improving the delayed motor learning in 16p11.2-deletion male mice.
Collapse
|
98
|
Louth EL, Jørgensen RL, Korshoej AR, Sørensen JCH, Capogna M. Dopaminergic Neuromodulation of Spike Timing Dependent Plasticity in Mature Adult Rodent and Human Cortical Neurons. Front Cell Neurosci 2021; 15:668980. [PMID: 33967700 PMCID: PMC8102156 DOI: 10.3389/fncel.2021.668980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Synapses in the cerebral cortex constantly change and this dynamic property regulated by the action of neuromodulators such as dopamine (DA), is essential for reward learning and memory. DA modulates spike-timing-dependent plasticity (STDP), a cellular model of learning and memory, in juvenile rodent cortical neurons. However, it is unknown whether this neuromodulation also occurs at excitatory synapses of cortical neurons in mature adult mice or in humans. Cortical layer V pyramidal neurons were recorded with whole cell patch clamp electrophysiology and an extracellular stimulating electrode was used to induce STDP. DA was either bath-applied or optogenetically released in slices from mice. Classical STDP induction protocols triggered non-hebbian excitatory synaptic depression in the mouse or no plasticity at human cortical synapses. DA reverted long term synaptic depression to baseline in mouse via dopamine 2 type receptors or elicited long term synaptic potentiation in human cortical synapses. Furthermore, when DA was applied during an STDP protocol it depressed presynaptic inhibition in the mouse but not in the human cortex. Thus, DA modulates excitatory synaptic plasticity differently in human vs. mouse cortex. The data strengthens the importance of DA in gating cognition in humans, and may inform on therapeutic interventions to recover brain function from diseases.
Collapse
Affiliation(s)
- Emma Louise Louth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | | | | | | | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Center for Proteins in Memory-PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| |
Collapse
|
99
|
Roles of the Functional Interaction between Brain Cholinergic and Dopaminergic Systems in the Pathogenesis and Treatment of Schizophrenia and Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22094299. [PMID: 33919025 PMCID: PMC8122651 DOI: 10.3390/ijms22094299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most physiologic processes in the brain and related diseases involve more than one neurotransmitter system. Thus, elucidation of the interaction between different neurotransmitter systems could allow for better therapeutic approaches to the treatments of related diseases. Dopaminergic (DAergic) and cholinergic neurotransmitter system regulate various brain functions that include cognition, movement, emotion, etc. This review focuses on the interaction between the brain DAergic and cholinergic systems with respect to the pathogenesis and treatment of schizophrenia and Parkinson’s disease (PD). We first discussed the selection of motor plans at the level of basal ganglia, the major DAergic and cholinergic pathways in the brain, and the receptor subtypes involved in the interaction between the two signaling systems. Next, the roles of each signaling system were discussed in the context of the negative symptoms of schizophrenia, with a focus on the α7 nicotinic cholinergic receptor and the dopamine D1 receptor in the prefrontal cortex. In addition, the roles of the nicotinic and dopamine receptors were discussed in the context of regulation of striatal cholinergic interneurons, which play crucial roles in the degeneration of nigrostriatal DAergic neurons and the development of L-DOPA-induced dyskinesia in PD patients. Finally, we discussed the general mechanisms of nicotine-induced protection of DAergic neurons.
Collapse
|
100
|
Yamada Y, Frith EM, Wong V, Spitz RW, Bell ZW, Chatakondi RN, Abe T, Loenneke JP. Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Med Hypotheses 2021; 151:110586. [PMID: 33848917 DOI: 10.1016/j.mehy.2021.110586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022]
Abstract
Blood flow restriction, in combination with low load/intensity exercise, has consistently been shown to increase both muscle size and strength. In contrast, the effects of blood flow restricted exercise on cognition have not been well studied. Therefore, the purpose of this paper is 1) to review the currently available literature investigating the impact of blood flow restricted exercise on cognition and 2) to provide some hypotheses for how blood flow restriction might provide an additive stimulus for augmenting specific cognitive domains above exercise alone. Given the lack of research in this area, the effects of blood flow restricted exercise on cognition are still unclear. We hypothesize that blood flow restricted exercise could potentially enhance several cognitive domains (such as attention, executive functioning, and memory) through increases in lactate production, catecholamine concentration, and PGC-1α expression. We review work that suggests that blood flow restriction is not only a beneficial strategy to improve musculoskeletal function but could also be a favorable method for enhancing multiple domains of cognition. Nonetheless, it must be emphasized this is a hypothesis that currently has only minimal experimental support, and further investigations in the future are necessary to test the hypothesis.
Collapse
Affiliation(s)
- Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Emily M Frith
- Department of Psychology, Cognitive Neuroscience of Creativity Laboratory, Pennsylvania State University, PA 16801, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Zachary W Bell
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Raksha N Chatakondi
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|