51
|
Sugaya Y, Kano M. Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling. Cell Mol Life Sci 2018; 75:2793-2811. [PMID: 29737364 PMCID: PMC11105219 DOI: 10.1007/s00018-018-2834-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
52
|
Deregulation of the endocannabinoid system and therapeutic potential of ABHD6 blockade in the cuprizone model of demyelination. Biochem Pharmacol 2018; 157:189-201. [PMID: 30075103 DOI: 10.1016/j.bcp.2018.07.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology in which tissue pathology suggests both immune-dependent attacks to oligodendroglia and primary oligodendrocyte demise. The endocannabinoid system has been crucially involved in the control of autoimmune demyelination and cannabinoid-based therapies exhibit therapeutic potential, but also limitations, in MS patients. In this context, growing evidence suggests that targeting the hydrolysis of the main endocannabinoid 2-arachidonoylglycerol (2-AG) may offer a more favorable benefit-to-risk balance in MS than existing cannabinoid medicines. Here we evaluated the modulation of endocannabinoid signaling and the therapeutic potential of targeting the 2-AG hydrolytic enzyme alpha/beta-hydrolase domain-containing 6 (ABHD6) in the cuprizone model of non-immune dependent demyelination. The concentrations of N-arachidonoylethanolamine (anandamide, AEA) and its congener N-palmitoylethanolamine (PEA) were reduced following 6 weeks of cuprizone feeding. Deregulation of AEA and PEA levels was not due to differences in the expression of the hydrolytic and biosynthetic enzymes fatty acid amide hydrolase and N-acylphosphatidylethanolamine-phospholipase D, respectively. Conversely, we measured elevated transcript levels of 2-AG hydrolytic enzymes monoacylglycerol lipase, ABHD6 and ABHD12 without changes in bulk 2-AG concentration. Upregulated CB1 and CB2 receptors expression, ascribed in part to microglia, was also detected in the brain of cuprizone-treated mice. Administration of an ABHD6 inhibitor partially attenuated myelin damage, astrogliosis and microglia/macrophage reactivity associated to cuprizone feeding. However, ABHD6 blockade was ineffective at engaging protective or differentiation promoting effects in oligodendrocyte cultures. These results show specific alterations of the endocannabinoid system and modest beneficial effects resulting from ABHD6 inactivation in a relevant model of primary demyelination.
Collapse
|
53
|
Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 2018; 157:18-32. [PMID: 30059673 DOI: 10.1016/j.bcp.2018.07.036] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Monoacylglycerol lipase (MAGL) has been characterized as the main enzyme responsible for the inactivation of the most abundant brain endocannabinoid, 2-arachidonoylglycerol (2-AG). Besides this role, MAGL has progressively acquired a growing importance as an integrative metabolic hub that controls not only the in vivo levels of 2-AG but also of other monoacylglycerides and, indirectly, the levels of free fatty acids derived from their hydrolysis as well as other lipids with pro-inflammatory or pro-tumorigenic effects, coming from the further metabolism of fatty acids. All these functions have only started to be elucidated in the last years due to the progress made in the knowledge of the structure of MAGL and in the development of genetic and chemical tools. In this review we report the advances made in the field with a special focus on the last decade and how MAGL has become a promising therapeutic target for the treatment of several diseases that currently lack appropriate therapies.
Collapse
Affiliation(s)
- Ana Gil-Ordóñez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - María L López-Rodríguez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain.
| |
Collapse
|
54
|
Lee S, Lee E, Kim R, Kim J, Lee S, Park H, Yang E, Kim H, Kim E. Shank2 Deletion in Parvalbumin Neurons Leads to Moderate Hyperactivity, Enhanced Self-Grooming and Suppressed Seizure Susceptibility in Mice. Front Mol Neurosci 2018; 11:209. [PMID: 29970987 PMCID: PMC6018407 DOI: 10.3389/fnmol.2018.00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/28/2018] [Indexed: 01/05/2023] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Haram Park
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
55
|
Zareie P, Sadegh M, Palizvan MR, Moradi-Chameh H. Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures. Metab Brain Dis 2018; 33:939-948. [PMID: 29504066 DOI: 10.1007/s11011-018-0195-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways. Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism. Tonic-clonic seizures were induced by an injection of Pentylenetetrazol (80 mg/kg, i.p.) in adult male Wistar rats. Delay and duration for the seizure stages were considered for analysis. Monoacylglycerol lipase blocker (JJKK048; 1 mg/kg) or alpha/beta hydroxylase domain 6 blocker (WWL70; 5 mg/kg) were administrated alone or with 2-AG to evaluate the anticonvulsive potential of these enzymes. To determine the CB1 receptor involvement, its blocker (MJ15; 3 mg/kg) was administrated associated with JJKK048 or WWL70. To assess anandamide anticonvulsive effect, anandamide membrane transporter blocker (LY21813240; 2.5 mg/kg) was used alone or associated with MJ15. Also, fatty acid amide hydrolase blocker (URB597; 1 mg/kg; to prevent intracellular anandamide hydrolysis) were used alone or with AMG21629 (transient receptor potential vanilloid; TRPV1 antagonist; 3 mg/kg). All compounds were dissolved in DMSO and injected i.p., before the Pentylenetetrazol. Both JJKK048 and WWL70 revealed anticonvulsive effect. Anticonvulsive effect of JJKK048 but not WWL70 was CB1 receptor dependent. LY2183240 showed CB1 receptor dependent anticonvulsive effect. However, URB597 revealed a TRPV1 dependent proconvulsive effect. It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.
Collapse
Affiliation(s)
- Parisa Zareie
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mehdi Sadegh
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohammad Reza Palizvan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Homeira Moradi-Chameh
- Division of Fundamental Neurobiology, Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
56
|
Baggelaar MP, Maccarrone M, van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog Lipid Res 2018; 71:1-17. [PMID: 29751000 DOI: 10.1016/j.plipres.2018.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/19/2022]
Abstract
2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain.
Collapse
Affiliation(s)
- Marc P Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy; European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands..
| |
Collapse
|
57
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
58
|
Cao JK, Detloff PJ, Gardner RG, Stella N. Sex-dependent behavioral impairments in the HdhQ350/+ mouse line. Behav Brain Res 2018; 337:34-45. [PMID: 28927719 PMCID: PMC5659761 DOI: 10.1016/j.bbr.2017.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022]
Abstract
Huntington's Disease (HD) is an autosomal dominant neurodegenerative disease characterized by gradual deterioration of motor and cognitive functions and development of psychiatric deficits. Animal models provide powerful means to study the pathological processes, molecular dysfunctions and symptoms associated with HD. We performed a longitudinal behavioral study of the newly developed HdhQ350/+ mouse line, a knock-in model that expresses a repeat of 350 glutamines. We found remarkable sex-dependent differences on symptom onset and severity. While both sexes lose weight and grip strength, only HdhQ350/+ males have impaired motor coordination as measured by the rotarod and alterations in gait as measured by the catwalk assay. While HdhQ350/+ females do not exhibit impairment in motor coordination, we found a reduction in dark phase locomotor activity. Male and female HdhQ350/+ mice do not show anxiety as measured by the elevated plus maze or changes in exploration as measured by the open field test. To investigate these sex-dependent differences, we performed western blot analyses of striatal tissue. We measured equal mutant huntingtin protein expression in both sexes and found evidence of aggregation. We found the expected decrease of DARPP-32 expression only in female HdhQ350/+ mice. Remarkably, we found no evidence of reduction in synaptophysin or CB1 receptors in HdhQ350/+ tissue of either sex. Our study indicates that male and female HdhQ350/+ mice differentially recapitulate select behavioral impairments commonly measured in other HD mouse models with limited sex-dependent changes in recognized histopathological markers. We conclude that expanded polyglutamine repeats influence HD pathogenesis in a sex-dependent manner.
Collapse
Affiliation(s)
- Jessica K Cao
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, United States
| | - Peter J Detloff
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, United States
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, United States; Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
59
|
Gong Y, Hewett JA. Maintenance of the Innate Seizure Threshold by Cyclooxygenase-2 is Not Influenced by the Translational Silencer, T-cell Intracellular Antigen-1. Neuroscience 2018; 373:37-51. [PMID: 29337236 DOI: 10.1016/j.neuroscience.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Activity of neuronal cyclooxygenase-2 (COX-2), a primary source of PG synthesis in the normal brain, is enhanced by excitatory neurotransmission and this is thought to be involved in seizure suppression. Results herein showing that the incidence of pentylenetetrazole (PTZ)-induced convulsions is suppressed in transgenic mice overexpressing COX-2 in neurons support this notion. T-cell intracellular antigen-1 (TIA-1) is an mRNA binding protein that is known to bind to COX-2 mRNA and repress its translation in non-neuronal cell types. An examination of the expression profile of TIA-1 protein in the normal brain indicated that it is expressed broadly by neurons, including those that express COX-2. However, whether TIA-1 regulates COX-2 protein levels in neurons is not known. The purpose of this study was to test the possibility that deletion of TIA-1 increases basal COX-2 expression in neurons and consequently raises the seizure threshold. Results demonstrate that neither the basal nor seizure-induced expression profiles of COX-2 were altered in mice lacking a functional TIA-1 gene suggesting that TIA-1 does not contribute to regulation of COX-2 protein expression in neurons. The acute PTZ-induced seizure threshold was also unchanged in mice lacking TIA-1 protein, indicating that this RNA binding protein does not influence the innate seizure threshold. Nevertheless, the results raise the possibility that the level of neuronal COX-2 expression may be a determinant of the innate seizure threshold and suggest that a better understanding of the regulation of COX-2 expression in the brain could provide new insight into the molecular mechanisms that suppress seizure induction.
Collapse
Affiliation(s)
- Yifan Gong
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - James A Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
60
|
Wen J, Jones M, Tanaka M, Selvaraj P, Symes AJ, Cox B, Zhang Y. WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms. J Neuroinflammation 2018; 15:9. [PMID: 29310667 PMCID: PMC5759843 DOI: 10.1186/s12974-017-1045-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Targeting the endocannabinoid system has emerged as an effective strategy for the treatment of inflammatory and neurological diseases. Unlike the inhibition of the principal 2-arachidonyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase (MAGL), which leads to 2-AG overload and cannabinoid receptor desensitization, selective inhibition of the minor 2-AG hydrolytic enzyme alpha, beta-hydrolase domain 6 (ABHD6) can provide therapeutic benefits without producing cannabimimetic side effects. We have shown that inhibition of ABHD6 significantly reduces neuroinflammation and exerts neuroprotection in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 inhibition on neuropathic pain has not been explored. METHODS Neuropathic pain was induced by chronic constriction injury (CCI) of the mouse sciatic nerve and examined by Hargreaves and Von Frey tests. Activation of inflammatory cells and the production of cytokines and chemokines in the spinal cord dorsal horn, dorsal root ganglion (DRG), and sciatic nerve were assessed by qRT-PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry. The levels of 2-AG and arachidonic acid (AA) in sciatic nerve were quantified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). RESULTS Treatment with the selective ABHD6 inhibitor WWL70 significantly alleviated CCI-induced thermal hyperalgesia and mechanical allodynia. Microglia activation, macrophage infiltration, and the production of nociceptive mediators were reduced in the ipsilateral lumbar spinal cord dorsal horn, DRG, and sciatic nerve of WWL70-treated animals. The diminished cytokine and chemokine production is likely due to the inhibitory effect of WWL70 on NF-κB phosphorylation. Surprisingly, the anti-nociceptive and anti-inflammatory effects of WWL70 were not reversed by addition of the cannabinoid receptor antagonists. Treatment with WWL70 did not alter the levels of 2-AG, AA, and the phosphorylation of cytosolic phospholipase A2 (cPLA2), but significantly reduced the production of prostaglandin E2 (PGE2) and the expression of cyclooxygenase-2 (COX-2) and prostaglandin E synthase-2 (PGES2) in the injured sciatic nerve. CONCLUSIONS This study reveals a novel mechanism for the antinociceptive effect of the 2-AG catabolic enzyme ABHD6 inhibitor WWL70. Understanding the interaction between endocannabinoid and eicosanoid pathways might provide a new avenue for the treatment of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Melissa Jones
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Brian Cox
- Department of Pharmacology and Molecular Therapeutics, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.,Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
61
|
Abstract
The α/β-hydrolase domain-containing 6 (ABHD6) enzyme is a newly found serine hydrolase whose substrate profile resembles that of monoacylglycerol lipase (MAGL), the major 2-arachidonoyl glycerol (2-AG) hydrolase in the brain. Here, we describe a sensitive fluorescent assay of ABHD6 activity in a 96-well-plate format that allows parallel testing of inhibitor activities of up to 40 compounds in a single assay. The method utilizes lysates of HEK293 cells transiently overexpressing human ABHD6 as the enzymatic source, and kinetically monitors glycerol liberated in the hydrolysis of 1(3)-AG, the preferred arachidonoyl glycerol isomer. Glycerol output is coupled to an enzymatic cascade generating the fluorescent end-product resorufin. The approach has major benefits compared to laborious traditional mass spectrometric methods and liquid scintillation-based assays, or approaches using unnatural substrates.
Collapse
|
62
|
Terrone G, Pauletti A, Salamone A, Rizzi M, Villa BR, Porcu L, Sheehan MJ, Guilmette E, Butler CR, Piro JR, Samad TA, Vezzani A. Inhibition of monoacylglycerol lipase terminates diazepam-resistant status epilepticus in mice and its effects are potentiated by a ketogenic diet. Epilepsia 2017; 59:79-91. [DOI: 10.1111/epi.13950] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Gaetano Terrone
- Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| | - Alberto Pauletti
- Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| | - Alessia Salamone
- Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| | - Massimo Rizzi
- Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| | - Bianca R. Villa
- Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| | - Luca Porcu
- Department of Oncology; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| | - Mark J. Sheehan
- Internal Medicine Research Unit; Pfizer Worldwide Research and Development; Cambridge MA USA
| | - Edward Guilmette
- Internal Medicine Research Unit; Pfizer Worldwide Research and Development; Cambridge MA USA
| | | | - Justin R. Piro
- Internal Medicine Research Unit; Pfizer Worldwide Research and Development; Cambridge MA USA
| | - Tarek A. Samad
- Internal Medicine Research Unit; Pfizer Worldwide Research and Development; Cambridge MA USA
| | - Annamaria Vezzani
- Department of Neuroscience; IRCCS-Mario Negri Institute for Pharmacological Research; Milano Italy
| |
Collapse
|
63
|
Li P, Fu X, Smith NA, Ziobro J, Curiel J, Tenga MJ, Martin B, Freedman S, Cea-Del Rio CA, Oboti L, Tsuchida TN, Oluigbo C, Yaun A, Magge SN, O'Neill B, Kao A, Zelleke TG, Depositario-Cabacar DT, Ghimbovschi S, Knoblach S, Ho CY, Corbin JG, Goodkin HP, Vicini S, Huntsman MM, Gaillard WD, Valdez G, Liu JS. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy. Neuron 2017; 96:387-401.e6. [PMID: 29024662 PMCID: PMC6233318 DOI: 10.1016/j.neuron.2017.09.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.
Collapse
Affiliation(s)
- Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Nathan A Smith
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julie Ziobro
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Julian Curiel
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Milagros J Tenga
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA
| | - Brandon Martin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Samuel Freedman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian A Cea-Del Rio
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Livio Oboti
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Tammy N Tsuchida
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Chima Oluigbo
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Amanda Yaun
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Suresh N Magge
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA; Division of Neurosurgery, Children's National Medical Center, Washington, DC 20010, USA
| | - Brent O'Neill
- Division of Pediatric Neurosurgery, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy Kao
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Tesfaye G Zelleke
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Dewi T Depositario-Cabacar
- Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Susan Knoblach
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Chen-Ying Ho
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Division of Pathology, Children's National Medical Center; Washington, DC 20010, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Howard P Goodkin
- Departments of Neurology and Pediatrics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Molly M Huntsman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - William D Gaillard
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA; Comprehensive Pediatric Epilepsy Program, Division of Neurophysiology and Epilepsy, Children's National Health Medical Center; Washington, DC 20010 USA
| | - Gregorio Valdez
- Virginia Tech Carillion Research Institute; Roanoke, VA 24014, USA; Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
64
|
Yang Q, Hu YD, Wang XF, Zheng FS. Dl-3n-butylphthalide reduces epileptiform activity through GluA2-lacking calcium-permeable AMPARs in epilepsy models. Oncotarget 2017; 8:98242-98257. [PMID: 29228686 PMCID: PMC5716726 DOI: 10.18632/oncotarget.21529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is the most prevalent chronic neurological disorder, and its pathological mechanism indicates that an imbalance between excitatory and inhibitory neurotransmission leads to neuronal hyperexcitability. Previous studies have suggested that dl-3n-butylphthalide (NBP) regulates the excitatory neurotransmitter glutamate in the brains of epileptic mice, however, the mechanisms are unknown. We investigated behavioral and electrophysiological factors in rats using NBP. In an in vivo pentylenetetrazole (PTZ)-induced epileptic seizure animal model, NBP decreased the generalized tonic-clonic seizure (GTCS) severity. In an acute hippocampal slice 4-aminopyridine (4-AP) epilepsy model in vitro, NBP decreased the epileptiform activity and miniature excitatory postsynaptic current (mEPSC) amplitude; there was no change in the miniature inhibitory postsynaptic current (mIPSC) amplitude or frequency. This effect suggested changes in excitatory synaptic transmission, which was altered through postsynaptic GluA2-lacking calcium-permeable AMPA receptors (CP-AMPARs). These findings showed that NBP suppressed epileptiform activity in these epilepsy models and provided the first detailed electrophysiological analysis of the impact of NBP in epilepsy models, which may be employed in future experimental or clinical therapies for patients with epilepsy.
Collapse
Affiliation(s)
- Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yi-Da Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100101, China
| | - Fang-Shuo Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| |
Collapse
|
65
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
66
|
Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid Turnover. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:31-66. [PMID: 28826539 DOI: 10.1016/bs.apha.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, we consider the biosynthetic, hydrolytic, and oxidative metabolism of the endocannabinoids anandamide and 2-arachidonoylglycerol. We describe the enzymes associated with these events and their characterization. We identify the inhibitor profile for these enzymes and the status of therapeutic exploitation, which to date has been limited to clinical trials for fatty acid amide hydrolase inhibitors. To bring the review to a close, we consider whether point block of a single enzyme is likely to be the most successful approach for therapeutic exploitation of the endocannabinoid system.
Collapse
Affiliation(s)
| | - Patrick Doherty
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | | |
Collapse
|
67
|
DV21 decreases excitability of cortical pyramidal neurons and acts in epilepsy. Sci Rep 2017; 7:1701. [PMID: 28490750 PMCID: PMC5431874 DOI: 10.1038/s41598-017-01734-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/03/2017] [Indexed: 11/08/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders and the administration of antiepileptic drugs (AEDs) is the most common treatment. Although there are more than 15 AEDs available, a third of epilepsy patients remain refractory to available drugs, so novel effective drugs are needed. Here, we found that DV21, which is a natural triterpenoid compound extracted from plants of the Asclepiadaceae family, significantly decreased the incidence and stages of seizures in three classical drug-induced acute seizure models in C57BL/6 mice. Furthermore, we also found that the antiepileptic effect of DV21 might be partly mediated through reducing the excitability of cortical pyramidal neurons by increasing M current, which are low-threshold non-inactivating voltage-gated potassium currents. Moreover, the application of XE991, an inhibitor of M current, could block most the antiepileptic effect of DV21. Taken together, our results indicated that DV21 might be a novel leading compound for the treatment of epilepsy.
Collapse
|
68
|
Rosenberg EC, Patra PH, Whalley BJ. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. Epilepsy Behav 2017; 70:319-327. [PMID: 28190698 PMCID: PMC5651410 DOI: 10.1016/j.yebeh.2016.11.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies. However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies. The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy. Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood. Therefore, in light of these paradigm-changing clinical events, the present review's findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy. This article is part of a Special Issue titled Cannabinoids and Epilepsy.
Collapse
Affiliation(s)
- Evan C. Rosenberg
- Department of Neuroscience and Physiology, Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Pabitra H. Patra
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
| | - Benjamin J. Whalley
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK,Corresponding author: (B.J. Whalley)
| |
Collapse
|
69
|
WWL70 attenuates PGE 2 production derived from 2-arachidonoylglycerol in microglia by ABHD6-independent mechanism. J Neuroinflammation 2017; 14:7. [PMID: 28086912 PMCID: PMC5234251 DOI: 10.1186/s12974-016-0783-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/22/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND α/β-Hydrolase domain 6 (ABHD6) is one of the major enzymes for endocannabinoid 2-arachidonoylglycerol (2-AG) hydrolysis in microglia cells. Our recent studies have shown that a selective ABHD6 inhibitor WWL70 has anti-inflammatory and neuroprotective effects in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 in the neuroinflammatory response and the mechanisms by which WWL70 suppresses inflammation has not yet been elucidated in reactive microglia. METHODS The hydrolytic activity and the levels of 2-AG in BV2 cells were measured by radioactivity assay and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) synthases in microglia treated with lipopolysaccharide (LPS) with/without WWL70 was determined by western blot and quantitative RT-PCR. The conversion of 2-AG to PGE2 or PGE2-glyceryl ester (PGE2-G) was assessed by enzyme-linked immunoassay (EIA) or LC-MS/MS. The involvement of ABHD6 in PGE2 production was assessed using pharmacological inhibitors and small interfering RNA (siRNA). The effect of WWL70 on PGE2 biosynthesis activity in the microsome fraction from BV2 cells and experimental autoimmune encephalopathy (EAE) mouse brain was also examined. RESULTS We found that WWL70 suppressed PGE2 production in LPS-activated microglia via cannabinoid receptor-independent mechanisms, although intracellular levels of 2-AG were elevated by WWL70 treatment. This reduction was not attributable to WWL70 inhibition of ABHD6, given the fact that downregulation of ABHD6 by siRNA or use of KT182, an alternative ABHD6 inhibitor failed to suppress PGE2 production. WWL70 attenuated the expression of COX-2 and PGES-1/2 leading to the downregulation of the biosynthetic pathways of PGE2 and PGE2-G. Moreover, PGE2 production from arachidonic acid was reduced in the microsome fraction, indicating that WWL70 also targets PGE2 biosynthetic enzymes, which are likely to contribute to the therapeutic mechanisms of WWL70 in the EAE mouse model. CONCLUSIONS WWL70 is an anti-inflammatory therapeutic agent capable of inhibiting PGE2 and PGE2-G production, primarily due to its reduction of COX-2 and microsomal PGES-1/2 expression and their PGE2 biosynthesis activity in microglia cells, as well as in the EAE mouse brain.
Collapse
|
70
|
Harada A, Suzuki K, Kimura H. TAK-063, a Novel Phosphodiesterase 10A Inhibitor, Protects from Striatal Neurodegeneration and Ameliorates Behavioral Deficits in the R6/2 Mouse Model of Huntington's Disease. J Pharmacol Exp Ther 2016; 360:75-83. [PMID: 27811172 DOI: 10.1124/jpet.116.237388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023] Open
Abstract
Huntington's disease (HD) is characterized by progressive loss of striatal medium spiny neurons (MSNs) that constitute direct and indirect pathways: the indirect pathway MSNs is more vulnerable than the direct pathway MSNs. Impairment of cAMP/cGMP signaling by mutant huntingtin is hypothesized as the molecular mechanism underlying degeneration of MSNs. Phosphodiesterase 10A (PDE10A) is selectively expressed in MSNs and degrades both cAMP and cGMP; thus, PDE10A inhibition can restore impaired cAMP/cGMP signaling. Compared with other PDE10A inhibitors, a novel PDE10A inhibitor 1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (TAK-063) showed comparable activation of the indirect pathway MSNs, whereas it produced partial activation of the direct pathway MSNs by its faster off-rate property. In this study, we report the effects of TAK-063 on striatal neurodegeneration and behavioral deficits in the R6/2 mouse model of HD. TAK-063 at 0.5 or 5 mg/kg/day was orally administrated from 4.5-5 to 12 weeks of age, and the effects of TAK-063 were characterized over this period. Repeated treatment with TAK-063 suppressed the reduction of brain-derived neurotrophic factor levels, prevented striatal neurodegeneration, and suppressed increase in seizure frequency, but did not prevent the suppression of body weight gain. As for motor deficits, TAK-063 suppressed the development of clasping behavior and motor dysfunctions, including decreased motor activity in the open field, but did not improve the impairment in motor coordination on the rotarod. Regarding cognitive functions, TAK-063 improved deficits in procedural learning, but was ineffective for deficits in contextual memory. These results suggest that TAK-063 reduces striatal neurodegeneration and ameliorates behavioral deficits in R6/2 mice.
Collapse
Affiliation(s)
- Akina Harada
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kazunori Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
71
|
Fisette A, Tobin S, Décarie-Spain L, Bouyakdan K, Peyot ML, Madiraju S, Prentki M, Fulton S, Alquier T. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility. Cell Rep 2016; 17:1217-1226. [DOI: 10.1016/j.celrep.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/30/2016] [Accepted: 09/30/2016] [Indexed: 01/24/2023] Open
|
72
|
Ahn K, Boehm M, Brown MF, Calloway J, Che Y, Chen J, Fennell KF, Geoghegan KF, Gilbert AM, Gutierrez JA, Kalgutkar AS, Lanba A, Limberakis C, Magee TV, O’Doherty I, Oliver R, Pabst B, Pandit J, Parris K, Pfefferkorn JA, Rolph TP, Patel R, Schuff B, Shanmugasundaram V, Starr JT, Varghese AH, Vera NB, Vernochet C, Yan J. Discovery of a Selective Covalent Inhibitor of Lysophospholipase-like 1 (LYPLAL1) as a Tool to Evaluate the Role of this Serine Hydrolase in Metabolism. ACS Chem Biol 2016; 11:2529-40. [PMID: 27391855 DOI: 10.1021/acschembio.6b00266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Lysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism. In hepatocytes, selective inhibition of LYPLAL1 increased glucose production supporting the inference that LYPLAL1 is a significant actor in hepatic metabolism. The results provide an example of how a selective chemical tool can contribute to evaluating a hypothetical target for therapeutic intervention, even in the absence of complete biochemical characterization.
Collapse
Affiliation(s)
- Kay Ahn
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Markus Boehm
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew F. Brown
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jessica Calloway
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ye Che
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jinshan Chen
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly F. Fennell
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kieran F. Geoghegan
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Adam M. Gilbert
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jemy A. Gutierrez
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S. Kalgutkar
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Adhiraj Lanba
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Chris Limberakis
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Thomas V. Magee
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Inish O’Doherty
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert Oliver
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brandon Pabst
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kevin Parris
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey A. Pfefferkorn
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy P. Rolph
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Rushi Patel
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brandon Schuff
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Veerabahu Shanmugasundaram
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeremy T. Starr
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alison H. Varghese
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicholas B. Vera
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cecile Vernochet
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jiangli Yan
- Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research
Unit, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry and §Pharmacokinetics, Dynamics, & Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
73
|
A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. eNeuro 2016; 3:eN-NWR-0160-16. [PMID: 27517090 PMCID: PMC4976302 DOI: 10.1523/eneuro.0160-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/03/2023] Open
Abstract
The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity.
Collapse
|
74
|
Sugaya Y, Yamazaki M, Uchigashima M, Kobayashi K, Watanabe M, Sakimura K, Kano M. Crucial Roles of the Endocannabinoid 2-Arachidonoylglycerol in the Suppression of Epileptic Seizures. Cell Rep 2016; 16:1405-1415. [PMID: 27452464 DOI: 10.1016/j.celrep.2016.06.083] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/01/2016] [Accepted: 06/21/2016] [Indexed: 01/13/2023] Open
Abstract
Endocannabinoid signaling is considered to suppress excessive excitability of neural circuits and to protect the brain from seizures. However, the precise mechanisms of this effect are poorly understood. Here, we report that 2-arachidonoylglycerol (2-AG), one of the two major endocannabinoids, is crucial for suppressing seizures. We found that kainate-induced seizures in mice lacking the 2-AG synthesizing enzyme, diacylglycerol lipase α, were much more severe compared with those in cannabinoid CB1 receptor knockout mice and were comparable to those in mice lacking both CB1- and CB2-receptor-mediated signaling. In the dentate gyrus, 2-AG suppressed excitatory input around the inner and middle molecular layers through CB1 and presumably CB2 receptors, respectively. This 2-AG-mediated suppression contributed to decreased granule cell excitability and the dampening of seizures. Furthermore, lack of 2-AG signaling enhanced kindling epileptogenesis and spontaneous seizures after kainate-induced status epilepticus. These results highlight critical roles of 2-AG signaling in the suppression of epileptic seizures.
Collapse
Affiliation(s)
- Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Motokazu Uchigashima
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
75
|
α/β-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors. Proc Natl Acad Sci U S A 2016; 113:E2695-704. [PMID: 27114538 DOI: 10.1073/pnas.1524589113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the brain, AMPA-type glutamate receptors are major postsynaptic receptors at excitatory synapses that mediate fast neurotransmission and synaptic plasticity. α/β-Hydrolase domain-containing 6 (ABHD6), a monoacylglycerol lipase, was previously found to be a component of AMPA receptor macromolecular complexes, but its physiological significance in the function of AMPA receptors (AMPARs) has remained unclear. The present study shows that overexpression of ABHD6 in neurons drastically reduced excitatory neurotransmission mediated by AMPA but not by NMDA receptors at excitatory synapses. Inactivation of ABHD6 expression in neurons by either CRISPR/Cas9 or shRNA knockdown methods significantly increased excitatory neurotransmission at excitatory synapses. Interestingly, overexpression of ABHD6 reduced glutamate-induced currents and the surface expression of GluA1 in HEK293T cells expressing GluA1 and stargazin, suggesting a direct functional interaction between these two proteins. The C-terminal tail of GluA1 was required for the binding between of ABHD6 and GluA1. Mutagenesis analysis revealed a GFCLIPQ sequence in the GluA1 C terminus that was essential for the inhibitory effect of ABHD6. The hydrolase activity of ABHD6 was not required for the effects of ABHD6 on AMPAR function in either neurons or transfected HEK293T cells. Thus, these findings reveal a novel and unexpected mechanism governing AMPAR trafficking at synapses through ABHD6.
Collapse
|
76
|
An Introduction to the Endogenous Cannabinoid System. Biol Psychiatry 2016; 79:516-25. [PMID: 26698193 PMCID: PMC4789136 DOI: 10.1016/j.biopsych.2015.07.028] [Citation(s) in RCA: 707] [Impact Index Per Article: 88.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/14/2015] [Accepted: 07/20/2015] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system (ECS) is a widespread neuromodulatory system that plays important roles in central nervous system development, synaptic plasticity, and the response to endogenous and environmental insults. The ECS comprises cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes responsible for the synthesis and degradation of the endocannabinoids. The most abundant cannabinoid receptors are the CB1 cannabinoid receptors; however, CB2 cannabinoid receptors, transient receptor potential channels, and peroxisome proliferator activated receptors are also engaged by some cannabinoids. Exogenous cannabinoids, such as tetrahydrocannabinol, produce their biological effects through their interactions with cannabinoid receptors. The best-studied endogenous cannabinoids are 2-arachidonoyl glycerol and arachidonoyl ethanolamide (anandamide). Despite similarities in chemical structure, 2-arachidonoyl glycerol and anandamide are synthesized and degraded by distinct enzymatic pathways, which impart fundamentally different physiologic and pathophysiologic roles to these two endocannabinoids. As a result of the pervasive social use of cannabis and the involvement of endocannabinoids in a multitude of biological processes, much has been learned about the physiologic and pathophysiologic roles of the ECS. This review provides an introduction to the ECS with an emphasis on its role in synaptic plasticity and how the ECS is perturbed in schizophrenia.
Collapse
|
77
|
Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain. Neural Plast 2016; 2016:8607038. [PMID: 27006834 PMCID: PMC4783563 DOI: 10.1155/2016/8607038] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/24/2022] Open
Abstract
Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I) balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.
Collapse
|
78
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
79
|
Doler C, Schweiger M, Zimmermann R, Breinbauer R. Chemical Genetic Approaches for the Investigation of Neutral Lipid Metabolism. Chembiochem 2016; 17:358-77. [DOI: 10.1002/cbic.201500501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Carina Doler
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences; University of Graz; Heinrichstrasse 31/II 8010 Graz Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences; University of Graz; Heinrichstrasse 31/II 8010 Graz Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
80
|
Bohuslavova R, Dodd N, Macova I, Chumak T, Horak M, Syka J, Fritzsch B, Pavlinkova G. Pax2-Islet1 Transgenic Mice Are Hyperactive and Have Altered Cerebellar Foliation. Mol Neurobiol 2016; 54:1352-1368. [PMID: 26843111 PMCID: PMC5310572 DOI: 10.1007/s12035-016-9716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
The programming of cell fate by transcription factors requires precise regulation of their time and level of expression. The LIM-homeodomain transcription factor Islet1 (Isl1) is involved in cell-fate specification of motor neurons, and it may play a similar role in the inner ear. In order to study its role in the regulation of vestibulo-motor development, we investigated a transgenic mouse expressing Isl1 under the Pax2 promoter control (Tg+/−). The transgenic mice show altered level, time, and place of expression of Isl1 but are viable. However, Tg+/− mice exhibit hyperactivity, including circling behavior, and progressive age-related decline in hearing, which has been reported previously. Here, we describe the molecular and morphological changes in the cerebellum and vestibular system that may cause the hyperactivity of Tg+/− mice. The transgene altered the formation of folia in the cerebellum, the distribution of calretinin labeled unipolar brush cells, and reduced the size of the cerebellum, inferior colliculus, and saccule. Age-related progressive reduction of calbindin expression was detected in Purkinje cells in the transgenic cerebella. The hyperactivity of Tg+/− mice is reduced upon the administration of picrotoxin, a non-competitive channel blocker for the γ-aminobutyric acid (GABA) receptor chloride channels. This suggests that the overexpression of Isl1 significantly affects the functions of GABAergic neurons. We demonstrate that the overexpression of Isl1 affects the development and function of the cerebello-vestibular system, resulting in hyperactivity.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic
| | - Nicole Dodd
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic
| | - Iva Macova
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic
| | - Tetyana Chumak
- Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Martin Horak
- Institute of Physiology CAS, Prague, Czech Republic
| | - Josef Syka
- Institute of Experimental Medicine CAS, Prague, Czech Republic
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology CAS, Prumyslova 595, Vestec, Prague-West District, 25242, Czech Republic.
| |
Collapse
|
81
|
Wen J, Ribeiro R, Tanaka M, Zhang Y. Activation of CB2 receptor is required for the therapeutic effect of ABHD6 inhibition in experimental autoimmune encephalomyelitis. Neuropharmacology 2015; 99:196-209. [DOI: 10.1016/j.neuropharm.2015.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/29/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023]
|
82
|
Pribasnig MA, Mrak I, Grabner GF, Taschler U, Knittelfelder O, Scherz B, Eichmann TO, Heier C, Grumet L, Kowaliuk J, Romauch M, Holler S, Anderl F, Wolinski H, Lass A, Breinbauer R, Marsche G, Brown JM, Zimmermann R. α/β Hydrolase Domain-containing 6 (ABHD6) Degrades the Late Endosomal/Lysosomal Lipid Bis(monoacylglycero)phosphate. J Biol Chem 2015; 290:29869-81. [PMID: 26491015 PMCID: PMC4705992 DOI: 10.1074/jbc.m115.669168] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/23/2022] Open
Abstract
α/β Hydrolase domain-containing 6 (ABHD6) can act as monoacylglycerol hydrolase and is believed to play a role in endocannabinoid signaling as well as in the pathogenesis of obesity and liver steatosis. However, the mechanistic link between gene function and disease is incompletely understood. Here we aimed to further characterize the role of ABHD6 in lipid metabolism. We show that mouse and human ABHD6 degrade bis(monoacylglycero)phosphate (BMP) with high specific activity. BMP, also known as lysobisphosphatidic acid, is enriched in late endosomes/lysosomes, where it plays a key role in the formation of intraluminal vesicles and in lipid sorting. Up to now, little has been known about the catabolism of this lipid. Our data demonstrate that ABHD6 is responsible for ∼90% of the BMP hydrolase activity detected in the liver and that knockdown of ABHD6 increases hepatic BMP levels. Tissue fractionation and live-cell imaging experiments revealed that ABHD6 co-localizes with late endosomes/lysosomes. The enzyme is active at cytosolic pH and lacks acid hydrolase activity, implying that it degrades BMP exported from acidic organelles or de novo-formed BMP. In conclusion, our data suggest that ABHD6 controls BMP catabolism and is therefore part of the late endosomal/lysosomal lipid-sorting machinery.
Collapse
Affiliation(s)
- Maria A Pribasnig
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Irina Mrak
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Gernot F Grabner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Oskar Knittelfelder
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Barbara Scherz
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Lukas Grumet
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Jakob Kowaliuk
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Matthias Romauch
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Felix Anderl
- the University of Technology, 8010 Graz, Austria
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Gunther Marsche
- the Institute of Organic Chemistry, Medical University of Graz, 8010 Graz, Austria, and
| | - J Mark Brown
- the Institute of Experimental and Clinical Pharmacology, Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
| |
Collapse
|
83
|
Korb E, Herre M, Zucker-Scharff I, Darnell RB, Allis CD. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat Neurosci 2015; 18:1464-73. [PMID: 26301327 PMCID: PMC4752120 DOI: 10.1038/nn.4095] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
Precise regulation of transcription is crucial for the cellular mechanisms underlying memory formation. However, the link between neuronal stimulation and the proteins that directly interact with histone modifications to activate transcription in neurons remains unclear. Brd4 is a member of the bromodomain and extra-terminal domain (BET) protein family, which binds acetylated histones and is a critical regulator of transcription in many cell types, including transcription in response to external cues. Small molecule BET inhibitors are in clinical trials, yet almost nothing is known about Brd4 function in the brain. Here we show that Brd4 mediates the transcriptional regulation underlying learning and memory. The loss of Brd4 function affects critical synaptic proteins, which results in memory deficits in mice but also decreases seizure susceptibility. Thus Brd4 provides a critical link between neuronal activation and the transcriptional responses that occur during memory formation.
Collapse
Affiliation(s)
- Erica Korb
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| | - Margo Herre
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, New York, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, New York, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, New York, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, New York, USA
| |
Collapse
|
84
|
Patel JZ, van Bruchem J, Laitinen T, Kaczor AA, Navia-Paldanius D, Parkkari T, Savinainen JR, Laitinen JT, Nevalainen TJ. Revisiting 1,3,4-Oxadiazol-2-ones: Utilization in the Development of ABHD6 Inhibitors. Bioorg Med Chem 2015; 23:6335-45. [PMID: 26344596 DOI: 10.1016/j.bmc.2015.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
This article describes our systematic approach to exploring the utility of the 1,3,4-oxadiazol-2-one scaffold in the development of ABHD6 inhibitors. Compound 3-(3-aminobenzyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-169, 52) was identified as a potent inhibitor of hABHD6, with an IC₅₀ value of 216 nM. This compound at 10 μM concentration did not inhibit any other endocannabinoid hydrolases, such as FAAH, MAGL and ABHD12, or bind to the cannabinoid receptors (CB₁ and CB₂). Moreover, in competitive activity-based protein profiling (ABPP), compound 52 (JZP-169) at 10 μM selectively targeted ABHD6 of the serine hydrolases of mouse brain membrane proteome. Reversibility studies indicated that compound 52 inhibited hABHD6 in an irreversible manner. Finally, homology modelling and molecular docking studies were used to gain insights into the binding of compound 52 to the active site of hABHD6.
Collapse
Affiliation(s)
- Jayendra Z Patel
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - John van Bruchem
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Agnieszka A Kaczor
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland; Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4a Chodzki St., PL-20093 Lublin, Poland
| | - Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine/Physiology, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Teija Parkkari
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Juha R Savinainen
- School of Medicine, Institute of Biomedicine/Physiology, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Jarmo T Laitinen
- School of Medicine, Institute of Biomedicine/Physiology, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tapio J Nevalainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
85
|
Guggenhuber S, Romo-Parra H, Bindila L, Leschik J, Lomazzo E, Remmers F, Zimmermann T, Lerner R, Klugmann M, Pape HC, Lutz B. Impaired 2-AG Signaling in Hippocampal Glutamatergic Neurons: Aggravation of Anxiety-Like Behavior and Unaltered Seizure Susceptibility. Int J Neuropsychopharmacol 2015; 19:pyv091. [PMID: 26232789 PMCID: PMC4772822 DOI: 10.1093/ijnp/pyv091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Postsynaptically generated 2-arachidonoylglycerol activates the presynaptic cannabinoid type-1 receptor, which is involved in synaptic plasticity at both glutamatergic and GABAergic synapses. However, the differential function of 2-arachidonoylglycerol signaling at glutamatergic vs GABAergic synapses in the context of animal behavior has not been investigated yet. METHODS Here, we analyzed the role of 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons. Monoacylglycerol lipase, the primary degrading enzyme of 2-arachidonoylglycerol, is expressed at presynaptic sites of excitatory and inhibitory neurons. By adeno-associated virus-mediated overexpression of monoacylglycerol lipase in glutamatergic neurons of the mouse hippocampus, we selectively interfered with 2-arachidonoylglycerol signaling at glutamatergic synapses of these neurons. RESULTS Genetic modification of monoacylglycerol lipase resulted in a 50% decrease in 2-arachidonoylglycerol tissue levels without affecting the content of the second major endocannabinoid anandamide. A typical electrophysiological read-out for 2-arachidonoylglycerol signaling is the depolarization-induced suppression of excitation and of inhibition. Elevated monoacylglycerol lipase levels at glutamatergic terminals selectively impaired depolarization-induced suppression of excitation, while depolarization-induced suppression of inhibition was not significantly changed. At the behavioral level, mice with impaired hippocampal glutamatergic 2-arachidonoylglycerol signaling exhibited increased anxiety-like behavior but showed no alterations in aversive memory formation and seizure susceptibility. CONCLUSION Our data indicate that 2-arachidonoylglycerol signaling selectively in hippocampal glutamatergic neurons is essential for the animal's adaptation to aversive situations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany (Dr Guggenhuber, Dr Bindila, Dr Leschik, Dr Lomazzo, Dr Remmers, Ms Zimmermann, Ms Lerner, Dr Klugmann, and Dr Lutz); Institute of Physiology I (Neurophysiology), Westfaelische Wilhelms-University, Muenster, Germany (Drs Romo-Parra and Pape); Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, UNSW Kensington Campus, Sydney, NSW, Australia (Dr Klugmann).
| |
Collapse
|
86
|
Karim N, Irshad S, Khan I, Mohammad A, Anis I, Shah MR, Khan I, Chebib M. GABA(A) receptor modulation and neuropharmacological activities of viscosine isolated from Dodonaea viscosa (Linn). Pharmacol Biochem Behav 2015; 136:64-72. [PMID: 26187002 DOI: 10.1016/j.pbb.2015.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/25/2023]
Abstract
The objective of the present study was to evaluate the modulation of GABA-evoked currents by the flavonoid viscosine at recombinant GABA(A) receptors, and subsequently to study its anxiolytic, sedative and anticonvulsant activities. Viscosine (1-300μM) positively modulated GABA-evoked currents at human α1β2γ2L and α2β2γ2L GABA(A) receptors expressed in Xenopus oocytes in a flumazenil insensitive manner. In behavioral studies, viscosine at doses of 10-100mg/kg (i.p.) exerted significant anxiolytic effects in the elevated plus maze, light-dark and open field tests (*P<0.05, **P<0.01, ***P<0.001 n=6, One-way ANOVA post-Dunnett's test), and sedative effects at high doses (100mg/kg i.p.) in hole board and thiopental induced sleep time tests. The anxiolytic effect in the elevated plus maze test was not blocked by flumazenil whereas pentylenetetrazole (PTZ) completely attenuated the effect, indicating that the activity was mediated via the non-benzodiazepine sites of GABA(A) receptors. Furthermore, viscosine at doses of 10-100mg/kg (i.p.) exerted anticonvulsant effects in a dose-dependent manner in PTZ, picrotoxin and bicuculline induced seizure paradigms (*P<0.05, **P<0.01,***P<0.001 n=6, One-way ANOVA post-Dunnett's test). In conclusion, the results of the present study suggest that the anxiolytic and anticonvulsant actions of viscosine are likely mediated via its positive allosteric modulatory action of GABA at different GABA(A) receptor subtypes.
Collapse
Affiliation(s)
- Nasiara Karim
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan; Faculty of Pharmacy, The University of Sydney, NSW, Australia.
| | - Shahid Irshad
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Imran Khan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Akhtar Mohammad
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Itrat Anis
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Inamullah Khan
- Department of Pharmacy, University Peshawar, Peshawar, Pakistan
| | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, NSW, Australia
| |
Collapse
|
87
|
Soltesz I, Alger BE, Kano M, Lee SH, Lovinger DM, Ohno-Shosaku T, Watanabe M. Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy. Nat Rev Neurosci 2015; 16:264-77. [PMID: 25891509 PMCID: PMC10631555 DOI: 10.1038/nrn3937] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.
Collapse
Affiliation(s)
- Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - Bradley E Alger
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sang-Hun Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Takako Ohno-Shosaku
- Department of Impairment Study, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-0942, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
88
|
Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci 2015; 16:30-42. [PMID: 25524120 DOI: 10.1038/nrn3876] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls--and is affected by--normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Nephi Stella
- 1] Department of Pharmacology, University of Washington. [2] Department of Psychiatry and Behavioral Science, University of Washington, 1959 Pacific Avenue North, Seattle, Washington 98103, USA
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, University of Bonn, Sigmund Freud Straße 25, Bonn 53127, Germany
| |
Collapse
|
89
|
Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci 2015; 34:14919-33. [PMID: 25378159 DOI: 10.1523/jneurosci.1165-14.2014] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormal accumulation of β-amyloid (Aβ) is the major neuropathological hallmark of Alzheimer's disease (AD). However, the mechanisms underlying aberrant Aβ formation in AD remain unclear. We showed previously that inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, robustly reduces Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a key enzyme responsible for Aβ formation. However, the molecular mechanisms responsible for suppression of BACE1 by inhibition of 2-AG metabolism are largely unknown. We demonstrate here that expression of the noncoding small RNA miR-188-3p that targets BACE1 was significantly downregulated both in the brains of AD humans and APP transgenic (TG) mice, a mouse model of AD. The downregulated miR-188-3p expression was restored by MAGL inhibition. Overexpression of miR-188-3p in the hippocampus reduced BACE1, Aβ, and neuroinflammation and prevented deteriorations in hippocampal basal synaptic transmission, long-term potentiation, spatial learning, and memory in TG mice. 2-AG-induced suppression of BACE1 was prevented by miR-188-3p loss of function. Moreover, miR-188-3p expression was upregulated by 2-AG or peroxisome proliferator-activated receptor-γ (PPARγ) agonists and suppressed by PPARγ antagonism or NF-κB activation. Reducing Aβ and neuroinflammation by MAGL inhibition was occluded by PPARγ antagonism. In addition, BACE1 suppression by 2-AG and PPARγ activation was eliminated by knockdown of NF-κB. Our study provides a novel molecular mechanism underlying improved synaptic and cognitive function in TG mice by 2-AG signaling, which upregulates miR-188-3p expression through PPARγ and NF-κB signaling pathway, resulting in suppressions of BACE1 expression and Aβ formation.
Collapse
|
90
|
Patel JZ, Nevalainen TJ, Savinainen JR, Adams Y, Laitinen T, Runyon RS, Vaara M, Ahenkorah S, Kaczor AA, Navia-Paldanius D, Gynther M, Aaltonen N, Joharapurkar AA, Jain MR, Haka AS, Maxfield FR, Laitinen JT, Parkkari T. Optimization of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. ChemMedChem 2014; 10:253-65. [PMID: 25504894 DOI: 10.1002/cmdc.201402453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/08/2022]
Abstract
At present, inhibitors of α/β-hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the development of 1,2,5-thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized, and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4-morpholino-1,2,5-thiadiazol-3-yl cyclooctyl(methyl)carbamate (JZP-430) potently and irreversibly inhibited hABHD6 (IC50 =44 nM) and showed ∼230-fold selectivity over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off-targets of related compounds. Additionally, activity-based protein profiling indicated that JZP-430 displays good selectivity among the serine hydrolases of the mouse brain membrane proteome. JZP-430 has been identified as a highly selective, irreversible inhibitor of hABHD6, which may provide a novel approach in the treatment of obesity and type II diabetes.
Collapse
Affiliation(s)
- Jayendra Z Patel
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio (Finland).
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Endocannabinoid metabolism offers handle to dampen down excitability. Nat Rev Drug Discov 2014; 13:652-3. [DOI: 10.1038/nrd4418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|