51
|
Gevenois PJLY, De Pauw P, Schoonooghe S, Delporte C, Sebti T, Amighi K, Muyldermans S, Wauthoz N. Development of Neutralizing Multimeric Nanobody Constructs Directed against IL-13: From Immunization to Lead Optimization. THE JOURNAL OF IMMUNOLOGY 2021; 207:2608-2620. [PMID: 34645688 DOI: 10.4049/jimmunol.2100250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
IL-13 is a pleiotropic cytokine mainly secreted by Th2 cells. It reacts with many different types of cells involved in allergy, inflammation, and fibrosis, e.g., mastocytes, B cells, and fibroblasts. The role of IL-13 in conditions involving one or several of these phenotypes has therefore been extensively investigated. The inhibition of this cytokine in animal models for various pathologies yielded highly promising results. However, most human trials relying on anti-IL-13 conventional mAbs have failed to achieve a significant improvement of the envisaged disorders. Where some studies might have suffered from several weaknesses, the strategies themselves, such as targeting only IL-13 using conventional mAbs or employing a systemic administration, could be questioned. Nanobodies are recombinant Ag-binding fragments derived from the variable part of H chain-only Abs occurring in Camelidae. Thanks to their single-domain structure, small size (≈15 kDa), good stability, and solubility, they can be engineered into multispecific constructs for combined therapies or for use in new strategies such as formulations for local administration, e.g., pulmonary administration. In this study, we describe the generation of 38 nanobodies that can be subdivided into five CDR3 families. Nine nanobodies were found to have a good affinity profile (KD = 1-200 nM), but none were able to strongly inhibit IL-13 biological activity in vitro (IC50 > 50 µM: HEK-Blue IL-13/IL-4 cells). Multimeric constructs were therefore designed from these inhibitors and resulted in an up to 36-fold improvement in affinity and up to 300-fold enhancement of the biological activity while conserving a high specificity toward IL-13.
Collapse
Affiliation(s)
- Philippe J-L Y Gevenois
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium;
| | - Pieter De Pauw
- Laboratory of Cellular and Molecular Immunology, Free University of Brussels, Ixelles, Belgium
| | - Steve Schoonooghe
- Flemish Institute for Biotechnology Nanobody Core, Free University of Brussels, Brussels, Belgium
| | - Cédric Delporte
- Unit of Pharmacognosy, Bioanalysis and Drug Discovery, RD3 and Analytical Platform of the Faculty of Pharmacy, Free University of Brussels, Brussels, Belgium; and
| | | | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Free University of Brussels, Ixelles, Belgium
| | - Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Free University of Brussels, Faculty of Pharmacy, Brussels, Belgium
| |
Collapse
|
52
|
Esparza TJ, Chen Y, Martin NP, Bielefeldt-Ohmann H, Bowen RA, Tolbert WD, Pazgier M, Brody DL. Nebulized delivery of a broadly neutralizing SARS-CoV-2 RBD-specific nanobody prevents clinical, virological and pathological disease in a Syrian hamster model of COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.10.468147. [PMID: 34790977 PMCID: PMC8597880 DOI: 10.1101/2021.11.10.468147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses, including the currently dominant Delta variant. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Thomas J. Esparza
- The National Institute of Neurological Disorders and Stroke Intramural Research Program, Laboratory of Functional and Molecular Imaging, Bethesda, MD, USA 20892
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA 20817
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA 20817
| | - Yaozong Chen
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Negin P. Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, USA 27709
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, USA 27709
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA, 80523
| | - William D. Tolbert
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - Marzena Pazgier
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| | - David L. Brody
- The National Institute of Neurological Disorders and Stroke Intramural Research Program, Laboratory of Functional and Molecular Imaging, Bethesda, MD, USA 20892
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA 20817
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 20814
| |
Collapse
|
53
|
Prediction of pharmacokinetic parameters of inhaled indacaterol formulation in healthy volunteers using physiologically-based pharmacokinetic (PBPK) model. Eur J Pharm Sci 2021; 168:106055. [PMID: 34742834 DOI: 10.1016/j.ejps.2021.106055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Inhaled formulations are the first choices for treating asthma and chronic obstructive pulmonary disease (COPD), attracting the increasing investment and development in the pharmaceutical industry. Both the equivalence of local and systemic exposures need to be considered when assessing the equivalence of generic inhaled drugs, which has become a dilemma in the development of generic inhaled drugs. There is an urgent need for reliable methods such as physiologically-based pharmacokinetic (PBPK) model to assist in the development of inhaled drugs. METHOD To test the strategy that in silico simulation is an effective tool in developing inhaled products and further assessing their clinically feasibility, a long-acting beta2-adrenergic agonists indacaterol, which was referred as the first-line therapy for patient with COPD, was selected as a tool drug. The PBPK model was established and the predicted plasma concentration curve was obtained by inputting the physicochemical properties of indacaterol and adjusting model parameters. The accuracy of simulation was verified by an alignment with the actual data. The main factor affecting PK in vivo was investigated by parameter sensitivity analysis. The biological equivalent size of indacaterol was investigated by virtual bioequivalence analysis. RESULTS The models of indacaterol after intravenous and oral administration were established and confirmed, and used as a background for PBPK model of inhaled administration. All those models showed favorable stability and applicability. Appropriate lung deposition was generated in the PBPK model, and the predicted plasma profile of indacaterol was consistent with the clinical actual observation values. Particle size is the most important factor affecting the PK of indacaterol in vivo. Furthermore, virtual bioequivalence simulation exhibited statistically comparable results between the particle size fluctuates in the range of 3.5-6.5 μm and baseline levels (D90 = 5 μm). CONCLUSIONS The PBPK model can simulate the pharmacokinetics and lung deposition of indacaterol, which will be a powerful tool to assist the development of inhaled drugs.
Collapse
|
54
|
Tang Q, Owens RJ, Naismith JH. Structural Biology of Nanobodies against the Spike Protein of SARS-CoV-2. Viruses 2021; 13:v13112214. [PMID: 34835020 PMCID: PMC8625641 DOI: 10.3390/v13112214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/28/2022] Open
Abstract
Nanobodies are 130 amino acid single-domain antibodies (VHH) derived from the unique heavy-chain-only subclass of Camelid immunogloblins. Their small molecular size, facile expression, high affinity and stability have combined to make them unique targeting reagents with numerous applications in the biomedical sciences. The first nanobody agent has now entered the clinic as a treatment against a blood disorder. The spread of the SARS-CoV-2 virus has seen the global scientific endeavour work to accelerate the development of technologies to try to defeat a pandemic that has now killed over four million people. In a remarkably short period of time, multiple studies have reported nanobodies directed against the viral Spike protein. Several agents have been tested in culture and demonstrate potent neutralisation of the virus or pseudovirus. A few agents have completed animal trials with very encouraging results showing their potential for treating infection. Here, we discuss the structural features that guide the nanobody recognition of the receptor binding domain of the Spike protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Qilong Tang
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot OX11 0FA, UK;
- The Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Raymond J. Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot OX11 0FA, UK;
- The Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Headington, Oxford OX3 7BN, UK
- Correspondence: (R.J.O.); (J.H.N.)
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot OX11 0FA, UK;
- The Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Headington, Oxford OX3 7BN, UK
- Correspondence: (R.J.O.); (J.H.N.)
| |
Collapse
|
55
|
Najmeddin A, Bahrololoumi Shapourabadi M, Behdani M, Dorkoosh F. Nanobodies as powerful pulmonary targeted biotherapeutics against SARS-CoV-2, pharmaceutical point of view. Biochim Biophys Acta Gen Subj 2021; 1865:129974. [PMID: 34343644 PMCID: PMC8325376 DOI: 10.1016/j.bbagen.2021.129974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Background Since December 2019, the newly emerged SARS-CoV-2 virus continues to infect humans and many people died from severe Covid-19 during the last 2 years worldwide. Different approaches are being used for treatment of this infection and its consequences, but limited results have been achieved and new therapeutics are still needed. One of the most interesting biotherapeutics in this era are Nanobodies which have shown very promising results in recent researches. Scope of review Here, we have reviewed the potentials of Nanobodies in Covid-19 treatment. We have also discussed the properties of these biotherapeutics that make them very suitable for pulmonary drug delivery, which seems to be very important route of administration in this disease. Major conclusion Nanobodies with their special biological and biophysical characteristics and their resistance against harsh manufacturing condition, can be considered as promising, targeted biotherapeutics which can be administered by pulmonary delivery pharmaceutical systems against Covid-19. General significance Covid-19 has become a global problem during the last two years and with emerging mutant strains, prophylactic and therapeutic approaches are still highly needed. Nanobodies with their specific properties can be considered as valuable and promising candidates in Covid-19 therapy.
Collapse
Affiliation(s)
- Ali Najmeddin
- Department of Pharmaceutics, Faculty of pharmacy, Tehran University of Medical Sciences, Iran.
| | | | - Mahdi Behdani
- Venom and Biotherapeutic Molecules Lab, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of pharmacy, Tehran University of Medical Sciences, Iran; Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Iran.
| |
Collapse
|
56
|
Wu X, Cheng L, Fu M, Huang B, Zhu L, Xu S, Shi H, Zhang D, Yuan H, Nawaz W, Yang P, Hu Q, Liu Y, Wu Z. A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Cell Rep 2021; 37:109869. [PMID: 34644535 PMCID: PMC8492916 DOI: 10.1016/j.celrep.2021.109869] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/08/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022] Open
Abstract
The dramatically expanding coronavirus disease 2019 (COVID-19) needs multiple effective countermeasures. Neutralizing nanobodies (Nbs) are a potential therapeutic strategy for treating COVID-19. Here, we characterize several receptor binding domain (RBD)-specific Nbs isolated from an Nb library derived from an alpaca immunized with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S); among them, three Nbs exhibit picomolar potency against SARS-CoV-2 live virus, pseudotyped viruses, and circulating SARS-CoV-2 variants. To improve their efficacy, various configurations of Nbs are engineered. Nb15-NbH-Nb15, a trimer constituted of three Nbs, is constructed to be bispecific for human serum albumin (HSA) and RBD of SARS-CoV-2. Nb15-NbH-Nb15 exhibits single-digit ng/ml neutralization potency against the wild-type and Delta variants of SARS-CoV-2 with a long half-life in vivo. In addition, we show that intranasal administration of Nb15-NbH-Nb15 provides effective protection for both prophylactic and therapeutic purposes against SARS-CoV-2 infection in transgenic hACE2 mice. Nb15-NbH-Nb15 is a potential candidate for both the prevention and treatment of SARS-CoV-2 through respiratory administration.
Collapse
Affiliation(s)
- Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious, Disease, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China; Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Linjing Zhu
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Shijie Xu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Haixia Shi
- Department of Antibody, Y-clone Medical Science Co. Ltd., Suzhou, People's Republic of China
| | - Doudou Zhang
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Huanyun Yuan
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, People's Republic of China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Ping Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
57
|
Voronina DV, Shcheblyakov DV, Esmagambetov IB, Derkaev AA, Popova O, Shcherbinin DN. Development of Neutralizing Nanobodies to the Hemagglutinin Stem Domain of Influenza A Viruses. Acta Naturae 2021; 13:33-41. [PMID: 35127144 PMCID: PMC8807538 DOI: 10.32607/actanaturae.11495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
The influenza virus infection claims ~650,000 lives annually. Taking into account the evolving resistance of the pathogen to antiviral drugs and the waning effectiveness of vaccination among certain populations, new approaches to the treatment of influenza are needed. The current study is aimed at obtaining single-domain antibodies (Nanobodies®) to the highly conserved stem domain of influenza A virus hemagglutinin by phage display. Two high-affinity neutralizing clones of Nanobodies® with a particular specificity were selected; they ensured 100% neutralization of the H1N1 and H5N2 influenza viruses in vivo. The obtained data demonstrate that it is possible to develop highly effective VHH-based drugs for the treatment of influenza.
Collapse
Affiliation(s)
- D. V. Voronina
- FSBI “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - D. V. Shcheblyakov
- FSBI “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - I. B. Esmagambetov
- FSBI “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - A. A. Derkaev
- FSBI “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - O. Popova
- FSBI “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of Russia, Moscow, 123098 Russia
| | - D. N. Shcherbinin
- FSBI “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of Russia, Moscow, 123098 Russia
| |
Collapse
|
58
|
Shen Z, Xiang Y, Vergara S, Chen A, Xiao Z, Santiago U, Jin C, Sang Z, Luo J, Chen K, Schneidman-Duhovny D, Camacho C, Calero G, Hu B, Shi Y. A resource of high-quality and versatile nanobodies for drug delivery. iScience 2021; 24:103014. [PMID: 34522857 PMCID: PMC8426283 DOI: 10.1016/j.isci.2021.103014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
Therapeutic and diagnostic efficacies of small biomolecules and chemical compounds are hampered by suboptimal pharmacokinetics. Here, we developed a repertoire of robust and high-affinity antihuman serum albumin nanobodies (NbHSA) that can be readily fused to small biologics for half-life extension. We characterized the thermostability, binding kinetics, and cross-species reactivity of NbHSAs, mapped their epitopes, and structurally resolved a tetrameric HSA-Nb complex. We parallelly determined the half-lives of a cohort of selected NbHSAs in an HSA mouse model by quantitative proteomics. Compared to short-lived control nanobodies, the half-lives of NbHSAs were drastically prolonged by 771-fold. NbHSAs have distinct and diverse pharmacokinetics, positively correlating with their albumin binding affinities at the endosomal pH. We then generated stable and highly bioactive NbHSA-cytokine fusion constructs “Duraleukin” and demonstrated Duraleukin's high preclinical efficacy for cancer treatment in a melanoma model. This high-quality and versatile Nb toolkit will help tailor drug half-life to specific medical needs. We provide a resource of high-affinity and versatile albumin nanobodies for drug delivery We systematically map albumin nanobody epitopes by hybrid structural approaches We parallelly measure the pharmacokinetics of nanobodies in a humanized mouse model We develop nanobody-cytokine conjugates “Duraleukin” for cancer immunotherapy
Collapse
Affiliation(s)
- Zhuolun Shen
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Vergara
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Apeng Chen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Zhengyun Xiao
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ulises Santiago
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Changzhong Jin
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh-Carnegie Mellon University Joint Program for Computational Biology, Pittsburgh, PA, USA
| | - Jiadi Luo
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, University of Jerusalem, Tambaram, Israel
| | - Carlos Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh-Carnegie Mellon University Joint Program for Computational Biology, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Huo J, Mikolajek H, Le Bas A, Clark JJ, Sharma P, Kipar A, Dormon J, Norman C, Weckener M, Clare DK, Harrison PJ, Tree JA, Buttigieg KR, Salguero FJ, Watson R, Knott D, Carnell O, Ngabo D, Elmore MJ, Fotheringham S, Harding A, Moynié L, Ward PN, Dumoux M, Prince T, Hall Y, Hiscox JA, Owen A, James W, Carroll MW, Stewart JP, Naismith JH, Owens RJ. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat Commun 2021; 12:5469. [PMID: 34552091 PMCID: PMC8458290 DOI: 10.1038/s41467-021-25480-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 remains a global threat to human health particularly as escape mutants emerge. There is an unmet need for effective treatments against COVID-19 for which neutralizing single domain antibodies (nanobodies) have significant potential. Their small size and stability mean that nanobodies are compatible with respiratory administration. We report four nanobodies (C5, H3, C1, F2) engineered as homotrimers with pmolar affinity for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Crystal structures show C5 and H3 overlap the ACE2 epitope, whilst C1 and F2 bind to a different epitope. Cryo Electron Microscopy shows C5 binding results in an all down arrangement of the Spike protein. C1, H3 and C5 all neutralize the Victoria strain, and the highly transmissible Alpha (B.1.1.7 first identified in Kent, UK) strain and C1 also neutralizes the Beta (B.1.35, first identified in South Africa). Administration of C5-trimer via the respiratory route showed potent therapeutic efficacy in the Syrian hamster model of COVID-19 and separately, effective prophylaxis. The molecule was similarly potent by intraperitoneal injection.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Epitopes/chemistry
- Epitopes/metabolism
- Female
- Male
- Mesocricetus
- Neutralization Tests
- SARS-CoV-2/drug effects
- Single-Domain Antibodies/administration & dosage
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/metabolism
- Single-Domain Antibodies/pharmacology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK
| | | | - Audrey Le Bas
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK
| | - Jordan J Clark
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Joshua Dormon
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK
| | - Chelsea Norman
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK
| | - Miriam Weckener
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Daniel K Clare
- Diamond Light Source Ltd, Harwell Science Campus, Didcot, UK
| | - Peter J Harrison
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK
- Diamond Light Source Ltd, Harwell Science Campus, Didcot, UK
| | - Julia A Tree
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Karen R Buttigieg
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | | | - Robert Watson
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Daniel Knott
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Oliver Carnell
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Didier Ngabo
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Michael J Elmore
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Susan Fotheringham
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Adam Harding
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucile Moynié
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Philip N Ward
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK
| | - Maud Dumoux
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK
| | - Tessa Prince
- Diamond Light Source Ltd, Harwell Science Campus, Didcot, UK
| | - Yper Hall
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
| | - Julian A Hiscox
- Diamond Light Source Ltd, Harwell Science Campus, Didcot, UK
- Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, UK
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James P Stewart
- Diamond Light Source Ltd, Harwell Science Campus, Didcot, UK
- Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Infectious Disease, University of Georgia, Georgia, USA
| | - James H Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK.
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK.
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science Campus, Didcot, UK.
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Protein Production UK, The Rosalind Franklin Institute - Diamond Light Source, The Research Complex at Harwell, Science Campus, Didcot, UK.
| |
Collapse
|
60
|
Potent Human Single-Domain Antibodies Specific for a Novel Prefusion Epitope of Respiratory Syncytial Virus F Glycoprotein. J Virol 2021; 95:e0048521. [PMID: 34160257 DOI: 10.1128/jvi.00485-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) poses great health threats to humans. However, there are no licensed vaccines or therapeutic drugs to date. Only one humanized monoclonal antibody, palivizumab, is available on the market, but it is used prophylactically and is limited to infants with high risk. With advances in antibody engineering, it has been found that a single-domain antibody (sdAb) can be therapeutically administered by inhalation, which would be more efficient for respiratory diseases. Here, we identified two human sdAbs, m17 and m35, by phage display technology. They specifically bind to RSV fusion glycoprotein (F protein) in the prefusion state with subnanomolar affinity and potently neutralize both RSV subtypes A and B with 50% inhibitory concentration (IC50) values ranging from pM to nM. Interestingly, these sdAbs recognize a novel epitope, termed VI, that is unique to the prefusion state. This epitope is located at the C terminus of the F1 subunit, close to the viral membrane, and might be sterically restricted. We further find that m17 and m35 neutralize RSV by preventing the prefusion F conformational arrangement, thus inhibiting membrane fusion. These two sdAbs have the potential to be further developed as therapeutic candidates and may also provide novel insight for developing other antiviral reagents against RSV. IMPORTANCE Because respiratory syncytial virus (RSV) can cause serious respiratory disease in immunodeficient groups, including infants and seniors, the development of vaccines and therapeutic drugs, such as neutralizing antibodies, is urgently needed. Compared to the conventional full-length antibody, a single-domain antibody (sdAb) has been demonstrated to be efficient for respiratory diseases when administered by inhalation, thereby potentially introducing a kind of novel therapeutic agent in the market. Here, we discovered two potent neutralizing human sdAbs against RSV that recognized a novel prefusion epitope, termed VI, and prevented conformational arrangement during the fusion process. Our work provides not only therapeutic candidates but also novel targets for new drug and vaccine development.
Collapse
|
61
|
Ye G, Gallant J, Zheng J, Massey C, Shi K, Tai W, Odle A, Vickers M, Shang J, Wan Y, Du L, Aihara H, Perlman S, LeBeau A, Li F. The development of Nanosota- 1 as anti-SARS-CoV-2 nanobody drug candidates. eLife 2021; 10:e64815. [PMID: 34338634 PMCID: PMC8354634 DOI: 10.7554/elife.64815] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking viral receptor angiotensin-converting enzyme 2 (ACE2). The lead drug candidate possessing an Fc tag (Nanosota-1C-Fc) bound to SARS-CoV-2 RBD ~3000 times more tightly than ACE2 did and inhibited SARS-CoV-2 pseudovirus ~160 times more efficiently than ACE2 did. Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy against live SARS-CoV-2 infection in both hamster and mouse models. Unlike conventional antibodies, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-Fc documented an excellent in vivo stability and a high tissue bioavailability. As effective and inexpensive drug candidates, Nanosota-1 may contribute to the battle against COVID-19.
Collapse
Affiliation(s)
- Gang Ye
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSaint PaulUnited States
- Center for Coronavirus Research, University of MinnesotaSaint PaulUnited States
| | - Joseph Gallant
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
| | - Jian Zheng
- Department of Microbiology and Immunology, University of IowaIowa CityUnited States
| | - Christopher Massey
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical BranchGalvestonUnited States
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood CenterNew YorkUnited States
| | - Abby Odle
- Department of Microbiology and Immunology, University of IowaIowa CityUnited States
| | - Molly Vickers
- Department of Microbiology and Immunology, University of IowaIowa CityUnited States
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSaint PaulUnited States
- Center for Coronavirus Research, University of MinnesotaSaint PaulUnited States
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSaint PaulUnited States
- Center for Coronavirus Research, University of MinnesotaSaint PaulUnited States
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood CenterNew YorkUnited States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of IowaIowa CityUnited States
| | - Aaron LeBeau
- Department of Pharmacology, University of MinnesotaMinneapolisUnited States
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of MinnesotaSaint PaulUnited States
- Center for Coronavirus Research, University of MinnesotaSaint PaulUnited States
| |
Collapse
|
62
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
63
|
Effective high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat Protoc 2021; 16:3639-3671. [PMID: 34035500 DOI: 10.1038/s41596-021-00554-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
As exemplified by the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, there is a strong demand for rapid high-throughput isolation pipelines to identify potent neutralizing antibodies for prevention and therapy of infectious diseases. However, despite substantial progress and extensive efforts, the identification and production of antigen-specific antibodies remains labor- and cost-intensive. We have advanced existing concepts to develop a highly efficient high-throughput protocol with proven application for the isolation of potent antigen-specific antibodies against human immunodeficiency virus 1, hepatitis C virus, human cytomegalovirus, Middle East respiratory syndrome coronavirus, SARS-CoV-2 and Ebola virus. It is based on computationally optimized multiplex primer sets (openPrimeR), which guarantee high coverage of even highly mutated immunoglobulin gene segments as well as on optimized antibody cloning and production strategies. Here, we provide the detailed protocol, which covers all critical steps from sample collection to antibody production within 12-14 d.
Collapse
|
64
|
Pymm P, Adair A, Chan LJ, Cooney JP, Mordant FL, Allison CC, Lopez E, Haycroft ER, O'Neill MT, Tan LL, Dietrich MH, Drew D, Doerflinger M, Dengler MA, Scott NE, Wheatley AK, Gherardin NA, Venugopal H, Cromer D, Davenport MP, Pickering R, Godfrey DI, Purcell DFJ, Kent SJ, Chung AW, Subbarao K, Pellegrini M, Glukhova A, Tham WH. Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proc Natl Acad Sci U S A 2021; 118:e2101918118. [PMID: 33893175 PMCID: PMC8126837 DOI: 10.1073/pnas.2101918118] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Phillip Pymm
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy Adair
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Li-Jin Chan
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - James P Cooney
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Cody C Allison
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ester Lopez
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Ebene R Haycroft
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Matthew T O'Neill
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Li Lynn Tan
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Melanie H Dietrich
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damien Drew
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Marcel Doerflinger
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael A Dengler
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nicholas A Gherardin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hariprasad Venugopal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raelene Pickering
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Marc Pellegrini
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alisa Glukhova
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Drug Discovery Biology, Monash Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
65
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
66
|
Potent Neutralization of SARS-CoV-2 by Hetero-bivalent Alpaca Nanobodies Targeting the Spike Receptor-Binding Domain. J Virol 2021; 95:JVI.02438-20. [PMID: 33658349 PMCID: PMC8139655 DOI: 10.1128/jvi.02438-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19.ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.
Collapse
|
67
|
Levi-Schaffer F, de Marco A. Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review: 31. Br J Pharmacol 2021; 178:3359-3372. [PMID: 33401333 DOI: 10.1111/bph.15359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic stimulated both the scientific community and healthcare companies to undertake an unprecedented effort with the aim of understanding the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing effective therapeutic solutions. The peculiar immune response triggered by this virus, which seems to last only few months, led to a search for alternatives such as passive immunization in addition to conventional vaccinations. Convalescent sera, monoclonal antibodies selected from the most potent neutralizing binders induced by the virus infection, recombinant human single-domain antibodies, and binders of variable scaffold and different origin have been tested alone or in combination exploiting monovalent, multivalent and multispecific formats. In this review, we analyse the state of the research in this field and present a summary of the ongoing projects finalized to identify suitable molecules for therapies based on passive immunization.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, School of Pharmacy, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
68
|
Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm 2021; 163:198-211. [PMID: 33852968 DOI: 10.1016/j.ejpb.2021.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Oral inhalation is the preferred route for delivery of small molecules to the lungs, because high tissue levels can be achieved shortly after application. Biologics are mainly administered by intravenous injection but inhalation might be beneficial for the treatment of lung diseases (e.g. asthma). This review discusses biological and pharmaceutical challenges for delivery of biologics and describes promising candidates. Insufficient stability of the proteins during aerosolization and the biological environment of the lung are the main obstacles for pulmonary delivery of biologics. Novel nebulizers will improve delivery by inducing less shear stress and administration as dry powder appears suitable for delivery of biologics. Other promising strategies include pegylation and development of antibody fragments, while carrier-encapsulated systems currently play no major role in pulmonary delivery of biologics for lung disease. While development of various biologics has been halted or has shown little effects, AIR DNase, alpha1-proteinase inhibitor, recombinant neuraminidase, and heparin are currently being evaluated in phase III trials. Several biologics are being tested for the treatment of coronavirus disease (COVID)-19, and it is expected that these trials will lead to improvements in pulmonary delivery of biologics.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Graz, Austria.
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Austria
| |
Collapse
|
69
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Nanobody Repertoires for Exposing Vulnerabilities of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.08.438911. [PMID: 33851164 PMCID: PMC8043454 DOI: 10.1101/2021.04.08.438911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the great promise of vaccines, the COVID-19 pandemic is ongoing and future serious outbreaks are highly likely, so that multi-pronged containment strategies will be required for many years. Nanobodies are the smallest naturally occurring single domain antigen binding proteins identified to date, possessing numerous properties advantageous to their production and use. We present a large repertoire of high affinity nanobodies against SARS-CoV-2 Spike protein with excellent kinetic and viral neutralization properties, which can be strongly enhanced with oligomerization. This repertoire samples the epitope landscape of the Spike ectodomain inside and outside the receptor binding domain, recognizing a multitude of distinct epitopes and revealing multiple neutralization targets of pseudoviruses and authentic SARS-CoV-2, including in primary human airway epithelial cells. Combinatorial nanobody mixtures show highly synergistic activities, and are resistant to mutational escape and emerging viral variants of concern. These nanobodies establish an exceptional resource for superior COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Magda Rutkowska
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nicolas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Sarah Keegan
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Theodora Hatziioannou
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - David Fenyö
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
70
|
Tavakol S, Zahmatkeshan M, Mohammadinejad R, Mehrzadi S, Joghataei MT, Alavijeh MS, Seifalian A. The role of nanotechnology in current COVID-19 outbreak. Heliyon 2021; 7:e06841. [PMID: 33880422 PMCID: PMC8049405 DOI: 10.1016/j.heliyon.2021.e06841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/16/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has recently become one of the most challenging pandemics of the last century with deadly outcomes and a high rate of reproduction number. It emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis by the high sensitivity and selectivity diagnostic kits, and effective antiviral and protective therapeutics to decline and eliminate the viral load and side effects derived from tissue damages. Therefore, non-toxic antiviral nanoparticles (NPs) have been under development for clinical application to prevent and treat COVID-19. NPs showed great promise to provide nano vaccines against viral infections. Here, we discuss the potentials of NPs that may be applied as a drug itself or as a platform for the aim of drug and vaccine repurposing and development. Meanwhile, the advanced strategies based on NPs to detect viruses will be described with the goal of encouraging scientists to design effective and cost-benefit nanoplatforms for prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T. Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Mo S. Alavijeh
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, UK), London BioScience Innovation Centre, London, NW1 0NH, United Kingdom
| |
Collapse
|
71
|
Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE. Broad Reactivity Single Domain Antibodies against Influenza Virus and Their Applications to Vaccine Potency Testing and Immunotherapy. Biomolecules 2021; 11:biom11030407. [PMID: 33802072 PMCID: PMC8001348 DOI: 10.3390/biom11030407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022] Open
Abstract
The antigenic variability of influenza presents many challenges to the development of vaccines and immunotherapeutics. However, it is apparent that there are epitopes on the virus that have evolved to remain largely constant due to their functional importance. These more conserved regions are often hidden and difficult to access by the human immune system but recent efforts have shown that these may be the Achilles heel of the virus through development and delivery of appropriate biological drugs. Amongst these, single domain antibodies (sdAbs) are equipped to target these vulnerabilities of the influenza virus due to their preference for concave epitopes on protein surfaces, their small size, flexible reformatting and high stability. Single domain antibodies are well placed to provide a new generation of robust analytical reagents and therapeutics to support the constant efforts to keep influenza in check.
Collapse
Affiliation(s)
- Andrew Tung Yep
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Yasu Takeuchi
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
- Advanced Therapies Division, NIBSC, Potters Bar, Hertfordshire EN6 3QG, UK
| | | | - Simon E. Hufton
- Biotherapeutics Division, National Institute for Biological Standards and Control (NIBSC), Potters Bar, Hertfordshire EN6 3QG, UK;
- Correspondence:
| |
Collapse
|
72
|
Gai J, Ma L, Li G, Zhu M, Qiao P, Li X, Zhang H, Zhang Y, Chen Y, Ji W, Zhang H, Cao H, Li X, Gong R, Wan Y. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm (Beijing) 2021; 2:101-113. [PMID: 33821254 PMCID: PMC8013425 DOI: 10.1002/mco2.60] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID‐19) pandemic has become a serious burden on global public health. Although therapeutic drugs against COVID‐19 have been used in many countries, their efficacy is still limited. We here reported nanobody (Nb) phage display libraries derived from four camels immunized with the SARS‐CoV‐2 spike receptor‐binding domain (RBD), from which 381 Nbs were identified to recognize SARS‐CoV‐2‐RBD. Furthermore, seven Nbs were shown to block interaction of human angiotensin‐converting enzyme 2 (ACE2) with SARS‐CoV‐2‐RBD variants and two Nbs blocked the interaction of human ACE2 with bat‐SL‐CoV‐WIV1‐RBD and SARS‐CoV‐1‐RBD. Among these candidates, Nb11‐59 exhibited the highest activity against authentic SARS‐CoV‐2 with 50% neutralizing dose (ND50) of 0.55 μg/ml. Nb11‐59 can be produced on large scale in Pichia pastoris, with 20 g/L titer and 99.36% purity. It also showed good stability profile, and nebulization did not impact its stability. Overall, Nb11‐59 might be a promising prophylactic and therapeutic molecule against COVID‐19, especially through inhalation delivery.
Collapse
Affiliation(s)
- Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Linlin Ma
- Shanghai Key Laboratory of Molecular Imaging Shanghai University of Medicine and Health Sciences Shanghai China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Peng Qiao
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Xiaofei Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Haiwei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science Chinese Academy of Sciences Wuhan China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science China Pharmaceutical University Nanjing China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science China Pharmaceutical University Nanjing China
| | - Weiwei Ji
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Hao Zhang
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Huanhuan Cao
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Xionghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science Chinese Academy of Sciences Wuhan China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd Shanghai China
| |
Collapse
|
73
|
Yao H, Cai H, Li T, Zhou B, Qin W, Lavillette D, Li D. A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathog 2021; 17:e1009328. [PMID: 33657135 PMCID: PMC7959386 DOI: 10.1371/journal.ppat.1009328] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/15/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
A key step to the SARS-CoV-2 infection is the attachment of its Spike receptor-binding domain (S RBD) to the host receptor ACE2. Considerable research has been devoted to the development of neutralizing antibodies, including llama-derived single-chain nanobodies, to target the receptor-binding motif (RBM) and to block ACE2-RBD binding. Simple and effective strategies to increase potency are desirable for such studies when antibodies are only modestly effective. Here, we identify and characterize a high-affinity synthetic nanobody (sybody, SR31) as a fusion partner to improve the potency of RBM-antibodies. Crystallographic studies reveal that SR31 binds to RBD at a conserved and 'greasy' site distal to RBM. Although SR31 distorts RBD at the interface, it does not perturb the RBM conformation, hence displaying no neutralizing activities itself. However, fusing SR31 to two modestly neutralizing sybodies dramatically increases their affinity for RBD and neutralization activity against SARS-CoV-2 pseudovirus. Our work presents a tool protein and an efficient strategy to improve nanobody potency.
Collapse
Affiliation(s)
- Hebang Yao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmin Cai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Zhou
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wenming Qin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Pasteurien College, Soochow University, Jiangsu, China
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
74
|
Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla AA, Himelreichs J, Khromykh AA, Salinas-Rebolledo C, Pinto T, Cheuquemilla Y, Margolles Y, López González Del Rey N, Miranda-Chacon Z, Cuevas A, Berking A, Deride C, González-Moraga S, Mancilla H, Maturana D, Langer A, Toledo JP, Müller A, Uberti B, Krall P, Ehrenfeld P, Blesa J, Chana-Cuevas P, Rehren G, Schwefel D, Fernandez LÁ, Rojas-Fernandez A. Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Sci Rep 2021; 11:3318. [PMID: 33558635 PMCID: PMC7870875 DOI: 10.1038/s41598-021-82833-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.
Collapse
Affiliation(s)
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- The Australian Institute for Biotechnology and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Johanna Himelreichs
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Teresa Pinto
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Berking Biotechnology, Valdivia, Chile
| | - Yago Margolles
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | | | - Zaray Miranda-Chacon
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alexei Cuevas
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Camila Deride
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Héctor Mancilla
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Maturana
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Andreas Langer
- NanoTemper Technologies GmbH, Floessergasse 4, 81369, Munich, Germany
| | - Juan Pablo Toledo
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Ananda Müller
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Institute of Veterinary Clinical Sciences, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Department of Pediatrics and Children's Surgery Oriente, Universidad de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Mostoles, 28938, Madrid, Spain
| | - Pedro Chana-Cuevas
- CETRAM & Faculty of Medical Science, Universidad de Santiago de Chile, Santiago, Chile
| | - German Rehren
- Technology Transfer and Licensing Office, Universidad Austral de Chile, Valdivia, Chile
| | - David Schwefel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Luis Ángel Fernandez
- Department of Microbial Biotechnology, National Biotechnology Center, Superior Council of Scientific Research, Madrid, Spain
| | - Alejandro Rojas-Fernandez
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
- Berking Biotechnology, Valdivia, Chile.
- Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile.
- Institute of Philosophy and Complexity Sciences, Santiago, Chile.
| |
Collapse
|
75
|
Bessalah S, Jebahi S, Mejri N, Salhi I, Khorchani T, Hammadi M. Perspective on therapeutic and diagnostic potential of camel nanobodies for coronavirus disease-19 (COVID-19). 3 Biotech 2021; 11:89. [PMID: 33500874 PMCID: PMC7820838 DOI: 10.1007/s13205-021-02647-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, we focus on the camelid nanobodies as a revolutionary therapy that can guide efforts to discover new drugs for Coronavirus disease (COVID-19). The small size property makes nanobodies capable of penetrating efficiently into tissues and recognizing cryptic antigens. Strong antigen affinity and stability in the gastrointestinal tract allow them to be used via oral administration. In fact, the use of nanobodies as inhalant can be directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations and minimal systemic side effects. For that, nanobodies are referred as a class of next-generation antibodies. Nanobodies permit the construction of multivalent formats that may achieve ultra-high neutralization potency and then may prevent mutational escape and can neutralize a wide range of SARS-CoV-2 variants. Due to their distinctive characteristics, nanobodies can be of great use in the development of promising treatment or preventive strategies against SARS-CoV-2 infection. In this review, the state-of-the-art of camel nanobodies design strategies against the virus including SARS-CoV-2 are critically summarized. The application of general nanotechnology was also discussed to mitigate and control emerging SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Salma Bessalah
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| | - Samira Jebahi
- Laboratory on Energy and Matter for Nuclear Sciences Development (LR16CNSTN02), National Centre for Nuclear Sciences and Technologies, Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia, Pole technologique, BP 72, 2020 Sidi Thabet, Tunisia
| | - Naceur Mejri
- Laboratory on Energy and Matter for Nuclear Sciences Development (LR16CNSTN02), National Centre for Nuclear Sciences and Technologies, Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia, Pole technologique, BP 72, 2020 Sidi Thabet, Tunisia
| | - Imed Salhi
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| | - Mohamed Hammadi
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| |
Collapse
|
76
|
Jin Q, Zhu W, Zhu J, Zhu J, Shen J, Liu Z, Yang Y, Chen Q. Nanoparticle-Mediated Delivery of Inhaled Immunotherapeutics for Treating Lung Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007557. [PMID: 33448035 DOI: 10.1002/adma.202007557] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Indexed: 05/18/2023]
Abstract
Despite the critical breakthrough achieved by immune checkpoint blockade (ICB), the clinical benefits are usually restricted by inefficient infiltration of immune cells and immune-associated adverse effects. Noninvasive aerosol inhalation, as a definitive procedure for treatment of respiratory diseases, for ICB immunotherapy against lung metastasis, has not been realized to the best knowledge. Herein, an inhaled immunotherapeutic chitosan (CS)-antibody complex is developed for immunotherapy against lung cancer. In this system, CS is used as a carrier to assemble with anti-programmed cell death protein ligand 1 (aPD-L1) to enable efficient transmucosal delivery. Moreover, CS exhibits adjuvant effects to drive potent immune responses via activating the cyclic-di-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. Interestingly, repeated inhalation of CS/aPD-L1 complex can effectively activate the immune system by promoting the infiltration of different immune cells especially CD8+ T cells around tumor lesions, and finally prolongs the survival of mice to 60 days. Thus, the work presents a unique aerosol inhalation delivery system for ICB antibody, which is promising for immunotherapy against lung metastasis without the concern of systemic toxicity.
Collapse
Affiliation(s)
- Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Wenjun Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
77
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
78
|
Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep 2020; 10:22370. [PMID: 33353972 PMCID: PMC7755911 DOI: 10.1038/s41598-020-79036-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
There are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12–15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1–5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.
Collapse
Affiliation(s)
- Thomas J Esparza
- Laboratory of Functional and Molecular Imaging, The National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD, 20892, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20892, USA
| | - Negin P Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, 27709, USA.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC, 27709, USA
| | - George P Anderson
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - Ellen R Goldman
- Center for Biomolecular Science and Engineering, US Naval Research Laboratory, Washington, DC, 20375, USA
| | - David L Brody
- Laboratory of Functional and Molecular Imaging, The National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, MD, 20892, USA. .,Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
79
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
80
|
Sun Y, Ho M. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antib Ther 2020; 3:246-256. [PMID: 33912795 PMCID: PMC7717131 DOI: 10.1093/abt/tbaa025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022] Open
Abstract
SARS-CoV-2 antibody therapeutics are being evaluated in clinical and preclinical stages. As of 11 October 2020, 13 human monoclonal antibodies targeting the SARS-CoV-2 spike protein have entered clinical trials with three (REGN-COV2, LY3819253/LY-CoV555, and VIR-7831/VIR-7832) in phase 3. On 9 November 2020, the US Food and Drug Administration issued an emergency use authorization for bamlanivimab (LY3819253/LY-CoV555) for the treatment of mild-to-moderate COVID-19. This review outlines the development of neutralizing antibodies against SARS-CoV-2, with a focus on discussing various antibody discovery strategies (animal immunization, phage display and B cell cloning), describing binding epitopes and comparing neutralizing activities. Broad-neutralizing antibodies targeting the spike proteins of SARS-CoV-2 and SARS-CoV might be helpful for treating COVID-19 and future infections. VIR-7831/7832 based on S309 is the only antibody in late clinical development, which can neutralize both SARS-CoV-2 and SARS-CoV although it does not directly block virus receptor binding. Thus far, the only cross-neutralizing antibody that is also a receptor binding blocker is nanobody VHH-72. The feasibility of developing nanobodies as inhaled drugs for treating COVID-19 and other respiratory diseases is an attractive idea that is worth exploring and testing. A cocktail strategy such as REGN-COV2, or engineered multivalent and multispecific molecules, combining two or more antibodies might improve the efficacy and protect against resistance due to virus escape mutants. Besides the receptor-binding domain, other viral antigens such as the S2 subunit of the spike protein and the viral attachment sites such as heparan sulfate proteoglycans that are on the host cells are worth investigating.
Collapse
Affiliation(s)
- Yaping Sun
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
81
|
Ye G, Gallant JP, Massey C, Shi K, Tai W, Zheng J, Odle AE, Vickers MA, Shang J, Wan Y, Drelich A, Kempaiah KR, Tat V, Perlman S, Du L, Tseng CT, Aihara H, LeBeau AM, Li F. The Development of a Novel Nanobody Therapeutic for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.17.386532. [PMID: 33236012 PMCID: PMC7685322 DOI: 10.1101/2020.11.17.386532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Combating the COVID-19 pandemic requires potent and low-cost therapeutics. We identified a novel series of single-domain antibodies (i.e., nanobody), Nanosota-1, from a camelid nanobody phage display library. Structural data showed that Nanosota-1 bound to the oft-hidden receptor-binding domain (RBD) of SARS-CoV-2 spike protein, blocking out viral receptor ACE2. The lead drug possessing an Fc tag ( Nanosota-1C-Fc ) bound to SARS-CoV-2 RBD with a K d of 15.7picomolar (∼3000 times more tightly than ACE2 did) and inhibited SARS-CoV-2 infection with an ND 50 of 0.16microgram/milliliter (∼6000 times more potently than ACE2 did). Administered at a single dose, Nanosota-1C-Fc demonstrated preventive and therapeutic efficacy in hamsters subjected to SARS-CoV-2 infection. Unlike conventional antibody drugs, Nanosota-1C-Fc was produced at high yields in bacteria and had exceptional thermostability. Pharmacokinetic analysis of Nanosota-1C-F c documented a greater than 10-day in vivo half-life efficacy and high tissue bioavailability. Nanosota-1C-Fc is a potentially effective and realistic solution to the COVID-19 pandemic. IMPACT STATEMENT Potent and low-cost Nanosota-1 drugs block SARS-CoV-2 infections both in vitro and in vivo and act both preventively and therapeutically.
Collapse
Affiliation(s)
- Gang Ye
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Joseph P. Gallant
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Massey
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Abby E. Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Molly A. Vickers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Jian Shang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Yushun Wan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kempaiah R. Kempaiah
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vivian Tat
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Chien-Te Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston, TX, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Aaron M. LeBeau
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
82
|
Airway Delivery of Anti-influenza Monoclonal Antibodies Results in Enhanced Antiviral Activities and Enables Broad-Coverage Combination Therapies. J Virol 2020; 94:JVI.00052-20. [PMID: 32847855 PMCID: PMC7592225 DOI: 10.1128/jvi.00052-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach. Effective and reliable anti-influenza treatments are acutely needed and passive immunizations using broadly neutralizing anti-influenza monoclonal antibodies (bNAbs) are a promising emerging approach. Because influenza infections are initiated in and localized to the pulmonary tract, and newly formed viral particles egress from the apical side of the lung epithelium, we compared the effectiveness of hemagglutinin (HA) stalk-binding bNAbs administered through the airway (intranasal or via nebulization) versus the systemic route (intraperitoneal or intravenous). Airway deliveries of various bNAbs were 10- to 50-fold more effective than systemic deliveries of the same bNAbs in treating H1N1, H3N2, B/Victoria-, and B/Yamagata-lineage influenza viral infections in mouse models. The potency of airway-delivered anti-HA bNAbs was highly dependent on antiviral neutralization activity, with little dependence on the effector function of the antibody. In contrast, the effectiveness of systemically delivered anti-HA bNAbs was not dependent on antiviral neutralization, but critically dependent on antibody effector functions. Concurrent administration of a neutralizing/effector function-positive bNAb via the airway and systemic routes showed increased effectiveness. The small amount of airway-delivered bNAbs needed for effective influenza treatment creates the opportunity to combine potent bNAbs with different anti-influenza specificities to generate a cost-effective antiviral therapy that provides broad coverage against all circulating influenza strains infecting humans. A 3 mg/kg dose of the novel triple antibody combination CF-404 (i.e., 1 mg/kg of each component bNAb) delivered to the airway was shown to effectively prevent weight loss and death in mice challenged with ten 50% lethal dose (LD50) inoculums of either H1N1, H3N2, B/Victoria-lineage, or B/Yamagata-lineage influenza viruses. IMPORTANCE Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach.
Collapse
|
83
|
Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary Delivery of Biological Drugs. Pharmaceutics 2020; 12:E1025. [PMID: 33114726 PMCID: PMC7693150 DOI: 10.3390/pharmaceutics12111025] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Harry W. Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Jenny K. W. Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; (H.W.P.); (J.K.W.L.)
| |
Collapse
|
84
|
Abstract
Today, bio-medical efforts are entering the subcellular level, which is witnessed with the fast-developing fields of nanomedicine, nanodiagnostics and nanotherapy in conjunction with the implementation of nanoparticles for disease prevention, diagnosis, therapy and follow-up. Nanoparticles or nanocontainers offer advantages including high sensitivity, lower toxicity and improved safety—characteristics that are especially valued in the oncology field. Cancer cells develop and proliferate in complex microenvironments leading to heterogeneous diseases, often with a fatal outcome for the patient. Although antibody-based therapy is widely used in the clinical care of patients with solid tumours, its efficiency definitely needs improvement. Limitations of antibodies result mainly from their big size and poor penetration in solid tissues. Nanobodies are a novel and unique class of antigen-binding fragments, derived from naturally occurring heavy-chain-only antibodies present in the serum of camelids. Their superior properties such as small size, high stability, strong antigen-binding affinity, water solubility and natural origin make them suitable for development into next-generation biodrugs. Less than 30 years after the discovery of functional heavy-chain-only antibodies, the nanobody derivatives are already extensively used by the biotechnology research community. Moreover, a number of nanobodies are under clinical investigation for a wide spectrum of human diseases including inflammation, breast cancer, brain tumours, lung diseases and infectious diseases. Recently, caplacizumab, a bivalent nanobody, received approval from the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) for treatment of patients with thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
85
|
Peyron I, Kizlik‐Masson C, Dubois M, Atsou S, Ferrière S, Denis CV, Lenting PJ, Casari C, Christophe OD. Camelid-derived single-chain antibodies in hemostasis: Mechanistic, diagnostic, and therapeutic applications. Res Pract Thromb Haemost 2020; 4:1087-1110. [PMID: 33134775 PMCID: PMC7590285 DOI: 10.1002/rth2.12420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Hemostasis is a complex process involving the concerted action of molecular and vascular components. Its basic understanding as well as diagnostic and therapeutic aspects have greatly benefited from the use of monoclonal antibodies. Interestingly, camelid-derived single-domain antibodies (sdAbs), also known as VHH or nanobodies, have become available during the previous 2 decades as alternative tools in this regard. Compared to classic antibodies, sdAbs are easier to produce and their small size facilitates their engineering and functionalization. It is not surprising, therefore, that sdAbs are increasingly used in hemostasis-related research. In addition, they have the capacity to recognize unique epitopes unavailable to full monoclonal antibodies. This property can be used to develop novel diagnostic tests identifying conformational variants of hemostatic proteins. Examples include sdAbs that bind active but not globular von Willebrand factor or free factor VIIa but not tissue factor-bound factor VIIa. Finally, sdAbs have a high therapeutic potential, exemplified by caplacizumab, a homodimeric sdAb targeting von Willebrand factor that is approved for the treatment of thrombotic thrombocytopenic purpura. In this review, the various applications of sdAbs in thrombosis and hemostasis-related research, diagnostics, and therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ivan Peyron
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | | - Marie‐Daniéla Dubois
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
- EA 7525 VPMCUniversité des AntillesSchoelcherMartiniqueFrance
| | - Sénadé Atsou
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Stephen Ferrière
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Cécile V. Denis
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Peter J. Lenting
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | - Caterina Casari
- HIThUMR_S1176INSERMUniversité Paris‐SaclayLe Kremlin‐BicêtreFrance
| | | |
Collapse
|
86
|
Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020; 325:276-292. [PMID: 32652109 DOI: 10.1016/j.jconrel.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
The rise of antimicrobial resistance has created an urgent need for the development of new methods for antibiotics delivery to patients with pulmonary infections in order to mainly increase the effectiveness of the drugs administration, to minimize the risk of emergence of resistant strains, and to prevent patients reinfection. Since bacterial resistance is often related to antibiotic concentration, their pulmonary administration could eradicate strains resistant to the same drug at the concentration achieved through the systemic circulation. Pulmonary administration offers several advantages; it directly targets the site of the infection which allows the inhaled dose of the drug to be reduced compared to that administered orally or parenterally while keeping the same local effect. The review article is made with an objective to compile information about various existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drugs. In conclusion, aerosol antibiotic delivery appears as one of the best technologies for the treatment of pulmonary infectious diseases and able to limit the systemic adverse effects related to the high drug dose and to make life easier for the patients.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | | |
Collapse
|
87
|
Cisneros-Mejorado AJ, Pérez-Samartín A, Domercq M, Arellano RO, Gottlieb M, Koch-Nolte F, Matute C. P2X7 Receptors as a Therapeutic Target in Cerebrovascular Diseases. Front Mol Neurosci 2020; 13:92. [PMID: 32714144 PMCID: PMC7340211 DOI: 10.3389/fnmol.2020.00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Shortage of oxygen and nutrients in the brain induces the release of glutamate and ATP that can cause excitotoxicity and contribute to neuronal and glial damage. Our understanding of the mechanisms of ATP release and toxicity in cerebrovascular diseases is incomplete. This review aims at summarizing current knowledge about the participation of key elements in the ATP-mediated deleterious effects in these pathologies. This includes pannexin-1 hemichannels, calcium homeostasis modulator-1 (CALHM1), purinergic P2X7 receptors, and other intermediaries of CNS injury downstream of ATP release. Available data together with recent pharmacological developments in purinergic signaling may constitute a new opportunity to translate preclinical findings into more effective therapies in cerebrovascular diseases.
Collapse
Affiliation(s)
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco, CIBERNED, Leioa, Spain
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco, CIBERNED, Leioa, Spain
| | - Rogelio O Arellano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Miroslav Gottlieb
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | | | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco, CIBERNED, Leioa, Spain
| |
Collapse
|
88
|
Orienti I, Gentilomi GA, Farruggia G. Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment In COVID-19. Int J Mol Sci 2020; 21:E3812. [PMID: 32471278 PMCID: PMC7312074 DOI: 10.3390/ijms21113812] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
At present, there is no vaccine or effective standard treatment for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (or coronavirus disease-19 (COVID-19)), which frequently leads to lethal pulmonary inflammatory responses. COVID-19 pathology is characterized by extreme inflammation and amplified immune response with activation of a cytokine storm. A subsequent progression to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) can take place, which is often followed by death. The causes of these strong inflammatory responses in SARS-CoV-2 infection are still unknown. As uncontrolled pulmonary inflammation is likely the main cause of death in SARS-CoV-2 infection, anti-inflammatory therapeutic interventions are particularly important. Fenretinide N-(4-hydroxyphenyl) retinamide is a bioactive molecule characterized by poly-pharmacological properties and a low toxicity profile. Fenretinide is endowed with antitumor, anti-inflammatory, antiviral, and immunomodulating properties other than efficacy in obesity/diabetic pathologies. Its anti-inflammatory and antiviral activities, in particular, could likely have utility in multimodal therapies for the treatment of ALI/ARDS in COVID-19 patients. Moreover, fenretinide administration by pulmonary delivery systems could further increase its therapeutic value by carrying high drug concentrations to the lungs and triggering a rapid onset of activity. This is particularly important in SARS-CoV-2 infection, where only a narrow time window exists for therapeutic intervention.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy;
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Unit of Microbiology, Alma Mater Studiorum-University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy;
- Biostructures and Biosystems National Institute (BBNI), 00136 Roma, Italy
| |
Collapse
|
89
|
Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, Yang Z, Lu L, Jiang S, Ying T. Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host Microbe 2020; 27:891-898.e5. [PMID: 32413276 PMCID: PMC7224157 DOI: 10.1016/j.chom.2020.04.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
The worldwide spread of COVID-19 highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. The SARS-CoV-2 spike protein, containing the receptor-binding domain (RBD) and S1 subunit involved in receptor engagement, is a potential therapeutic target. We describe the development of a phage-displayed single-domain antibody library by grafting naive complementarity-determining regions (CDRs) into framework regions of a human germline immunoglobulin heavy chain variable region (IGHV) allele. Panning this library against SARS-CoV-2 RBD and S1 subunit identified fully human single-domain antibodies targeting five distinct epitopes on SARS-CoV-2 RBD with subnanomolar to low nanomolar affinities. Some of these antibodies neutralize SARS-CoV-2 by targeting a cryptic epitope located in the spike trimeric interface. Collectively, this work presents a versatile platform for rapid antibody isolation and identifies promising therapeutic anti-SARS-CoV-2 antibodies as well as the diverse immogneic profile of the spike protein.
Collapse
Affiliation(s)
- Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Cheng Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuai Xia
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaolong Tian
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Kong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhi Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenjian Gu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Rong Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Tu
- Biomissile Corporation, Shanghai 201203, China
| | - Youhua Xie
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhenlin Yang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Lu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
90
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
91
|
Sroga P, Safronetz D, Stein DR. Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Future Virol 2020. [DOI: 10.2217/fvl-2019-0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the rise of viral infections and antibiotic resistance, there is a constant need for the development of more sensitive and effective treatment and diagnostic tools. Since their discovery in the early 1990s, Camelidae antibodies have been investigated as potential tools due to their unique structure and favorable characteristics. Members of this family produce conventional IgG antibodies as well as heavy-chain only IgG antibodies that do not possess light chains. The variable domain (VHH), or nanobody, demonstrates unique antigen-binding capabilities, enhanced stability, and its small size allows for delivery into the body using a nebulizer, thereby eliminating the unfavorable use of injections. In addition, the cost-effective and easy in vitro production of these antibodies are an attractive quality in terms of mass production. This review covers the past and current nanobody treatment and diagnostic developments aimed at viral infectious diseases, including a brief overview of protozoal, bacterial, and veterinary viral approaches.
Collapse
Affiliation(s)
- Patrycja Sroga
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
- Zoonotic Diseases & Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | |
Collapse
|
92
|
Bergeron HC, Tripp RA. Emerging small and large molecule therapeutics for respiratory syncytial virus. Expert Opin Investig Drugs 2020; 29:285-294. [PMID: 32096420 DOI: 10.1080/13543784.2020.1735349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes lower respiratory tract infections and can lead to morbidity and mortality in the infant, elderly and immunocompromised. There is no vaccine and therapeutic interventions are limited. RSV disease research has yielded the development of several prophylactic and therapeutic treatments. Several promising candidates are currently under investigation.Areas covered: Small and large molecule approaches to RSV treatment were examined and categorized by their mechanism of action using data from PubMed, clinicaltrials.gov, and from the sponsoring organizations publicly available pipeline information. These results are prefaced by an overview of RSV to provide the context for rational therapy development.Expert opinion: While small molecule drugs show promise for RSV treatment, we believe that large molecule therapy using anti-RSV G and F protein monoclonal antibodies (mAbs) will most efficaciously and safely ameliorate RSV disease.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
93
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
94
|
De Vlieger D, Hoffmann K, Van Molle I, Nerinckx W, Van Hoecke L, Ballegeer M, Creytens S, Remaut H, Hengel H, Schepens B, Saelens X. Selective Engagement of FcγRIV by a M2e-Specific Single Domain Antibody Construct Protects Against Influenza A Virus Infection. Front Immunol 2019; 10:2920. [PMID: 31921179 PMCID: PMC6921966 DOI: 10.3389/fimmu.2019.02920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Lower respiratory tract infections, such as infections caused by influenza A viruses, are a constant threat for public health. Antivirals are indispensable to control disease caused by epidemic as well as pandemic influenza A. We developed a novel anti-influenza A virus approach based on an engineered single-domain antibody (VHH) construct that can selectively recruit innate immune cells to the sites of virus replication. This protective construct comprises two VHHs. One VHH binds with nanomolar affinity to the conserved influenza A matrix protein 2 (M2) ectodomain (M2e). Co-crystal structure analysis revealed that the complementarity determining regions 2 and 3 of this VHH embrace M2e. The second selected VHH specifically binds to the mouse Fcγ Receptor IV (FcγRIV) and was genetically fused to the M2e-specific VHH, which resulted in a bi-specific VHH-based construct that could be efficiently expressed in Pichia pastoris. In the presence of M2 expressing or influenza A virus-infected target cells, this single domain antibody construct selectively activated the mouse FcγRIV. Moreover, intranasal delivery of this bispecific FcγRIV-engaging VHH construct protected wild type but not FcγRIV−/− mice against challenge with an H3N2 influenza virus. These results provide proof of concept that VHHs directed against a surface exposed viral antigen can be readily armed with effector functions that trigger protective antiviral activity beyond direct virus neutralization.
Collapse
Affiliation(s)
- Dorien De Vlieger
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Katja Hoffmann
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Wim Nerinckx
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sarah Creytens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
95
|
Generation of a Nebulizable CDR-Modified MERS-CoV Neutralizing Human Antibody. Int J Mol Sci 2019; 20:ijms20205073. [PMID: 31614869 PMCID: PMC6829326 DOI: 10.3390/ijms20205073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) induces severe aggravating respiratory failure in infected patients, frequently resulting in mechanical ventilation. As limited therapeutic antibody is accumulated in lung tissue following systemic administration, inhalation is newly recognized as an alternative, possibly better, route of therapeutic antibody for pulmonary diseases. The nebulization process, however, generates diverse physiological stresses, and thus, the therapeutic antibody must be resistant to these stresses, remain stable, and form minimal aggregates. We first isolated a MERS-CoV neutralizing antibody that is reactive to the receptor-binding domain (RBD) of spike (S) glycoprotein. To increase stability, we introduced mutations into the complementarity-determining regions (CDRs) of the antibody. In the HCDRs (excluding HCDR3) in this clone, two hydrophobic residues were replaced with Glu, two residues were replaced with Asp, and four residues were replaced with positively charged amino acids. In LCDRs, only two Leu residues were replaced with Val. These modifications successfully generated a clone with significantly greater stability and equivalent reactivity and neutralizing activity following nebulization compared to the original clone. In summary, we generated a MERS-CoV neutralizing human antibody that is reactive to recombinant MERS-CoV S RBD protein for delivery via a pulmonary route by introducing stabilizing mutations into five CDRs.
Collapse
|
96
|
Abstract
Human respiratory syncytial virus (RSV) belongs to the recently defined Pneumoviridae family, Orthopneumovirus genus. It is a negative sense, single stranded RNA virus that results in epidemics of respiratory infections that typically peak in the winter in temperate climates and during the rainy season in tropical climates. Generally, one of the two genotypes (A and B) predominates in a single season, alternating annually, although regional variation occurs. RSV is a cause of disease and death in children, older people, and immunocompromised patients, and its clinical effect on adults admitted to hospital is clarified with expanded use of multiplex molecular assays. Among adults, RSV produces a wide range of clinical symptoms including upper respiratory tract infections, severe lower respiratory tract infections, and exacerbations of underlying disease. Here we discuss the latest evidence on the burden of RSV related disease in adults, especially in those with immunocompromise or other comorbidities. We review current therapeutic and prevention options, as well as those in development.
Collapse
Affiliation(s)
- Hannah H Nam
- Division of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael G Ison
- Division of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
97
|
Behzadi MA, Leyva-Grado VH. Overview of Current Therapeutics and Novel Candidates Against Influenza, Respiratory Syncytial Virus, and Middle East Respiratory Syndrome Coronavirus Infections. Front Microbiol 2019; 10:1327. [PMID: 31275265 PMCID: PMC6594388 DOI: 10.3389/fmicb.2019.01327] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/28/2019] [Indexed: 01/26/2023] Open
Abstract
Emergence and re-emergence of respiratory virus infections represent a significant threat to global public health, as they occur seasonally and less frequently (such as in the case of influenza virus) as pandemic infections. Some of these viruses have been in the human population for centuries and others had recently emerged as a public health problem. Influenza viruses have been affecting the human population for a long time now; however, their ability to rapidly evolve through antigenic drift and antigenic shift causes the emergence of new strains. A recent example of these events is the avian-origin H7N9 influenza virus outbreak currently undergoing in China. Human H7N9 influenza viruses are resistant to amantadines and some strains are also resistant to neuraminidase inhibitors greatly limiting the options for treatment. Respiratory syncytial virus (RSV) may cause a lower respiratory tract infection characterized by bronchiolitis and pneumonia mainly in children and the elderly. Infection with RSV can cause severe disease and even death, imposing a severe burden for pediatric and geriatric health systems worldwide. Treatment for RSV is mainly supportive since the only approved therapy, a monoclonal antibody, is recommended for prophylactic use in high-risk patients. The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging respiratory virus. The virus was first recognized in 2012 and it is associated with a lower respiratory tract disease that is more severe in patients with comorbidities. No licensed vaccines or antivirals have been yet approved for the treatment of MERS-CoV in humans. It is clear that the discovery and development of novel antivirals that can be used alone or in combination with existing therapies to treat these important respiratory viral infections are critical. In this review, we will describe some of the novel therapeutics currently under development for the treatment of these infections.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
98
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
99
|
Koch-Nolte F, Eichhoff A, Pinto-Espinoza C, Schwarz N, Schäfer T, Menzel S, Haag F, Demeules M, Gondé H, Adriouch S. Novel biologics targeting the P2X7 ion channel. Curr Opin Pharmacol 2019; 47:110-118. [PMID: 30986625 DOI: 10.1016/j.coph.2019.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023]
Abstract
Targeting the P2X7 ion channel, a danger sensor for extracellular nucleotides, improves outcomes in models of inflammation, cancer, and brain-diseases. Antibodies and nanobodies have been developed that antagonize or potentiate gating of P2X7. Their potential advantages over small-molecule drugs include high specificity, lower off-target effects, and tunable in vivo half-life. Genetic fusion of P2X7-specific biologics to binding modules may enable targeting of specific cell subsets. Besides directly modulating P2X7 function, antibodies can also initiate specific depletion of P2X7-expressing cells. Adeno-associated viral vectors (AAV) can be used to express P2X7-specific antibodies in vivo to achieve long-lasting biological effects. Furthermore, if successfully targeted to P2X7-expressing cells, AAVs may enable modulation of the function of P2X7-expressing immune cells via encoded transgenic RNA or proteins.
Collapse
Affiliation(s)
- Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Anna Eichhoff
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), 76000, Rouen, France
| | | | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mélanie Demeules
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), 76000, Rouen, France
| | - Henri Gondé
- Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), 76000, Rouen, France
| | - Sahil Adriouch
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Normandie University, UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular diseases and regenerative THERapies (PANTHER), 76000, Rouen, France.
| |
Collapse
|
100
|
Larios Mora A, Detalle L, Gallup JM, Van Geelen A, Stohr T, Duprez L, Ackermann MR. Delivery of ALX-0171 by inhalation greatly reduces respiratory syncytial virus disease in newborn lambs. MAbs 2019; 10:778-795. [PMID: 29733750 PMCID: PMC6150622 DOI: 10.1080/19420862.2018.1470727] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory disease in infants and young children worldwide. Currently, treatment is supportive and no vaccines are available. The use of newborn lambs to model hRSV infection in human infants may provide a valuable tool to assess safety and efficacy of new antiviral drugs and vaccines. ALX-0171 is a trivalent Nanobody targeting the hRSV fusion (F) protein and its therapeutic potential was evaluated in newborn lambs infected with a human strain of RSV followed by daily ALX-0171 nebulization for 3 or 5 consecutive days. Colostrum-deprived newborn lambs were infected with hRSV-M37 before being treated by daily nebulization with either ALX-0171 or placebo. Two different treatment regimens were examined: day 1–5 or day 3–5 post-infection. Lambs were monitored daily for general well-being and clinical parameters. Respiratory tissues and bronchoalveolar lavage fluid were collected at day 6 post-inoculation for the quantification of viral lesions, lung viral titers, viral antigen and lung histopathology. Administration by inhalation of ALX-0171 was well-tolerated in these hRSV-infected newborn lambs. Robust antiviral effects and positive effects on hRSV-induced lung lesions and reduction in symptoms of illness were noted. These effects were still apparent when treatment start was delayed and coincided with peak viral loads (day 3 post-infection) and at a time point when signs of RSV disease were apparent. The latter design is expected to have high translational value for planned clinical trials. These results are indicative of the therapeutic potential of ALX-0171 in infants.
Collapse
Affiliation(s)
- Alejandro Larios Mora
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| | | | - Jack M Gallup
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| | - Albert Van Geelen
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| | | | | | - Mark R Ackermann
- a College of Veterinary Medicine, Department of Veterinary Pathology , Iowa State University , Ames , IA , USA
| |
Collapse
|