51
|
Stoica SI, Bleotu C, Ciobanu V, Ionescu AM, Albadi I, Onose G, Munteanu C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022; 10:481. [PMID: 35203690 PMCID: PMC8962344 DOI: 10.3390/biomedicines10020481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia represents the temporary or longer-term decrease or deprivation of oxygen in organs, tissues, and cells after oxygen supply drops or its excessive consumption. Hypoxia can be (para)-physiological-adaptive-or pathological. Thereby, the mechanisms of hypoxia have many implications, such as in adaptive processes of normal cells, but to the survival of neoplastic ones, too. Ischemia differs from hypoxia as it means a transient or permanent interruption or reduction of the blood supply in a given region or tissue and consequently a poor provision with oxygen and energetic substratum-inflammation and oxidative stress damages generating factors. Considering the implications of hypoxia on nerve tissue cells that go through different ischemic processes, in this paper, we will detail the molecular mechanisms by which such structures feel and adapt to hypoxia. We will present the hypoxic mechanisms and changes in the CNS. Also, we aimed to evaluate acute, subacute, and chronic central nervous hypoxic-ischemic changes, hoping to understand better and systematize some neuro-muscular recovery methods necessary to regain individual independence. To establish the link between CNS hypoxia, ischemic-lesional mechanisms, and neuro-motor and related recovery, we performed a systematic literature review following the" Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA") filtering method by interrogating five international medical renown databases, using, contextually, specific keywords combinations/"syntaxes", with supplementation of the afferent documentation through an amount of freely discovered, also contributive, bibliographic resources. As a result, 45 papers were eligible according to the PRISMA-inspired selection approach, thus covering information on both: intimate/molecular path-physiological specific mechanisms and, respectively, consequent clinical conditions. Such a systematic process is meant to help us construct an article structure skeleton giving a primary objective input about the assembly of the literature background to be approached, summarised, and synthesized. The afferent contextual search (by keywords combination/syntaxes) we have fulfilled considerably reduced the number of obtained articles. We consider this systematic literature review is warranted as hypoxia's mechanisms have opened new perspectives for understanding ischemic changes in the CNS neuraxis tissue/cells, starting at the intracellular level and continuing with experimental research to recover the consequent clinical-functional deficits better.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest (PUB), 060042 Bucharest, Romania;
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
| | - Irina Albadi
- Teaching Emergency County Hospital “Sf. Apostol Andrei”, 900591 Constanta, Romania;
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Department of Research, Romanian Association of Balneology, 022251 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
52
|
Lin W, Zhang T, Zheng J, Zhou Y, Lin Z, Fu X. Ferroptosis is involved in hypoxic-ischemic brain damage in neonatal rats. Neuroscience 2022; 487:131-142. [PMID: 35182697 DOI: 10.1016/j.neuroscience.2022.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death, which is driven by loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and subsequent accumulation of lipid peroxidation. Ferroptosis is implicated in various diseases involving neuronal injury. However, the role of ferroptosis in hypoxic-ischemic brain damage (HIBD) has not been elucidated. The objectives of this study were to evaluate whether ferroptosis is involved in hypoxic-ischemic brain damage and its mechanisms through the HIBD model. A 7-day-old male Sprague-Dawley neonatal rat HIBD model was established by blocking the left common carotid artery. Laser speckle contrast imaging, immunohistochemical staining, transmission electron microscopy were used to measure the effects of ferroptosis on HIBD. Brain tissue on the damaged side in the HIBD group showed atrophied, even liquefied, glial cells increased, and blood perfusion was significantly reduced. The HIBD group insult significantly increased reactive oxygen species levels, as well as the protein levels of iron metabolism-related proteins transferrin receptor (TFRC), ferritin heavy chain (FHC), and ferritin light chain (FLC), while reducing the levels of Solute Carrier Family 7 Member 11 (SLC7A11), glutathione (GSH), and GPX4. These changes resulted in diminished cellular antioxidant capacity and mitochondrial damage, causing neuronal ferroptosis in the cerebral cortex. We conclude that ferroptosis plays a role in HIBD in neonatal rats. Ferroptosis-related mechanisms such as abnormalities in iron metabolism, amino acid metabolism, and lipid peroxidation regulation play important roles in HIBD.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tianlei Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jinyu Zheng
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiyang Zhou
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Xiaoqin Fu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
53
|
Bhaiyat AM, Sasson E, Wang Z, Khairy S, Ginzarly M, Qureshi U, Fikree M, Efrati S. Hyperbaric oxygen treatment for long coronavirus disease-19: a case report. J Med Case Rep 2022; 16:80. [PMID: 35168680 PMCID: PMC8848789 DOI: 10.1186/s13256-022-03287-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 pandemic has resulted in a growing population of individuals who experience a wide range of persistent symptoms referred to as "long COVID." Symptoms include neurocognitive impairment and fatigue. Two potential mechanisms could be responsible for these long-term unremitting symptoms: hypercoagulability, which increases the risk of blood vessel occlusion, and an uncontrolled continuous inflammatory response. Currently, no known treatment is available for long COVID. One of the options to reverse hypoxia, reduce neuroinflammation, and induce neuroplasticity is hyperbaric oxygen therapy. In this article, we present the first case report of a previously healthy athletic individual who suffered from long COVID syndrome treated successfully with hyperbaric oxygen therapy. CASE PRESENTATION A previously healthy 55-year-old Caucasian man presented 3 months after severe coronavirus disease 2019 infection with long COVID syndrome. His symptoms included a decline in memory, multitasking abilities, energy, breathing, and physical fitness. After evaluation that included brain perfusion magnetic resonance imaging, diffusion tensor imaging, computerized cognitive tests, and cardiopulmonary test, he was treated with hyperbaric oxygen therapy. Each session included exposure to 90 minutes of 100% oxygen at 2 atmosphere absolute pressure with 5-minute air breaks every 20 minutes for 60 sessions, 5 days per week. Evaluation after completing the treatment showed significant improvements in brain perfusion and microstructure by magnetic resonance imaging and significant improvement in memory with the most dominant effect being on nonverbal memory, executive functions, attention, information procession speed, cognitive flexibility, and multitasking. The improved cognitive functions correlated with the increased cerebral blood flow in brain regions as measured by perfusion magnetic resonance imaging. With regard to physical capacity, there was a 34% increase in the maximum rate of oxygen consumed during exercise and a 44% improvement in forced vital capacity. The improved physical measurements correlated with the regain of his pre-COVID physical capacity. CONCLUSIONS We report the first case of successfully treated long COVID symptoms with hyperbaric oxygen therapy with improvements in cognition and cardiopulmonary function. The beneficial effects of hyperbaric oxygen shed additional light on the pathophysiology of long COVID. As this is a single case report, further prospective randomized control studies are needed.
Collapse
Affiliation(s)
- Aisha M Bhaiyat
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates.
| | - Efrat Sasson
- Aviv Scientific Ltd, 7 Mezada Street, Bnei Brak, Israel
| | - Zemer Wang
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates
| | - Sherif Khairy
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates
| | | | - Umair Qureshi
- Aviv Clinics, Jumeirah Lake Towers, Dubai, United Arab Emirates
| | - Moin Fikree
- Rashid Hospital Trauma Center, Dubai, United Arab Emirates
| | - Shai Efrati
- Sagol Center for Hyperbaric Medicine and Research, Shamir Medical Center, Israel Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
54
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
55
|
Mota-Rojas D, Villanueva-García D, Solimano A, Muns R, Ibarra-Ríos D, Mota-Reyes A. Pathophysiology of Perinatal Asphyxia in Humans and Animal Models. Biomedicines 2022; 10:347. [PMID: 35203556 PMCID: PMC8961792 DOI: 10.3390/biomedicines10020347] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
Perinatal asphyxia is caused by lack of oxygen delivery (hypoxia) to end organs due to an hypoxemic or ischemic insult occurring in temporal proximity to labor (peripartum) or delivery (intrapartum). Hypoxic-ischemic encephalopathy is the clinical manifestation of hypoxic injury to the brain and is usually graded as mild, moderate, or severe. The search for useful biomarkers to precisely predict the severity of lesions in perinatal asphyxia and hypoxic-ischemic encephalopathy (HIE) is a field of increasing interest. As pathophysiology is not fully comprehended, the gold standard for treatment remains an active area of research. Hypothermia has proven to be an effective neuroprotective strategy and has been implemented in clinical routine. Current studies are exploring various add-on therapies, including erythropoietin, xenon, topiramate, melatonin, and stem cells. This review aims to perform an updated integration of the pathophysiological processes after perinatal asphyxia in humans and animal models to allow us to answer some questions and provide an interim update on progress in this field.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Alfonso Solimano
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Ramon Muns
- Livestock Production Sciences Unit, Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK;
| | - Daniel Ibarra-Ríos
- Division of Neonatology, National Institute of Health Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Andrea Mota-Reyes
- School of Medicine and Health Sciences, TecSalud, Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM), Monterrey 64849, Mexico;
| |
Collapse
|
56
|
Jankovic M, Petrovic B, Novakovic I, Brankovic S, Radosavljevic N, Nikolic D. The Genetic Basis of Strokes in Pediatric Populations and Insight into New Therapeutic Options. Int J Mol Sci 2022; 23:ijms23031601. [PMID: 35163523 PMCID: PMC8835808 DOI: 10.3390/ijms23031601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Strokes within pediatric populations are considered to be the 10th leading cause of death in the United States of America, with over half of such events occurring in children younger than one year of life. The multifactorial etiopathology that has an influence on stroke development and occurrence signify the importance of the timely recognition of both modifiable and non-modifiable factors for adequate diagnostic and treatment approaches. The early recognition of a stroke and stroke risk in children has the potential to advance the application of neuroprotective, thrombolytic, and antithrombotic interventions and rehabilitation strategies to the earliest possible timepoints after the onset of a stroke, improving the outcomes and quality of life for affected children and their families. The recent development of molecular genetic methods has greatly facilitated the analysis and diagnosis of single-gene disorders. In this review, the most significant single gene disorders associated with pediatric stroke are presented, along with specific therapeutic options whenever they exist. Besides monogenic disorders that may present with stroke as a first symptom, genetic polymorphisms may contribute to the risk of pediatric and perinatal stroke. The most frequently studied genetic risk factors are several common polymorphisms in genes associated with thrombophilia; these genes code for proteins that are part of the coagulation cascade, fibrolysis, homocystein metabolism, lipid metabolism, or platelets. Single polymorphism frequencies may not be sufficient to completely explain the stroke causality and an analysis of several genotype combinations is a more promising approach. The recent steps forward in our understanding of the disorders underlying strokes has given us a next generation of therapeutics and therapeutic targets by which to improve stroke survival, protect or rebuild neuronal connections in the brain, and enhance neural function. Advances in DNA sequencing and the development of new tools to correct human gene mutations have brought genetic analysis and gene therapy into the focus of investigations for new therapeutic options for stroke patients.
Collapse
Affiliation(s)
- Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Bojana Petrovic
- Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Slavko Brankovic
- Faculty of Sciences and Mathematics, University of Priština in Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia;
| | - Natasa Radosavljevic
- Department of Physical Medicine and Rehabilitation, King Abdulaziz Specialist Hospital, Taif 26521, Saudi Arabia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
57
|
Huang Z, Luo Z, Ovcjak A, Wan J, Chen NH, Hu W, Sun HS, Feng ZP. AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation. Neurosci Bull 2022; 38:857-870. [PMID: 35072896 PMCID: PMC9352839 DOI: 10.1007/s12264-021-00816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.
Collapse
Affiliation(s)
- Zhihua Huang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhengwei Luo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrea Ovcjak
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jiangfan Wan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenhui Hu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
58
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
59
|
Dong X, Luo S, Hu D, Cao R, Wang Q, Meng Z, Feng Z, Zhou W, Song W. Gallic acid inhibits neuroinflammation and reduces neonatal hypoxic-ischemic brain damages. Front Pediatr 2022; 10:973256. [PMID: 36619526 PMCID: PMC9813953 DOI: 10.3389/fped.2022.973256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation is a leading cause of secondary neuronal injury in neonatal hypoxic-ischemic encephalopathy (HIE). Regulation of neuroinflammation may be beneficial for treatment of HIE and its secondary complications. Gallic acid (GA) has been shown to have anti-inflammatory and antioxidant effects. In this report we found that oxygen-glucose deprivation and/reoxygenation (OGD/R)-induced cell death, and the generation of excessive reactive oxygen species (ROS) and inflammatory cytokines by microglia were inhibited by GA treatment. Furthermore, GA treatment reduced neuroinflammation and neuronal loss, and alleviated motor and cognitive impairments in rats with hypoxic-ischemic brain damage (HIBD). Together, our results reveal that GA is an effective regulator of neuroinflammation and has potential as a pharmaceutical intervention for HIE therapy.
Collapse
Affiliation(s)
- Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ruixue Cao
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| |
Collapse
|
60
|
Wu Y, Wei H, Li P, Zhao H, Li R, Yang F. Quercetin Administration Following Hypoxia-Induced Neonatal Brain Damage Attenuates Later-Life Seizure Susceptibility and Anxiety-Related Behavior: Modulating Inflammatory Response. Front Pediatr 2022; 10:791815. [PMID: 35223693 PMCID: PMC8873174 DOI: 10.3389/fped.2022.791815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neonatal seizures commonly caused by hypoxia could lead to brain injury and cognitive deficits. Quercetin could cross the blood brain barrier and exerts neuroprotective effects in many neurological disease settings. In this study, we aim to investigate the role of quercetin in attenuating cognitive impairment following hypoxia-induced neonatal seizure (HINS). METHOD Sprague-Dawley rats at P7 were exposed to a premixed gas in a hypoxic chamber to induce brain injury, and then continuously administered with quercetin for 21 days. Pentylenetetrazol kindling was used to induce seizures in the evolution. After the hypoxic lesion was stablished, anxiety-related behavior of rats after HINS was assessed using open field test. Memory impairment of rats after HINS was evaluated using novel object-recognition test and elevated plus maze test. The serum and hippocampal concentrations of TNF-a, iNOS, IL-6 MCP-1, and IL-1β were measured using ELISA. The mRNA expression levels of TNF-a, iNOS, IL-6 in the hippocampus were determined using qRT-PCR. The protein levels of TLR4, NF-κB p65, and p-NF-κB p65 in the hippocampus were determined using Western blot. RESULTS Quercetin administration significantly reduced later-life seizure susceptibility, anxiety-related behavior, and memory impairments in the rats following the HINS when compared to the HINS group without treatment. Both serum and hippocampal proinflammatory cytokines levels were significantly elevated in the rat after HINS. TLR4 protein expressions were increased in the HINS group when compared to control group, and decreased in the group of quercetin. The protein level of p-NF-κB p65 was significantly lower in the quercetin group compared to the HINS group. CONCLUSION We demonstrated that Quercetin significantly reduced susceptibility to later-life seizures. Quercetin could downregulate inflammatory response through TLR4/ NF-κB pathway, thereby attenuating HINS-induced anxiety, hippocampal memory impairment, and cognitive impairment in later life following HINS.
Collapse
Affiliation(s)
- Yan Wu
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Wei
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Li
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, China
| | - Hui Zhao
- Department of Emergency, Hubei Maternal and Child Health Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruifang Li
- Department of Neurology, The Third People's Hospital of Hubei Province, Wuhan, China
| | - Feiyun Yang
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical College, Weihui, China
| |
Collapse
|
61
|
Shu J, Jiang L, Wang M, Wang R, Wang X, Gao C, Xia Z. Human bone marrow mesenchymal stem cells-derived exosomes protect against nerve injury via regulating immune microenvironment in neonatal hypoxic-ischemic brain damage model. Immunobiology 2022; 227:152178. [DOI: 10.1016/j.imbio.2022.152178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
62
|
Kurt A, Zenciroğlu A, Akduman H. The impact of therapeutic hypothermia on peripheral blood cell in newborns with hypoxic ischemic encephalopathy. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e181053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
63
|
Caffeine treatment started before injury reduces hypoxic-ischemic white-matter damage in neonatal rats by regulating phenotypic microglia polarization. Pediatr Res 2022; 92:1543-1554. [PMID: 35220399 PMCID: PMC9771815 DOI: 10.1038/s41390-021-01924-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Reducing neuroinflammatory damage is an effective strategy for treating white-matter damage (WMD) in premature infants. Caffeine can ameliorate hypoxia-ischemia-induced brain WMD; however, its neuroprotective effect and mechanism against hypoxic-ischemic WMD remain unclear. METHODS We used 3-day-old Sprague-Dawley rats to establish a model of cerebral hypoxia-ischemia-induced brain WMD after unilateral common carotid artery ligation and hypoxia exposure (8% O2 + 92% N2) for 2.5 h. Mechanism experiments were conducted to detect M1/M2 polarization and activation of microglia and NLRP3 inflammasome. RESULTS Caffeine inhibited NLRP3 inflammasome activation, reduced microglial Iba-1 activation, inhibited microglia M1 polarization, and promoted microglia M2 polarization by downregulating CD86 and iNOS protein expression, inhibiting the transcription of the proinflammatory TNF-α and IL-1β, upregulating CD206 and Arg-1 expression, and promoting the transcription of the anti-inflammatory factors IL-10 and TGF-β. Importantly, we found that these caffeine-mediated effects could be reversed after inhibiting A2aR activity. CONCLUSIONS Caffeine improved long-term cognitive function in neonatal rats with hypoxic-ischemic WMD via A2aR-mediated inhibition of NLRP3 inflammasome activation, reduction of microglial activation, regulation of the phenotypic polarization of microglia and the release of inflammatory factors, and improvement of myelination development. IMPACT The direct protective effect of caffeine on hypoxic-ischemic white-matter damage (WMD) and its mechanism remains unclear. This study elucidated this mechanism using neonatal rats as an animal model of hypoxia-ischemia-induced cerebral WMD. The findings demonstrated caffeine as a promising therapeutic tool against immature WMD to protect neonatal cognitive function. We found that caffeine pretreatment reduced WMD in immature brains via regulation of microglial activation and polarization by adenosine A2a receptor, thereby, providing a scientific basis for future clinical application of caffeine.
Collapse
|
64
|
Xing Z, Zhen T, Jie F, Jie Y, Shiqi L, Kaiyi Z, Zhicui O, Mingyan H. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. Int J Med Sci 2022; 19:142-151. [PMID: 34975308 PMCID: PMC8692118 DOI: 10.7150/ijms.66494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) is implicated in neonatal hypoxic-ischemic brain damage (HIBD), but the underlying mechanism is unclear. Hypothesis: We hypothesized that TLR4 mediates brain damage after hypoxic ischemia (HI) by inducing abnormal neuroimmune responses, including activation of immune cells and expression disorder of immune factors, while early inhibition of TLR4 can alleviate the neuroimmune dysfunction. Method: Postnatal day 7 rats were randomized into control, HI, and HI+TAK-242 (TAK-242) groups. The HIBD model was developed using the Rice-Vannucci method (the left side was the ipsilateral side of HI). TAK-242 (0.5 mg/kg) was given to rat pups in the TAK-242 group at 30 min before modeling. Immunofluorescence, immunohistochemistry, and western blotting were used to determine the TLR4 expression; the number of Iba-1+, GFAP+, CD161+, MPO+, and CD3+ cells; ICAM-1 and C3a expression; and interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-10 expression in the hippocampal CA1 region. Result: Significantly increased TLR4 expression was observed in the left hippocampus, and was alleviated by TAK-242. The significant increases in Iba-1+, MPO+, and CD161+ cells at 24 h and 7 days after HI and in GFAP+ and CD3+ T cells at 7 days after HI were also counteracted by TAK-242, but no significant differences were observed among groups at 24 h after HI. ICAM-1 expression increased 24 h after HI, while C3a expression decreased; TAK-242 also alleviated these changes. TNF-α and IL-1β expression increased, while IL-10 expression decreased at 24 h and 7 days after HI; TAK-242 counteracted the increased TNF-α and IL-1β expression at 24 h and the changes in IL-1β and IL-10 at 7 days, but induced no significant differences in IL-10 expression at 24 h and TNF-α expression at 7 days. Conclusion: Early TLR4 inhibition can alleviate hippocampal immune dysfunction after neonatal HIBD.
Collapse
Affiliation(s)
- Zhu Xing
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Tang Zhen
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China.,Department of Pediatrics, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013 China
| | - Fan Jie
- Department of Neonatology, East Hospital of Shaoyang Central Hospital, Shaoyang, Hunan, 422000 China
| | - Yu Jie
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Liu Shiqi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - Zhu Kaiyi
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| | - OuYang Zhicui
- Department of Neonatology, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, 541001 China
| | - Hei Mingyan
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, 100045 China
| |
Collapse
|
65
|
Brandt MJV, Nijboer CH, Nessel I, Mutshiya TR, Michael-Titus AT, Counotte DS, Schipper L, van der Aa NE, Benders MJNL, de Theije CGM. Nutritional Supplementation Reduces Lesion Size and Neuroinflammation in a Sex-Dependent Manner in a Mouse Model of Perinatal Hypoxic-Ischemic Brain Injury. Nutrients 2021; 14:176. [PMID: 35011052 PMCID: PMC8747710 DOI: 10.3390/nu14010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) is a major cause of neonatal brain injury, leading to long-term neurological impairments. Medical nutrition can be rapidly implemented in the clinic, making it a viable intervention to improve neurodevelopment after injury. The omega-3 (n-3) fatty acids docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3), uridine monophosphate (UMP) and choline have previously been shown in rodents to synergistically enhance brain phospholipids, synaptic components and cognitive performance. The objective of this study was to test the efficacy of an experimental diet containing DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 in a mouse model of perinatal HI. Male and female C57Bl/6 mice received the experimental diet or an isocaloric control diet from birth. Hypoxic ischemic encephalopathy was induced on postnatal day 9 by ligation of the right common carotid artery and systemic hypoxia. To assess the effects of the experimental diet on long-term motor and cognitive outcome, mice were subjected to a behavioral test battery. Lesion size, neuroinflammation, brain fatty acids and phospholipids were analyzed at 15 weeks after HI. The experimental diet reduced lesion size and neuroinflammation specifically in males. In both sexes, brain n-3 fatty acids were increased after receiving the experimental diet. The experimental diet also improved novel object recognition, but no significant effects on motor performance were observed. Current data indicates that early life nutritional supplementation with a combination of DHA, EPA, UMP, choline, iodide, zinc, and vitamin B12 may provide neuroprotection after perinatal HI.
Collapse
Affiliation(s)
- Myrna J. V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| | - Cora H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| | - Isabell Nessel
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | - Tatenda R. Mutshiya
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London E1 2AD, UK; (I.N.); (T.R.M.); (A.T.M.-T.)
| | | | - Lidewij Schipper
- Danone Nutricia Research, 3508 TC Utrecht, The Netherlands; (D.S.C.); (L.S.)
| | - Niek E. van der Aa
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (N.E.v.d.A.); (M.J.N.L.B.)
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (N.E.v.d.A.); (M.J.N.L.B.)
| | - Caroline G. M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands; (M.J.V.B.); (C.H.N.)
| |
Collapse
|
66
|
Guo L, Zhu L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front Mol Biosci 2021; 8:752465. [PMID: 34881289 PMCID: PMC8645603 DOI: 10.3389/fmolb.2021.752465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Given combined efforts of neuroscience and immunology, increasing evidence has revealed the critical roles of the immune system in regulating homeostasis and disorders of the central nervous system (CNS). Microglia have long been considered as the only immune cell type in parenchyma, while at the interface between CNS and the peripheral (meninges, choroid plexus, and perivascular space), embryonically originated border-associated macrophages (BAMs) and multiple surveilling leukocytes capable of migrating into and out of the brain have been identified to function in the healthy brain. Hypoxia-induced neuroinflammation is the key pathological procedure that can be detected in healthy people at high altitude or in various neurodegenerative diseases, during which a very thin line between a beneficial response of the peripheral immune system in maintaining brain homeostasis and a pathological role in exacerbating neuroinflammation has been revealed. Here, we are going to focus on the role of the peripheral immune system and its crosstalk with CNS in the healthy brain and especially in hypobaric or ischemic hypoxia-associated neuroinflammation.
Collapse
Affiliation(s)
- Liang Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,University of Nanhua, Hengyang, China.,Anhui Medical University, Hefei, China
| |
Collapse
|
67
|
Fiani B, Chacon D, Jarrah R, Barthelmass M, Covarrubias C. Neuroprotective strategies of cerebrolysin for the treatment of infants with neonatal hypoxic-ischemic encephalopathy. Acta Neurol Belg 2021; 121:1401-1406. [PMID: 34494216 DOI: 10.1007/s13760-021-01795-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Perinatal asphyxia (PA) is a devastating neonatal condition characterized by a lack of oxygen supporting the organ systems. PA can lead to hypoxic-ischemic encephalopathy (HIE), a brain dysfunction due to oxygen deprivation with a complex neurological sequela. The pathophysiology of HIE and PA is not entirely understood, with therapeutic hypothermia being the standard treatment with only limited value. However, alternative neuroprotective therapies can be a potential treatment modality. METHODS In this review, we will characterize the biochemical mechanisms of PA and HIE, while also giving insight into cerebrolysin, a neuroprotective treatment used for HIE and PA. RESULTS We found that cerebrolysin has up to 6-month treatment window post-ischemic insult. Cerebrolysin injections of 0.1 ml/kg of body weight twice per week were found to provide gross motor and speech deficit improvement. CONCLUSION Our literature search emphasizes the positive effects of cerebrolysin for general improvement outcomes. Nevertheless, biomarker establishment is warranted to improve patient outcomes.
Collapse
Affiliation(s)
- Brian Fiani
- Department of Neurosurgery, Desert Regional Medical Center, 1150 N. Indian Canyon Dr., Palm Springs, CA, 92262, USA.
| | - Daniel Chacon
- School of Medicine, Ross University, Bridgetown, Barbados
| | - Ryan Jarrah
- Department of Neuro-Informatics, Mayo Clinic, Rochester, MN, USA
| | - Michaela Barthelmass
- School of Medicine, California University of Sciences and Medicine, Colton, CA, USA
| | - Claudia Covarrubias
- School of Medicine, Universidad Anáhuac Querétaro, Santiago de Querétaro, México
| |
Collapse
|
68
|
Melo AM, Taher NAB, Doherty DG, Molloy EJ. The role of lymphocytes in neonatal encephalopathy. Brain Behav Immun Health 2021; 18:100380. [PMID: 34755125 PMCID: PMC8560973 DOI: 10.1016/j.bbih.2021.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Neonatal encephalopathy is a syndrome characterised by abnormal neurological function often caused by a hypoxic insult during childbirth. Triggers such as hypoxia-ischaemia result in the release of cytokines and chemokines inducing the infiltration of neutrophils, natural killer cells, B cells, T cells and innate T cells into the brain. However, the role of these cells in the development of the brain injury is poorly understood. We review the mechanisms by which lymphocytes contribute to brain damage in NE. NK, T and innate T cells release proinflammatory cytokines contributing to the neurodegeneration in the secondary and tertiary phase of injury, whereas B cells and regulatory T cells produce IL-10 protecting the brain in NE. Targeting lymphocytes may have therapeutic potential in the treatment of NE in terms of management of inflammation and brain damage, particularly in the tertiary or persistent phases.
Collapse
Key Words
- Blood-brain barrier, BBB
- Hypoxia-ischaemia encephalopathy, HIE
- Hypoxia-ischaemia, HI
- Hypoxic-ischaemia
- Immune response
- Lymphocytes
- Neonatal encephalopathy
- Neonatal encephalopathy, NE
- Regulatory T cells, Tregs
- T cell receptors, TCRs
- T helper, Th
- Therapeutic hypothermia, TH
- White Matter Injury, WMI
- activating transcription factor-6, ATF6
- central nervous system, CNS
- granulocyte-macrophage colony-stimulating factor, GM-CSF
- interleukin, IL
- major histocompatibility complex, MHC
- natural killer, NK cells
- tumour necrosis factor-alpha, TNF-α
Collapse
Affiliation(s)
- Ashanty M. Melo
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Nawal AB. Taher
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Research in Childhood Centre, Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Crumlin, Dublin, Ireland
- Discipline of Coombe Women and Infants University Hospital, Crumlin, Dublin, Ireland
- Discipline of Neonatology & National Children's Research Centre, Crumlin, Dublin, Ireland
- Discipline of National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
69
|
Synergistic Effect in Neurological Recovery via Anti-Apoptotic Akt Signaling in Umbilical Cord Blood and Erythropoietin Combination Therapy for Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2021; 22:ijms222111995. [PMID: 34769434 PMCID: PMC8584683 DOI: 10.3390/ijms222111995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous clinical studies demonstrated the synergistic therapeutic effect induced by co-administering recombinant human erythropoietin (rhEPO) in human umbilical cord blood (hUCB) therapy for children with cerebral palsy. However, the cellular mechanism beyond the beneficial effects in this combination therapy still needs to be elucidated. A hypoxic–ischemic encephalopathy (HIE) model of neonates, representing cerebral palsy, was prepared and randomly divided into five groups (hUCB+rhEPO combination, hUCB, and rhEPO treatments over HIE, HIE control, and sham). Seven days after, hUCB was administered intraperitoneally and the rhEPO injections were started. Neurobehavioral tests showed the best outcome in the combination therapy group, while the hUCB and rhEPO alone treatments also showed better outcomes compared with the control (p < 0.05). Inflammatory cytokines were downregulated by the treatments and attenuated most by the combination therapy (p < 0.05). The hUCB+rhEPO treatment also showed remarkable increase in phosphorylation of Akt and potentiation of anti-apoptotic responses with decreased Bax and increased Bcl-2 (p < 0.05). Pre-treatment of MK-2206, an Akt inhibitor, for the combination therapy depressed the anti-apoptotic effects. In conclusion, these findings suggest that the therapeutic effect of hUCB therapy might be potentiated by co-administration of rhEPO via augmentation of anti-inflammatory and anti-apoptotic responses related to the phosphorylation of Akt.
Collapse
|
70
|
Singh A, Magee R, Balasubramanian S. An In Vitro Study to Investigate Biomechanical Responses of Peripheral Nerves in Hypoxic Neonatal Piglets. J Biomech Eng 2021; 143:114501. [PMID: 34041534 PMCID: PMC8299807 DOI: 10.1115/1.4051283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/19/2021] [Indexed: 11/08/2022]
Abstract
Despite occurrence of neonatal hypoxia and peripheral nerve injuries in complicated birthing scenarios, the effect of hypoxia on the biomechanical responses of neonatal peripheral nerves is not studied. In this study, neonatal brachial plexus (BP) and tibial nerves, obtained from eight normal and eight hypoxic 3-5-day-old piglets, were tested in uniaxial tension until failure at a rate of 0.01 mm/s or 10 mm/s. Failure load, stress, and modulus of elasticity were reported to be significantly lower in hypoxic neonatal BP and tibial nerves than respective normal tissue at both 0.01 and 10 mm/s rates. Failure strain was significantly lower in the hypoxic neonatal BP nerves only at 10 mm/s rate when compared to normal BP nerve. This is the first available data that indicate weaker mechanical behavior of hypoxic neonatal peripheral nerves as compared to normal tissue and offer an understanding of the biomechanical responses of peripheral nerves of hypoxic neonatal piglets.
Collapse
Affiliation(s)
- Anita Singh
- Biomedical Engineering, School of Engineering, Widener University, Chester, PA 19013
| | - Rachel Magee
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
71
|
Ye H, Liu Z, Zhou L, Cai Q. Dynamic Observation of the Effect of L-Theanine on Cerebral Ischemia-Reperfusion Injury Using Magnetic Resonance Imaging under Mathematical Model Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5679665. [PMID: 34737849 PMCID: PMC8563127 DOI: 10.1155/2021/5679665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023]
Abstract
This study was to use the partial differential mathematical model to analyze the magnetic resonance imaging (MRI) images of cerebral ischemia-reperfusion injury (CIRI) and to dynamically observe the role of L-theanine in CIRI based on this. 30 patients with cerebral ischemia in a hospital in a certain area were selected and divided into a cerebral ischemia group and a L-theanine treatment group. The two groups of patients were examined by MRI within 48 hours, and the relative apparent diffusion coefficient (rADC) of the cerebral ischemic part of the patients was determined. The partial differential mathematical model was used for data processing to obtain the function of cerebral ischemia time and infarct area, and the data of patients in the cerebral ischemia group and L-theanine treatment group were compared and analyzed. The results showed that the partial differential mathematical model could effectively analyze the linear relationship between the rADC value and time in the treatment of CIRI using L-theanine. The rADC values of the four points of interest in the L-theanine treatment group all increased with time, and there was a positive correlation between the variables X and Y. In observing the efficacy indicators of L-theanine, the L-theanine treatment group showed a significant advantage in the neurospecific enolase (NSE) content compared with the cerebral ischemia group (P < 0.01), and the neurological function score of the L-theanine treatment group gradually decreased and showed a statistically obvious difference on the 7th day of treatment (P < 0.05). In summary, it was verified in this study that the role of L-theanine in the treatment of CIRI was of a great and positive significance for the subsequent treatment of patients with cerebral ischemia, providing reliable theoretical basis and data basis for clinical treatment of CIRI.
Collapse
Affiliation(s)
- Hui Ye
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| | - Zaiming Liu
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| | - Long Zhou
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| | - Qiang Cai
- Renmin Hospital of Wuhan University, Department of Neurosurgery, Wuhan, Hubei 430060, China
| |
Collapse
|
72
|
Shaker T, Chattopadhyaya B, Amilhon B, Cristo GD, Weil AG. Transduction of inflammation from peripheral immune cells to the hippocampus induces neuronal hyperexcitability mediated by Caspase-1 activation. Neurobiol Dis 2021; 160:105535. [PMID: 34673150 DOI: 10.1016/j.nbd.2021.105535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recent studies report infiltration of peripheral blood mononuclear cells (PBMCs) into the central nervous system (CNS) in epileptic disorders, suggestive of a potential contribution of PBMC extravasation to the generation of seizures. Nevertheless, the underlying mechanisms involved in PBMC infiltrates promoting neuronal predisposition to ictogenesis remain unclear. Therefore, we developed an in vitro model mimicking infiltration of activated PBMCs into the brain in order to investigate potential transduction of inflammatory signals from PBMCs to the CNS. METHODS To establish our model, we first extracted PBMCs from rat spleen, then, immunologically primed PBMCs with lipopolysaccharide (LPS), followed by further activation with nigericin. Thereafter, we co-cultured these activated PBMCs with organotypic cortico-hippocampal brain slice cultures (OCHSCs) derived from the same rat, and compared PBMC-OCHSC co-cultures to OCHSCs exposed to PBMCs in the culture media. We further targeted a potential molecular pathway underlying transduction of peripheral inflammation to OCHSCs by incubating OCHSCs with the Caspase-1 inhibitor VX-765 prior to co-culturing PBMCs with OCHSCs. After 24 h, we analyzed inflammation markers in the cortex and the hippocampus using semiquantitative immunofluorescence. In addition, we analyzed neuronal activity by whole-cell patch-clamp recordings in cortical layer II/III and hippocampal CA1 pyramidal neurons. RESULTS In the cortex, co-culturing immunoreactive PBMCs treated with LPS + nigericin on top of OCHSCs upregulated inflammatory markers and enhanced neuronal excitation. In contrast, no excitability changes were detected after adding primed PBMCs (i.e. treated with LPS only), to OCHSCs. Strikingly, in the hippocampus, both immunoreactive and primed PBMCs elicited similar pro-inflammatory and pro-excitatory effects. However, when immunoreactive and primed PBMCs were cultured in the media separately from OCHSCs, only immunoreactive PBMCs gave rise to neuroinflammation and hyperexcitability in the hippocampus, whereas primed PBMCs failed to produce any significant changes. Finally, VX-765 application to OCHSCs, co-cultured with either immunoreactive or primed PBMCs, prevented neuroinflammation and hippocampal hyperexcitability in OCHSCs. CONCLUSIONS Our study shows a higher susceptibility of the hippocampus to peripheral inflammation as compared to the cortex, mediated via Caspase-1-dependent signaling pathways. Thus, our findings suggest that Caspase-1 inhibition may potentially provide therapeutic benefits during hippocampal neuroinflammation and hyperexcitability secondary to peripheral innate immunity.
Collapse
Affiliation(s)
- Tarek Shaker
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| | | | - Bénédicte Amilhon
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Graziella Di Cristo
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada
| | - Alexander G Weil
- Université de Montréal, Montréal, Québec H3C 3J7, Canada; CHU Sainte-Justine Research Centre, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
73
|
Zhu J, Li L, Ding J, Huang J, Shao A, Tang B. The Role of Formyl Peptide Receptors in Neurological Diseases via Regulating Inflammation. Front Cell Neurosci 2021; 15:753832. [PMID: 34650406 PMCID: PMC8510628 DOI: 10.3389/fncel.2021.753832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a group of G protein-coupled cell surface receptors that play important roles in host defense and inflammation. Owing to the ubiquitous expression of FPRs throughout different cell types and since they interact with structurally diverse chemotactic agonists, they have a dual function in inflammatory processes, depending on binding with different ligands so that accelerate or inhibit key intracellular kinase-based regulatory pathways. Neuroinflammation is closely associated with the pathogenesis of neurodegenerative diseases, neurogenic tumors and cerebrovascular diseases. From recent studies, it is clear that FPRs are important biomarkers for neurological diseases as they regulate inflammatory responses by monitoring glial activation, accelerating neural differentiation, regulating angiogenesis, and controlling blood brain barrier (BBB) permeability, thereby affecting neurological disease progression. Given the complex mechanisms of neurological diseases and the difficulty of healing, we are eager to find new and effective therapeutic targets. Here, we review recent research about various mechanisms of the effects generated after FPR binding to different ligands, role of FPRs in neuroinflammation as well as the development and prognosis of neurological diseases. We summarize that the FPR family has dual inflammatory functional properties in central nervous system. Emphasizing that FPR2 acts as a key molecule that mediates the active resolution of inflammation, which binds with corresponding receptors to reduce the expression and activation of pro-inflammatory composition, govern the transport of immune cells to inflammatory tissues, and restore the integrity of the BBB. Concurrently, FPR1 is essentially related to angiogenesis, cell proliferation and neurogenesis. Thus, treatment with FPRs-modulation may be effective for neurological diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Ding
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Tang
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
74
|
Zhao M, Yao Y, Du J, Kong L, Zhao T, Wu D, Man L, Zhou W. 6-Gingerol Alleviates Neonatal Hypoxic-Ischemic Cerebral and White Matter Injury and Contributes to Functional Recovery. Front Pharmacol 2021; 12:707772. [PMID: 34630084 PMCID: PMC8492979 DOI: 10.3389/fphar.2021.707772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one main cause of neonatal death and disability, causing substantial injury to white and gray matter, which can lead to severe neurobehavioral dysfunction, including intellectual disability and dyskinesia. Inflammation, nerve cell death, and white matter injury are important factors in the pathological process of HIE. 6-Gingerol is a ginger extract, which reduces inflammatory response and cell death. However, the role of 6-Gingerol in neonatal hypoxic-ischemic brain injury (HIBI) remains unknown. In this study, we constructed a mouse HIBI model and analyzed the protective effect of 6-Gingerol on HIBI by using behavioral tests, histological staining, qPCR and western blot. Here, we found that 6-Gingerol treatment could alleviate HIBI and improve short-term reflex performance, which is closely related to cell death and neuroinflammation. Additionally, 6-Gingerol reduced neuronal apoptosis, pro-inflammatory factor release, as well as microglial activation. Furthermore, 6-Gingerol significantly improved motor disability, which is associated with white matter damage. Thus, our results showed that 6-Gingerol could reduce the loss of myelin sheaths, alleviate cell death of oligodendrocytes, and stimulate the maturation of oligodendrocytes. In terms of mechanism, we found that 6-Gingerol decreased histone H3K27me3 levels, activated AKT pathway and inhibited the activation of ERK and NF-κB pathway at 3 days post-HIBI. Taken together, our data clearly indicate that 6-Gingerol plays a neuroprotective role against HIBI by epigenetic modification and regulation of AKT, ERK, and NF-κB pathways, inhibiting inflammatory responses and reducing cell death.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Yao
- Centre for Sports and Exercise Science, School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lajie Man
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
75
|
Zhou Y, Gou Z, Huang L, Fan Y, Zhang F, Lu L. Inhibition of immunoproteasome subunit low molecular mass polypeptide 7 with ONX-0914 improves hypoxic-ischemic brain damage via PI3K/Akt signaling. Neuroreport 2021; 32:1206-1215. [PMID: 34406990 PMCID: PMC8389355 DOI: 10.1097/wnr.0000000000001715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
The immunoproteasome subunit low molecular mass polypeptide 7 (LMP7) leads to brain injuries, such as autoimmune neuritis and ischemic stroke, by activating inflammation. However, the roles and mechanisms of LMP7 in hypoxic-ischemic brain damage (HIBD) remain unclear. This study explored these issues in a rat model of HIBD. Pathology was evaluated using hematoxylin-eosin staining. LMP7 expression was detected using western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), and immunohistochemical staining. The presence of proinflammatory cytokines, including tumor necrosis factor-a, interleukin-6, and interleukin-1β, was tested using ELISA and RT-qPCR. Behavioral performance was evaluated using a short-term neurological function score and the Morris water maze test. Compared to those in the Sham group, the HIBD group exhibited obvious upregulated LMP7 and pro-inflammatory cytokine levels. HIBD rats exhibited severe pathological and behavioral damage. LMP7 inhibition with ONX-0914 reduced proinflammatory cytokine expression, attenuated pathological damage, and enhanced behavioral performance of rats with HIBD. Inhibition of phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling with LY29400 increased LMP7 expression and abolished the protective effects of ONX-0914 in HIBD rats. Our findings indicate that LMP7 aggravates brain injury by triggering inflammatory responses in HIBD rats. LMP7 inhibition with ONX-0914 exerts protective effects on HIBD rats, possibly via PI3K/Akt signaling.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Zhixian Gou
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lin Huang
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yang Fan
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng Zhang
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Liqun Lu
- Department of Pediatrics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
76
|
Peng X, Wang J, Peng J, Jiang H, Le K. Resveratrol Improves Synaptic Plasticity in Hypoxic-Ischemic Brain Injury in Neonatal Mice via Alleviating SIRT1/NF-κB Signaling-Mediated Neuroinflammation. J Mol Neurosci 2021; 72:113-125. [PMID: 34549339 DOI: 10.1007/s12031-021-01908-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an obstinate disease that troubles neonatologists. At present, cognitive impairment after HIE has received increasing attention. Synaptic plasticity determines the development of cognitive function, so it is urgent to develop new drugs that can improve HIE-induced cognitive impairment. Hypoxia-ischemia (HI)-induced neuroinflammation affects synaptic plasticity. As a SIRT1 agonist, resveratrol has a powerful anti-inflammatory effect, but whether it has an effect on impaired synaptic plasticity in HIE and the potential mechanism remain unclear. In the present study, resveratrol was used to intervene in hypoxic-ischemic brain injury (HIBI) mice, and the effects on hippocampal synaptic plasticity and further mechanisms were explored through performing neurobehavioral, morphological observations, Golgi sliver staining, western blotting, and quantitative real-time polymerase chain reaction experiments. We first found that resveratrol improves HI-induced long-term cognitive and memory deficits, and then we found that resveratrol reduces hippocampal neuronal damage and increases dendritic spine density and the expression of synaptic proteins. Finally, we found that this effect may be exerted by regulating the neuroinflammatory response mediated by the SIRT1/NF-κB axis. This study provides a new theoretical basis for resveratrol to prevent long-term neurological dysfunction following HIBI.
Collapse
Affiliation(s)
- Xin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.,Department of Otolaryngology, Jiangxi Province Children's Hospital, No.122 Yangming Road, Nanchang, Jiangxi Province, 330006, China
| | - Jun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Juan Peng
- Department of Rehabilitation Medicine, PingXiang No.2 People's Hospital, No. 89 Pingan South Avenue, Danjiang Street, PingXiang, Jiangxi Province, 337000, China
| | - Hongqun Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
77
|
Flores-Maldonado OE, González GM, Andrade-Torres Á, Treviño-Rangel R, Donis-Maturano L, Silva-Sánchez A, Hernández-Bello R, Montoya A, Salazar-Riojas R, Romo-González C, Becerril-García MA. Distinct innate immune responses between sublethal and lethal models of disseminated candidiasis in newborn BALB/c mice. Microb Pathog 2021; 158:105061. [PMID: 34157411 DOI: 10.1016/j.micpath.2021.105061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Invasive candidiasis is associated with a high incidence and mortality rates in infants, especially in preterm newborns. The immunopathogenesis of the mycosis during the neonatal period is poorly understood. Although several in vivo models exist to study invasive candidiasis, the majority of studies employ distinct routes of infection and use 2 to 6 day-old mice that could be less comparable in studying candidiasis in preterm infants. In this study, by using 0-days-old mice we developed a new neonatal murine model of intravenous Candida albicans infection. Using different inoculums of Candida albicans we evaluated survival, dissemination of the fungus, frequency of CD45+ cells, and cytokine production in the liver, brain, and kidneys of newborn and adult BALB/c mice. Unexpectedly, the newborn mice infected with a low inoculum (1×105 cfu per mouse) of Candida albicans survive to the infection. Compared to adult mice, the liver and brain of newborn animals had the greatest fungal burden, fungal invasion and leukocyte infiltrate. A moderate production of TNFα, IL-1β, IL-6 and IFNγ was detected in tissues of newborn mice infected with a non-lethal inoculum of Candida albicans. In contrast, overproduction of TNFα, IL-1β, IL-6 and IL-10 was determined when injecting with a lethal inoculum. In agreement, flow cytometry of brain and liver showed an inoculum-dependent CD45+ leukocyte infiltration in newborn mice infected with Candida albicans. Overall, our data shows that Candida albicans infection in newborn mice affects mainly the brain and liver and a 2-fold increase of the inoculum rapidly becomes lethal probably due to massive fungal invasion and exacerbated CD45+ leukocyte infiltrate and cytokine production. This study is the first analysis of innate immune responses in different tissues during early neonatal disseminated candidiasis.
Collapse
Affiliation(s)
- Orlando E Flores-Maldonado
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Ángel Andrade-Torres
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Rogelio Treviño-Rangel
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Luis Donis-Maturano
- Unidad de Investigación en Biomedicina (UBIMED), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores (FES)-Iztacala, Estado de México, México
| | - Aarón Silva-Sánchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Romel Hernández-Bello
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Alexandra Montoya
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Rosario Salazar-Riojas
- Servicio de Hematología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México
| | - Carolina Romo-González
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría (INP). Ciudad de México, México
| | - Miguel A Becerril-García
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, México.
| |
Collapse
|
78
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
79
|
Ni J, Zhao J, Zhang X, Reinheckel T, Turk V, Nakanishi H. Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-β signaling. J Neuroinflammation 2021; 18:176. [PMID: 34376208 PMCID: PMC8353845 DOI: 10.1186/s12974-021-02227-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Background Cathepsin H (CatH) is a lysosomal cysteine protease with a unique aminopeptidase activity. Its expression level is increased in activated immune cells including dendritic cells, macrophages, and microglia. We have previously reported that CatH deficiency impairs toll-like receptor 3 (TLR3)-mediated activation of interferon regulatory factor 3 (IRF3), and the subsequent secretion of interferon (IFN)-β from dendritic cells. Furthermore, there is increasing evidence that IFN-β secreted from microglia/macrophages has neuroprotective effects. These observations prompted further investigation into the effects of CatH deficiency on neuropathological changes. Methods In this study, neuropathological changes were examined using histochemical staining (both hematoxylin-eosin (H&E) and Nissl) of the hippocampus of wild-type (WT) and CatH-deficient (CatH−/−) mice after hypoxia-ischemia (HI). The density and the localization of CatH and TLR3 were examined by immunofluorescent staining. CatH processing in microglia was assayed by pulse-chase experiments, while immunoblotting was used to examine TLR3 expression and IRF3 activation in microglia/macrophages in the presence of poly(I:C). Microglial cell death was examined by fluorescence-activated cell sorting (FACS), and primary astrocyte proliferation in the presence of IFN-β was examined using scratch wound assay. Results WT mice displayed severe atrophy in association with neuronal death and moderate astrogliosis in the hippocampus following neonatal HI. Somewhat surprisingly, CatH−/− mice showed marked neuronal death without severe atrophy in the hippocampus following HI. Furthermore, there was notable microglia/macrophages cell death and strong astrogliosis in the hippocampus. The TLR3 and phosphorylated IRF3 expression level in the hippocampus or splenocytes (mainly splenic macrophages); from CatH−/− mice was lower than in WT mice. In vitro experiments demonstrated that recombinant IFN-β suppressed HI-induced microglial cell death and astrocyte proliferation. Conclusion These observations suggest that CatH plays a critical role in the proteolytic maturation and stabilization of TLR3, which is necessary for IFN-β production. Therefore, impaired TLR3/IFN-β signaling resulting from CatH deficiency may induce microglial cell death after activation and astrogliosis/glial scar formation in the hippocampus following HI injury, leading to suppression of hippocampal atrophy.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. .,Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School of Somatology, China Medical University, Shenyang, 110122, China
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, 731-0153, Japan.
| |
Collapse
|
80
|
Wood TR, Vu PT, Comstock BA, Law JB, Mayock DE, Heagerty PJ, Burbacher T, Bammler TK, Juul SE. Cytokine and chemokine responses to injury and treatment in a nonhuman primate model of hypoxic-ischemic encephalopathy treated with hypothermia and erythropoietin. J Cereb Blood Flow Metab 2021; 41:2054-2066. [PMID: 33554708 PMCID: PMC8327104 DOI: 10.1177/0271678x21991439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Predicting long-term outcome in infants with hypoxic-ischemic encephalopathy (HIE) remains an ongoing clinical challenge. We investigated plasma biomarkers and their association with 6-month outcomes in a nonhuman primate model of HIE with or without therapeutic hypothermia (TH) and erythropoietin (Epo). Twenty-nine Macaca nemestrina were randomized to control cesarean section (n = 7) or 20 min of umbilical cord occlusion (UCO, n = 22) with either no treatment (n = 11) or TH/Epo (n = 11). Initial injury severity was scored using 30-min arterial pH, base deficit, and 10-min Apgar score. Twenty-four plasma cytokines, chemokines, and growth factors were measured 3, 6, 24, 72, and 96 h after UCO. Interleukin 17 (IL-17) and macrophage-derived chemokine (MDC) differentiated the normal/mild from moderate/severe injury groups. Treatment with TH/Epo was associated with increased monocyte chemotactic protein-4 (MCP-4) at 3 h-6h, and significantly lower MCP-4 and MDC at 24 h-72h, respectively. IL-12p40 was lower at 24 h-72h in animals with death/cerebral palsy (CP) compared to survivors without CP. Baseline injury severity was the single best predictor of death/CP, and predictions did not improve with the addition of biomarker data. Circulating chemokines associated with the peripheral monocyte cell lineage are associated with severity of injury and response to therapy, but do not improve ability to predict outcomes.
Collapse
Affiliation(s)
- Thomas R Wood
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Phuong T Vu
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Bryan A Comstock
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Janessa B Law
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dennis E Mayock
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Thomas Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sandra E Juul
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
81
|
Ye Z, Hu J, Xu H, Sun B, Jin Y, Zhang Y, Zhang J. Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPARγ. Inflammation 2021; 44:1035-1048. [PMID: 33394189 DOI: 10.1007/s10753-020-01399-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
Acute cerebral infarction (ACI) possesses high mortality. Exosomes present in serum have potential application value in ACI diagnosis. This study investigated the mechanism of serum exosomes in ACI. Serum exosomes isolated from ACI patients and normal people were identified and then injected into the established middle cerebral artery occlusion (MCAO) rat model to evaluate cerebral injury and inflammation. Exosomal microRNA (miR)-27-3p expression was detected and interfered to analyze rat cerebral inflammation. The binding relationship between miR-27-3p and PPARγ was predicted and verified. The lipopolysaccharide (LPS)-treated microglia model was established and intervened with miR-27-3p to detect PPARγ, Iba-1, and inflammation-related factor expressions. After overexpressing PPARγ, rat cerebral inflammation was evaluated. The clinical significance of serum exosomal miR-27-3p in ACI was evaluated. Serum exosomes from ACI patients caused exacerbated MCAO rat cerebral injury and poor behavior recovery, as well as promoted cerebral inflammation. Serum exosomal miR-27-3p deepened rat brain inflammation. miR-27-3p targeted PPARγ to promote microglia activation and inflammation-related factor expressions in MCAO rats, and overexpressing PPARγ attenuated MCAO rat cerebral inflammation. Serum exosomal miR-27-3p promised to be a biomarker for ACI. We proved that serum exosomes from ACI patients aggravated ACI patient cerebral inflammation via the miR-27-3p/PPARγ axis.
Collapse
Affiliation(s)
- Zhinan Ye
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jingchun Hu
- Department of Anesthesiology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Wenzhou, 323000, Zhejiang Province, China
| | - Hao Xu
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Bin Sun
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yong Jin
- Department of Neurosurgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yaping Zhang
- Department of Neurology, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jianli Zhang
- Department of Neurology, Lishui Municipal Central Hospital, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, No.289 Kuocang Road, Liandu District of Lishui City, Wenzhou, 323000, Zhejiang Province, China.
| |
Collapse
|
82
|
Zhu JJ, Yu BY, Huang XK, He MZ, Chen BW, Chen TT, Fang HY, Chen SQ, Fu XQ, Li PJ, Lin ZL, Zhu JH. Neferine Protects against Hypoxic-Ischemic Brain Damage in Neonatal Rats by Suppressing NLRP3-Mediated Inflammasome Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654954. [PMID: 34046147 PMCID: PMC8128543 DOI: 10.1155/2021/6654954] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is recognized as the main cause of neonatal death, and efficient treatment strategies remain limited. Given the prevalence of HIE and the associated fatality, further studies on its pathogenesis are warranted. Oxidative stress and neuroinflammatory injury are two important factors leading to brain tissue injury and nerve cell loss in HIE. Neferine, an alkaloid extracted from lotus seed embryo, exerts considerable effects against several diseases such as cancers and myocardial injury. In this study, we demonstrated the neuroprotective effect of neferine on HIE and hypothesized that it involves the inhibition of neuronal pyroptosis, thereby ameliorating neurological inflammation and oxidative stress. We demonstrated that the mRNA levels of proteins associated with pyroptosis including caspase-1, the caspase adaptor ASC, gasdermin D, interleukin- (IL-) 18, IL-1β, and some inflammatory factors were significantly increased in neonatal HIBD model rats compared to those in the control group. The increase in these factors was significantly suppressed by treatment with neferine. We stimulated PC12 cells with CoCl2 to induce neuronal HIBD in vitro and investigated the relationship between neferine and pyroptosis by altering the expression of the NLRP3 inflammasome. The overexpression of NLRP3 partially reversed the neuroprotective effect of neferine on HIBD, whereas NLRP3 knockdown further inhibited caspase-1 activation and IL-1β and IL18 expression. In addition, simultaneous alteration of NLRP3 expression induced changes in intracellular oxidative stress levels after HIBD. These findings indicate that neferine ameliorates neuroinflammation and oxidative stress injury by inhibiting pyroptosis after HIBD. Our study provides valuable information for future studies on neferine with respect to neuroinflammation and pyroptosis.
Collapse
Affiliation(s)
- Jin-jin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bin-yuan Yu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao-kai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min-zhi He
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bin-wen Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting-ting Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huang-yi Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shang-qin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao-qin Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Pei-jun Li
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhen-lang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-hu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
83
|
Sato Y, Tsuji M. Diverse actions of cord blood cell therapy for hypoxic-ischemic encephalopathy. Pediatr Int 2021; 63:497-503. [PMID: 33453136 PMCID: PMC8252712 DOI: 10.1111/ped.14604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal death and permanent neurological deficits. However, effective treatments have not yet been established, except therapeutic hypothermia, which is not effective for severe HIE; therefore, developing a novel therapy for HIE is of the utmost importance. Stem cell therapy has recently been identified as a novel therapy for HIE. Among the various stem cell sources, ethical hurdles can be avoided by using stem cells that originate from non-embryonic or non-neural tissues, such as umbilical cord blood cells (UCBCs), which are readily available and can be exploited for autologous transplantations. Human UCBs are a rich source of stem and progenitor cells. Many recent studies have reported the treatment effect of UCBCs. Additionally, phase I clinical trials have already been conducted, showing this therapy's safety and feasibility. One advantage of stem cell therapies, including UCBC administration, is that they exert treatment effects through multifaceted mechanisms. According to the findings of several publications, replacement of lost cells, namely, engraftment and differentiation into neuronal cells, is not likely to be the main mechanism. However, the association between UCBCs and various mechanism of action, such as neurogenesis, angiogenesis, and anti-inflammation, has been suggested in many studies, and most mechanisms are due to growth factors secreted from UCBCs. These diverse actions of UCBC treatment are expected to exert a substantial effect on HIE, which has a complex injury mechanism.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| |
Collapse
|
84
|
Taher NAB, Kelly LA, Al-Harbi AI, O'Dea MI, Zareen Z, Ryan E, Molloy EJ, Doherty DG. Altered distributions and functions of natural killer T cells and γδ T cells in neonates with neonatal encephalopathy, in school-age children at follow-up, and in children with cerebral palsy. J Neuroimmunol 2021; 356:577597. [PMID: 33964735 DOI: 10.1016/j.jneuroim.2021.577597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
We enumerated conventional and innate lymphocyte populations in neonates with neonatal encephalopathy (NE), school-age children post-NE, children with cerebral palsy and age-matched controls. Using flow cytometry, we demonstrate alterations in circulating T, B and natural killer cell numbers. Invariant natural killer T cell and Vδ2+ γδ T cell numbers and frequencies were strikingly higher in neonates with NE, children post-NE and children with cerebral palsy compared to age-matched controls, whereas mucosal-associated invariant T cells and Vδ1 T cells were depleted from children with cerebral palsy. Upon stimulation ex vivo, T cells, natural killer cells and Vδ2 T cells from neonates with NE more readily produced inflammatory cytokines than their counterparts from healthy neonates, suggesting that they were previously primed or activated. Thus, innate and conventional lymphocytes are numerically and functionally altered in neonates with NE and these changes may persist into school-age.
Collapse
Affiliation(s)
- Nawal A B Taher
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Alhanouf I Al-Harbi
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Mary I O'Dea
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland; Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Zunera Zareen
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland
| | - Emer Ryan
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland; Trinity Research in Childhood Centre, Trinity College Dublin, Ireland; Paediatrics, Children's Health Ireland at Tallaght & Crumlin, Dublin, Ireland; Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Derek G Doherty
- Discipline of Immunology, School of Medicine, Trinity College Dublin, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
85
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
86
|
[Effect of astragaloside IV on the expression of NOD-like receptor protein 3 inflammasome in neonatal rats with hypoxic-ischemic brain damage]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23. [PMID: 33840414 PMCID: PMC8050542 DOI: 10.7499/j.issn.1008-8830.2010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To study the effect of astragaloside IV (AS-IV) on NOD-like receptor protein 3 (NLRP3) inflammasome in neonatal rats with hypoxic-ischemic brain damage (HIBD). METHODS A total of 24 Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group, an HIBD group, and an AS-IV treatment group, with 8 rats in each group. After 24 hours of modeling, brain tissue was collected for hematoxylin-eosin staining, yo-PRO-1 staining, and EthD-2 immunofluorescent staining in order to observe the cerebral protection effect of AS-IV in vivo. HT22 cells were used to prepare a model of oxygen-glycogen deprivation (OGD), and a concentration gradient (50-400 μmol/L) was established for AS-IV. CCK-8 assay was used to measure the viability of HT22 cells. RT-PCR and Western blot were used to observe the effect of different concentrations of AS-IV on the mRNA and protein expression of NLRP3, gasdermin D (GSDMD), caspase-1, and interleukin-1β (IL-1β). RESULTS Yo-Pro-1 and EthD-2 staining showed that compared with the sham-operation group, the HIBD group had an increase in pyroptotic cells with a small number of necrotic cells, and the AS-IV group had reductions in both pyroptotic and necrotic cells. Compared with the sham-operation group, the HIBD group had significantly higher protein expression levels of NLRP3, IL-1β, caspase-1, and GSDMD (P < 0.05). Compared with the HIBD group, the AS-IV group had significant reductions in the protein expression levels of NLRP3, caspase-1, and GSDMD (P < 0.05). HT22 cell experiment showed that compared with the OGD group, the AS-IV group had inhibited mRNA and protein expression of NLRP3, GSDMD, caspase-1, and IL-1β, with the best therapeutic effect at the concentration of 200 μmol/L (P < 0.05). CONCLUSIONS AS-IV may alleviate HIBD in neonatal rats by inhibiting the expression of NLRP3, GSDMD, caspase-1, and IL-1β.
Collapse
|
87
|
Hu C, Li C, Ma Q, Wang R, He Y, Wang H, Luo G. Inhibition of Long Noncoding RNA SNHG15 Ameliorates Hypoxia/Ischemia-Induced Neuronal Damage by Regulating miR-302a-3p/STAT1/NF-κB Axis. Yonsei Med J 2021; 62:325-337. [PMID: 33779086 PMCID: PMC8007436 DOI: 10.3349/ymj.2021.62.4.325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Ischemic brain injury results in high mortality and serious neurologic morbidity. Here, we explored the role of SNHG15 in modulating neuronal damage and microglial inflammation after ischemia stroke. MATERIALS AND METHODS The hypoxia/ischemia models were induced by middle cerebral artery occlusion in mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Quantitative real-time PCR (qRT-PCR) and Western blot were conducted to determine the levels of SNHG15, miR-302a-3p, and STAT1/NF-κB. Moreover, gain- or loss-of functional assays of SNHG15 and miR-302a-3p were conducted. MTT assay was used to evaluate the viability of HT22 cells, and the apoptotic level was determined by flow cytometry. Furthermore, enzyme-linked immunosorbent assay was performed to detect oxidative stress and inflammatory mediators in the ischemia cortex and OGD/R-treated BV2 microglia. RESULTS The SNHG15 and STAT1/NF-κB pathways were both distinctly up-regulated, while miR-302a-3p was notably down-regulated in the ischemia cortex. Additionally, overexpressing SNHG15 dramatically enhanced OGD/R-mediated neuronal apoptosis as well as the expression of oxidative stress and inflammation factors from microglia. In contrast, knocking down SNHG15 or overexpressing miR-302a-3p relieved OGD/R-mediated neuronal apoptosis and microglial activation. Moreover, the rescue experiment testified that overexpressing miR-302a-3p also attenuated SNHG15 up-regulation-induced effects. In terms of the mechanisms, SNHG15 sponged miR-302a-3p and activated STAT1/NF-κB as a competitive endogenous RNA, while miR-302a-3p targeted STAT1 and negatively regulated the STAT1/NF-κB pathway. CONCLUSION SNHG15 was up-regulated in the hypoxia/ischemia mouse or cell model. The inhibition of SNHG15 ameliorates ischemia/hypoxia-induced neuronal damage and microglial inflammation by regulating the miR-302a-3p/STAT1/NF-κB pathway.
Collapse
Affiliation(s)
- Chunting Hu
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Li
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoya Ma
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruili Wang
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya He
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guogang Luo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
88
|
McAdams RM, Berube MW. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches. J Perinatol 2021; 41:661-674. [PMID: 33712717 DOI: 10.1038/s41372-021-01022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
Neonatal encephalopathy (NE) continues to have a major impact on newborn survival and neurodevelopmental outcomes worldwide. In high-income settings, therapeutic hypothermia is the only established standard treatment for neonates with moderate-to-severe NE, with compelling evidence that cooling reduces mortality and major neurodevelopmental impairment in survivors. Despite therapeutic hypothermia, a significant proportion of cooled infants continue to suffer long-term disability from brain injury. Innovative therapies offer the possibility of further improving neurodevelopmental outcomes by working synergistically with therapeutic hypothermia to decrease hypoxia-ischemia-induced excitotoxicity, prevent progression to secondary energy failure, and in some cases, promote neuroregeneration in the developing neonatal brain. This review discusses emerging NE therapies currently under investigation, offers insight into controversies surrounding various approaches to clinical care during therapeutic hypothermia, and identifies ongoing knowledge deficits that hinder attainment of optimal outcomes for neonates with NE.
Collapse
Affiliation(s)
- Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Megan W Berube
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
89
|
Park YJ, Borlongan CV, Dezawa M. Cell-based treatment for perinatal hypoxic-ischemic encephalopathy. Brain Circ 2021; 7:13-17. [PMID: 34084971 PMCID: PMC8057102 DOI: 10.4103/bc.bc_7_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/03/2021] [Accepted: 01/20/2021] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of acute neonatal brain injury and can lead to disabling long-term neurological complications. Treatment for HIE is limited to supportive care and hypothermia within 6 h injury which is reserved for full-term infants. Preclinical studies suggest the potential for cell-based therapies as effective treatments for HIE. Some clinical trials using umbilical cord blood cells, placenta-derived stem cells, mesenchymal stem cells (MSCs), and others have yielded promising results though more studies are needed to optimize protocols and multi-center trials are needed to prove safety and efficacy. To date, the therapeutic effects of most cell-based therapies are hypothesized to stem from the bystander effect of donor cells. Transplantation of stem cells attenuate the aberrant inflammation cascade following HIE and provide a more ideal environment for endogenous neurogenesis and repair. Recently, a subset of MSCs, the multilineage-differentiating stress-enduring (Muse) cells have shown to treat HIE and other models of neurologic diseases by replacing dead or ischemic cells and have reached clinical trials. In this review, we examine the different cell sources used in clinical trials and evaluate the underlying mechanism behind their therapeutic effects. Three databases–PubMed, Web of Science, and ClinicalTrials.gov–were used to review preclinical and clinical experimental treatments for HIE.
Collapse
Affiliation(s)
- You Jeong Park
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
90
|
Ladak Z, Garcia E, Yoon J, Landry T, Armstrong EA, Yager JY, Persad S. Sulforaphane (SFA) protects neuronal cells from oxygen & glucose deprivation (OGD). PLoS One 2021; 16:e0248777. [PMID: 33735260 PMCID: PMC7971874 DOI: 10.1371/journal.pone.0248777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Perinatal brain injury results in neurodevelopmental disabilities (neuroDDs) that include cerebral palsy, autism, attention deficit disorder, epilepsy, learning disabilities and others. Commonly, injury occurs when placental circulation, that is responsible for transporting nutrients and oxygen to the fetus, is compromised. Placental insufficiency (PI) is a reduced supply of blood and oxygen to the fetus and results in a hypoxic-ischemic (HI) environment. A significant HI state in-utero leads to perinatal compromise, characterized by fetal growth restriction and brain injury. Given that over 80% of perinatal brain injuries that result in neuroDDs occur during gestation, prior to birth, preventive approaches are needed to reduce or eliminate the potential for injury and subsequent neuroDDs. Sulforaphane (SFA) derived from cruciferous vegetables such as broccoli sprouts (BrSps) is a phase-II enzyme inducer that acts via cytoplasmic Nrf2 to enhance the production of anti-oxidants in the brain through the glutathione pathway. We have previously shown a profound in vivo neuro-protective effect of BrSps/SFA as a dietary supplement in pregnant rat models of both PI and fetal inflammation. Strong evidence also points to a role for SFA as treatment for various cancers. Paradoxically, then SFA has the ability to enhance cell survival, and with conditions of cancer, enhance cell death. Given our findings of the benefit of SFA/Broccoli Sprouts as a dietary supplement during pregnancy, with improvement to the fetus, it is important to determine the beneficial and toxic dosing range of SFA. We therefore explored, in vitro, the dosing range of SFA for neuronal and glial protection and toxicity in normal and oxygen/glucose deprived (OGD) cell cultures. METHODS OGD simulates, in vitro, the condition experienced by the fetal brain due to PI. We developed a cell culture model of primary cortical neuronal, astrocyte and combined brain cell co-cultures from newborn rodent brains. The cultures were exposed to an OGD environment for various durations of time to determine the LD50 (duration of OGD required for 50% cell death). Using the LD50 as the time point, we evaluated the efficacy of varying doses of SFA for neuroprotective and neurotoxicity effects. Control cultures were exposed to normal media without OGD, and cytotoxicity of varying doses of SFA was also evaluated. Immunofluorescence (IF) and Western blot analysis of cell specific markers were used for culture characterization, and quantification of LD50. Efficacy and toxicity effect of SFA was assessed by IF/high content microscopy and by AlamarBlue viability assay, respectively. RESULTS We determined the LD50 to be 2 hours for neurons, 8 hours for astrocytes, and 10 hours for co-cultures. The protective effect of SFA was noticeable at 2.5 μM and 5 μM for neurons, although it was not significant. There was a significant protective effect of SFA at 2.5 μM (p<0.05) for astrocytes and co-cultures. Significant toxicity ranges were also confirmed in OGD cultures as ≥ 100 μM (p<0.05) for astrocytes, ≥ 50 μM (p<0.01) for co-cultures, but not toxic in neurons; and toxic in control cultures as ≥ 100 μM (p<0.01) for neurons, and ≥ 50 μM (p<0.01) for astrocytes and co-cultures. One Way ANOVA and Dunnett's Multiple Comparison Test were used for statistical analysis. CONCLUSIONS Our results indicate that cell death shows a trend to reduction in neuronal and astrocyte cultures, and is significantly reduced in co-cultures treated with low doses of SFA exposed to OGD. Doses of SFA that were 10 times higher were toxic, not only under conditions of OGD, but in normal control cultures as well. The findings suggest that: 1. SFA shows promise as a preventative agent for fetal ischemic brain injury, and 2. Because the fetus is a rapidly growing organism with profound cell multiplication, dosing parameters must be established to insure safety within efficacious ranges. This study will influence the development of innovative therapies for the prevention of childhood neuroDD.
Collapse
Affiliation(s)
- Zeenat Ladak
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth Garcia
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Yoon
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Takaaki Landry
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Edward A. Armstrong
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y. Yager
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sujata Persad
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
91
|
Li L, Lenahan C, Liao Z, Ke J, Li X, Xue F, Zhang JH. Novel Technologies in Studying Brain Immune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6694566. [PMID: 33791073 PMCID: PMC7997736 DOI: 10.1155/2021/6694566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the immune system, including both the adaptive and innate immune systems, proved to be essential and critical to brain damage and recovery in the pathogenesis of several diseases, opening a new avenue for developing new immunomodulatory therapies and novel treatments for many neurological diseases. However, due to the specificity and structural complexity of the central nervous system (CNS), and the limit of the related technologies, the biology of the immune response in the brain is still poorly understood. Here, we discuss the application of novel technologies in studying the brain immune response, including single-cell RNA analysis, cytometry by time-of-flight, and whole-genome transcriptomic and proteomic analysis. We believe that advancements in technology related to immune research will provide an optimistic future for brain repair.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88003, USA
- Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| | - Zhihui Liao
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jingdong Ke
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Xiuliang Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - John H. Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92324, USA
| |
Collapse
|
92
|
The effect of magnetic guiding BMSCs on hypoxic-ischemic brain damage via magnetic resonance imaging evaluation. Magn Reson Imaging 2021; 79:59-65. [PMID: 33727146 DOI: 10.1016/j.mri.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/16/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a critical disease in pediatric neurosurgery with high mortality rate and frequently leads to neurological sequelae. The role of bone marrow mesenchymal stem cells (BMSCs) in neuroprotection has been recognized. However, using the imaging methods to dynamically assess the neuroprotective effects of BMSCs is rarely reported. In this study, BMSCs were isolated, cultured and identified. Flow cytometry assay had shown the specific surface molecular markers of BMSCs, which indicated that the cultivated cells were purified BMSCs. The results demonstrated that CD29 and CD90 were highly expressed, whilst CD45 and CD11b were negatively expressed. Further, BMSCs were transplanted into Sprague Dawley (SD) rats established HIBD via three ways, including lateral ventricle (LV) injection, tail vein (TV) injection, and LV injection with magnetic guiding. Magnetic resonance imaging (MRI) was used to monitor and assess the treatment effect of super paramagnetic iron oxide (SPIO)-labeled BMSCs. The mean kurtosis (MK) values from diffusion kurtosis imaging (DKI) exhibited the significant differences. It was found that the MK value of HIBD group increased compared with that in Sham. At the meantime, the MK values of LV + HIBD, TV + HIBD and Magnetic+LV + HIBD groups decreased compared with that in HIBD group. Among these, the MK value reduced most significantly in Magnetic+LV + HIBD group. MRI illustrated that the treatment effect of Magnetic+LV + HIBD group was best. In addition, HE staining and TUNEL assay measured the pathological changes and apoptosis of brain tissues, which further verified the MRI results. All data suggest that magnetic guiding BMSCs, a targeted delivery way, is a new strategic theory for HIBD treatment. The DKI technology of MRI can dynamically evaluate the neuroprotective effects of transplanted BMSCs in HIBD.
Collapse
|
93
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|
94
|
Li T, Chu X, Xin D, Ke H, Wang S, Liu D, Chen W, Wang Z. H 2S prevents peripheral immune cell invasion, increasing [Ca 2+]i and excessive phagocytosis following hypoxia-ischemia injury in neonatal mice. Biomed Pharmacother 2021; 135:111207. [PMID: 33460958 DOI: 10.1016/j.biopha.2020.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
We previously reported that L-Cysteine, H2S donor, remarkably attenuated neuroinflammation following hypoxia-ischemia (HI) brain injury in neonatal mice. However, its anti-inflammatory mechanism for HI insult is still unknown. The study focus on the effects of L-Cysteine on immune cell populations, Ca2+ mobilization and phagocytosis after neonatal HI. We found that L-Cysteine treatment skewed CD11b+/CD45low microglia and CD11b+/CD45high brain monocytes/macrophages towards a more anti-inflammatory property 72 h after HI-injured brain. Moreover, L-Cysteine treatment reduced cerebral infiltration of CD4 T cells 7 days following HI insult. Furthermore, CD4 T cell subset analysis revealed that L-Cysteine treatment decreased Th1 and Th2 counts, while increased Th17/Th2 ratio. Moreover, L-Cysteine treatment suppressed LPS-induced cytosolic Ca2+ and LPS-stimulated phagocytosis in primary microglia. The anti-inflammatory effect of L-Cysteine was associated with improving neurobehavioral impairment following HI insult. Our results demonstrate L-Cysteine treatment suppressed the invasion of peripheral immune cells, increasing [Ca2+]i and excessive phagocytosis to improve neurobehavioral deficits following hypoxia-ischemia injury in neonatal mice by H2S release.
Collapse
Affiliation(s)
- Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shuhan Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Wenqiang Chen
- Qilu Hospital, Shandong University, Jinan, Shandong, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
95
|
Zhang B, Ran Y, Wu S, Zhang F, Huang H, Zhu C, Zhang S, Zhang X. Inhibition of Colony Stimulating Factor 1 Receptor Suppresses Neuroinflammation and Neonatal Hypoxic-Ischemic Brain Injury. Front Neurol 2021; 12:607370. [PMID: 33679579 PMCID: PMC7930561 DOI: 10.3389/fneur.2021.607370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major cause of neonatal death or lifetime disability without widely accepted effective pharmacological treatments. It has been shown that the survival of microglia requires colony-stimulating factor 1 receptor (CSF1R) signaling and microglia participate in neonatal HI brain injury. We therefore hypothesize that microglia depletion during a HI insult period could reduce immature brain injury. In this study, CD1 mouse pups were treated with a CSF1R inhibitor (PLX3397, 25 mg/kg/daily) or a vehicle from postnatal day 4 to day 11 (P4-11), and over 90% of total brain microglia were deleted at P9. Unilateral hemisphere HI injury was induced at P9 by permanently ligating the left common carotid arteries and exposing the pups to 10% oxygen for 30 min to produce moderate left hemisphere injury. We found that the PLX3397 treatment reduced HI brain injury by 46.4%, as evaluated by the percentage of brain infarction at 48 h after HI. Furthermore, CSF1R inhibition suppressed the infiltration of neutrophils (69.7% reduction, p = 0.038), macrophages (77.4% reduction, p = 0.009), and T cells (72.9% reduction, p = 0.008) to the brain, the production of cytokines and chemokines (such as CCL12, CCL6, CCL21, CCL22, CCL19, IL7, CD14, and WISP-1), and reduced neuronal apoptosis as indicated by active caspase-3 labeled cells at 48 h after HI (615.20 ± 156.84/mm2 vs. 1,205.00 ± 99.15/mm2, p = 0.013). Our results suggest that CSF1R inhibition suppresses neuroinflammation and neonatal brain injury after acute cerebral hypoxia-ischemia in neonatal mice.
Collapse
Affiliation(s)
- Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Clinical Neuroscience, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Shusheng Zhang
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
96
|
Li T, Li J, Li T, Zhao Y, Ke H, Wang S, Liu D, Wang Z. L-Cysteine Provides Neuroprotection of Hypoxia-Ischemia Injury in Neonatal Mice via a PI3K/Akt-Dependent Mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:517-529. [PMID: 33603342 PMCID: PMC7886094 DOI: 10.2147/dddt.s293025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 01/15/2023]
Abstract
Background Previous work within our laboratory has revealed that hydrogen sulfide (H2S) can serve as neuroprotectant against brain damage caused by hypoxia-ischemia (HI) exposure in neonatal mice. After HI insult, activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has been shown to be implicated in neuro-restoration processes. The goal of the current study was to determine whether the neuroprotective effects of H2S were mediated by the PI3K/Akt signaling pathway. Methods The mouse HI model was built at postnatal day 7 (P7), and the effects of L-Cysteine treatment on acute brain damage (72 h post-HI) and long-term neurological responses (28 days post-HI) were evaluated. Nissl staining and Transmission electron microscopy were used to evaluate the neuronal loss and apoptosis. Immunofluorescence imaging and dihydroethidium staining were utilized to determine glial cell activation and ROS content, respectively. Results Quantitative results revealed that L-Cysteine treatment significantly prevented the acute effects of HI on apoptosis, glial cell activation and oxidative injury as well as the long-term effects upon memory impairment in neonatal mice. This protective effect of L-Cysteine was found to be associated with the phosphorylation of Akt and phosphatase and a tensin homolog deletion on chromosome 10 (PTEN). Following treatment with the PI3K inhibitor, LY294002, the neuroprotective effects of L-Cysteine were attenuated. Conclusion PTEN/PI3K/Akt signaling was involved in mediating the neuroprotective effects of exogenous H2S against HI exposure in neonatal mice.
Collapse
Affiliation(s)
- Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jiangbing Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Tong Li
- Department of Neurosurgery Surgery, Qingdao Municipal Hospital, Shandong Province, People's Republic of China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuanglian Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
97
|
Luo X, Zeng H, Fang C, Zhang BH. N-acetylserotonin Derivative Exerts a Neuroprotective Effect by Inhibiting the NLRP3 Inflammasome and Activating the PI3K/Akt/Nrf2 Pathway in the Model of Hypoxic-Ischemic Brain Damage. Neurochem Res 2021; 46:337-348. [PMID: 33222058 DOI: 10.1007/s11064-020-03169-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the main causes of neonatal disability and death. As a derivative of N-acetylserotonin, N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC) can easily cross the blood-brain barrier and have a long half-life in the brain. In this study, the hypothesis was verified that HIOC plays a neuroprotective role in the HIE model and its potential mechanism was evaluated. Firstly, an HIE rat model was established to deliver HIOC, revealing that it can reduce cerebral infarction volume, cerebral edema, and neuronal apoptosis. The results of immunofluorescence staining, Western blots and RT-PCR further showed that HIOC could inhibit the activation of the NLRP3 inflammasome and the expression of related proteins. Finally, the activation of the phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by HIOC was verified in vitro and in vivo. It was discovered that HIOC could increase the nuclear translocation of Nrf2, and that this induction can be reversed by the PI3K/Akt pathway inhibitor LY294002. In general terms, the neuroprotective effect of HIOC was confirmed in the HIE model, which is related to the activation of the Pi3k/Akt/Nrf2 signal pathway and the inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xing Luo
- Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Honglan Zeng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| | - Bing-Hong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Ziyang Road Wuchang District, No. 99 Jiefang Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
98
|
Fang X, Wang Y, Zhang Y, Li Y, Kwak-Kim J, Wu L. NLRP3 Inflammasome and Its Critical Role in Gynecological Disorders and Obstetrical Complications. Front Immunol 2021; 11:555826. [PMID: 33584639 PMCID: PMC7876052 DOI: 10.3389/fimmu.2020.555826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, intracellular, multimeric protein complexes, are assembled when damage signals stimulate nucleotide-binding oligomerization domain receptors (NLRs). Several inflammasomes have been reported, including the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), NLRP1, NLRP7, ice protease-activating factor (IPAF), absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4). Among these inflammasomes, the NLRP3 inflammasome is the most well-studied in terms of structure and function. Unlike other inflammasomes that can only be activated by a finite number of pathogenic microorganisms, the NLRP3 inflammasome can be activated by the imbalance of the internal environment and a large number of metabolites. The biochemical function of NLRP3 inflammasome is to activate cysteine-requiring aspartate proteinase-1 (caspase-1), which converts pro-IL-1β and pro-IL-18 into their active forms, namely, IL-1β and IL-18, which are then released into the extracellular space. The well-established, classic role of NLRP3 inflammasome has been implicated in many disorders. In this review, we discuss the current understanding of NLRP3 inflammasome and its critical role in gynecological disorders and obstetrical complications.
Collapse
Affiliation(s)
- Xuhui Fang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yanshi Wang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yu Zhang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yelin Li
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States.,Center for Cancer Cell Biology, Immunology and Infection Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Li Wu
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
99
|
Ha JS, Choi HR, Kim IS, Kim EA, Cho SW, Yang SJ. Hypoxia-Induced S100A8 Expression Activates Microglial Inflammation and Promotes Neuronal Apoptosis. Int J Mol Sci 2021; 22:1205. [PMID: 33530496 PMCID: PMC7866104 DOI: 10.3390/ijms22031205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
S100 calcium-binding protein A8 (S100A8), a danger-associated molecular pattern, has emerged as an important mediator of the pro-inflammatory response. Some S100 proteins play a prominent role in neuroinflammatory disorders and increase the secretion of pro-inflammatory cytokines in microglial cells. The aim of this study was to determine whether S100A8 induced neuronal apoptosis during cerebral hypoxia and elucidate its mechanism of action. In this study, we reported that the S100A8 protein expression was increased in mouse neuronal and microglial cells when exposed to hypoxia, and induced neuroinflammation and neuronal apoptosis. S100A8, secreted from neurons under hypoxia, activated the secretion of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) through phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in microglia. Also, phosphorylation of ERK via the TLR4 receptor induced the priming of the NLRP3 inflammasome. The changes in Cyclooxygenase-2 (COX-2) expression, a well-known inflammatory activator, were regulated by the S100A8 expression in microglial cells. Knockdown of S100A8 levels by using shRNA revealed that microglial S100A8 expression activated COX-2 expression, leading to neuronal apoptosis under hypoxia. These results suggested that S100A8 may be an important molecule for bidirectional microglia-neuron communication and a new therapeutic target for neurological disorders caused by microglial inflammation during hypoxia.
Collapse
Affiliation(s)
- Ji Sun Ha
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (J.S.H.); (H.-R.C.)
| | - Hye-Rim Choi
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (J.S.H.); (H.-R.C.)
| | - In Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Uijeongbu 11759, Korea;
| | - Eun-A Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon 35365, Korea; (J.S.H.); (H.-R.C.)
| |
Collapse
|
100
|
Activation of MC1R with BMS-470539 attenuates neuroinflammation via cAMP/PKA/Nurr1 pathway after neonatal hypoxic-ischemic brain injury in rats. J Neuroinflammation 2021; 18:26. [PMID: 33468172 PMCID: PMC7814630 DOI: 10.1186/s12974-021-02078-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of hypoxic-ischemic (HI)-induced brain injury. Activation of melanocortin-1 receptor (MC1R) has been shown to exert anti-inflammatory and neuroprotective effects in several neurological diseases. In the present study, we have explored the role of MC1R activation on neuroinflammation and the potential underlying mechanisms after neonatal hypoxic-ischemic brain injury in rats. Methods A total of 169 post-natal day 10 unsexed rat pups were used. HI was induced by right common carotid artery ligation followed by 2.5 h of hypoxia. BMS-470539, a specific selective MC1R agonist, was administered intranasally at 1 h after HI induction. To elucidate the potential underlying mechanism, MC1R CRISPR KO plasmid or Nurr1 CRISPR KO plasmid was administered via intracerebroventricular injection at 48 h before HI induction. Percent brain infarct area, short- and long-term neurobehavioral tests, Nissl staining, immunofluorescence staining, and Western blot were conducted. Results The expression levels of MC1R and Nurr1 increased over time post-HI. MC1R and Nurr1 were expressed on microglia at 48 h post-HI. Activation of MC1R with BMS-470539 significantly reduced the percent infarct area, brain atrophy, and inflammation, and improved short- and long-term neurological deficits at 48 h and 28 days post-HI. MC1R activation increased the expression of CD206 (a microglial M2 marker) and reduced the expression of MPO. Moreover, activation of MC1R with BMS-470539 significantly increased the expression levels of MC1R, cAMP, p-PKA, and Nurr1, while downregulating the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1β) at 48 h post-HI. However, knockout of MC1R or Nurr1 by specific CRISPR reversed the neuroprotective effects of MC1R activation post-HI. Conclusions Our study demonstrated that activation of MC1R with BMS-470539 attenuated neuroinflammation, and improved neurological deficits after neonatal hypoxic-ischemic brain injury in rats. Such anti-inflammatory and neuroprotective effects were mediated, at least in part, via the cAMP/PKA/Nurr1 signaling pathway. Therefore, MC1R activation might be a promising therapeutic target for infants with hypoxic-ischemic encephalopathy (HIE). Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02078-2.
Collapse
|