51
|
Gu Y, Feng J, Shi J, Xiao G, Zhang W, Shao S, Liu B, Guo H. Global Research Trends on Exosome in Cardiovascular Diseases: A Bibliometric-Based Visual Analysis. Vasc Health Risk Manag 2024; 20:377-402. [PMID: 39188326 PMCID: PMC11346494 DOI: 10.2147/vhrm.s473520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Exosomes in cardiovascular diseases (CVDs) have attracted huge attention with substantial value and potential. Our bibliometrics is based on literature from the field of cardiovascular exosomes over the past 30 years, which has been visualized to display the development process, research hotspots, and cutting-edge trends of clinical practices, mechanisms, and management strategies related to psych cardiology. Methods We selected articles and reviews on exosomes in CVDs from the core collection of Web of Science, and generated visual charts by using CiteSpace and VOSviewer software. Results Our research included 1613 publications. The number of exosome articles in CVD fluctuates slightly, but overall shows an increasing trend. The main research institutions were Tongji University and Nanjing Medical University. The International Journal of Molecular Sciences has the highest publication volume, while the Journal of Cellular and Molecular Medicine has the highest citation count. Among all the authors, Eduardo Marban ranks first in terms of publication volume and H-index. The most common keywords are exosome, extracellular vesicles, and angiogenesis. Conclusion This is a bibliometric study on the research hotspots and trends of exosomes in CVD. Exosome research in the field of cardiovascular medicine is on the rise. Some exosome treatment methods may become the focus of future research.
Collapse
Affiliation(s)
- Yunxiao Gu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiayi Shi
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guanyi Xiao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
52
|
Zhai X, Zhou J, Huang X, Weng J, Lin H, Sun S, Chi J, Meng L. LncRNA GHET1 from bone mesenchymal stem cell-derived exosomes improves doxorubicin-induced pyroptosis of cardiomyocytes by mediating NLRP3. Sci Rep 2024; 14:19078. [PMID: 39154102 PMCID: PMC11330485 DOI: 10.1038/s41598-024-70151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Doxorubicin (DOX) is an important chemotherapeutic agent for the treatment of hematologic tumors and breast carcinoma. However, its clinical application is limited owing to severe cardiotoxicity. Pyroptosis is a form of programmed cell death linked to DOX-induced cardiotoxicity. Bone mesenchymal stem cell-derived exosomes (BMSC-Exos) and endothelial progenitor cells-derived exosomes (EPC-Exos) have a protective role in the myocardium. Here we found that BMSC-Exos could improve DOX-induced cardiotoxicity by inhibiting pyroptosis, but EPC-Exos couldn't. Compared with EPCs-Exo, BMSC-Exo-overexpressing lncRNA GHET1 more effectively suppressed pyroptosis, protecting against DOX-induced cardiotoxicity. Further studies showed that lncRNA GHET1 effectively decreased the expression of Nod-like receptor protein 3 (NLRP3), which plays a vital role in pyroptosis by binding to IGF2 mRNA-binding protein 1 (IGF2BP1), a non-catalytic posttranscriptional enhancer of NLRP3 mRNA. In summary, lncRNA GHET1 released by BMSC-Exo ameliorated DOX-induced pyroptosis by targeting IGF2BP1 to reduce posttranscriptional stabilization of NLRP3.
Collapse
Affiliation(s)
- Xiaoya Zhai
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jingfan Weng
- Department of Cardiac Rehabilitation, Zhejiang Hospital, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Shimin Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
53
|
Qin X, Liu J. Nanoformulations for the diagnosis and treatment of metabolic dysfunction-associated steatohepatitis. Acta Biomater 2024; 184:37-53. [PMID: 38879104 DOI: 10.1016/j.actbio.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.
Collapse
Affiliation(s)
- Xueying Qin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jingjing Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China.
| |
Collapse
|
54
|
Hollinshead FK, Hanlon DW, Hou W, Tasma Z, Damani T, Bouma GJ, Murtazina DA, Chamley L. Use of equine embryo -derived mesenchymal stromal cells and their extracellular vesicles as a treatment for persistent breeding-induced endometritis in susceptible mares. J Equine Vet Sci 2024; 139:105079. [PMID: 38718968 DOI: 10.1016/j.jevs.2024.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Persistent breeding induced endometritis (PBIE) is a significant cause of infertility in mares. The development of a safe, universal, readily available therapeutic to manage PBIE and facilitate an optimal uterine environment for embryo development may improve pregnancy rates in susceptible mares. Mesenchymal stromal cells (MSCs) are being used increasingly as a therapeutic mediator for inflammatory conditions such as endometritis, and early gestational tissue provides a unique source of multipotent stem cells for creating MSCs. Extracellular vesicles (EVs) are mediators of cell communication produced by many different cell types. This study utilized embryo-derived mesenchymal stromal cells (EDMSCs) and their EVs as a potential therapeutic modality for PBIE in two groups: a) PBIE-susceptible mares challenged with pooled dead sperm (n=5); and b) client-owned mares diagnosed as susceptible to PBIE (n=37 mares and 40 estrous cycles). Mares pre-treated with intrauterine EDMSCs or their EVs resulted in a significant reduction in the accumulation of intrauterine fluid post-breeding. Nine of 19 (47 %) mares treated with EDMSCs prior to natural breeding and 13 of 20 (65 %) mares treated with EDMSC derived EVs were pregnant after the first cycle and 12 of 18 (67 %) mares treated with EDMSCs, and 15 of 19 (79 %) mares treated with EVs conceived by the end of the breeding season. These preliminary clinical studies are the first reports of the use of EDMSCs or their EVs as a potential intrauterine therapy for the management of PBIE susceptible mares.
Collapse
Affiliation(s)
- F K Hollinshead
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins CO 80521, USA.
| | - D W Hanlon
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins CO 80521, USA
| | - W Hou
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| | - Z Tasma
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| | - T Damani
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| | - G J Bouma
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, 300 Portage Street, Kalamazoo, MI, 49007, USA
| | - D A Murtazina
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1350 Centre Avenue, Fort Collins, 80521, USA
| | - L Chamley
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| |
Collapse
|
55
|
Gabr MM, El-Halawani SM, Refaie AF, Khater SM, Ismail AM, Karras MS, Magar RW, Sayed SE, Kloc M, Uosef A, Sabek OM, Ghoneim MA. Modulation of naïve mesenchymal stromal cells by extracellular vesicles derived from insulin-producing cells: an in vitro study. Sci Rep 2024; 14:17844. [PMID: 39090166 PMCID: PMC11294623 DOI: 10.1038/s41598-024-68104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
This study was to determine whether extracellular vesicles (EVs) derived from insulin-producing cells (IPCs) can modulate naïve mesenchymal stromal cells (MSCs) to become insulin-secreting. MSCs were isolated from human adipose tissue. The cells were then differentiated to generate IPCs by achemical-based induction protocol. EVs were retrieved from the conditioned media of undifferentiated (naïve) MSCs (uneducated EVs) and from that of MSC-derived IPCs (educated EVs) by sequential ultracentrifugation. The obtained EVs were co-cultured with naïve MSCs.The cocultured cells were evaluated by immunofluorescence, flow cytometry, C-peptide nanogold silver-enhanced immunostaining, relative gene expression and their response to a glucose challenge.Immunostaining for naïve MSCs cocultured with educated EVs was positive for insulin, C-peptide, and GAD65. By flow cytometry, the median percentages of insulin-andC-peptide-positive cells were 16.1% and 14.2% respectively. C-peptide nanogoldimmunostaining providedevidence for the intrinsic synthesis of C-peptide. These cells released increasing amounts of insulin and C-peptide in response to increasing glucose concentrations. Gene expression of relevant pancreatic endocrine genes, except for insulin, was modest. In contrast, the results of naïve MSCs co-cultured with uneducated exosomes were negative for insulin, C-peptide, and GAD65. These findings suggest that this approach may overcome the limitations of cell therapy.
Collapse
Affiliation(s)
- Mahmoud M Gabr
- Biotechnology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Mary S Karras
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Raghda W Magar
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Shorouk El Sayed
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Omaima M Sabek
- The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | |
Collapse
|
56
|
Xu X, Liu R, Li Y, Zhang C, Guo C, Zhu J, Dong J, Ouyang L, Momeni MR. Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol 2024; 61:5974-5991. [PMID: 38261255 DOI: 10.1007/s12035-024-03954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Spinal cord injury (SCI) is an unfortunate experience that may generate extensive sensory and motor disabilities due to the destruction and passing of nerve cells. MicroRNAs are small RNA molecules that do not code for proteins but instead serve to regulate protein synthesis by targeting messenger RNA's expression. After SCI, secondary damage like apoptosis, oxidative stress, inflammation, and autophagy occurs, and differentially expressed microRNAs show a function in these procedures. Almost all animal and plant cells release exosomes, which are sophisticated formations of lipid membranes. These exosomes have the capacity to deliver significant materials, such as proteins, RNAs and lipids, to cells in need, regulating their functions and serving as a way of communication. This new method offers a fresh approach to treating spinal cord injury. Obviously, the exosome has the benefit of conveying the transported material across performing regulatory activities and the blood-brain barrier. Among the exosome cargoes, microRNAs, which modulate their mRNA targets, show considerable promise in the pathogenic diagnosis, process, and therapy of SCI. Herein, we describe the roles of microRNAs in SCI. Furthermore, we emphasize the importance of exosomal microRNAs in this disease.
Collapse
Affiliation(s)
- Xiangyang Xu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Ruyin Liu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Yunpeng Li
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Cheng Zhang
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Chuanghao Guo
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiong Zhu
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiaan Dong
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Liyun Ouyang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11700, Malaysia.
| | | |
Collapse
|
57
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
58
|
Cui Z, Zhang L, Hu G, Zhang F. Extracellular Vesicles in Cardiovascular Pathophysiology: Communications, Biomarkers, and Therapeutic Potential. Cardiovasc Toxicol 2024; 24:711-726. [PMID: 38844744 DOI: 10.1007/s12012-024-09875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/25/2024] [Indexed: 08/07/2024]
Abstract
Extracellular vesicles (EVs) are diverse, membrane-bound vesicles released from cells into the extracellular environment. They originate from either endosomes or the cell membrane and typically include exosomes and microvesicles. These EVs serve as crucial mediators of intercellular communication, carrying a variety of contents such as nucleic acids, proteins, and lipids, which regulate the physiological and pathological processes of target cells. Moreover, the molecular cargo of EVs can reflect critical information about the originating cells, making them potential biomarkers for the diagnosis and prognosis of diseases. Over the past decade, the role of EVs as key communicators between cell types in cardiovascular physiology and pathology has gained increasing recognition. EVs from different cellular sources, or from the same source under different cellular conditions, can have distinct impacts on the management, diagnosis, and prognosis of cardiovascular diseases. Furthermore, it is essential to consider the influence of cardiovascular-derived EVs on the metabolism of peripheral organs. This review aims to summarize recent advancements in the field of cardiovascular research with respect to the roles and implications of EVs. Our goal is to provide new insights and directions for the early prevention and treatment of cardiovascular diseases, with an emphasis on the therapeutic potential and diagnostic value of EVs.
Collapse
Affiliation(s)
- Zhe Cui
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Guangyu Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
59
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
60
|
Santos SIP, Ortiz-Peñuela SJ, de Paula Filho A, Tomiyama ALMR, Coser LDO, da Silveira JC, Martins DDS, Ciena AP, de Oliveira ALR, Ambrósio CE. Oligodendrocyte precursor cell-derived exosomes combined with cell therapy promote clinical recovery by immunomodulation and gliosis attenuation. Front Cell Neurosci 2024; 18:1413843. [PMID: 39109218 PMCID: PMC11301646 DOI: 10.3389/fncel.2024.1413843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 01/22/2025] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system characterized by autoimmune destruction of the myelin sheath, leading to irreversible and progressive functional deficits in patients. Pre-clinical studies involving the use of neural stem cells (NSCs) have already demonstrated their potential in neuronal regeneration and remyelination. However, the exclusive application of cell therapy has not proved sufficient to achieve satisfactory therapeutic levels. Recognizing these limitations, there is a need to combine cell therapy with other adjuvant protocols. In this context, extracellular vesicles (EVs) can contribute to intercellular communication, stimulating the production of proteins and lipids associated with remyelination and providing trophic support to axons. This study aimed to evaluate the therapeutic efficacy of the combination of NSCs and EVs derived from oligodendrocyte precursor cells (OPCs) in an animal model of multiple sclerosis. OPCs were differentiated from NSCs and had their identity confirmed by gene expression analysis and immunocytochemistry. Exosomes were isolated by differential ultracentrifugation and characterized by Western, transmission electron microscopy and nanoparticle tracking analysis. Experimental therapy of C57BL/6 mice induced with experimental autoimmune encephalomyelitis (EAE) were grouped in control, treated with NSCs, treated with OPC-derived EVs and treated with a combination of both. The treatments were evaluated clinically using scores and body weight, microscopically using immunohistochemistry and immunological profile by flow cytometry. The animals showed significant clinical improvement and weight gain with the treatments. However, only the treatments involving EVs led to immune modulation, changing the profile from Th1 to Th2 lymphocytes. Fifteen days after treatment revealed a reduction in reactive microgliosis and astrogliosis in the groups treated with EVs. However, there was no reduction in demyelination. The results indicate the potential therapeutic use of OPC-derived EVs to attenuate inflammation and promote recovery in EAE, especially when combined with cell therapy.
Collapse
Affiliation(s)
- Sarah Ingrid Pinto Santos
- Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), São Paulo, Brazil
| | | | - Alessandro de Paula Filho
- Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), São Paulo, Brazil
| | | | | | | | | | | | | | - Carlos Eduardo Ambrósio
- Faculty of Animal Science and Food Engineering, University of São Paulo (FZEA/USP), São Paulo, Brazil
| |
Collapse
|
61
|
Everts PA, Lana JF, Alexander RW, Dallo I, Kon E, Ambach MA, van Zundert A, Podesta L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int J Mol Sci 2024; 25:7914. [PMID: 39063156 PMCID: PMC11277244 DOI: 10.3390/ijms25147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, A Non-Profit Organization, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic & Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative and Wound Healing, Hamilton, MT 59840, USA;
- Department of Surgery & Maxillofacial Surgery, School of Medicine & Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ignacio Dallo
- Unit of Biological Therapies and MSK Interventionism, Department of Orthopaedic Surgery and Sports Medicine, Sport Me Medical Center, 41013 Seville, Spain;
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mary A. Ambach
- BioEvolve, San Diego Orthobiologics and Sports Center, San Diego, CA 92024, USA
| | - André van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane and The University of Queensland, Brisbane 4072, Australia;
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Physical Medicine & Rehabilitation Orlando College of Osteopathic Medicine, Orlando, FL 32806, USA
| |
Collapse
|
62
|
Zhao W, Li K, Li L, Wang R, Lei Y, Yang H, Sun L. Mesenchymal Stem Cell-Derived Exosomes as Drug Delivery Vehicles in Disease Therapy. Int J Mol Sci 2024; 25:7715. [PMID: 39062956 PMCID: PMC11277139 DOI: 10.3390/ijms25147715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Exosomes are small vesicles containing proteins, nucleic acids, and biological lipids, which are responsible for intercellular communication. Studies have shown that exosomes can be utilized as effective drug delivery vehicles to accurately deliver therapeutic substances to target tissues, enhancing therapeutic effects and reducing side effects. Mesenchymal stem cells (MSCs) are a class of stem cells widely used for tissue engineering, regenerative medicine, and immunotherapy. Exosomes derived from MSCs have special immunomodulatory functions, low immunogenicity, the ability to penetrate tumor tissues, and high yield, which are expected to be engineered into efficient drug delivery systems. Despite the promising promise of MSC-derived exosomes, exploring their optimal preparation methods, drug-loading modalities, and therapeutic potential remains challenging. Therefore, this article reviews the related characteristics, preparation methods, application, and potential risks of MSC-derived exosomes as drug delivery systems in order to find potential therapeutic breakthroughs.
Collapse
Affiliation(s)
- Wenzhe Zhao
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Kaixuan Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Liangbo Li
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Ruichen Wang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| | - Hui Yang
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
| | - Leming Sun
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi’an 710072, China; (W.Z.); (K.L.); (L.L.); (R.W.); (Y.L.)
- Dongguan Sanhang Innovation Institute, Dongguan 523808, China
| |
Collapse
|
63
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
64
|
Choudhery MS, Arif T, Mahmood R, Harris DT. Stem Cell-Based Acellular Therapy: Insight into Biogenesis, Bioengineering and Therapeutic Applications of Exosomes. Biomolecules 2024; 14:792. [PMID: 39062506 PMCID: PMC11275160 DOI: 10.3390/biom14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The vast regenerative potential of stem cells has laid the foundation for stem cell-based therapies. However, certain challenges limit the application of cell-based therapies. The therapeutic use of cell-free therapy can avoid limitations associated with cell-based therapies. Acellular stem cell-based therapies rely on the use of biological factors released by stem cells, including growth factors and extracellular vesicles such as exosomes. Due to their comparable regenerative potential, acellular therapies may provide a feasible and scalable alternative to stem cell-based therapies. Exosomes are small vesicles secreted by various types of cells, including stem cells. Exosomes contain parent cell-derived nucleic acids, proteins, lipids, and other bioactive molecules. They play an important role in intra-cellular communication and influence the biological characteristics of cells. Exosomes inherit the properties of their parent cells; therefore, stem cell-derived exosomes are of particular interest for applications of regenerative medicine. In comparison to stem cell-based therapy, exosome therapy offers several benefits, such as easy transport and storage, no risk of immunological rejection, and few ethical dilemmas. Unlike stem cells, exosomes can be lyophilized and stored off-the-shelf, making acellular therapies standardized and more accessible while reducing overall treatment costs. Exosome-based acellular treatments are therefore readily available for applications in patients at the time of care. The current review discusses the use of exosomes as an acellular therapy. The review explores the molecular mechanism of exosome biogenesis, various methods for exosome isolation, and characterization. In addition, the latest advancements in bioengineering techniques to enhance exosome potential for acellular therapies have been discussed. The challenges in the use of exosomes as well as their diverse applications for the diagnosis and treatment of diseases have been reviewed in detail.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
65
|
Margiana R, Pilehvar Y, Amalia FL, Lestari SW, Supardi S, I'tishom R. Mesenchymal stem cell secretome: A promising therapeutic strategy for erectile dysfunction? Asian J Urol 2024; 11:391-405. [PMID: 39139521 PMCID: PMC11318444 DOI: 10.1016/j.ajur.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/06/2023] [Indexed: 08/15/2024] Open
Abstract
Objective The secretome, comprising bioactive chemicals released by mesenchymal stem cells (MSCs), holds therapeutic promise in regenerative medicine. This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology, particularly for treating erectile dysfunction (ED), and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales, mechanisms, preclinical investigations, and therapeutic potential of the MSC secretome in this context. Methods The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED. Subsequently, it delved into the existing knowledge regarding the MSC secretome, exploring its therapeutic potential. The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome. Results Preclinical research indicated the effectiveness of the MSC secretome in treating various models of ED. However, the precise mechanisms of its therapeutic efficacy remain unknown. The review provided insights into the anti-inflammatory, pro-angiogenic, and trophic properties of the MSC secretome. It also discussed potential advantages, such as avoiding issues related to cellular therapy, including immunogenicity, neoplastic transformation, and cost. Conclusion This review underscores the significant therapeutic potential of the MSC secretome in regenerative urology, particularly for ED treatment. While preclinical studies demonstrate promising outcomes, further research is essential to elucidate the specific mechanisms underlying the therapeutic efficacy before clinical application. The review concludes by discussing future perspectives and highlighting the challenges associated with the clinical translation of the MSC secretome in regenerative urology.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Fatkhurrohmah L. Amalia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvia W. Lestari
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Reny I'tishom
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga Surabaya, Indonesia
| |
Collapse
|
66
|
Nowicka G. Extracellular vesicles in the diagnosis and treatment of cardiovascular disease. What's behind? What do we need to implement them into clinical practice? Int J Biochem Cell Biol 2024; 172:106600. [PMID: 38806094 DOI: 10.1016/j.biocel.2024.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Extracellular vesicles (EVs) represent a heterogeneous group of particles secreted by cells to transfer information from the cell of origin to recipient cells by carrying various bioactive molecules. Numerous PubMed records on EVs reveal a burgeoning interest in EV-research, with a notable subset focusing on the potential diagnostic and therapeutic applications of EVs for diverse diseases, including cardiovascular disease (CVD), currently a globally leading cause of mortality. However, this great diagnostic and clinical potential has not yet been translated into clinical practice. No EV-based biomarkers and EV-therapeutic products have been approved, and EV-based therapy for CVD has not yet been shown to be effective. Therefore, this paper aims to scrutinize available data and identify what is needed to translate the underlying potential of EVs into specific EV-biomarkers and EV-therapeutic tools applicable in clinical practice.
Collapse
Affiliation(s)
- Grażyna Nowicka
- Medical University of Warsaw, Department of Biochemistry and Pharmacogenomics, Banacha 1, Warszawa 02-091, Poland.
| |
Collapse
|
67
|
Nishimaki K, Kaibuchi N, Washio K, Yamato M. Application of mesenchymal stromal cell sheets to prevent medication-related osteonecrosis of the jaw with titanium implants in rats. Odontology 2024; 112:938-949. [PMID: 38367068 DOI: 10.1007/s10266-024-00900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is an intractable adverse event. Dental implants are one of the triggering factors of MRONJ, and implant therapy with low MRONJ risk is required. This study aimed to investigate a rat model of MRONJ induced by extraoral placement of titanium materials and the use of mesenchymal stromal cell (MSCs) sheets to prevent MRONJ. Eight-week-old male rats were administered zoledronate and dexamethasone thrice weekly until killing. A week after drug initiation, a titanium screw and a plate were placed on the left buccal side of the mandible. Allogeneic bone marrow-derived MSC sheets were co-grafted with the titanium plates in the MSC sheet ( +) group. Six weeks after titanium placement, the rats were killed, and their excised mandibular bones were subjected to micro-computed tomography (CT) analysis. Histological analysis was performed after the titanium implants were removed. Empty lacunae visualized on hematoxylin and eosin staining were used as evidence of bone necrosis. Bone necrosis was reduced in the MSC sheet ( +) group. Tartrate-resistant acid phosphatase (TRAP) staining revealed a decreased number of TRAP-positive cells in areas with a large number of empty lacunae in the MSC sheet (-) group. Micro-CT analyses demonstrated that the bone volume fraction (BV/TV) was not significantly different between the MSC sheet (-) and ( +) groups. We conclude that MRONJ can be triggered by a titanium placement in rats, and grafting of allogeneic MSC sheets has the potential to prevent MRONJ.
Collapse
Affiliation(s)
- Kazuhiro Nishimaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Nobuyuki Kaibuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
68
|
Ebrahim N, Al Saihati HA, Alali Z, Aleniz FQ, Mahmoud SYM, Badr OA, Dessouky AA, Mostafa O, Hussien NI, Farid AS, El-Sherbiny M, Salim RF, Forsyth NR, Ali FEM, Alsabeelah NF. Exploring the molecular mechanisms of MSC-derived exosomes in Alzheimer's disease: Autophagy, insulin and the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother 2024; 176:116836. [PMID: 38850660 DOI: 10.1016/j.biopha.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurological condition characterized by cognitive decline, motor coordination impairment, and amyloid plaque accumulation. The underlying molecular mechanisms involve oxidative stress, inflammation, and neuronal degeneration. This study aimed to investigate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-exos) on AD and explore the molecular pathways involved, including the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation. To assess the potential of MSC-exos for the treatment of AD, rats were treated with AlCl3 (17 mg/kg/once/day) for 8 weeks, followed by the administration of an autophagy activator (rapamycin), or MSC-exos with or without an autophagy inhibitor (3-methyladenin; 3-MA+ chloroquine) for 4 weeks. Memory impairment was tested, and brain tissues were collected for gene expression analyses, western blotting, histological studies, immunohistochemistry, and transmission electron microscopy. Remarkably, the administration of MSC-exos improved memory performance in AD rats and reduced the accumulation of amyloid-beta (Aβ) plaques and tau phosphorylation. Furthermore, MSC-exos promoted neurogenesis, enhanced synaptic function, and mitigated astrogliosis in AD brain tissues. These beneficial effects were associated with the modulation of autophagy and the PI3K/Akt/mTOR signalling pathway, as well as the inhibition of neuroinflammation. Additionally, MSC-exos were found to regulate specific microRNAs, including miRNA-21, miRNA-155, miRNA-17-5p, and miRNA-126-3p, further supporting their therapeutic potential. Histopathological and bioinformatic analyses confirmed these findings. This study provides compelling evidence that MSC-exos hold promise as a potential therapeutic approach for AD. By modulating the PI3K/Akt/mTOR axis, autophagy, and neuroinflammation, MSC-exos have the potential to improve memory, reduce Aβ accumulation, enhance neurogenesis, and mitigate astrogliosis. These findings shed light on the therapeutic potential of MSC-exos and highlight their role in combating AD.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt; Stem Cell Unit, Faculty of Medicine, Benha University, Egypt; Benha National University, Faculty of Medicine. student at Keele University, UK; Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Hajer A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia; Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt.
| | - Zahraa Alali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, P.O Box 1803, Hafr Al Batin 31991, Saudi Arabia
| | - Faris Q Aleniz
- Department of Immunology, Collage of Applied Science, Alkharj
| | - Sabry Younis Mohamed Mahmoud
- Biology Department, College of Sciences, University of Hafr Al Batin, P. O. Box 1803, Hafar Al Batin 31991, Saudi Arabia. Agricultural Microbiology Department, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Ola Mostafa
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt
| | - Noha I Hussien
- Department of Physiology, Faculty of Medicine, Benha University, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia 13736, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Rabab F Salim
- Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Benha University, Egypt
| | - Nicholas Robert Forsyth
- School of Pharmacy and Bioengineering, Keele University. Vice Principals' Office, University of Aberdeen, Kings College, Aberdeen, AB24 3FX, UK
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nimer F Alsabeelah
- Assistant Professor of Pharmacology Pharmacy Practice Department, Pharmacy College University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi Arabia
| |
Collapse
|
69
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
70
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
71
|
Teratani T, Fujimoto Y, Sakuma Y, Kasahara N, Maeda M, Miki A, Lefor AK, Sata N, Kitayama J. Improved Preservation of Rat Small Intestine Transplantation Graft by Introduction of Mesenchymal Stem Cell-Secreted Fractions. Transpl Int 2024; 37:11336. [PMID: 38962471 PMCID: PMC11219629 DOI: 10.3389/ti.2024.11336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Yasuhiro Fujimoto
- Transplantation Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Naoya Kasahara
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Maeda
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
72
|
Samavati SF, Yarani R, Kiani S, HoseinKhani Z, Mehrabi M, Levitte S, Primavera R, Chetty S, Thakor AS, Mansouri K. Therapeutic potential of exosomes derived from mesenchymal stem cells for treatment of systemic lupus erythematosus. J Inflamm (Lond) 2024; 21:20. [PMID: 38867277 PMCID: PMC11170788 DOI: 10.1186/s12950-024-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Autoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects. Recently, the therapeutic potential of exosomes has been extensively studied, and novel evidence has been demonstrated. A direct relationship between exosome contents and their ability to regulate the immune system, inflammation, and angiogenesis. The unique properties of extracellular vesicles, such as biomolecule transportation, biodegradability, and stability, make exosomes a promising treatment candidate for autoimmune diseases, particularly SLE. This review summarizes the structural features of exosomes, the isolation/purification/quantification method, their origin, effect, immune regulation, a critical consideration for selecting an appropriate source, and their therapeutic mechanisms in SLE.
Collapse
Affiliation(s)
- Shima Famil Samavati
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Sara Kiani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh HoseinKhani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Steven Levitte
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
73
|
Jang E, Yu H, Kim E, Hwang J, Yoo J, Choi J, Jeong HS, Jang S. The Therapeutic Effects of Blueberry-Treated Stem Cell-Derived Extracellular Vesicles in Ischemic Stroke. Int J Mol Sci 2024; 25:6362. [PMID: 38928069 PMCID: PMC11203670 DOI: 10.3390/ijms25126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
An ischemic stroke, one of the leading causes of morbidity and mortality, is caused by ischemia and hemorrhage resulting in impeded blood supply to the brain. According to many studies, blueberries have been shown to have a therapeutic effect in a variety of diseases. Therefore, in this study, we investigated whether blueberry-treated mesenchymal stem cell (MSC)-derived extracellular vesicles (B-EVs) have therapeutic effects in in vitro and in vivo stroke models. We isolated the extracellular vesicles using cryo-TEM and characterized the particles and concentrations using NTA. MSC-derived extracellular vesicles (A-EVs) and B-EVs were round with a lipid bilayer structure and a diameter of ~150 nm. In addition, A-EVs and B-EVs were shown to affect angiogenesis, cell cycle, differentiation, DNA repair, inflammation, and neurogenesis following KEGG pathway and GO analyses. We investigated the protective effects of A-EVs and B-EVs against neuronal cell death in oxygen-glucose deprivation (OGD) cells and a middle cerebral artery occlusion (MCAo) animal model. The results showed that the cell viability was increased with EV treatment in HT22 cells. In the animal, the size of the cerebral infarction was decreased, and the behavioral assessment was improved with EV injections. The levels of NeuN and neurofilament heavy chain (NFH)-positive cells were also increased with EV treatment yet decreased in the MCAo group. In addition, the number of apoptotic cells was decreased with EV treatment compared with ischemic animals following TUNEL and Bax/Bcl-2 staining. These data suggested that EVs, especially B-EVs, had a therapeutic effect and could reduce apoptotic cell death after ischemic injury.
Collapse
Affiliation(s)
- Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Hee Yu
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-gun 58141, Republic of Korea
| | - Eungpil Kim
- Infrastructure Project Organization for Global Industrialization of Vaccine, Sejong-si 30121, Republic of Korea;
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-gun 58128, Republic of Korea; (E.J.); (H.Y.); (J.H.); (J.C.)
| |
Collapse
|
74
|
Nguyen VVT, Welsh JA, Tertel T, Choo A, van de Wakker SI, Defourny KAY, Giebel B, Vader P, Padmanabhan J, Lim SK, Nolte‐'t Hoen ENM, Verhaar MC, Bostancioglu RB, Zickler AM, Hong JM, Jones JC, EL Andaloussi S, van Balkom BWM, Görgens A. Inter-laboratory multiplex bead-based surface protein profiling of MSC-derived EV preparations identifies MSC-EV surface marker signatures. J Extracell Vesicles 2024; 13:e12463. [PMID: 38868945 PMCID: PMC11170075 DOI: 10.1002/jev2.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.
Collapse
Affiliation(s)
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- The Measuring Stick, LtdPeterboroughUK
- Advanced Technology GroupBecton DickinsonSan JoseCaliforniaUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Andre Choo
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Simonides I. van de Wakker
- Department of Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Kyra A. Y. Defourny
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Pieter Vader
- Department of Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Jayanthi Padmanabhan
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sai Kiang Lim
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Esther N. M. Nolte‐'t Hoen
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | - R. Beklem Bostancioglu
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Antje M. Zickler
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| | - Jia Mei Hong
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| | | | - André Görgens
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| |
Collapse
|
75
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
76
|
Padinharayil H, George A. Small extracellular vesicles: Multi-functional aspects in non-small cell lung carcinoma. Crit Rev Oncol Hematol 2024; 198:104341. [PMID: 38575042 DOI: 10.1016/j.critrevonc.2024.104341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
Extracellular vesicles (EVs) impact normal and pathological cellular signaling through bidirectional trafficking. Exosomes, a subset of EVs possess biomolecules including proteins, lipids, DNA fragments and various RNA species reflecting a speculum of their parent cells. The involvement of exosomes in bidirectional communication and their biological constituents substantiate its role in regulating both physiology and pathology, including multiple cancers. Non-small cell lung cancer (NSCLC) is the most common lung cancers (85%) with high incidence, mortality and reduced overall survival. Lack of efficient early diagnostic and therapeutic tools hurdles the management of NSCLC. Interestingly, the exosomes from body fluids similarity with parent cells or tissue offers a potential future multicomponent tool for the early diagnosis of NSCLC. The structural twinning of exosomes with a cell/tissue and the competitive tumor derived exosomes in tumor microenvironment (TME) promotes the unpinning horizons of exosomes as a drug delivery, vaccine, and therapeutic agent. Exosomes in clinical point of view assist to trace: acquired resistance caused by various therapeutic agents, early diagnosis, progression, and surveillance. In an integrated approach, EV biomarkers offer potential cutting-edge techniques for the detection and diagnosis of cancer, though the purification, characterization, and biomarker identification processes for the translational research regarding EVs need further optimization.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur-05, Kerala, India.
| |
Collapse
|
77
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
78
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
79
|
Wysor SK, Marcus RK. In-line coupling of capillary-channeled polymer fiber columns with optical absorbance and multi-angle light scattering detection for the isolation and characterization of exosomes. Anal Bioanal Chem 2024; 416:3325-3333. [PMID: 38592443 PMCID: PMC11106132 DOI: 10.1007/s00216-024-05283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Extracellular vesicles (EVs) have garnered much interest due to their fundamental role in intracellular communication and their potential utility in clinical diagnostics and as biotherapeutic vectors. Of particular relevance is the subset of EVs referred to as exosomes, ranging in size from 30 to 150 nm, which contain incredible amounts of information about their cell of origin, which can be used to track the progress of disease. As a complementary action, exosomes can be engineered with therapeutic cargo to selectively target diseases. At present, the lack of highly efficient methods of isolation/purification of exosomes from diverse biofluids, plants, and cell cultures is a major bottleneck in the fundamental biochemistry, clinical analysis, and therapeutic applications. Equally impactful, the lack of effective in-line means of detection/characterization of isolate populations, including concentration and sizing, is limiting in the applications. The method presented here couples hydrophobic interaction chromatography (HIC) performed on polyester capillary-channeled polymer (C-CP) fiber columns followed by in-line optical absorbance and multi-angle light scattering (MALS) detection for the isolation and characterization of EVs, in this case present in the supernatant of Chinese hamster ovary (CHO) cell cultures. Excellent correlation was observed between the determined particle concentrations for the two detection methods. C-CP fiber columns provide a low-cost platform (< $5 per column) for the isolation of exosomes in a 15-min workflow, with complementary absorbance and MALS detection providing very high-quality particle concentration and sizing information.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634-0973, USA.
| |
Collapse
|
80
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
81
|
Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, Ontoria-Oviedo I, Peiró-Molina E, Tarazona S, Salguero P, Ruiz-Saurí A, Selva-Roldán M, Vives-Sanchez R, Sepúlveda P. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction. Inflamm Regen 2024; 44:25. [PMID: 38807194 PMCID: PMC11134765 DOI: 10.1186/s41232-024-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) derived from dental pulp mesenchymal stem cells (DP-MSCs) are a promising therapeutic option for the treatment of myocardial ischemia. The aim of this study is to determine whether MSC-EVs could promote a pro-resolving environment in the heart by modulating macrophage populations. METHODS EVs derived from three independent biopsies of DP-MSCs (MSC-EVs) were isolated by tangential flow-filtration and size exclusion chromatography and were characterized by omics analyses. Biological processes associated with these molecules were analyzed using String and GeneCodis platforms. The immunomodulatory capacity of MSC-EVs to polarize macrophages towards a pro-resolving or M2-like phenotype was assessed by evaluating surface markers, cytokine production, and efferocytosis. The therapeutic potential of MSC-EVs was evaluated in an acute myocardial infarction (AMI) model in nude rats. Infarct size and the distribution of macrophage populations in the infarct area were evaluated 7 and 21 days after intramyocardial injection of MSC-EVs. RESULTS Lipidomic, proteomic, and miRNA-seq analysis of MSC-EVs revealed their association with biological processes involved in tissue regeneration and regulation of the immune system, among others. MSC-EVs promoted the differentiation of pro-inflammatory macrophages towards a pro-resolving phenotype, as evidenced by increased expression of M2 markers and decreased secretion of pro-inflammatory cytokines. Administration of MSC-EVs in rats with AMI limited the extent of the infarcted area at 7 and 21 days post-infarction. MSC-EV treatment also reduced the number of pro-inflammatory macrophages within the infarct area, promoting the resolution of inflammation. CONCLUSION EVs derived from DP-MSCs exhibited similar characteristics at the omics level irrespective of the biopsy from which they were derived. All MSC-EVs exerted effective pro-resolving responses in a rat model of AMI, indicating their potential as therapeutic agents for the treatment of inflammation associated with AMI.
Collapse
Affiliation(s)
- Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Lusine Hakobyan
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pedro Salguero
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Amparo Ruiz-Saurí
- Department of Pathology, University of Valencia, Valencia, 46010, Spain
| | - Marta Selva-Roldán
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Rosa Vives-Sanchez
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain.
- Department of Pathology, University of Valencia, Valencia, 46010, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), III Institute of Health, Madrid, Carlos, Spain.
| |
Collapse
|
82
|
Zhang B, Lai RC, Sim WK, Tan TT, Lim SK. An Assessment of Administration Route on MSC-sEV Therapeutic Efficacy. Biomolecules 2024; 14:622. [PMID: 38927026 PMCID: PMC11202284 DOI: 10.3390/biom14060622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Mesenchymal stem/stromal cell-derived small extracellular vesicles (MSC-sEVs) are promising therapeutic agents. In this study, we investigated how the administration route of MSC-sEVs affects their therapeutic efficacy in a mouse model of bleomycin (BLM)-induced skin scleroderma (SSc). We evaluated the impact of topical (TOP), subcutaneous (SC), and intraperitoneal (IP) administration of MSC-sEVs on dermal fibrosis, collagen density, and thickness. All three routes of administration significantly reduced BLM-induced fibrosis in the skin, as determined by Masson's Trichrome staining. However, only TOP administration reduced BLM-induced dermal collagen density, with no effect on dermal thickness observed for all administration routes. Moreover, SC, but not TOP or IP administration, increased anti-inflammatory profibrotic CD163+ M2 macrophages. These findings indicate that the administration route influences the therapeutic efficacy of MSC-sEVs in alleviating dermal fibrosis, with TOP administration being the most effective, and this efficacy is not mediated by M2 macrophages. Since both TOP and SC administration target the skin, the difference in their efficacy likely stems from variations in MSC-sEV delivery in the skin. Fluorescence-labelled TOP, but not SC MSC-sEVs when applied to skin explant cultures, localized in the stratum corneum. Hence, the superior efficacy of TOP over SC MSC-sEVs could be attributed to this localization. A comparison of the proteomes of stratum corneum and MSC-sEVs revealed the presence of >100 common proteins. Most of these proteins, such as filaggrin, were known to be crucial for maintaining skin barrier function against irritants and toxins, thereby mitigating inflammation-induced fibrosis. Therefore, the superior efficacy of TOP MSC-sEVs over SC and IP MSC-sEVs against SSc is mediated by the delivery of proteins to the stratum corneum to reinforce the skin barrier.
Collapse
Affiliation(s)
- Bin Zhang
- Paracrine Therapeutics Pte. Ltd., 1 Tai Seng Ave, #02-04 Tai Seng Exchange, Singapore 536464, Singapore; (B.Z.); (R.C.L.); (W.K.S.); (T.T.T.)
| | - Ruenn Chai Lai
- Paracrine Therapeutics Pte. Ltd., 1 Tai Seng Ave, #02-04 Tai Seng Exchange, Singapore 536464, Singapore; (B.Z.); (R.C.L.); (W.K.S.); (T.T.T.)
| | - Wei Kian Sim
- Paracrine Therapeutics Pte. Ltd., 1 Tai Seng Ave, #02-04 Tai Seng Exchange, Singapore 536464, Singapore; (B.Z.); (R.C.L.); (W.K.S.); (T.T.T.)
| | - Thong Teck Tan
- Paracrine Therapeutics Pte. Ltd., 1 Tai Seng Ave, #02-04 Tai Seng Exchange, Singapore 536464, Singapore; (B.Z.); (R.C.L.); (W.K.S.); (T.T.T.)
| | - Sai Kiang Lim
- Paracrine Therapeutics Pte. Ltd., 1 Tai Seng Ave, #02-04 Tai Seng Exchange, Singapore 536464, Singapore; (B.Z.); (R.C.L.); (W.K.S.); (T.T.T.)
- Department of Surgery, YLL School of Medicine, National University Singapore (NUS), 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
83
|
Jeon G, Hwang AR, Park DY, Kim JH, Kim YH, Cho BK, Min J. miRNA profiling of B16F10 melanoma cell exosomes reveals melanin synthesis-related genes. Heliyon 2024; 10:e30474. [PMID: 38711645 PMCID: PMC11070906 DOI: 10.1016/j.heliyon.2024.e30474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
This study investigates the communication between skin cells, specifically melanocytes, keratinocytes, and fibroblasts, which is crucial for the process of melanin production known as melanogenesis. We aimed to understand the role of melanocyte exosomes in regulating melanogenesis and to uncover the microRNAs influencing this process. We isolated exosomes and characterized them using advanced microscopy and protein analysis to achieve this. We conducted experiments on melanoma cells to study melanin production regulation and examined how exosomes influenced gene expression related to melanogenesis. The results revealed that melanocyte exosomes increased certain types of tyrosinases, thereby enhancing melanin production. Furthermore, we acquired the miRNA profile of exosomes and hypothesized that specific siRNAs, such as miR-21a-5p, could potentially facilitate melanin synthesis. Our findings shed light on the importance of exosomes in skin health and provide valuable insights into intercellular communication mechanisms. Understanding these processes can pave the way for innovative therapies to treat melanin-related disorders and maintain healthy skin.
Collapse
Affiliation(s)
- Gyeongchan Jeon
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ae Rim Hwang
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Dae-Young Park
- Department of Microbiology, Chungbuk National University, Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji-Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
84
|
Zhang S, Lee Y, Liu Y, Yu Y, Han I. Stem Cell and Regenerative Therapies for the Treatment of Osteoporotic Vertebral Compression Fractures. Int J Mol Sci 2024; 25:4979. [PMID: 38732198 PMCID: PMC11084822 DOI: 10.3390/ijms25094979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yunhwan Lee
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea;
| | - Yanting Liu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
85
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
86
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
87
|
Ding S, Kim YJ, Huang KY, Um D, Jung Y, Kong H. Delivery-mediated exosomal therapeutics in ischemia-reperfusion injury: advances, mechanisms, and future directions. NANO CONVERGENCE 2024; 11:18. [PMID: 38689075 PMCID: PMC11061094 DOI: 10.1186/s40580-024-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.
Collapse
Affiliation(s)
- Shengzhe Ding
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Yu-Jin Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kai-Yu Huang
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Daniel Um
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjoon Kong
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Chan Zuckerberg Biohub-Chicago, Chicago, USA.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
88
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
89
|
Yu T, Xu Q, Chen X, Deng X, Chen N, Kou MT, Huang Y, Guo J, Xiao Z, Wang J. Biomimetic nanomaterials in myocardial infarction treatment: Harnessing bionic strategies for advanced therapeutics. Mater Today Bio 2024; 25:100957. [PMID: 38322664 PMCID: PMC10844134 DOI: 10.1016/j.mtbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Myocardial infarction (MI) and its associated poor prognosis pose significant risks to human health. Nanomaterials hold great potential for the treatment of MI due to their targeted and controlled release properties, particularly biomimetic nanomaterials. The utilization of biomimetic strategies based on extracellular vesicles (EVs) and cell membranes will serve as the guiding principle for the development of nanomaterial therapy in the future. In this review, we present an overview of research progress on various exosomes derived from mesenchymal stem cells, cardiomyocytes, or induced pluripotent stem cells in the context of myocardial infarction (MI) therapy. These exosomes, utilized as cell-free therapies, have demonstrated the ability to enhance the efficacy of reducing the size of the infarcted area and preventing ischaemic reperfusion through mechanisms such as oxidative stress reduction, polarization modulation, fibrosis inhibition, and angiogenesis promotion. Moreover, EVs can exert cardioprotective effects by encapsulating therapeutic agents and can be engineered to specifically target the infarcted myocardium. Furthermore, we discuss the use of cell membranes derived from erythrocytes, stem cells, immune cells and platelets to encapsulate nanomaterials. This approach allows the nanomaterials to camouflage themselves as endogenous substances targeting the region affected by MI, thereby minimizing toxicity and improving biocompatibility. In conclusion, biomimetic nano-delivery systems hold promise as a potentially beneficial technology for MI treatment. This review serves as a valuable reference for the application of biomimetic nanomaterials in MI therapy and aims to expedite the translation of NPs-based MI therapeutic strategies into practical clinical applications.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xu Chen
- Department of Clinical Pharmacy, Daqing Oilfield General Hospital, Daqing, 163000, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Man Teng Kou
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
90
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
91
|
Yang CT, Lai RC, Phua VJX, Aw SE, Zhang B, Sim WK, Lim SK, Ng DCE. Standard Radio-Iodine Labeling Protocols Impaired the Functional Integrity of Mesenchymal Stem/Stromal Cell Exosomes. Int J Mol Sci 2024; 25:3742. [PMID: 38612553 PMCID: PMC11011818 DOI: 10.3390/ijms25073742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are an extensively studied cell type in clinical trials due to their easy availability, substantial ex vivo proliferative capacity, and therapeutic efficacy in numerous pre-clinical animal models of disease. The prevailing understanding suggests that their therapeutic impact is mediated by the secretion of exosomes. Notably, MSC exosomes present several advantages over MSCs as therapeutic agents, due to their non-living nature and smaller size. However, despite their promising therapeutic potential, the clinical translation of MSC exosomes is hindered by an incomplete understanding of their biodistribution after administration. A primary obstacle to this lies in the lack of robust labels that are highly sensitive, capable of directly and easily tagging exosomes with minimal non-specific labeling artifacts, and sensitive traceability with minimal background noise. One potential candidate to address this issue is radioactive iodine. Protocols for iodinating exosomes and tracking radioactive iodine in live imaging are well-established, and their application in determining the biodistribution of exosomes has been reported. Nevertheless, the effects of iodination on the structural or functional activities of exosomes have never been thoroughly examined. In this study, we investigate these effects and report that these iodination methods abrogate CD73 enzymatic activity on MSC exosomes. Consequently, the biodistribution of iodinated exosomes may reflect the biodistribution of denatured exosomes rather than functionally intact ones.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (R.C.L.); (B.Z.); (W.K.S.)
- Paracrine Therapeutics Pte. Ltd., 10 Choa Chu Kang Grove #13-22 Sol Acres, Singapore 688207, Singapore
| | - Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (D.C.E.N.)
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Zhang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (R.C.L.); (B.Z.); (W.K.S.)
- Paracrine Therapeutics Pte. Ltd., 10 Choa Chu Kang Grove #13-22 Sol Acres, Singapore 688207, Singapore
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (R.C.L.); (B.Z.); (W.K.S.)
- Paracrine Therapeutics Pte. Ltd., 10 Choa Chu Kang Grove #13-22 Sol Acres, Singapore 688207, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (R.C.L.); (B.Z.); (W.K.S.)
- Paracrine Therapeutics Pte. Ltd., 10 Choa Chu Kang Grove #13-22 Sol Acres, Singapore 688207, Singapore
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
92
|
Wen S, Huang X, Ma J, Zhao G, Ma T, Chen K, Huang G, Chen J, Shi J, Wang S. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front Bioeng Biotechnol 2024; 12:1331218. [PMID: 38576449 PMCID: PMC10993706 DOI: 10.3389/fbioe.2024.1331218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the joint with irreversible cartilage damage as the main pathological feature. With the development of regenerative medicine, mesenchymal stem cells (MSCs) have been found to have strong therapeutic potential. However, intraarticular MSCs injection therapy is limited by economic costs and ethics. Exosomes derived from MSC (MSC-Exos), as the important intercellular communication mode of MSCs, contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. With excellent editability and specificity, MSC-Exos function as a targeted delivery system for OA treatment, modulating immunity, inhibiting apoptosis, and promoting regeneration. This article reviews the mechanism of action of MSC-Exos in the treatment of osteoarthritis, the current research status of the preparation of MSC-Exos and its application of drug delivery in OA therapy.
Collapse
Affiliation(s)
- Shuzhan Wen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingchun Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guanglei Zhao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Kangming Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Gangyong Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingsheng Shi
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqun Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Chandran C, Santra M, Rubin E, Geary ML, Yam GHF. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines 2024; 12:649. [PMID: 38540264 PMCID: PMC10967722 DOI: 10.3390/biomedicines12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The cornea is a transparent and vitally multifaceted component of the eye, playing a pivotal role in vision and ocular health. It has primary refractive and protective functions. Typical corneal dysfunctions include opacities and deformities that result from injuries, infections, or other medical conditions. These can significantly impair vision. The conventional challenges in managing corneal ailments include the limited regenerative capacity (except corneal epithelium), immune response after donor tissue transplantation, a risk of long-term graft rejection, and the global shortage of transplantable donor materials. This review delves into the intricate composition of the cornea, the landscape of corneal regeneration, and the multifaceted repercussions of scar-related pathologies. It will elucidate the etiology and types of dysfunctions, assess current treatments and their limitations, and explore the potential of regenerative therapy that has emerged in both in vivo and clinical trials. This review will shed light on existing gaps in corneal disorder management and discuss the feasibility and challenges of advancing regenerative therapies for corneal stromal scarring.
Collapse
Affiliation(s)
- Christine Chandran
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Elizabeth Rubin
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Moira L. Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
94
|
McDonald J, Mohak S, Fabian Z. Stem Cell-Derived Extracellular Vesicles in the Treatment of Cardiovascular Diseases. Pharmaceutics 2024; 16:381. [PMID: 38543275 PMCID: PMC10974254 DOI: 10.3390/pharmaceutics16030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 01/03/2025] Open
Abstract
Cardiovascular disease constitutes a noteworthy public health challenge characterized by a pronounced incidence, frequency, and mortality rate, particularly impacting specific demographic groups, and imposing a substantial burden on the healthcare infrastructure. Certain risk factors, such as age, gender, and smoking, contribute to the prevalence of fatal cardiovascular disease, highlighting the need for targeted interventions. Current challenges in clinical practice involve medication complexities, the lack of a systematic decision-making approach, and prevalent drug therapy problems. Stem cell-derived extracellular vesicles stand as versatile entities with a unique molecular fingerprint, holding significant therapeutic potential across a spectrum of applications, particularly in the realm of cardio-protection. Their lipid, protein, and nucleic acid compositions, coupled with their multifaceted functions, underscore their role as promising mediators in regenerative medicine and pave the way for further exploration of their intricate contributions to cellular physiology and pathology. Here, we overview our current understanding of the possible role of stem cell-derived extracellular vesicles in the clinical management of human cardiovascular pathologies.
Collapse
Affiliation(s)
- Jennifer McDonald
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| | - Sidhesh Mohak
- Department of Internal Medicine, South Texas Health System, McAllen, TX 78503, USA;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Fylde Road, Preston PR1 2HE, UK;
| |
Collapse
|
95
|
Heidarpour M, Krockenberger M, Bennett P. Review of exosomes and their potential for veterinary medicine. Res Vet Sci 2024; 168:105141. [PMID: 38218063 DOI: 10.1016/j.rvsc.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Small extracellular vesicles called exosomes are released by almost all cell types and play a crucial role in both healthy and pathological circumstances. Exosomes, found in biological fluids (including plasma, urine, milk, semen, saliva, abdominal fluid and cervical vaginal fluid) and ranging in size from 50 to 150 nm, are critical for intercellular communication. Analysis of exosomal cargos, including micro RNAs (miRNAs), proteins and lipids, has been proposed as valuable diagnostic and prognostic biomarkers of disease. Exosomes can also be used as novel, cell-free, treatment strategies. In this review, we discuss the role, significance and application of exosomes and their cargos in diseases of animals.
Collapse
Affiliation(s)
- Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, PO Box 91775-1793, Mashhad, Iran; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
96
|
Roszkowski S. Therapeutic potential of mesenchymal stem cell-derived exosomes for regenerative medicine applications. Clin Exp Med 2024; 24:46. [PMID: 38427086 PMCID: PMC10907468 DOI: 10.1007/s10238-023-01282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 03/02/2024]
Abstract
Mesenchymal stem cell-derived exosomes have emerged as a promising cell-free therapy for tissue engineering. Compared to intact stem cells, exosomes have advantages like low immunogenicity and ability to carry regenerative cargo. This review examined the potential of exosomes to treat defects in skin, bone and cartilage. In preclinical models, exosomes improved wound healing, stimulated bone regeneration, and enabled cartilage repair by transferring proteins, mRNAs and microRNAs. Their effects were elicited by modulating inflammation, angiogenesis, cell proliferation and matrix synthesis. Exosomes represent a promising cell-free therapy for tissue engineering. However, challenges remain regarding scalable isolation, elucidating mechanisms, and translating this approach to human trials. Understanding these challenges will enable the successful clinical translation of exosomes for regenerative medicine applications.
Collapse
Affiliation(s)
- Szymon Roszkowski
- Division of Biochemistry and Biogerontology, Collegium Medicum, Nicolaus Copernicus University, Debowa St. 3, 85-626, Bydgoszcz, Poland.
| |
Collapse
|
97
|
Sadeghi M, Mohammadi M, Tavakol Afshari J, Iranparast S, Ansari B, Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell Immunol 2024; 397-398:104813. [PMID: 38364454 DOI: 10.1016/j.cellimm.2024.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
98
|
Gu J, You J, Liang H, Zhan J, Gu X, Zhu Y. Engineered bone marrow mesenchymal stem cell-derived exosomes loaded with miR302 through the cardiomyocyte specific peptide can reduce myocardial ischemia and reperfusion (I/R) injury. J Transl Med 2024; 22:168. [PMID: 38368334 PMCID: PMC10874538 DOI: 10.1186/s12967-024-04981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND MicroRNA (miRNA)-based therapies have shown great potential in myocardial repair following myocardial infarction (MI). MicroRNA-302 (miR302) has been reported to exert a protective effect on MI. However, miRNAs are easily degraded and ineffective in penetrating cells, which limit their clinical applications. Exosomes, which are small bioactive molecules, have been considered as an ideal vehicle for miRNAs delivery due to their cell penetration, low immunogenicity and excellent stability potential. Herein, we explored cardiomyocyte-targeting exosomes as vehicles for delivery of miR302 into cardiomyocyte to potentially treat MI. METHODS To generate an efficient exosomal delivery system that can target cardiomyocytes, we engineered exosomes with cardiomyocyte specific peptide (CMP, WLSEAGPVVTVRALRGTGSW). Afterwards, the engineered exosomes were characterized and identified using transmission electron microscope (TEM) and Nanoparticle Tracking Analysis (NTA). Later on, the miR302 mimics were loaded into the engineered exosomes via electroporation technique. Subsequently, the effect of the engineered exosomes on myocardial ischemia and reperfusion (I/R) injury was evaluated in vitro and in vivo, including MTT, ELISA, real-time quantitative polymerase chain reaction (PCR), western blot, TUNNEL staining, echocardiogram and hematoxylin and eosin (HE) staining. RESULTS Results of in vitro experimentation showed that DSPE-PEG-CMP-EXO could be more efficiently internalized by H9C2 cells than unmodified exosomes (blank-exosomes). Importantly, compared with the DSPE-PEG-CMP-EXO group, DSPE-PEG-CMP-miR302-EXO significantly upregulated the expression of miR302, while exosomes loaded with miR302 could enhance proliferation of H9C2 cells. Western blot results showed that the DSPE-PEG-CMP-miR302-EXO significantly increased the protein level of Ki67 and Yap, which suggests that DSPE-PEG-CMP-miR302-EXO enhanced the activity of Yap, the principal downstream effector of Hippo pathway. In vivo, DSPE-PEG-CMP-miR302-EXO improved cardiac function, attenuated myocardial apoptosis and inflammatory response, as well as reduced infarct size significantly. CONCLUSION In conclusion, our findings suggest that CMP-engineered exosomes loaded with miR302 was internalized by H9C2 cells, an in vitro model for cardiomyocytes coupled with potential enhancement of the therapeutic effects on myocardial I/R injury.
Collapse
Affiliation(s)
- Jianjun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Jia You
- Department of Internal Medicine, Yangzhou Maternal and Child Health Care Hospital, Yangzhou, 225001, Jiangsu, China
| | - Hao Liang
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Jiacai Zhan
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Xiang Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China
| | - Ye Zhu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, 98 Nantong West Road, Yangzhou, Jiangsu, China.
| |
Collapse
|
99
|
Cui M, Chen F, Shao L, Wei C, Zhang W, Sun W, Wang J. Mesenchymal stem cells and ferroptosis: Clinical opportunities and challenges. Heliyon 2024; 10:e25251. [PMID: 38356500 PMCID: PMC10864896 DOI: 10.1016/j.heliyon.2024.e25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This review discusses recent experimental and clinical findings related to ferroptosis, with a focus on the role of MSCs. Therapeutic efficacy and current applications of MSC-based ferroptosis therapies are also discussed. Background Ferroptosis is a type of programmed cell death that differs from apoptosis, necrosis, and autophagy; it involves iron metabolism and is related to the pathogenesis of many diseases, such as Parkinson's disease, cancers, and liver diseases. In recent years, the use of mesenchymal stem cells (MSCs) and MSC-derived exosomes has become a trend in cell-free therapies. MSCs are a heterogeneous cell population isolated from a diverse range of human tissues that exhibit immunomodulatory functions, regulate cell growth, and repair damaged tissues. In addition, accumulating evidence indicates that MSC-derived exosomes play an important role, mainly by carrying a variety of bioactive substances that affect recipient cells. The potential mechanism by which MSC-derived exosomes mediate the effects of MSCs on ferroptosis has been previously demonstrated. This review provides the first overview of the current knowledge on ferroptosis, MSCs, and MSC-derived exosomes and highlights the potential application of MSCs exosomes in the treatment of ferroptotic conditions. It summarizes their mechanisms of action and techniques for enhancing MSC functionality. Results obtained from a large number of experimental studies revealed that both local and systemic administration of MSCs effectively suppressed ferroptosis in injured hepatocytes, neurons, cardiomyocytes, and nucleus pulposus cells and promoted the survival and regeneration of injured organs. Methods We reviewed the role of ferroptosis in related tissues and organs, focusing on its characteristics in different diseases. Additionally, the effects of MSCs and MSC-derived exosomes on ferroptosis-related pathways in various organs were reviewed, and the mechanism of action was elucidated. MSCs were shown to improve the disease course by regulating ferroptosis.
Collapse
Affiliation(s)
- Mengling Cui
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Fukun Chen
- Department of Radiology, Kunming Medical University & the Third Affiliated Hospital, Kunming, Yunnan, 650101, PR China
| | - Lishi Shao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Chanyan Wei
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Weihu Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Wenmei Sun
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Jiaping Wang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| |
Collapse
|
100
|
Liu Z, Cheng L, Zhang L, Shen C, Wei S, Wang L, Qiu Y, Li C, Xiong Y, Zhang X. Emerging role of mesenchymal stem cells-derived extracellular vesicles in vascular dementia. Front Aging Neurosci 2024; 16:1329357. [PMID: 38389559 PMCID: PMC10881761 DOI: 10.3389/fnagi.2024.1329357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Vascular dementia (VD) is a prevalent cognitive disorder among the elderly. Its pathological mechanism encompasses neuronal damage, synaptic dysfunction, vascular abnormalities, neuroinflammation, and oxidative stress, among others. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have garnered significant attention as an emerging therapeutic strategy. Current research indicates that MSC-derived extracellular vesicles (MSC-EVs) play a pivotal role in both the diagnosis and treatment of VD. Thus, this article delves into the recent advancements of MSC-EVs in VD, discussing the mechanisms by which EVs influence the pathophysiological processes of VD. These mechanisms form the theoretical foundation for their neuroprotective effect in VD treatment. Additionally, the article highlights the potential applications of EVs in VD diagnosis. In conclusion, MSC-EVs present a promising innovative treatment strategy for VD. With rigorous research and ongoing innovation, this concept can transition into practical clinical treatment, providing more effective options for VD patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Lushun Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chunxiao Shen
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Shufei Wei
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Liangliang Wang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Yuemin Qiu
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Chuan Li
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|