51
|
Luo K, Zhao H, Wang X, Kang Z. Prevalent Pest Management Strategies for Grain Aphids: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 12:790919. [PMID: 35082813 PMCID: PMC8784848 DOI: 10.3389/fpls.2021.790919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/15/2021] [Indexed: 05/09/2023]
Abstract
Cereal plants in natural ecological systems are often either sequentially or simultaneously attacked by different species of aphids, which significantly decreases the quality and quantity of harvested grain. The severity of the damage is potentially aggravated by microbes associated with the aphids or the coexistence of other fungal pathogens. Although chemical control and the use of cultivars with single-gene-based antibiosis resistance could effectively suppress grain aphid populations, this method has accelerated the development of insecticide resistance and resulted in pest resurgence. Therefore, it is important that effective and environmentally friendly pest management measures to control the damage done by grain aphids to cereals in agricultural ecosystems be developed and promoted. In recent decades, extensive studies have typically focused on further understanding the relationship between crops and aphids, which has greatly contributed to the establishment of sustainable pest management approaches. This review discusses recent advances and challenges related to the control of grain aphids in agricultural production. Current knowledge and ongoing research show that the integration of the large-scale cultivation of aphid-resistant wheat cultivars with agricultural and/or other management practices will be the most prevalent and economically important management strategy for wheat aphid control.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
52
|
Su Y, Wang G, Huang Z, Hu L, Fu T, Wang X. Silencing GhIAA43, a member of cotton AUX/IAA genes, enhances wilt resistance via activation of salicylic acid-mediated defenses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111126. [PMID: 34895552 DOI: 10.1016/j.plantsci.2021.111126] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 05/16/2023]
Abstract
Auxin-mediated degradation of Aux/IAA proteins is a crucial step in auxin signaling. Recent researches indicate that Aux/IAA members also play a role in biotic and abiotic stresses. For example, Pseudomonas syringae infection causes Arabidopsis Aux/IAA protein (AXR2, AXR3) turnover. Here, by analyzing RNA-seq data we found that several cotton Aux/IAA genes are responsive to Verticillium dahliae infection, one of these named GhIAA43, was investigated for its role in cotton defense against V. dahliae infection. We demonstrate that the transcript levels of GhIAA43 were responsive to both V. dahliae infection and exogenous IAA application. By producing transgenic Arabidopsis plants overexpressing GhIAA43-GUS fusion, we show that IAA treatment and V. dahliae infection promoted GhIAA43 protein turnover. Silencing GhIAA43 in cotton enhanced wilt resistance, suggesting that GhIAA43 is a negative regulator in cotton defense against V. dahliae attack. By monitoring SA marker gene expression and measurement of SA content in GhIAA43-silenced cotton plants, we found that the enhanced resistance in GhIAA43-silenced cotton plants is due to the activation of SA-related defenses, and the activated defenses specifically occurred in the presence of V. dahliae. Furthermore, exogenous IAA application improve wilt resistance in cotton plants tested. Our results provide novel connection between auxin signaling and SA-related defenses in cotton upon V. dahliae attack.
Collapse
Affiliation(s)
- Yaxin Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongyi Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - LiLi Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Fu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
53
|
Cheng P, Wang Z, Ren Y, Jin P, Ma K, Li Q, Wang B. Silencing of a Wheat Ortholog of Glucan Synthase-Like Gene Reduced Resistance to Blumeria graminis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2021; 12:800077. [PMID: 35003189 PMCID: PMC8735228 DOI: 10.3389/fpls.2021.800077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Wheat powdery mildew, caused by the obligate biotrophic ascomycete fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a major threat to wheat production worldwide. It is known that Arabidopsis thaliana glucan synthase-like 5 (AtGSL5) improves the resistance of wheat to powdery mildew by increasing its anti-penetration abilities. However, the function of glucan synthase-like (GSL) orthologs in crop species remains largely unknown. In this study, TaGSL22, a novel functional ortholog of AtGSL5, was isolated as the only Bgt-induced GSL gene in wheat. Phylogenetic analysis indicated that TaGSL22 was conserved within the group of Gramineae and showed a closer relationship to GSL orthologs from monocots than to those from dicots. The TaGSL22 transcript was highest in the wheat leaves, followed by stems then roots. TaGSL22 was localized in the cell membrane and cytoplasm of wheat protoplasts, as predicted by transmembrane structure analysis. In addition, expression of TaGSL22 was induced by the plant hormones ethylene (ETH) and salicylic acid (SA), but down-regulated by jasmonate (JA) and abscisic acid (ABA). The transcript level of TaGSL22 was up-regulated in the incompatible interaction between Bgt and wheat, whereas it remained relatively unchanged in the compatible interaction. Knocking down of TaGSL22 by virus-induced gene silencing (VIGS) induced a higher infection type in the wheat-Bgt interaction. The TaGSL22-silenced plants exhibited reduced resistance to Bgt, accompanied by decreased callose accumulation. Our study shows a conserved function of GSL genes in plant immunity associated with penetration resistance, and it indicates that TaGSL22 can be used to improve papilla composition and enhance resistance to wheat powdery mildew.
Collapse
|
54
|
George AS, Brandl MT. Plant Bioactive Compounds as an Intrinsic and Sustainable Tool to Enhance the Microbial Safety of Crops. Microorganisms 2021; 9:2485. [PMID: 34946087 PMCID: PMC8704493 DOI: 10.3390/microorganisms9122485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Outbreaks of produce-associated foodborne illness continue to pose a threat to human health worldwide. New approaches are necessary to improve produce safety. Plant innate immunity has potential as a host-based strategy for the deactivation of enteric pathogens. In response to various biotic and abiotic threats, plants mount defense responses that are governed by signaling pathways. Once activated, these result in the release of reactive oxygen and nitrogen species in addition to secondary metabolites that aim at tempering microbial infection and pest attack. These phytochemicals have been investigated as alternatives to chemical sanitization, as many are effective antimicrobial compounds in vitro. Their antagonistic activity toward enteric pathogens may also provide an intrinsic hurdle to their viability and multiplication in planta. Plants can detect and mount basal defenses against enteric pathogens. Evidence supports the role of plant bioactive compounds in the physiology of Salmonella enterica, Escherichia coli, and Listeria monocytogenes as well as their fitness on plants. Here, we review the current state of knowledge of the effect of phytochemicals on enteric pathogens and their colonization of plants. Further understanding of the interplay between foodborne pathogens and the chemical environment on/in host plants may have lasting impacts on crop management for enhanced microbial safety through translational applications in plant breeding, editing technologies, and defense priming.
Collapse
Affiliation(s)
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agricultural Research Service, Albany, CA 94710, USA;
| |
Collapse
|
55
|
Ninh TT, Gao W, Trusov Y, Zhao J, Long L, Song C, Botella JR. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. PLANT DIRECT 2021; 5:e359. [PMID: 34765865 PMCID: PMC8573408 DOI: 10.1002/pld3.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein Gβ-deficient mutants in rice and maize display constitutive immune responses, whereas Arabidopsis Gβ mutants show impaired defense, suggesting the existence of functional differences between monocots and dicots. Using CRISPR/Cas9, we produced one hemizygous tomato line with a mutated SlGB1 Gβ gene. Homozygous slgb1 knockout mutants exhibit all the hallmarks of autoimmune mutants, including development of necrotic lesions, constitutive expression of defense-related genes, and high endogenous levels of salicylic acid (SA) and reactive oxygen species, resulting in early seedling lethality. Virus-induced silencing of Gβ in cotton reproduced the symptoms observed in tomato mutants, confirming that the autoimmune phenotype is not limited to monocot species but is also shared by dicots. Even though multiple genes involved in SA and ethylene signaling are highly induced by Gβ silencing in tomato and cotton, co-silencing of SA or ethylene signaling components in cotton failed to suppress the lethal phenotype, whereas co-silencing of the oxidative burst oxidase RbohD can repress lethality. Despite the autoimmune response observed in slgb1 mutants, we show that SlGB1 is a positive regulator of the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in tomato. We speculate that the phenotypic differences observed between Arabidopsis and tomato/cotton/rice/maize Gβ knockouts do not necessarily reflect divergences in G protein-mediated defense mechanisms.
Collapse
Affiliation(s)
- Thi Thao Ninh
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
- Department of Plant Biotechnology, Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| | - Jing‐Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
56
|
Hemelíková N, Žukauskaitė A, Pospíšil T, Strnad M, Doležal K, Mik V. Caged Phytohormones: From Chemical Inactivation to Controlled Physiological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12111-12125. [PMID: 34610745 DOI: 10.1021/acs.jafc.1c02018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.
Collapse
Affiliation(s)
- Noemi Hemelíková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
57
|
Ma C, Li Q, Jia W, Shang H, Zhao J, Hao Y, Li C, Tomko M, Zuverza-Mena N, Elmer W, White JC, Xing B. Role of Nanoscale Hydroxyapatite in Disease Suppression of Fusarium-Infected Tomato. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13465-13476. [PMID: 34078076 DOI: 10.1021/acs.est.1c00901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present study investigated the mechanisms by which large- and small-sized nanoscale hydroxyapatite (nHA) suppressed Fusarium-induced wilt disease in tomato. Both nHA sizes at 9.3 mg/L (low) and 46.5 mg/L (high dose) phosphorus (P) were foliar-sprayed on Fusarium-infected tomato leaf surfaces three times. Diseased shoot mass was increased by 40% upon exposure to the low dose of large-sized nHA compared to disease controls. Exposure to both nHA sizes significantly elevated phenylalanine ammonialyase activity and total phenolic content in Fusarium-infected shoots by 30-80% and 40-68%, respectively. Shoot salicylic acid content was also increased by 10-45%, suggesting the potential relationship between antioxidant and phytohormone pathways in nHA-promoted defense against fungal infection. Exposure to the high dose of both nHA sizes increased the root P content by 27-46%. A constrained analysis of principal coordinates suggests that high dose of both nHA sizes significantly altered the fatty acid profile in diseased tomato. Particularly, the diseased root C18:3 content was increased by 28-31% in the large-sized nHA treatments, indicating that nHA remodeled the cell membrane as part of defense against Fusarium infection. Taken together, our findings demonstrate the important role of nHA in promoting disease suppression for the sustainable use of nHA in nanoenabled agriculture.
Collapse
Affiliation(s)
- Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Qingqing Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Heping Shang
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mason Tomko
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nubia Zuverza-Mena
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Wade Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
58
|
Luo K, Ouellet T, Zhao H, Wang X, Kang Z. Wheat- Fusarium graminearum Interactions Under Sitobion avenae Influence: From Nutrients and Hormone Signals. Front Nutr 2021; 8:703293. [PMID: 34568403 PMCID: PMC8455932 DOI: 10.3389/fnut.2021.703293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The English grain aphid Sitobion avenae and phytopathogen Fusarium graminearum are wheat spike colonizers. "Synergistic" effects of the coexistence of S. avenae and F. graminearum on the wheat spikes have been shown in agroecosystems. To develop genetic resistance in diverse wheat cultivars, an important question is how to discover wheat-F. graminearum interactions under S. avenae influence. In recent decades, extensive studies have typically focused on the unraveling of more details on the relationship between wheat-aphids and wheat-pathogens that has greatly contributed to the understanding of these tripartite interactions at the ecological level. Based on the scientific production available, the working hypotheses were synthesized from the aspects of environmental nutrients, auxin production, hormone signals, and their potential roles related to the tripartite interaction S. avenae-wheat-F. graminearum. In addition, this review highlights the relevance of preexposure to the herbivore S. avenae to trigger the accumulation of mycotoxins, which stimulates the infection process of F. graminearum and epidemic of Fusarium head blight (FHB) in the agroecosystems.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China.,Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiukang Wang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan'an University, Yan'an, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
59
|
Chen Y, Zhang M, Wang L, Yu X, Li X, Jin D, Zeng J, Ren H, Wang F, Song S, Yan X, Zhao J, Pei Y. GhKWL1 Upregulates GhERF105 but Its Function Is Impaired by Binding with VdISC1, a Pathogenic Effector of Verticillium dahliae. Int J Mol Sci 2021; 22:7328. [PMID: 34298948 PMCID: PMC8306359 DOI: 10.3390/ijms22147328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.
Collapse
Affiliation(s)
- Yang Chen
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Lei Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaohan Yu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Fanlong Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Shuiqing Song
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
60
|
Shin K, Paudyal DP, Lee SC, Hyun JW. Different Phytohormonal Responses on Satsuma Mandarin (Citrus unshiu) Leaves Infected with Host-Compatible or Host-Incompatible Elsinoë fawcettii. THE PLANT PATHOLOGY JOURNAL 2021; 37:268-279. [PMID: 34111916 PMCID: PMC8200574 DOI: 10.5423/ppj.oa.12.2020.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Citrus scab, caused by the fungal pathogen Elsinoë fawcettii, is one of the most important fungal diseases affecting Citrus spp. Citrus scab affects young tissues, including the leaves, twigs, and fruits, and produces severe fruit blemishes that reduce the market value of fresh fruits. To study the molecular responses of satsuma mandarin (C. unshiu) to E. fawcettii, plant hormone-related gene expression was analyzed in response to host-compatible (SM16-1) and host-incompatible (DAR70024) isolates. In the early phase of infection by E. fawcettii, jasmonic acid- and salicylic acid-related gene expression was induced in response to infection with the compatible isolate. However, as symptoms advanced during the late phase of the infection, the jasmonic acid- and salicylic acid-related gene expression was downregulated. The gene expression patterns were compared between compatible and incompatible interactions. As scabs were accompanied by altered tissue growth surrounding the infection site, we conducted gibberellic acid- and abscisic acid-related gene expression analysis and assessed the content of these acids during scab symptom development. Our results showed that gibberellic and abscisic acid-related gene expression and hormonal changes were reduced and induced in response to the infection, respectively. Accordingly, we propose that jasmonic and salicylic acids play a role in the early response to citrus scab, whereas gibberellic and abscisic acids participate in symptom development.
Collapse
Affiliation(s)
- Kihye Shin
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| | - Dilli Prasad Paudyal
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
- Current address: miniPCR, Amplyus LLC, Arlington, MA 02474, USA
| | - Seong Chan Lee
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| | - Jae Wook Hyun
- Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju 63607, Korea
| |
Collapse
|
61
|
A Breach in Plant Defences: Pseudomonas syringae pv. actinidiae Targets Ethylene Signalling to Overcome Actinidia chinensis Pathogen Responses. Int J Mol Sci 2021; 22:ijms22094375. [PMID: 33922148 PMCID: PMC8122719 DOI: 10.3390/ijms22094375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/12/2023] Open
Abstract
Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plant- and pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation.
Collapse
|
62
|
Soumare A, Diédhiou AG, Arora NK, Tawfeeq Al-Ani LK, Ngom M, Fall S, Hafidi M, Ouhdouch Y, Kouisni L, Sy MO. Potential Role and Utilization of Plant Growth Promoting Microbes in Plant Tissue Culture. Front Microbiol 2021; 12:649878. [PMID: 33854489 PMCID: PMC8039301 DOI: 10.3389/fmicb.2021.649878] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 11/04/2022] Open
Abstract
Plant growth promoting microbes (PGPMs) play major roles in diverse ecosystems, including atmospheric nitrogen fixation, water uptake, solubilization, and transport of minerals from the soil to the plant. Different PGPMs are proposed as biofertilizers, biostimulants, and/or biocontrol agents to improve plant growth and productivity and thereby to contribute to agricultural sustainability and food security. However, little information exists regarding the use of PGPMs in micropropagation such as the in vitro plant tissue culture. This review presents an overview of the importance of PGPMs and their potential application in plant micropropagation. Our analysis, based on published articles, reveals that the process of in vitro classical tissue culture techniques, under strictly aseptic conditions, deserves to be reviewed to allow vitroplants to benefit from the positive effect of PGPMs. Furthermore, exploiting the potential benefits of PGPMs will lead to lessen the cost production of vitroplants during micropropagation process and will make the technique of plant tissue culture more efficient. The last part of the review will indicate where research is needed in the future.
Collapse
Affiliation(s)
- Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal.,Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Senegal
| | - Abdala G Diédhiou
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal.,Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Senegal.,Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, BBA University, Lucknow, India
| | - Laith Khalil Tawfeeq Al-Ani
- Department of Plant Protection, College of Agriculture Engineering Sciences, University of Baghdad, Baghdad, Iraq.,School of Biology Science, Universiti Sains Malaysia, Penang, Malaysia
| | - Mariama Ngom
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal.,Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Saliou Fall
- Laboratoire Commun de Microbiologie (LCM) IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Senegal
| | - Mohamed Hafidi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Yedir Ouhdouch
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco.,Laboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Lamfeddal Kouisni
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mame Ourèye Sy
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal.,Laboratoire Campus de Biotechnologies Végétales (LCBV), Département de Biologie Végétale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| |
Collapse
|
63
|
Morina F, Mijovilovich A, Koloniuk I, Pěnčík A, Grúz J, Novák O, Küpper H. Interactions between zinc and Phomopsis longicolla infection in roots of Glycine max. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3320-3336. [PMID: 33544825 DOI: 10.1093/jxb/erab052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Phomopsis. longicolla is a hemibiotrophic fungus causing significant soybean yield loss worldwide. To reveal the role of zinc in plant-pathogen interactions, soybean seedlings were grown hydroponically with a range of Zn concentrations, 0.06 µM (deficient, Zn0), 0.4 µM (optimal growth), 1.5 µM, 4 µM, 12 µM, and toxic 38 μM, and were subsequently inoculated with P. longicolla via the roots. In vivo analysis of metal distribution in tissues by micro-X-ray fluorescence showed local Zn mobilization in the root maturation zone in all treatments. Decreased root and pod biomass, and photosynthetic performance in infected plants treated with 0.4 µM Zn were accompanied with accumulation of Zn, jasmonoyl-L-isoleucine (JA-Ile), jasmonic acid, and cell wall-bound syringic acid (cwSyA) in roots. Zn concentration in roots of infected plants treated with 1.5 µM Zn was seven-fold higher than in the 0.4 µM Zn treatment, which together with accumulation of JA-Ile, cwSyA, cell wall-bound vanilic acid and leaf jasmonates contributed to maintaining photosynthesis and pod biomass. Host-pathogen nutrient competition and phenolics accumulation limited the infection in Zn-deficient plants. The low infection rate in Zn 4 µM-treated roots correlated with salicylic and 4-hydroxybenzoic acid, and cell wall-bound p-coumaric acid accumulation. Zn toxicity promoted pathogen invasion and depleted cell wall-bound phenolics. The results show that manipulation of Zn availability improves soybean resistance to P. longicolla by stimulating phenolics biosynthesis and stress-inducible phytohormones.
Collapse
Affiliation(s)
- Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
| | - Igor Koloniuk
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Virology, Branišovská, České Budějovice, Czech Republic
| | - Aleš Pěnčík
- Czech Academy of Sciences, Institute of Experimental Botany and Palacký University, Faculty of Science, Laboratory of Growth Regulators, Šlechtitelů, Olomouc, Czech Republic
| | - Jiří Grúz
- Czech Academy of Sciences, Institute of Experimental Botany and Palacký University, Faculty of Science, Laboratory of Growth Regulators, Šlechtitelů, Olomouc, Czech Republic
| | - Ondrej Novák
- Czech Academy of Sciences, Institute of Experimental Botany and Palacký University, Faculty of Science, Laboratory of Growth Regulators, Šlechtitelů, Olomouc, Czech Republic
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
64
|
Miyaji N, Shimizu M, Takasaki-Yasuda T, Dennis ES, Fujimoto R. The transcriptional response to salicylic acid plays a role in Fusarium yellows resistance in Brassica rapa L. PLANT CELL REPORTS 2021; 40:605-619. [PMID: 33459838 DOI: 10.1007/s00299-020-02658-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Fusarium yellows resistant and susceptible lines in Brassica rapa showed different salicylic acid responses; the resistant line showed a similar response to previous reports, but the susceptible line differed. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease. Previous studies showed that genes related to salicylic acid (SA) response were more highly induced following Foc infection in Brassica rapa Fusarium yellows resistant lines than susceptible lines. However, SA-induced genes have not been identified at the whole genome level and it was unclear whether they were up-regulated by Foc inoculation. Transcriptome analysis with and without SA treatment in the B. rapa Fusarium yellows susceptible line 'Misugi' and the resistant line 'Nanane' was performed to obtain insights into the relationship between SA sensitivity/response and Fusarium yellows resistance. 'Nanane's up-regulated genes were related to SA response and down-regulated genes were related to jasmonic acid (JA) or ethylene (ET) response, but differentially expressed genes in 'Misugi' were not. This result suggests that Fusarium yellows resistant and susceptible lines have a different SA response and that an antagonistic transcription between SA and JA/ET responses was found only in a Fusarium yellows resistant line. SA-responsive genes were induced by Foc inoculation in Fusarium yellows resistant (RJKB-T23) and susceptible lines (RJKB-T24). By contrast, 39 SA-induced genes specific to RJKB-T23 might function in the defense response to Foc. In this study, SA-induced genes were identified at the whole genome level, and the possibility, the defense response to Foc observed in a resistant line could be mediated by SA-induced genes, is suggested. These results will be useful for future research concerning the SA importance in Foc or other diseases resistance in B. rapa.
Collapse
Affiliation(s)
- Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita,, Kitakami, Iwate, 024-0003, Japan
| | - Takeshi Takasaki-Yasuda
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Elizabeth S Dennis
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
- University of Technology, Sydney, Broadway, PO Box 123, Ultimo, NSW, 2007, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
65
|
Alonso-Díaz A, Satbhai SB, de Pedro-Jové R, Berry HM, Göschl C, Argueso CT, Novak O, Busch W, Valls M, Coll NS. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2727-2740. [PMID: 33475698 PMCID: PMC8006551 DOI: 10.1093/jxb/eraa610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 05/30/2023]
Abstract
Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host's root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated with the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a genome-wide association study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role for cytokinin in root immunity, paving the way for future research that will help in understanding the mechanisms underpinning root defenses.
Collapse
Affiliation(s)
- Alejandro Alonso-Díaz
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christian Göschl
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Ondrej Novak
- Laboratory of Growth Regulators, Olomouc, The Czech Republic
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
- Genetics Department, University of Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| |
Collapse
|
66
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|
67
|
Su P, Zhao L, Li W, Zhao J, Yan J, Ma X, Li A, Wang H, Kong L. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:340-352. [PMID: 32678930 DOI: 10.1111/jipb.12992] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 05/20/2023]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schw.) Perch) results in large yield losses in annual global wheat production. Although studies have identified a number of wheat FHB resistance genes, a deeper understanding of the mechanisms underlying host plant resistance to F. graminearum is required for the control of FHB. Here, an integrated metabolomics and transcriptomics analysis of infected wheat plants (Triticum aestivum L.) enabled identification of 789 differentially accumulated metabolites, including flavonoids, phenolamides, tryptamine derivatives, and phytohormones, and revealed altered expression of more than 100 genes that function in the biosynthesis or regulation of these pathways. Our data regarding the effects of F. graminearum infection on flavonoids and auxin signaling led to follow-up experiments that showed that exogenous kaempferide and apigenin application on spikes increased wheat resistance to FHB, while exogenous auxin treatment increased FHB susceptibility. RNAi-mediated knockdown of the gene encoding the auxin receptor, TaTIR1, increased FHB resistance. Our data supported the use of TaTIR1 knockdown in controlling FHB. Our study provides insights on the wheat response to F. graminearum infection and its FHB resistance mechanisms while illustrating the potential of TaTIR1 knockdown in increasing FHB resistance during crop improvement programs.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
68
|
Veselova SV, Nuzhnaya TV, Burkhanova GF, Rumyantsev SD, Khusnutdinova EK, Maksimov IV. Ethylene-Cytokinin Interaction Determines Early Defense Response of Wheat against Stagonospora nodorum Berk. Biomolecules 2021; 11:174. [PMID: 33525389 PMCID: PMC7911247 DOI: 10.3390/biom11020174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/08/2023] Open
Abstract
Ethylene, salicylic acid (SA), and jasmonic acid are the key phytohormones involved in plant immunity, and other plant hormones have been demonstrated to interact with them. The classic phytohormone cytokinins are important participants of plant defense signaling. Crosstalk between ethylene and cytokinins has not been sufficiently studied as an aspect of plant immunity and is addressed in the present research. We compared expression of the genes responsible for hormonal metabolism and signaling in wheat cultivars differing in resistance to Stagonospora nodorum in response to their infection with fungal isolates, whose virulence depends on the presence of the necrotrophic effector SnTox3. Furthermore, we studied the action of the exogenous cytokinins, ethephon (2-chloroethylphosphonic acid, ethylene-releasing agent) and 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) on infected plants. Wheat susceptibility was shown to develop due to suppression of reactive oxygen species production and decreased content of active cytokinins brought about by SnTox3-mediated activation of the ethylene signaling pathway. SnTox3 decreased cytokinin content most quickly by its activated glucosylation in an ethylene-dependent manner and, furthermore, by oxidative degradation and inhibition of biosynthesis in ethylene-dependent and ethylene-independent manners. Exogenous zeatin application enhanced wheat resistance against S. nodorum through inhibition of the ethylene signaling pathway and upregulation of SA-dependent genes. Thus, ethylene inhibited triggering of SA-dependent resistance mechanism, at least in part, by suppression of the cytokinin signaling pathway.
Collapse
Affiliation(s)
- Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Tatyana V. Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Sergey D. Rumyantsev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Elza K. Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| | - Igor V. Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (G.F.B.); (S.D.R.); (E.K.K.); (I.V.M.)
| |
Collapse
|
69
|
Joshi V, Joshi N, Vyas A, Jadhav S. Pathogenesis-related proteins: Role in plant defense. BIOCONTROL AGENTS AND SECONDARY METABOLITES 2021:573-590. [PMID: 0 DOI: 10.1016/b978-0-12-822919-4.00025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
70
|
Bian Z, Gao H, Wang C. NAC Transcription Factors as Positive or Negative Regulators during Ongoing Battle between Pathogens and Our Food Crops. Int J Mol Sci 2020; 22:E81. [PMID: 33374758 PMCID: PMC7795297 DOI: 10.3390/ijms22010081] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) family of proteins is one of the largest plant-specific transcription factor (TF) families and its members play varied roles in plant growth, development, and stress responses. In recent years, NAC TFs have been demonstrated to participate in crop-pathogen interactions, as positive or negative regulators of the downstream defense-related genes. NAC TFs link signaling pathways between plant hormones, including salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA), or other signals, such as reactive oxygen species (ROS), to regulate the resistance against pathogens. Remarkably, NAC TFs can also contribute to hypersensitive response and stomatal immunity or can be hijacked as virulence targets of pathogen effectors. Here, we review recent progress in understanding the structure, biological functions and signaling networks of NAC TFs in response to pathogens in several main food crops, such as rice, wheat, barley, and tomato, and explore the directions needed to further elucidate the function and mechanisms of these key signaling molecules.
Collapse
Affiliation(s)
| | | | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.B.); (H.G.)
| |
Collapse
|
71
|
Nachappa P, Challacombe J, Margolies DC, Nechols JR, Whitfield AE, Rotenberg D. Tomato Spotted Wilt Virus Benefits Its Thrips Vector by Modulating Metabolic and Plant Defense Pathways in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:575564. [PMID: 33424878 PMCID: PMC7793759 DOI: 10.3389/fpls.2020.575564] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/22/2020] [Indexed: 05/31/2023]
Abstract
Several plant viruses modulate vector fitness and behavior in ways that may enhance virus transmission. Previous studies have documented indirect, plant-mediated effects of tomato spotted wilt virus (TSWV) infection on the fecundity, growth and survival of its principal thrips vector, Frankliniella occidentalis, the western flower thrips. We conducted thrips performance and preference experiments combined with plant gene expression, phytohormone and total free amino acid analyses to determine if systemically-infected tomato plants modulate primary metabolic and defense-related pathways to culminate into a more favorable environment for the vector. In a greenhouse setting, we documented a significant increase in the number of offspring produced by F. occidentalis on TSWV-infected tomato plants compared to mock-inoculated plants, and in choice test assays, females exhibited enhanced settling on TSWV-infected leaves. Microarray analysis combined with phytohormone signaling pathway analysis revealed reciprocal modulation of key phytohormone pathways under dual attack, possibly indicating a coordinated and dampening defense against the vector on infected plants. TSWV infection, alone or in combination with thrips, suppressed genes associated with photosynthesis and chloroplast function thereby significantly impacting primary metabolism of the host plant, and hierarchical cluster and network analyses revealed that many of these genes were co-regulated with phytohormone defense signaling genes. TSWV infection increased expression of genes related to protein synthesis and degradation which was reflected in the increased total free amino acid content in virus-infected plants that harbored higher thrips populations. These results suggest coordinated gene networks that regulate plant primary metabolism and defense responses rendering virus-infected plants more conducive for vector colonization, an outcome that is potentially beneficial to the vector and the virus when considered within the context of the complex transmission biology of TSWV. To our knowledge this is the first study to identify global transcriptional networks that underlie the TSWV-thrips interaction as compared to a single mechanistic approach. Findings of this study increase our fundamental knowledge of host plant-virus-vector interactions and identifies underlying mechanisms of induced host susceptibility to the insect vector.
Collapse
Affiliation(s)
- Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
| | - Jean Challacombe
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - David C. Margolies
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - James R. Nechols
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Anna E. Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
72
|
Transcriptome analysis identified the mechanism of synergy between sethoxydim herbicide and a mycoherbicide on green foxtail. Sci Rep 2020; 10:21690. [PMID: 33303778 PMCID: PMC7730142 DOI: 10.1038/s41598-020-78290-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
Certain synthetic herbicides can act synergistically with specific bioherbicides. In this study, a sethoxydim herbicide at 0.1× label rate improved biocontrol of herbicide-sensitive green foxtail (Setaria viridis, GFT) by Pyricularia setariae (a fungal bioherbicide agent), but did not change the efficacy on a herbicide-resistant GFT biotype. Reference transcriptomes were constructed for both GFT biotypes via de novo assembly of RNA-seq data. GFT plants treated with herbicide alone, fungus alone and herbicide + fungus were compared for weed-control efficacy and differences in transcriptomes. On herbicide-sensitive GFT, sethoxydim at the reduced rate induced ABA-activated signaling pathways and a bZIP transcription factor 60 (TF bZIP60), while improved the efficacy of biocontrol. The herbicide treatment did not increase these activities or improve biocontrol efficacy on herbicide-resistant plants. An exogenous application of ABA to herbicide-sensitive plants also enhanced bZIP60 expression and improved biocontrol efficacy, which supported the results of transcriptome analysis that identified the involvement of ABA and bZIP60 in impaired plant defense against P. setariae. It is novel to use transcriptome analysis to decipher the molecular basis for synergy between a synthetic herbicide and a bioherbicide agent. A better understanding of the mechanism underlining the synergy may facilitate the development of weed biocontrol.
Collapse
|
73
|
Florencio-Ortiz V, Novák O, Casas JL. Phytohormone responses in pepper (Capsicum annuum L.) leaves under a high density of aphid infestation. PHYSIOLOGIA PLANTARUM 2020; 170:519-527. [PMID: 32794184 DOI: 10.1111/ppl.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The time course response of selected phytohormones has been evaluated in sweet pepper plants (Capsicum annuum L.) submitted to a high density (200 aphids/plant) of aphid (Myzus persicae Sulzer) infestation. Abscisic acid (ABA), salicylic acid (SA), indole-3-acetic acid (IAA), and jasmonates (JAs), including jasmonic acid (JA), jasmonoyl-l-isoleucine (JA-Ile), and cis-OPDA have been simultaneously identified and quantitated by UHPLC-MS/MS in pepper leaf tissue harvested at 3, 8 hours post-infestation (hpi), 1, 2, 4 and 7 days post-infestation (dpi). Infested plants showed a reduction in stem length at 7 dpi and in the number of leaves and leaf width from 4 dpi onwards. JA and JA-Ile significantly increased very early (from 3 hpi) while SA only accumulated at 7 dpi. Despite the high density of infestation, the aphid-induced accumulation of JAs was much lower than the burst typically induced by chewing herbivores. On the other side, ABA peaked in aphid-infested plants at 2 and 4 dpi, while IAA content did not change significantly at any time point. Growth inhibition may be partially explained by the high levels of JAs found in aphid-infested plants. The possibility that the obtained results support the hypothesis of the aphid manipulation of plant metabolism is discussed.
Collapse
Affiliation(s)
- Victoria Florencio-Ortiz
- Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Alicante, Spain
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, CZ-78371, Czech Republic
| | - José L Casas
- Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Alicante, Spain
| |
Collapse
|
74
|
Ortiz-Morea FA, He P, Shan L, Russinova E. It takes two to tango - molecular links between plant immunity and brassinosteroid signalling. J Cell Sci 2020; 133:133/22/jcs246728. [PMID: 33239345 DOI: 10.1242/jcs.246728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to the invasion of microorganisms, plants actively balance their resources for growth and defence, thus ensuring their survival. The regulatory mechanisms underlying plant immunity and growth operate through complex networks, in which the brassinosteroid phytohormone is one of the central players. In the past decades, a growing number of studies have revealed a multi-layered crosstalk between brassinosteroid-mediated growth and plant immunity. In this Review, by means of the tango metaphor, we immerse ourselves into the intimate relationship between brassinosteroid and plant immune signalling pathways that is tailored by the lifestyle of the pathogen and modulated by other phytohormones. The plasma membrane is the unique stage where brassinosteroid and immune signals are dynamically integrated and where compartmentalization into nanodomains that host distinct protein consortia is crucial for the dance. Shared downstream signalling components and transcription factors relay the tango play to the nucleus to activate the plant defence response and other phytohormonal signalling pathways for the finale. Understanding how brassinosteroid and immune signalling pathways are integrated in plants will help develop strategies to minimize the growth-defence trade-off, a key challenge for crop improvement.
Collapse
Affiliation(s)
- Fausto Andres Ortiz-Morea
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA .,Amazonian Research Center Cimaz-Macagual, University of the Amazon, Florencia 180002622, Colombia
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
75
|
Baró-Montel N, Giné-Bordonaba J, Torres R, Vall-Llaura N, Teixidó N, Usall J. Scrutinising the relationship between major physiological and compositional changes during 'Merrill O'Henry' peach growth with brown rot susceptibility. FOOD SCI TECHNOL INT 2020; 27:366-379. [PMID: 32960656 DOI: 10.1177/1082013220959988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present work, the major physiological and compositional changes occurring during 'Merrill O'Henry' peach growth and its relationship with susceptibility to three strains of Monilinia spp. at 49, 77, 126 and 160 days after full bloom were explored. Results of disease incidence indicated wide differences among phenological stages, being 49 and 126 days after full bloom the moment when peaches showed significantly lower susceptibility to brown rot (40 and 23% of rotten fruit, respectively, for strain ML8L). Variation in brown rot susceptibility among different growth stages was also strain-dependent. Lower fruit susceptibility to ML8L at 49 and 126 was accompanied by noticeable changes in the fruit ethylene and respiration patterns, and also in sugars and organic acids content. By employing a partial least squares regression model, a strong negative relationship between citric acid, and a positive association of ethylene with peach susceptibility to Monilinia spp. at diverse phenological stages were observed. The results obtained herein highlight that the content of certain compounds such as citrate, malate and sucrose; the respiratory activity and the fruit ethylene production may mediate in a coordinated manner the fruit resistance to Monilinia spp. at different phenological stages of peach fruit.
Collapse
Affiliation(s)
- Núria Baró-Montel
- Postharvest Department, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnológic Agroalimentari de Lleida, Lleida, Spain
| | - Jordi Giné-Bordonaba
- Postharvest Department, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnológic Agroalimentari de Lleida, Lleida, Spain
| | - Rosario Torres
- Postharvest Department, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnológic Agroalimentari de Lleida, Lleida, Spain
| | - Núria Vall-Llaura
- Postharvest Department, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnológic Agroalimentari de Lleida, Lleida, Spain
| | - Neus Teixidó
- Postharvest Department, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnológic Agroalimentari de Lleida, Lleida, Spain
| | - Josep Usall
- Postharvest Department, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnológic Agroalimentari de Lleida, Lleida, Spain
| |
Collapse
|
76
|
Lee J, Nam JY, Jang H, Kim N, Kim YM, Kang WH, Yeom SI. Comprehensive transcriptome resource for response to phytohormone-induced signaling in Capsicum annuum L. BMC Res Notes 2020; 13:440. [PMID: 32943083 PMCID: PMC7499990 DOI: 10.1186/s13104-020-05281-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Phytohormones are small signaling molecules with crucial roles in plant growth, development, and environmental adaptation to biotic and abiotic stress responses. Despite several previously published molecular studies focused on plant hormones, our understanding of the transcriptome induced by phytohormones remains unclear, especially in major crops. Here, we aimed to provide transcriptome dataset using RNA sequencing for phytohormone-induced signaling in plant. DATA DESCRIPTION We used high-throughput RNA sequencing profiling to investigate the pepper plant response to treatment with four major phytohormones (salicylic acid, jasmonic acid, ethylene, and abscisic acid). This dataset yielded 78 samples containing three biological replicates per six different time points for each treatment and the control, constituting 187.8 Gb of transcriptome data (2.4 Gb of each sample). This comprehensive parallel transcriptome data provides valuable information for understanding the relationships and molecular networks that regulate the expression of phytohormone-related genes involved in plant developments and environmental stress adaptation.
Collapse
Affiliation(s)
- Junesung Lee
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Jae-Young Nam
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Hakgi Jang
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Nayoung Kim
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Yong-Min Kim
- Genome Engineering Research Center, Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828 Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
77
|
Wu S, Wang Y, Zhang J, Wang Y, Yang Y, Chen X, Wang Y. How does Malus crabapple resist ozone? Transcriptomics and metabolomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110832. [PMID: 32563158 DOI: 10.1016/j.ecoenv.2020.110832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3), an oxidizing toxic air pollutant, is ubiquitous in industrialized and developing countries. To understand the effects of O3 exposure on apple (Malus) and to explore its defense mechanisms, we exposed 'Hongjiu' crabapple to O3 and monitored its responses using physiological, transcriptomics, and metabolomics analyses. Exposure to 300 nL L-1 O3 for 3 h caused obvious damage to the leaves of Malus crabapple, affected chlorophyll and anthocyanin contents, and activated antioxidant enzymes. The gene encoding phospholipase A was highly responsive to O3 in Malus crabapple. McWRKY75 is a key transcription factor in the response to O3 stress, and its transcript levels were positively correlated with those of flavonoid-related structural genes (McC4H, McDFR, and McANR). The ethylene response factors McERF019 and McERF109-like were also up-regulated by O3. Exogenous methyl jasmonate (MeJA) decreased the damaging effects of O3 on crabapple and was most effective at 200 μmol L -1. Treatments with MeJA altered the metabolic pathways of crabapple under O3 stress. In particular, MeJA activated the flavonoid metabolic pathway in Malus, which improved its resistance to O3 stress.
Collapse
Affiliation(s)
- Shuqing Wu
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Yao Wang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Junkang Zhang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Yicheng Wang
- Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271000, China
| | - Yuwei Yang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China
| | - Xuesen Chen
- Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271000, China.
| | - Yanling Wang
- College of Forestry, Shandong Agricultural University, Tai-An, 271000, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Tai-An, 271000, China.
| |
Collapse
|
78
|
Aremu AO, Fawole OA, Makunga NP, Masondo NA, Moyo M, Buthelezi NMD, Amoo SO, Spíchal L, Doležal K. Applications of Cytokinins in Horticultural Fruit Crops: Trends and Future Prospects. Biomolecules 2020; 10:biom10091222. [PMID: 32842660 PMCID: PMC7563339 DOI: 10.3390/biom10091222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cytokinins (CKs) are a chemically diverse class of plant growth regulators, exhibiting wide-ranging actions on plant growth and development, hence their exploitation in agriculture for crop improvement and management. Their coordinated regulatory effects and cross-talk interactions with other phytohormones and signaling networks are highly sophisticated, eliciting and controlling varied biological processes at the cellular to organismal levels. In this review, we briefly introduce the mode of action and general molecular biological effects of naturally occurring CKs before highlighting the great variability in the response of fruit crops to CK-based innovations. We present a comprehensive compilation of research linked to the application of CKs in non-model crop species in different phases of fruit production and management. By doing so, it is clear that the effects of CKs on fruit set, development, maturation, and ripening are not necessarily generic, even for cultivars within the same species, illustrating the magnitude of yet unknown intricate biochemical and genetic mechanisms regulating these processes in different fruit crops. Current approaches using genomic-to-metabolomic analysis are providing new insights into the in planta mechanisms of CKs, pinpointing the underlying CK-derived actions that may serve as potential targets for improving crop-specific traits and the development of new solutions for the preharvest and postharvest management of fruit crops. Where information is available, CK molecular biology is discussed in the context of its present and future implications in the applications of CKs to fruits of horticultural significance.
Collapse
Affiliation(s)
- Adeyemi O. Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa;
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Olaniyi A. Fawole
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Nokwanda P. Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Correspondence: (A.O.A.); (O.A.F.); (N.P.M.); Tel.: +27-18-389-2573 (A.O.A.); +27-11-559-7237 (O.A.F.); +27-21-808-3061 (N.P.M.)
| | - Nqobile A. Masondo
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Mack Moyo
- Department of Horticulture, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa;
| | - Nana M. D. Buthelezi
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
| | - Stephen O. Amoo
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, South Africa;
- Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O. Box 524, Auckland Park 2006, South Africa;
- Agricultural Research Council, Roodeplaat Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.S.); (K.D.)
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.S.); (K.D.)
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
79
|
Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122661. [PMID: 32305720 DOI: 10.1016/j.jhazmat.2020.122661] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/17/2020] [Accepted: 04/04/2020] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting bacteria (PGPB) that inhabit hyperaccumulating plants assist cadmium (Cd) absorption, but the underlying mechanism has not been comprehensively studied. For this reason, we combined the fluorescence imaging, and transcriptomic and metabolomic methods in a Cd hyperaccumulator, Sedum alfredii, inoculated or not with PGPB Pseudomonas fluorescens. The results showed that the newly emerged lateral roots, that were heavily colonized by P. fluorescens, are the main entry for Cd influx in S. alfredii. Inoculation with P. fluorescens promoted a lateral root formation of its host plant, leading to a higher Cd phytoremediation efficiency. Furthermore, the plant transcriptome revealed that 146 plant hormone related genes were significantly up-regulated by the bacterial inoculation, with 119 of them showing a complex interaction, which suggests that a hormonal crosstalk participated root development. The targeted metabolomics analysis showed that P. fluorescens inoculation significantly increased indole acetic acid concentration and significantly decreased concentrations of abscisic acid, brassinolide, trans-zeatin, ethylene and jasmonic acid in S. alfredii roots, thereby inducing lateral root emergence. Altogether, our results highlight the importance of PGPB-induced lateral root formation for the increased Cd uptake in a hyperaccumulating plant.
Collapse
Affiliation(s)
- Yingjie Wu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Luyao Ma
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Olivera Topalovic
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Qiong Wang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Zhou
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
80
|
Palacios OM, Cortes HN, Jenks BH, Maki KC. Naturally occurring hormones in foods and potential health effects. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320936281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hormones and hormone-like substances, for example, phytoestrogens, are food components that can be endogenously produced by a food source or occur secondary to farming practices. The hormone content of foods has been studied for decades, and safety evaluations in the United States and Europe indicate that naturally occurring hormones found in foods are safe for human consumption. More recent studies have focused on the role of certain hormones found in specific foods (e.g. dairy or soy) and their potential health effects. However, limited summaries exist on food content of hormones and hormone-like phytoestrogens in the context of a comprehensive US diet and implications, if any, of their daily consumption for overall health. This review provides an outline of hormone biosynthesis and functions in the body; discusses the more commonly studied, naturally occurring hormones in food and their biological role within food; estimates relative dietary contribution and when available, bioavailability, of naturally occurring food hormones; and summarizes the potential health associations of their intake in food. Based on the review of the scientific literature, the hormone content of typical serving sizes of commonly consumed foods is undetectable or in quantities that fall well within safety guidelines without any evidence for adverse effects on health.
Collapse
Affiliation(s)
- Orsolya M Palacios
- Midwest Biomedical Research/Center for Metabolic and Cardiovascular Health, Addison, IL, USA
| | | | - Belinda H Jenks
- Belinda H. Jenks Consulting, Sunshine Terrace, Studio City, CA, USA
| | - Kevin C Maki
- Midwest Biomedical Research/Center for Metabolic and Cardiovascular Health, Addison, IL, USA
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
81
|
Madany MMY, Zinta G, Abuelsoud W, Hozzein WN, Selim S, Asard H, Elgawad HA. Hormonal seed-priming improves tomato resistance against broomrape infection. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153184. [PMID: 32464590 DOI: 10.1016/j.jplph.2020.153184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 05/08/2023]
Abstract
Although it is well known that parasitic weeds such as Orobanche (broomrape) significantly reduce the yield of economically important crops, their infection-induced oxidative changes need more exploration in their host plants. Moreover, applying an eco-friendly approach to minimize the infection is not yet available. This study was conducted to understand the effect of Orobanche ramosa infection on oxidative and redox status of tomato plants and the impact of hormonal (indole acetic acid (IAA); 0.09 mM and salicylic acid (SA); 1.0 mM) seed-priming upon mitigating the infection threats. Although Orobanche invades tomato roots, its inhibitory effects on shoot biomass were also indicted. Orobanche infection usually induces oxidative damage i.e., high lipid peroxidation, lipoxygenase activity and H2O2 levels, particularly for roots. Interestingly, hormonal seed-priming significantly enhanced tomato shoots and roots growth under both healthy and infected conditions. Also, IAA and SA treatment significantly reduced Orobanche infection-induced oxidative damage. The protective effect of seed-priming was explained by increasing the antioxidant defense markers including the antioxidant metabolites (i.e., total antioxidant capacity, carotenoids, phenolics, flavonoids, ASC, GSH, tocopherols) and enzymes (CAT, POX, GPX, SOD, GR, APX, MDHAR, DHAR), particularly in infected tomato seedlings. Additionally, cluster analysis indicated the differential impact of IAA- and SA-seed-priming, whereas lower oxidative damage and higher antioxidant enzymes' activities in tomato root were particularly reported for IAA treatment. The principal component analysis (PCA) also proclaimed an organ specificity depending on their response to Orobanche infection. Collectively, here and for the first time, we shed the light on the potential of seed-priming with either IAA or SA to mitigate the adverse effect of O. ramosa stress in tomato plants, especially at oxidative stress levels.
Collapse
Affiliation(s)
- Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Gaurav Zinta
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Centre of Excellence Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Walid Abuelsoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Han Asard
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hamada Abd Elgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
82
|
Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3878-3901. [PMID: 32157287 PMCID: PMC7450670 DOI: 10.1093/jxb/eraa111] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette Cedex, France
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
83
|
Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, Ferrandino A, Nerva L, Accotto GP, Lanfranco L. Arbuscular Mycorrhizal Symbiosis Primes Tolerance to Cucumber Mosaic Virus in Tomato. Viruses 2020; 12:E675. [PMID: 32580438 PMCID: PMC7354615 DOI: 10.3390/v12060675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 01/30/2023] Open
Abstract
Tomato plants can establish symbiotic interactions with arbuscular mycorrhizal fungi (AMF) able to promote plant nutrition and prime systemic plant defenses against pathogens attack; the mechanism involved is known as mycorrhiza-induced resistance (MIR). However, studies on the effect of AMF on viral infection, still limited and not conclusive, indicate that AMF colonization may have a detrimental effect on plant defenses against viruses, so that the term "mycorrhiza-induced susceptibility" (MIS) has been proposed for these cases. To expand the case studies to a not yet tested viral family, that is, Bromoviridae, we investigated the effect of the colonization by the AMF Funneliformis mosseae on cucumber mosaic virus (CMV) infection in tomato by phenotypic, physiological, biochemical, and transcriptional analyses. Our results showed that the establishment of a functional AM symbiosis is able to limit symptoms development. Physiological and transcriptomic data highlighted that AMF mitigates the drastic downregulation of photosynthesis-related genes and the reduction of photosynthetic CO2 assimilation rate caused by CMV infection. In parallel, an increase of salicylic acid level and a modulation of reactive oxygen species (ROS)-related genes, toward a limitation of ROS accumulation, was specifically observed in CMV-infected mycorrhizal plants. Overall, our data indicate that the AM symbiosis influences the development of CMV infection in tomato plants and exerts a priming effect able to enhance tolerance to viral infection.
Collapse
Affiliation(s)
- Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Federico Brilli
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Unit of Sesto Fiorentino (FI), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy;
| | - Valerio Casarin
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Mara Berti
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy;
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Strada delle Cacce 73, 10135 Torino, Italy; (A.M.V.); (V.C.); (M.B.); (L.N.); (G.P.A.)
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
84
|
van Butselaar T, Van den Ackerveken G. Salicylic Acid Steers the Growth-Immunity Tradeoff. TRENDS IN PLANT SCIENCE 2020; 25:566-576. [PMID: 32407696 DOI: 10.1016/j.tplants.2020.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
Plants possess an effective immune system to combat most microbial attackers. The activation of immune responses to biotrophic pathogens requires the hormone salicylic acid (SA). Accumulation of SA triggers a plethora of immune responses (like massive transcriptional reprogramming, cell wall strengthening, and production of secondary metabolites and antimicrobial proteins). A tradeoff of strong immune responses is the active suppression of plant growth and development. The tradeoff also works the opposite way, where active growth and developmental processes suppress SA production and immune responses. Here, we review research on the role of SA in the growth-immunity tradeoff and examples of how the tradeoff can be bypassed. This knowledge will be instrumental in resistance breeding of crops with optimal growth and effective immunity.
Collapse
Affiliation(s)
- Tijmen van Butselaar
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
85
|
Li R, Sheng J, Shen L. Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:121-132. [PMID: 32296292 PMCID: PMC7143515 DOI: 10.5423/ppj.oa.11.2019.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 05/25/2023]
Abstract
β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
86
|
Wang C, Wang G, Gao Y, Lu G, Habben JE, Mao G, Chen G, Wang J, Yang F, Zhao X, Zhang J, Mo H, Qu P, Liu J, Greene TW. A cytokinin-activation enzyme-like gene improves grain yield under various field conditions in rice. PLANT MOLECULAR BIOLOGY 2020; 102:373-388. [PMID: 31872309 DOI: 10.1007/s11103-019-00952-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/18/2019] [Indexed: 05/11/2023]
Abstract
CRISPR-edited variants at the 3'-end of OsLOGL5's coding sequence (CDS), significantly increased rice grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Cytokinins impact numerous aspects of plant growth and development. This study reports that constitutive ectopic overexpression of a rice cytokinin-activation enzyme-like gene, OsLOGL5, significantly reduced primary root growth, tiller number, and yield. Conversely, mutations at the 3'-end of OsLOGL5 CDS resulted in normal rice plant morphology but with increased grain yield under well-watered, drought, normal nitrogen, and low nitrogen field conditions at multiple geographical locations. Six gene edited variants (Edit A to F) were created and tested in the field. Edit-B and Edit-F plants increased, but Edit-D and Edit-E plants decreased, the panicle number per plant. All OsLOGL5-edited plants significantly increased seed setting rate, total grain numbers, full-filled grain numbers per panicle, and thousand seed weight under drought conditions, suggesting that OsLOGL5 is likely involved in the regulation of both seed development and grain filling processes. Our results indicate that the C-terminal end of OsLOGL5 protein plays an important role in regulating rice yield improvement under different abiotic stress conditions, and OsLOGL5 is important for rice yield enhancement and stability.
Collapse
Affiliation(s)
- Changgui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guokui Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guihua Lu
- Corteva Agriscience, Johnston, IA, USA.
| | | | - Guanfan Mao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Guangwu Chen
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Fan Yang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Xiaoqiang Zhao
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Jing Zhang
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Hua Mo
- Corteva Agriscience, Johnston, IA, USA
| | - Pingping Qu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group Co., Ltd, Beijing, China.
| | | |
Collapse
|
87
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
88
|
Luo K, Yao XJ, Luo C, Hu XS, Hu ZQ, Zhang GS, Zhao HY. Previous Aphid Infestation Induces Different Expression Profiles of Genes Associated with Hormone-Dependent Responses in Near-Isogenic Winter Wheat Lines. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:461-470. [PMID: 32034919 DOI: 10.1093/jee/toz222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 05/24/2023]
Abstract
Hormone-dependent responses in host plants induced by herbivore infestation have species-specific effects. This study focused on determining the relative expression profiles of the genes associated with hormone-dependent pathways in two near-isogenic wheat lines when attacked by cereal aphids. Infestation with Rhopalosiphum padi Linnaeus (Hemiptera: Aphididae) and/or Sitobion avenae Fabricius (Hemiptera: Aphididae) significantly upregulated the expression of marker genes related to the salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways in the tested lines. In the resistant line 35-E4, previous infestation with R. padi significantly increased the relative expression of plant pathogenesis-related protein 1 at all sampling times but did not have a significant effect on the expression of the phenylalanine ammonia-lyase (PAL) gene. In addition, the expression levels of the lipoxygenase (LOX) and allene oxide synthase (AOS) genes immediately increased after the aphid attack. In susceptible line 35-A20, infestation with either R. padi or S. avenae led to significantly increased expression levels of the AOS and PAL genes. Moreover, sequential aphid infestation induced higher expression of AOS compared with a single-species aphid infestation, whereas the expression of the PAL gene was antagonistically affected by sequential aphid infestation. Overall, these results showed that aphid infestation induced SA- and JA-dependent responses in host plants. However, the expression profiles of these genes in resistant and susceptible host lines were significantly different.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xin-Jian Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Chen Luo
- French National Institute for Agricultural Research (INRA), Univ. Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Xiang-Shun Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zu-Qing Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Gai-Sheng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hui-Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
89
|
Zhao Y, Li Y, Zhang B. Induced resistance in peach fruit as treated by Pichia guilliermondii and their possible mechanism. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2019.1705336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yan Zhao
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, China
| | - Yanfei Li
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, China
| | - Bing Zhang
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
90
|
Dhar N, Chen JY, Subbarao KV, Klosterman SJ. Hormone Signaling and Its Interplay With Development and Defense Responses in Verticillium-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:584997. [PMID: 33250913 PMCID: PMC7672037 DOI: 10.3389/fpls.2020.584997] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 05/19/2023]
Abstract
Soilborne plant pathogenic species in the fungal genus Verticillium cause destructive Verticillium wilt disease on economically important crops worldwide. Since R gene-mediated resistance is only effective against race 1 of V. dahliae, fortification of plant basal resistance along with cultural practices are essential to combat Verticillium wilts. Plant hormones involved in cell signaling impact defense responses and development, an understanding of which may provide useful solutions incorporating aspects of basal defense. In this review, we examine the current knowledge of the interplay between plant hormones, salicylic acid, jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid, auxin, and nitric oxide, and the defense responses and signaling pathways that contribute to resistance and susceptibility in Verticillium-host interactions. Though we make connections where possible to non-model systems, the emphasis is placed on Arabidopsis-V. dahliae and V. longisporum interactions since much of the research on this interplay is focused on these systems. An understanding of hormone signaling in Verticillium-host interactions will help to determine the molecular basis of Verticillium wilt progression in the host and potentially provide insight on alternative approaches for disease management.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
- Nikhilesh Dhar,
| | - Jie-Yin Chen
- Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
- *Correspondence: Steven J. Klosterman,
| |
Collapse
|
91
|
Chu N, Zhou JR, Fu HY, Huang MT, Zhang HL, Gao SJ. Global Gene Responses of Resistant and Susceptible Sugarcane Cultivars to Acidovorax avenae subsp. avenae Identified Using Comparative Transcriptome Analysis. Microorganisms 2019; 8:microorganisms8010010. [PMID: 31861562 PMCID: PMC7022508 DOI: 10.3390/microorganisms8010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
Red stripe disease in sugarcane caused by Acidovorax avenae subsp. avenae (Aaa) is related to serious global losses in yield. However, the underlying molecular mechanisms associated with responses of sugarcane plants to infection by this pathogen remain largely unknown. Here, we used Illumina RNA-sequencing (RNA-seq) to perform large-scale transcriptome sequencing of two sugarcane cultivars to contrast gene expression patterns of plants between Aaa and mock inoculations, and identify key genes and pathways involved in sugarcane defense responses to Aaa infection. At 0–72 hours post-inoculation (hpi) of the red stripe disease-resistant cultivar ROC22, a total of 18,689 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples. Of these, 8498 and 10,196 genes were up- and downregulated, respectively. In MT11-610, which is susceptible to red stripe disease, 15,782 genes were differentially expressed between Aaa-inoculated and mock-inoculated samples and 8807 and 6984 genes were up- and downregulated, respectively. The genes that were differentially expressed following Aaa inoculation were mainly involved in photosynthesis and carbon metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant–pathogen interaction pathways. Further, qRT-PCR and RNA-seq used for additional validation of 12 differentially expressed genes (DEGs) showed that eight genes in particular were highly expressed in ROC22. These eight genes participated in the biosynthesis of lignin and coumarin, as well as signal transduction by salicylic acid, jasmonic acid, ethylene, and mitogen-activated protein kinase (MAPK), suggesting that they play essential roles in sugarcane resistance to Aaa. Collectively, our results characterized the sugarcane transcriptome during early infection with Aaa, thereby providing insights into the molecular mechanisms responsible for bacterial tolerance.
Collapse
|
92
|
Ntambo MS, Meng JY, Rott PC, Henry RJ, Zhang HL, Gao SJ. Comparative Transcriptome Profiling of Resistant and Susceptible Sugarcane Cultivars in Response to Infection by Xanthomonas albilineans. Int J Mol Sci 2019; 20:ijms20246138. [PMID: 31817492 PMCID: PMC6940782 DOI: 10.3390/ijms20246138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrids) is a major source of sugar and renewable bioenergy crop worldwide and suffers serious yield losses due to many pathogen infections. Leaf scald caused by Xanthomonas albilineans is a major bacterial disease of sugarcane in most sugarcane-planting countries. The molecular mechanisms of resistance to leaf scald in this plant are, however, still unclear. We performed a comparative transcriptome analysis between resistant (LCP 85-384) and susceptible (ROC20) sugarcane cultivars infected by X. albilineans using the RNA-seq platform. 24 cDNA libraries were generated with RNA isolated at four time points (0, 24, 48, and 72 h post inoculation) from the two cultivars with three biological replicates. A total of 105,783 differentially expressed genes (DEGs) were identified in both cultivars and the most upregulated and downregulated DEGs were annotated for the processes of the metabolic and single-organism categories, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 7612 DEGs showed that plant-pathogen interaction, spliceosome, glutathione metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction contributed to sugarcane's response to X. albilineans infection. Subsequently, relative expression levels of ten DEGs determined by quantitative reverse transcription-PCR (qRT-PCR), in addition to RNA-Seq data, indicated that different plant hormone (auxin and ethylene) signal transduction pathways play essential roles in sugarcane infected by X. albilineans. In conclusion, our results provide, for the first time, valuable information regarding the transcriptome changes in sugarcane in response to infection by X. albilineans, which contribute to the understanding of the molecular mechanisms underlying the interactions between sugarcane and this pathogen and provide important clues for further characterization of leaf scald resistance in sugarcane.
Collapse
Affiliation(s)
- Mbuya Sylvain Ntambo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - Jian-Yu Meng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - Philippe C. Rott
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France;
| | - Robert J. Henry
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
- Correspondence:
| |
Collapse
|
93
|
Preharvest UV-C treatment affected postharvest senescence and phytochemicals alternation of strawberry fruit with the possible involvement of abscisic acid regulation. Food Chem 2019; 299:125138. [DOI: 10.1016/j.foodchem.2019.125138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 01/30/2023]
|
94
|
Manoharan B, Qi SS, Dhandapani V, Chen Q, Rutherford S, Wan JS, Jegadeesan S, Yang HY, Li Q, Li J, Dai ZC, Du DL. Gene Expression Profiling Reveals Enhanced Defense Responses in an Invasive Weed Compared to Its Native Congener During Pathogenesis. Int J Mol Sci 2019; 20:E4916. [PMID: 31623404 PMCID: PMC6801458 DOI: 10.3390/ijms20194916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Invasive plants are a huge burden on the environment, and modify local ecosystems by affecting the indigenous biodiversity. Invasive plants are generally less affected by pathogens, although the underlying molecular mechanisms responsible for their enhanced resistance are unknown. We investigated expression profiles of three defense hormones (salicylic acid, jasmonic acid, and ethylene) and their associated genes in the invasive weed, Alternanthera philoxeroides, and its native congener, A. sessilis, after inoculation with Rhizoctonia solani. Pathogenicity tests showed significantly slower disease progression in A. philoxeroides compared to A. sessilis. Expression analyses revealed jasmonic acid (JA) and ethylene (ET) expressions were differentially regulated between A. philoxeroides and A. sessilis, with the former having prominent antagonistic cross-talk between salicylic acid (SA) and JA, and the latter showing weak or no cross-talk during disease development. We also found that JA levels decreased and SA levels increased during disease development in A. philoxeroides. Variations in hormonal gene expression between the invasive and native species (including interspecific differences in the strength of antagonistic cross-talk) were identified during R. solani pathogenesis. Thus, plant hormones and their cross-talk signaling may improve the resistance of invasive A. philoxeroides to pathogens, which has implications for other invasive species during the invasion process.
Collapse
Affiliation(s)
- Bharani Manoharan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shan-Shan Qi
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Qi Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Susan Rutherford
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Justin Sh Wan
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Sridharan Jegadeesan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel.
| | - Hong-Yu Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jian Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhi-Cong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China..
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
95
|
Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:187-198. [PMID: 31148337 DOI: 10.1111/tpj.14425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/05/2018] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogen Pseudomonas syringae delivers into host cells type III secreted effectors (T3SEs) that promote virulence. One virulence mechanism employed by T3SEs is to target hormone signaling pathways to perturb hormone homeostasis. The phytohormone abscisic acid (ABA) influences interactions between various phytopathogens and their plant hosts, and has been shown to be a target of P. syringae T3SEs. In order to provide insight into how T3SEs manipulate ABA responses, we generated an ABA-T3SE interactome network (ATIN) between P. syringae T3SEs and Arabidopsis proteins encoded by ABA-regulated genes. ATIN consists of 476 yeast-two-hybrid interactions between 97 Arabidopsis ABA-regulated proteins and 56 T3SEs from four pathovars of P. syringae. We demonstrate that T3SE interacting proteins are significantly enriched for proteins associated with transcription. In particular, the ETHYLENE RESPONSIVE FACTOR (ERF) family of transcription factors is highly represented. We show that ERF105 and ERF8 displayed a role in defense against P. syringae, supporting our overall observation that T3SEs of ATIN converge on proteins that influence plant immunity. In addition, we demonstrate that T3SEs that interact with a large number of ABA-regulated proteins can influence ABA responses. One of these T3SEs, HopF3Pph6 , inhibits the function of ERF8, which influences both ABA-responses and plant immunity. These results provide a potential mechanism for how HopF3Pph6 manipulates ABA-responses to promote P. syringae virulence, and also demonstrate the utility of ATIN as a resource to study the ABA-T3SE interface.
Collapse
Affiliation(s)
- Feng Y Cao
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Madiha Khan
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Masatoshi Taniguchi
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Armand Mirmiran
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
96
|
Avila-Mendez K, Rodrigo Á, Araque L, Romero HM. Simultaneous transcriptome analysis of oil palm clones and Phytophthora palmivora reveals oil palm defense strategies. PLoS One 2019; 14:e0222774. [PMID: 31553759 PMCID: PMC6760804 DOI: 10.1371/journal.pone.0222774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022] Open
Abstract
Phytophthora palmivora is an oomycete that causes oil palm bud rot disease. To understand the molecular mechanisms of this disease, palm clones with contrasting responses (Ortet 34, resistant and Ortet 57, susceptible) were inoculated with P. palmivora, and RNAseq gene expression analysis was performed. The transcriptome was obtained by sequencing using Illumina HiSeq2500 technology during the asymptomatic phase (24, 72 and 120 hours postinfection, hpi). A simultaneous analysis of differentially expressed gene (DEG) profiles in palm and P. palmivora was carried out. Additionally, Gene Ontology (GO) and gene network analysis revealed differences in the transcriptional profile of the two ortets, where a high specificity of the pathogen to colonize the susceptible ortet was found. The transcriptional analysis provided an overview of the genes involved in the recognition and signaling of this pathosystem, where different transcription factors, phytohormones, proteins associated with cell wall hardening and nitrogen metabolism contribute to the resistance of oil palm to P. palmivora. This research provides a description of the molecular response of oil palm to P. palmivora, thus becoming an important source of molecular markers for the study of genotypes resistant to bud rot disease.
Collapse
Affiliation(s)
- Kelly Avila-Mendez
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
| | - Ávila Rodrigo
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
| | - Leonardo Araque
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
| | - Hernán Mauricio Romero
- Biology and Breeding Program, OiI Palm Research Center, Cenipalma, Bogotá, Colombia
- Department of Biology, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
97
|
Unravelling the Metabolic Reconfiguration of the Post-Challenge Primed State in Sorghum bicolor Responding to Colletotrichum sublineolum Infection. Metabolites 2019; 9:metabo9100194. [PMID: 31547091 PMCID: PMC6835684 DOI: 10.3390/metabo9100194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Priming is a natural phenomenon that pre-conditions plants for enhanced defence against a wide range of pathogens. It represents a complementary strategy, or sustainable alternative that can provide protection against disease. However, a comprehensive functional and mechanistic understanding of the various layers of priming events is still limited. A non-targeted metabolomics approach was used to investigate metabolic changes in plant growth-promoting rhizobacteria (PGPR)-primed Sorghum bicolor seedlings infected with the anthracnose-causing fungal pathogen, Colletotrichum sublineolum, with a focus on the post-challenge primed state phase. At the 4-leaf growth stage, the plants were treated with a strain of Paenibacillus alvei at 108 cfu mL−1. Following a 24 h PGPR application, the plants were inoculated with a C. sublineolum spore suspension (106 spores mL−1), and the infection monitored over time: 1, 3, 5, 7 and 9 days post-inoculation. Non-infected plants served as negative controls. Intracellular metabolites from both inoculated and non-inoculated plants were extracted with 80% methanol-water. The extracts were chromatographically and spectrometrically analysed on an ultra-high performance liquid chromatography (UHPLC) system coupled to high-definition mass spectrometry. The acquired multidimensional data were processed to create data matrices for chemometric modelling. The computed models indicated time-related metabolic perturbations that reflect primed responses to the fungal infection. Evaluation of orthogonal projection to latent structure-discriminant analysis (OPLS-DA) loading shared and unique structures (SUS)-plots uncovered the differential stronger defence responses against the fungal infection observed in primed plants. These involved enhanced levels of amino acids (tyrosine, tryptophan), phytohormones (jasmonic acid and salicylic acid conjugates, and zeatin), and defence-related components of the lipidome. Furthermore, other defence responses in both naïve and primed plants were characterised by a complex mobilisation of phenolic compounds and de novo biosynthesis of the flavones, apigenin and luteolin and the 3-deoxyanthocyanidin phytoalexins, apigeninidin and luteolinidin, as well as some related conjugates.
Collapse
|
98
|
Abstract
The blast disease, caused by the ascomycete Magnaporthe oryzae, poses a great threat to rice production worldwide. Increasing use of fungicides and/or blast-resistant varieties of rice (Oryza sativa) has proved to be ineffective in long-term control of blast disease under field conditions. To develop effective and durable resistance to blast, it is important to understand the cellular mechanisms underlying pathogenic development in M. oryzae. In this review, we summarize the latest research in phototropism, autophagy, nutrient and redox signaling, and intrinsic phytohormone mimics in M. oryzae for cellular and metabolic adaptation(s) during its interactions with the host plants.
Collapse
Affiliation(s)
- Yi Zhen Deng
- Integrative Microbiology Research Centre and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore 117604;
| |
Collapse
|
99
|
Papini A, Luti S, Colzi I, Mazzoli L, Giorni E, Pazzagli L, Gonnelli C. Alternative responses to fungal attack on a metalliferous soil: Phytohormone levels and structural changes in Silene paradoxa L. growing under copper stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:37-48. [PMID: 31300140 DOI: 10.1016/j.plantsci.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
In this work, a non-metallicolous and a metallicolous population of S. paradoxa were exposed to copper excess and fungal elicitation, and investigated for phytohormone production and cytological alterations. Under the stress applied separately and in combination, S. paradoxa plants varied phytohormone concentration in a population-specific way, suggesting a different signalling in response to biotic and abiotic stimuli according to the environment of origin. Generally, the stress responses consisted in increased levels of salicylic acid, auxin, and gibberellin in the non-metallicolous population, and of jasmonic and abscisic acid in the metallicolous one. Interestingly, the metallicolous population increased the level of such phytohormones following exposure to the fungal elicitor only in the presence of copper. This alternative hormonal signalling could derive from the incompatibility between the ordinary ROS-mediated response to pathogens and the acquired mechanisms that prevent oxidative stress in the population from the metal-rich soil. Furthermore, stress-induced autophagic phenomena were more evident in the non-metallicolous plants than in the metallicolous ones, suggesting that the adaptation to the metalliferous environment has also affected autophagy intensity and signalling in response to copper excess and fungal elicitation.
Collapse
Affiliation(s)
- Alessio Papini
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Ilaria Colzi
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Lorenzo Mazzoli
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Elisabetta Giorni
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, Università di Firenze, Viale Morgagni 50, 50134, Firenze, Italy.
| | - Cristina Gonnelli
- Department of Biology, Università di Firenze, via Micheli 1, 50121, Firenze, Italy.
| |
Collapse
|
100
|
Liu S, Yuan X, Wang Y, Wang H, Wang J, Shen Z, Gao Y, Cai J, Li D, Song F. Tomato Stress-Associated Protein 4 Contributes Positively to Immunity Against Necrotrophic Fungus Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:566-582. [PMID: 30589365 DOI: 10.1094/mpmi-04-18-0097-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress-associated proteins (SAPs) are A20 and AN1 domain-containing proteins, some of which play important roles in plant stress signaling. Here, we report the involvement of tomato SlSAP family in immunity. SlSAPs responded with different expression patterns to Botrytis cinerea and defense signaling hormones. Virus-induced gene silencing of each of the SlSAP genes and disease assays revealed that SlSAP4 and SlSAP10 play roles in immunity against B. cinerea. Silencing of SlSAP4 resulted in attenuated immunity to B. cinerea, accompanying increased accumulation of reactive oxygen species and downregulated expression of jasmonate and ethylene (JA/ET) signaling-responsive defense genes. Transient expression of SlSAP4 in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Exogenous application of methyl jasmonate partially restored the resistance of the SlSAP4-silenced plants against B. cinerea. SlSAP4 interacted with three of four SlRAD23 proteins. The A20 domain in SlSAP4 and the Ub-associated domains in SlRAD23d are critical for SlSAP4-SlRAD23d interaction. Silencing of SlRAD23d led to decreased resistance to B. cinerea, but silencing of each of other SlRAD23s did not affect immunity against B. cinerea. Furthermore, silencing of SlSAP4 and each of the SlRAD23s did not affect immunity to Pseudomonas syringae pv. tomato DC3000. These data suggest that SlSAP4 contributes positively to tomato immunity against B. cinereal through affecting JA/ET signaling and may be involved in the substrate ubiquitination process via interacting with SlRAD23d.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyan Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiali Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhihui Shen
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiating Cai
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|