51
|
Li R, El Zowalaty AE, Chen W, Dudley EA, Ye X. Segregated responses of mammary gland development and vaginal opening to prepubertal genistein exposure in Bscl2(-/-) female mice with lipodystrophy. Reprod Toxicol 2014; 54:76-83. [PMID: 25462787 DOI: 10.1016/j.reprotox.2014.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/12/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy 2-deficient (Bscl2(-/-)) mice recapitulate human BSCL2 disease with lipodystrophy. Bscl2-encoded seipin is detected in adipocytes and epithelium of mammary gland. Postnatal mammary gland growth spurt and vaginal opening signify pubertal onset in female mice. Bscl2(-/-) females have longer and dilated mammary gland ducts at 5-week old and delayed vaginal opening. Prepubertal exposure to 500ppm genistein diet increases mammary gland area and accelerates vaginal opening in both control and Bscl2(-/-) females. However, genistein treatment increases ductal length in control but not Bscl2(-/-) females. Neither prepubertal genistein treatment nor Bscl2-deficiency affects phospho-estrogen receptor α or progesterone receptor expression patterns in 5-week old mammary gland. Interestingly, Bscl2-deficiency specifically reduces estrogen receptor β expression in mammary gland ductal epithelium. In summary, Bscl2(-/-) females have accelerated postnatal mammary ductal development but delayed vaginal opening; they display segregated responses in mammary gland development and vaginal opening to prepubertal genistein treatment.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Weiqin Chen
- Department of Physiology, Georgia Regents University, Augusta, GA 30912, USA.
| | - Elizabeth A Dudley
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
52
|
Roa J, Tena-Sempere M. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators. Mol Cell Endocrinol 2014; 397:4-14. [PMID: 25289807 DOI: 10.1016/j.mce.2014.09.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 12/15/2022]
Abstract
It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofia, 14004 Córdoba, Spain.
| |
Collapse
|
53
|
Akhter N, CarlLee T, Syed MM, Odle AK, Cozart MA, Haney AC, Allensworth-James ML, Beneš H, Childs GV. Selective deletion of leptin receptors in gonadotropes reveals activin and GnRH-binding sites as leptin targets in support of fertility. Endocrinology 2014; 155:4027-42. [PMID: 25057790 PMCID: PMC4164926 DOI: 10.1210/en.2014-1132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipokine, leptin (LEP), is a hormonal gateway, signaling energy stores to appetite-regulatory neurons, permitting reproduction when stores are sufficient. Dual-labeling for LEP receptors (LEPRs) and gonadotropins or GH revealed a 2-fold increase in LEPR during proestrus, some of which was seen in LH gonadotropes. We therefore investigated LEPR functions in gonadotropes with Cre-LoxP technology, deleting the signaling domain of the LEPR (Lepr-exon 17) with Cre-recombinase driven by the rat LH-β promoter (Lhβ-cre). Selectivity of the deletion was validated by organ genotyping and lack of LEPR and responses to LEP by mutant gonadotropes. The mutation had no impact on growth, body weight, the timing of puberty, or pregnancy. Mutant females took 36% longer to produce their first litter and had 50% fewer pups/litter. When the broad impact of the loss of gonadotrope LEPR on all pituitary hormones was studied, mutant diestrous females had reduced serum levels of LH (40%), FSH (70%), and GH (54%) and mRNA levels of Fshβ (59%) and inhibin/activin β A and β B (25%). Mutant males had reduced serum levels of GH (74%), TSH (31%), and prolactin (69%) and mRNA levels of Gh (31%), Ghrhr (30%), Fshβ (22%), and glycoprotein α-subunit (Cga) (22%). Serum levels of LEP and ACTH and mRNA levels of Gnrhr were unchanged. However, binding to GnRH receptors was reduced in LEPR-null LH or FSH gonadotropes by 82% or 89%, respectively, in females (P < .0001) and 27% or 53%, respectively, in males (P < .03). This correlated with reductions in GnRH receptor protein immunolabeling, suggesting that LEP's actions may be posttranscriptional. Collectively, these studies highlight the importance of LEP to gonadotropes with GnRH-binding sites and activin as potential targets. LEP may modulate population growth, adjusting the number of offspring to the availability of food supplies.
Collapse
Affiliation(s)
- Noor Akhter
- Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Leptin, as a key hormone in energy homeostasis, regulates neuroendocrine function, including reproduction. It has a permissive role in the initiation of puberty and maintenance of the hypothalamic-pituitary-gonadal axis. This is notable in patients with either congenital or acquired leptin deficiency from a state of chronic energy insufficiency. Hypothalamic amenorrhea is the best-studied, with clinical trials confirming a causative role of leptin in hypogonadotropic hypogonadism. Implications of leptin deficiency have also emerged in the pathophysiology of hypogonadism in type 1 diabetes. At the other end of the spectrum, hyperleptinemia may play a role in hypogonadism associated with obesity, polycystic ovarian syndrome, and type 2 diabetes. In these conditions of energy excess, mechanisms of reproductive dysfunction include central leptin resistance as well as direct effects at the gonadal level. Thus, reproductive dysfunction due to energy imbalance at both ends can be linked to leptin.
Collapse
Affiliation(s)
- Sharon H Chou
- Section of Adult and Pediatric EndocrinologyDiabetes and Metabolism, The University of Chicago, 5841 South Maryland Avenue, MC 1027, Chicago, Illinois 60637, USADivision of EndocrinologyDiabetes, and Metabolism, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, FD-876, Boston, Massachusetts 02215, USASection of EndocrinologyBoston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Christos Mantzoros
- Section of Adult and Pediatric EndocrinologyDiabetes and Metabolism, The University of Chicago, 5841 South Maryland Avenue, MC 1027, Chicago, Illinois 60637, USADivision of EndocrinologyDiabetes, and Metabolism, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, FD-876, Boston, Massachusetts 02215, USASection of EndocrinologyBoston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA Section of Adult and Pediatric EndocrinologyDiabetes and Metabolism, The University of Chicago, 5841 South Maryland Avenue, MC 1027, Chicago, Illinois 60637, USADivision of EndocrinologyDiabetes, and Metabolism, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, FD-876, Boston, Massachusetts 02215, USASection of EndocrinologyBoston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Leptin-responsive GABAergic neurons regulate fertility through pathways that result in reduced kisspeptinergic tone. J Neurosci 2014; 34:6047-56. [PMID: 24760864 DOI: 10.1523/jneurosci.3003-13.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The adipocyte-derived hormone leptin plays a critical role in the central transmission of energy balance to modulate reproductive function. However, the neurocircuitry underlying this interaction remains elusive, in part due to incomplete knowledge of first-order leptin-responsive neurons. To address this gap, we explored the contribution of predominantly inhibitory (GABAergic) neurons versus excitatory (glutamatergic) neurons in the female mouse by selective ablation of the leptin receptor in each neuronal population: Vgat-Cre;Lepr(lox/lox) and Vglut2-Cre;Lepr(lox/lox) mice, respectively. Female Vgat-Cre;Lepr(lox/lox) but not Vglut2-Cre;Lepr(lox/lox) mice were obese. Vgat-Cre;Lepr(lox/lox) mice had delayed or absent vaginal opening, persistent diestrus, and atrophic reproductive tracts with absent corpora lutea. In contrast, Vglut2-Cre;Lepr(lox/lox) females exhibited reproductive maturation and function comparable to Lepr(lox/lox) control mice. Intracerebroventricular administration of kisspeptin-10 to Vgat-Cre;Lepr(lox/lox) female mice elicited robust gonadotropin responses, suggesting normal gonadotropin-releasing hormone neuronal and gonadotrope function. However, adult ovariectomized Vgat-Cre;Lepr(lox/lox) mice displayed significantly reduced levels of Kiss1 (but not Tac2) mRNA in the arcuate nucleus, and a reduced compensatory luteinizing hormone increase compared with control animals. Estradiol replacement after ovariectomy inhibited gonadotropin release to a similar extent in both groups. These animals also exhibited a compromised positive feedback response to sex steroids, as shown by significantly lower Kiss1 mRNA levels in the AVPV, compared with Lepr(lox/lox) mice. We conclude that leptin-responsive GABAergic neurons, but not glutamatergic neurons, act as metabolic sensors to regulate fertility, at least in part through modulatory effects on kisspeptin neurons.
Collapse
|
56
|
Bellefontaine N, Elias CF. Minireview: Metabolic control of the reproductive physiology: insights from genetic mouse models. Horm Behav 2014; 66:7-14. [PMID: 24746731 PMCID: PMC4204395 DOI: 10.1016/j.yhbeh.2014.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022]
Abstract
This article is part of a Special Issue Energy Balance. Over the past two decades, and in particular over the past 5-7 years, there has been a tremendous advancement in the understanding of the metabolic control of reproductive physiology. This has been in large part due to the advancement and refinement of gene targeting tools and techniques for molecular mapping. Yet despite the emergence of exciting and often times thought-provoking data through the use of new mouse models, the heavy reliance on gene targeting strategies has become fundamental in this process and thus caution must be exercised when interpreting results. This minireview article will explore the generation of new mouse models using genetic manipulation, such as viral vector delivery and the use of the Cre/loxP system, to investigate the role of circulating metabolic hormones in the coordination of reproductive physiology. In addition, we will also highlight some of the pitfalls in the use of genetic manipulation in the current paradigms. However, it has become clear that metabolic cues employ integrated and plastic neural circuits in order to modulate the neuroendocrine reproductive axis, and despite recent advances much remains to be elucidated about this circuitry.
Collapse
Affiliation(s)
- Nicole Bellefontaine
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F Elias
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
57
|
Bellefontaine N, Chachlaki K, Parkash J, Vanacker C, Colledge W, d'Anglemont de Tassigny X, Garthwaite J, Bouret SG, Prevot V. Leptin-dependent neuronal NO signaling in the preoptic hypothalamus facilitates reproduction. J Clin Invest 2014; 124:2550-9. [PMID: 24812663 DOI: 10.1172/jci65928] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/20/2014] [Indexed: 01/28/2023] Open
Abstract
The transition to puberty and adult fertility both require a minimum level of energy availability. The adipocyte-derived hormone leptin signals the long-term status of peripheral energy stores and serves as a key metabolic messenger to the neuroendocrine reproductive axis. Humans and mice lacking leptin or its receptor fail to complete puberty and are infertile. Restoration of leptin levels in these individuals promotes sexual maturation, which requires the pulsatile, coordinated delivery of gonadotropin-releasing hormone to the pituitary and the resulting surge of luteinizing hormone (LH); however, the neural circuits that control the leptin-mediated induction of the reproductive axis are not fully understood. Here, we found that leptin coordinated fertility by acting on neurons in the preoptic region of the hypothalamus and inducing the synthesis of the freely diffusible volume-based transmitter NO, through the activation of neuronal NO synthase (nNOS) in these neurons. The deletion of the gene encoding nNOS or its pharmacological inhibition in the preoptic region blunted the stimulatory action of exogenous leptin on LH secretion and prevented the restoration of fertility in leptin-deficient female mice by leptin treatment. Together, these data indicate that leptin plays a central role in regulating the hypothalamo-pituitary-gonadal axis in vivo through the activation of nNOS in neurons of the preoptic region.
Collapse
|
58
|
Marceau K, Ruttle PL, Shirtcliff EA, Essex MJ, Susman EJ. Developmental and contextual considerations for adrenal and gonadal hormone functioning during adolescence: Implications for adolescent mental health. Dev Psychobiol 2014; 57:742-68. [PMID: 24729154 DOI: 10.1002/dev.21214] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
Substantial research has implicated the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes independently in adolescent mental health problems, though this literature remains largely inconclusive. Given the cross-talk between the HPA and HPG axes and their increased activation in adolescence, a dual-axis approach that examines both axes simultaneously is proposed to predict the emergence and persistence of adolescent mental health problems. After briefly orienting readers to HPA and HPG axis functioning, we review the literature examining associations between hormone levels and changes with behavior during adolescence. Then, we provide a review of the literature supporting examination of both axes simultaneously and present the limited research that has taken a dual-axis approach. We propose future directions including consideration of between-person and within-person approaches to address questions of correlated changes in HPA and HPG hormones. Potential moderators are considered to increase understanding of the nuanced hormone-behavior associations during key developmental transitions.
Collapse
Affiliation(s)
- Kristine Marceau
- The Pennsylvania State University, University Park, PA. .,Brown University, Center for Alcohol and Addiction Studies, Providence, RI. .,Department of Psychiatry, Rhode Island Hospital, Providence, RI.
| | - Paula L Ruttle
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Elizabeth A Shirtcliff
- Iowa State University, Department of Human Development and Family Studies, New Orleans, LA
| | - Marilyn J Essex
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | | |
Collapse
|
59
|
Rizwan MZ, Harbid AA, Inglis MA, Quennell JH, Anderson GM. Evidence that hypothalamic RFamide related peptide-3 neurones are not leptin-responsive in mice and rats. J Neuroendocrinol 2014; 26:247-57. [PMID: 24612072 DOI: 10.1111/jne.12140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/05/2014] [Accepted: 02/22/2014] [Indexed: 12/22/2022]
Abstract
Leptin, a permissive hormonal regulator of fertility, provides information about the body's energy reserves to the hypothalamic gonadotrophin-releasing hormone (GnRH) neuronal system that drives reproduction. Leptin does not directly act on GnRH neurones, and the neuronal pathways that it uses remain unclear. RFamide-related peptide-3 (RFRP-3) neurones project to GnRH neurones and primarily inhibit their activity. We tested whether leptin could act via RFRP-3 neurones to potentially modulate GnRH activity. First, the effects of leptin deficiency or high-fat diet-induced obesity on RFRP-3 cell numbers and gene expression were assessed in male and female mice. There was no significant difference in Rfrp mRNA levels or RFRP-3-immunoreactive cell counts in wild-type versus leptin-deficient ob/ob animals, or in low-fat versus high-fat diet fed wild-type mice. Second, the presence of leptin-induced signalling in RFRP-3 neurones was examined in male and female wild-type mice and rats. Dual label immunohistochemistry revealed leptin-induced phosphorylated signal transducer and activator of transcription-3 in close proximity to RFRP-3 neurones, although there was very little (2-13%) colocalisation and no significant differences between vehicle and leptin-treated animals. Furthermore, we were unable to detect leptin receptor mRNA in a semi-purified RFRP-3 cell preparation. Because GABA neurones form critical leptin-responsive GnRH inputs, we also determined whether RFRP-3 and GABA cells were colocalised. No such colocalisation was detected. These results support the concept that leptin has little or no effects on RFRP-3 neurones, and that these neurones are unlikely to be an important neuronal pathway for the metabolic regulation of fertility by leptin.
Collapse
Affiliation(s)
- M Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
60
|
Boeke CE, Storfer-Isser A, Redline S, Taveras EM. Childhood sleep duration and quality in relation to leptin concentration in two cohort studies. Sleep 2014; 37:613-20. [PMID: 24587585 PMCID: PMC3920328 DOI: 10.5665/sleep.3510] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
STUDY OBJECTIVES Poor sleep in childhood is associated with increased obesity risk, possibly by affecting appetite-regulating hormones such as leptin. We examined short- and long-term sleep duration and quality in relation to leptin in two US pediatric cohorts. DESIGN Analysis of data from two prospective cohort studies. SETTING Population-based. Adolescent polysomnography assessments performed in a clinical research unit. PATIENTS OR PARTICIPANTS Children in Project Viva (n = 655) and adolescents in the Cleveland Children's Sleep & Health Study (n = 502). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS In Project Viva, mothers reported average child sleep duration annually from infancy through age 7, and we measured leptin at ages 3 and 7. In the Cleveland Children's Sleep & Health Study, we collected self-reported sleep duration, polysomnography-derived measures of sleep quality, and fasting leptin at ages 16-19. In sex-stratified linear regression analyses adjusted for sociodemographic characteristics and adiposity, chronic curtailed sleep was associated with lower leptin at age 7 in girls; a one-unit decrease in sleep score was associated with a 0.08 decrease in log leptin (95% CI: 0.01,0.15). The association was stronger in girls with greater adiposity (P = 0.01). Among adolescents, shorter sleep was associated with lower leptin in males; each one-hour decrease in sleep duration was associated with a 0.06 decrease in log leptin (95% CI: 0.00, 0.11). Sleep duration was not associated with leptin at other ages. Sleep quality indices were not associated with leptin. CONCLUSIONS Our results suggest possible age-specific sexual dimorphism in the influence of sleep on leptin, which may partly explain inconsistencies in the literature.
Collapse
Affiliation(s)
- Caroline E. Boeke
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | | | - Susan Redline
- Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Division of Pulmonary Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Elsie M. Taveras
- Division of General Academic Pediatrics, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA
- Departments of Pediatrics and Population Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
61
|
Abstract
Transient receptor potential (TRP) ion channels have been detected in neurons that are part of the neural network controlling reproductive physiology and behavior. In this chapter we will primarily take a look at the classical/canonical TRP (TRPC) channels but will also examine some other members of the TRP channel superfamily in reproductive (neuro)endocrinology. The referenced data suggest that different TRP proteins could play functional roles at different levels of the reproductive pathway. Still, our understanding of TRP channel involvement in (neuro)endocrinology is quite limited. Due to their mechanism of activation and complex regulation, these channels are however ideally suited to be part of the transduction machinery of hormone-secreting cells.
Collapse
Affiliation(s)
- Trese Leinders-Zufall
- Department of Physiology, University of Saarland School of Medicine, 66421, Homburg, Germany,
| | | |
Collapse
|
62
|
Elias CF. A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. Am J Physiol Regul Integr Comp Physiol 2013; 306:R1-9. [PMID: 24196667 DOI: 10.1152/ajpregu.00444.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The remarkable development and refinement of the Cre-loxP system coupled with the nonstop production of new mouse models and virus vectors have impelled the growth of various fields of investigation. In this article, I will discuss the data collected using these genetic tools in our area of interest, giving specific emphasis to the identification of the neuronal populations that relay leptin action in reproductive physiology. A series of mouse models that allow manipulation of the leptin receptor gene have been generated. Of those, I will discuss the use of two models of leptin receptor gene reexpression (LepR(neo/neo) and LepR(loxTB/loxTB)) and one model of leptin signaling blockade (LepR(flox/flox)). I will also highlight the differences of using stereotaxic delivery of virus vectors expressing DNA-recombinases (Flp and Cre) and mouse models expressing Cre-recombinase. Our findings indicate that leptin action in the ventral premammillary nucleus is sufficient, but not required, for leptin action in reproduction and that leptin action in Kiss1 neurons arises after pubertal maturation; therefore, direct leptin signaling in Kiss1 neurons is neither required nor sufficient for the permissive action of leptin in pubertal development. It also became evident that the full action of leptin in the reproductive neuroendocrine axis requires the engagement of an integrated circuitry, yet to be fully unveiled.
Collapse
Affiliation(s)
- Carol F Elias
- Department of Molecular and Integrative Physiology and Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
63
|
An ultrasensitive chemiluminescent immunosensor for the detection of human leptin using hemin/G-quadruplex DNAzymes-assembled signal amplifier. Talanta 2013; 116:816-21. [DOI: 10.1016/j.talanta.2013.07.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 11/24/2022]
|
64
|
Abstract
Determining the neural mechanisms controlling gonadotrophin-releasing hormone (GnRH) release is of pivotal importance in understanding central control of reproductive physiology in vertebrates. Targeted genetic manipulation of kisspeptin and GPR54 neurons has provided new insights into the mechanisms modulating GnRH release and thereby regulating hypothalamic-pituitary-gonadal axis activity during reproductive maturation. While conditional ablation of the oestrogen receptor α gene in kisspeptin neurons results in a dramatic advancement of the onset of puberty in female mice, subsequent pubertal maturation is arrested in these animals, as they fail to acquire normal ovulatory cyclicity. These data suggest that two oestrogen receptor α-dependent mechanisms, one a 'brake' and the other an 'accelerator', are sequentially operated in kisspeptin neurons during pubertal development of female mice to gate and then to activate GnRH release. In a different experimental approach, we removed entire kisspeptin neurons from the mouse brain and thus from the neural circuits controlling reproduction. Surprisingly, the onset of puberty in females was unaffected by kisspeptin neuron ablation. Furthermore, the animals attained regular ovulatory cyclicity and were fertile. Consistent with this, female mice lacking neurons that express the kisspeptin receptor GPR54 were also fertile, suggesting female reproductive maturation in the absence of kisspeptin/GPR54 signalling. However, acute kisspeptin neuron ablation in adult mice inhibited fertility, indicating that there is developmental compensation for the loss of kisspeptin neurons during reproductive neural circuit formation. Finally, we showed that kisspeptin neurons become an indispensable part of reproductive neural circuitry in the mouse brain before postnatal day 20.
Collapse
Affiliation(s)
- Devesh Kumar
- U. Boehm: Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Kirrberger Straße Building 61.4, 66421 Homburg, Germany.
| | | |
Collapse
|
65
|
Nasrallah MP, Ziyadeh FN. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin Nephrol 2013; 33:54-65. [PMID: 23374894 DOI: 10.1016/j.semnephrol.2012.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipocyte product leptin is a pleiotropic adipokine and hormone, with a role extending beyond appetite suppression and increased energy expenditure. This review summarizes the biology of the leptin system and the roles of its different receptors in a multitude of cellular functions in different organs, with special emphasis on the kidney. Leptin's physiological functions as well as deleterious effects in states of leptin deficiency or hyperleptinemia are emphasized. Chronic hyperleptinemia can increase blood pressure through the sympathetic nervous system and renal salt retention. The concept of selective leptin resistance in obesity is emerging, whereby leptin's effect on appetite and energy expenditure is blunted, with a concomitant increase in leptin's other effects as a result of the accompanying hyperleptinemia. The divergence in response likely is explained by different receptors and post-receptor activating mechanisms. Chronic kidney disease is a known cause of hyperleptinemia. There is an emerging view that the effect of hyperleptinemia on the kidney can contribute to the development and/or progression of chronic kidney disease in selective resistance states such as in obesity or type 2 diabetes mellitus. The mechanisms of renal injury are likely the result of exaggerated and undesirable hemodynamic influences as well as profibrotic effects.
Collapse
Affiliation(s)
- Mona P Nasrallah
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
66
|
Singireddy AV, Inglis MA, Zuure WA, Kim JS, Anderson GM. Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin's effects on fertility in mice. Endocrinology 2013; 154:2434-45. [PMID: 23696567 DOI: 10.1210/en.2013-1109] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hormone leptin is critical for the regulation of energy balance and fertility. The long-form leptin receptor (LepR) regulates multiple intracellular signaling cascades, including the classic Janus kinase-signal transducer and activator of transcription (STAT) pathways. Previous studies have shown that deletion of STAT3 or the closely related STAT5 from the brain results in an obese phenotype, but their roles in fertility regulation are not clear. This study tested whether STAT3 and STAT5 pathways of leptin signaling are required for fertility, and whether absence of one pathway might be compensated for by the other in a redundant manner. A Cre-loxP approach was used to generate 3 models of male and female transgenic mice with LepR-specific deletion of STAT3, STAT5, or both STAT3 and STAT5. Body weight, puberty onset, estrous cyclicity, and fertility were measured in all knockout (KO) mice and their control littermates. Knocking out STAT3 or both STAT3 and 5 from LepR expressing cells, but not STAT5 alone, led to significant increase in body weight. All STAT3 and STAT5 single KO mice exhibited normal puberty onset and subsequent fertility compared to their control littermates. Surprisingly, all STAT3 and STAT5 double KO mice also exhibited normal puberty onset, estrous cyclicity, and fertility, although they had severely disrupted body weight regulation. These results suggest that, although STAT3 signaling is crucial for body weight regulation, neither STAT3 nor STAT5 is required for the regulation of fertility by leptin. It remains to be determined what other signaling molecules mediate this effect of leptin, and whether they interact in a redundant manner.
Collapse
Affiliation(s)
- Amritha V Singireddy
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
67
|
Sanchez-Garrido MA, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Horm Behav 2013; 64:187-94. [PMID: 23998663 DOI: 10.1016/j.yhbeh.2013.01.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/24/2012] [Accepted: 01/29/2013] [Indexed: 01/19/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". Reproduction is an energy-demanding function. Accordingly, puberty is metabolically gated, as a means to prevent fertility in conditions of energy insufficiency. In addition, obesity has been shown to impact the timing of puberty and may be among the causes for the earlier trends of pubertal age reported in various countries. The metabolic control of puberty in such a spectrum of situations, ranging from energy deficit to extreme overweight, is the result of the concerted action of different peripheral hormones and central transmitters that sense the metabolic state of the organism and transmit this information to the various elements of the reproductive axis, mainly the GnRH neurons. Among the peripheral signals involved, the adipose hormone, leptin, is known to play an essential role in the regulation of puberty, especially in females. Yet, although it is clear that the effects of leptin on puberty onset are predominantly permissive and mainly conducted at central (hypothalamic) levels, the primary sites and mechanisms of action of leptin within the reproductive brain remain unsolved. In this context, neurons expressing kisspeptins, the products of the Kiss1 gene that have emerged recently as essential upstream regulators of GnRH neurons, operate as key sensors of the metabolic state and funnel of the reproductive effects of leptin. Yet, much debate has arisen recently on whether the putative actions of leptin on the Kiss1 system are actually indirect and/or may primarily target Kiss1-independent pathways, such as those originating from the ventral premmamilary nucleus. Moreover, evidence has been presented for extra-hypothalamic or peripheral actions of leptin, including direct gonadal effects, which may contribute to the metabolic control of reproduction in extreme body weight conditions. In this work, we will critically review the experimental evidence supporting a role of leptin, kisspeptin and putatively related pathways in the concerted control of puberty by energy balance and metabolism.
Collapse
Affiliation(s)
- Miguel A Sanchez-Garrido
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | | |
Collapse
|
68
|
Martín MG, Lindberg I, Solorzano-Vargas RS, Wang J, Avitzur Y, Bandsma R, Sokollik C, Lawrence S, Pickett LA, Chen Z, Egritas O, Dalgic B, Albornoz V, de Ridder L, Hulst J, Gok F, Aydoğan A, Al-Hussaini A, Gok DE, Yourshaw M, Wu SV, Cortina G, Stanford S, Georgia S. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 2013; 145:138-148. [PMID: 23562752 PMCID: PMC3719133 DOI: 10.1053/j.gastro.2013.03.048] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Proprotein convertase 1/3 (PC1/3) deficiency, an autosomal-recessive disorder caused by rare mutations in the proprotein convertase subtilisin/kexin type 1 (PCSK1) gene, has been associated with obesity, severe malabsorptive diarrhea, and certain endocrine abnormalities. Common variants in PCSK1 also have been associated with obesity in heterozygotes in several population-based studies. PC1/3 is an endoprotease that processes many prohormones expressed in endocrine and neuronal cells. We investigated clinical and molecular features of PC1/3 deficiency. METHODS We studied the clinical features of 13 children with PC1/3 deficiency and performed sequence analysis of PCSK1. We measured enzymatic activity of recombinant PC1/3 proteins. RESULTS We identified a pattern of endocrinopathies that develop in an age-dependent manner. Eight of the mutations had severe biochemical consequences in vitro. Neonates had severe malabsorptive diarrhea and failure to thrive, required prolonged parenteral nutrition support, and had high mortality. Additional endocrine abnormalities developed as the disease progressed, including diabetes insipidus, growth hormone deficiency, primary hypogonadism, adrenal insufficiency, and hypothyroidism. We identified growth hormone deficiency, central diabetes insipidus, and male hypogonadism as new features of PCSK1 insufficiency. Interestingly, despite early growth abnormalities, moderate obesity, associated with severe polyphagia, generally appears. CONCLUSIONS In a study of 13 children with PC1/3 deficiency caused by disruption of PCSK1, failure of enteroendocrine cells to produce functional hormones resulted in generalized malabsorption. These findings indicate that PC1/3 is involved in the processing of one or more enteric hormones that are required for nutrient absorption.
Collapse
Affiliation(s)
- Martín G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Iris Lindberg
- Department Anatomy and Neurobiology, University of Maryland-Baltimore20 Penn St., HSFII Rm S251, Baltimore, MD 21201, USA
| | - R. Sergio Solorzano-Vargas
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jiafang Wang
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, University of Toronto, Toronto, ON
| | - Robert Bandsma
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, University of Toronto, Toronto, ON
| | - Christiane Sokollik
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, University of Toronto, Toronto, ON
| | - Sarah Lawrence
- Division of Endocrinology and Metabolism, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | - Lindsay A. Pickett
- Department Anatomy and Neurobiology, University of Maryland-Baltimore20 Penn St., HSFII Rm S251, Baltimore, MD 21201, USA
| | - Zijun Chen
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Odul Egritas
- Gazi University School of Medicine, Department of Pediatric Gastroenterology, Ankara, Turkey
| | - Buket Dalgic
- Gazi University School of Medicine, Department of Pediatric Gastroenterology, Ankara, Turkey
| | - Valeria Albornoz
- Department Anatomy and Neurobiology, University of Maryland-Baltimore20 Penn St., HSFII Rm S251, Baltimore, MD 21201, USA
| | - Lissy de Ridder
- Pediatric Gastroenterology, Erasmus MC - Sophia Children’s Hospital Rotterdam, Netherlands
| | - Jessie Hulst
- Pediatric Gastroenterology, Erasmus MC - Sophia Children’s Hospital Rotterdam, Netherlands
| | - Faysal Gok
- Department of Pediatrics Nephrology, Gulhane Military Medical Academy School of Medicine, Ankara, Turkey
| | - Ayşen Aydoğan
- Kocaeli University Faculty of Medicine, Department of Pediatric Gastroenterology Hepatology and Nutrition, Kocaeli, Turkey
| | - Abdulrahman Al-Hussaini
- Pediatric Gastroenterology and Hepatology, Children’s Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Deniz Engin Gok
- Department of Endocrinology, Gulhane Military Medical Academy School of Medicine, Ankara, Turkey
| | - Michael Yourshaw
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90025, USA
| | - S. Vincent Wu
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Galen Cortina
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Stanford
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Senta Georgia
- Department of Medicine, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California 90024, USA
| |
Collapse
|
69
|
Cravo RM, Frazao R, Perello M, Osborne-Lawrence S, Williams KW, Zigman JM, Vianna C, Elias CF. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS One 2013; 8:e58698. [PMID: 23505551 PMCID: PMC3591417 DOI: 10.1371/journal.pone.0058698] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/05/2013] [Indexed: 11/25/2022] Open
Abstract
The adipocyte-derived hormone leptin is required for normal pubertal maturation in mice and humans and, therefore, leptin has been recognized as a crucial metabolic cue linking energy stores and the onset of puberty. Several lines of evidence have suggested that leptin acts via kisspeptin expressing neurons of the arcuate nucleus to exert its effects. Using conditional knockout mice, we have previously demonstrated that deletion of leptin receptors (LepR) from kisspeptin cells cause no puberty or fertility deficits. However, developmental adaptations and system redundancies may have obscured the physiologic relevance of direct leptin signaling in kisspeptin neurons. To overcome these putative effects, we re-expressed endogenous LepR selectively in kisspeptin cells of mice otherwise null for LepR, using the Cre-loxP system. Kiss1-Cre LepR null mice showed no pubertal development and no improvement of the metabolic phenotype, remaining obese, diabetic and infertile. These mice displayed decreased numbers of neurons expressing Kiss1 gene, similar to prepubertal control mice, and an unexpected lack of re-expression of functional LepR. To further assess the temporal coexpression of Kiss1 and Lepr genes, we generated mice with the human renilla green fluorescent protein (hrGFP) driven by Kiss1 regulatory elements and crossed them with mice that express Cre recombinase from the Lepr locus and the R26-tdTomato reporter gene. No coexpression of Kiss1 and LepR was observed in prepubertal mice. Our findings unequivocally demonstrate that kisspeptin neurons are not the direct target of leptin in the onset of puberty. Leptin signaling in kisspeptin neurons arises only after completion of sexual maturation.
Collapse
Affiliation(s)
- Roberta M. Cravo
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Renata Frazao
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mario Perello
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology (CONICET/ CICPBA), La Plata, Argentina
| | - Sherri Osborne-Lawrence
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kevin W. Williams
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jeffery M. Zigman
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Claudia Vianna
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Carol F. Elias
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
70
|
|
71
|
Wilson ME, Bounar S, Godfrey J, Michopoulos V, Higgins M, Sanchez M. Social and emotional predictors of the tempo of puberty in female rhesus monkeys. Psychoneuroendocrinology 2013; 38:67-83. [PMID: 22658962 PMCID: PMC3442129 DOI: 10.1016/j.psyneuen.2012.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/06/2012] [Accepted: 04/30/2012] [Indexed: 11/19/2022]
Abstract
A cascade of neuroendocrine events regulates the initiation and progression of female puberty. However, the factors that determine the timing of these events across individuals are still uncertain. While the consequences of puberty on subsequent emotional development and adult behavior have received significant attention, what is less understood are the social and environmental factors that actually alter the initiation and progression of puberty. In order to more fully understand what factors influence pubertal timing in females, the present study quantified social and emotional behavior; stress physiology; and growth and activity measures in juvenile female rhesus monkeys to determine what best predicts eventual puberty. Based on previous reports, we hypothesized that increased agonistic behavior resulting from subordinate status in their natal group, in combination with slowed growth, reduced prosocial behavior, and increased emotional reactivity would predict delayed puberty. The analyses were restricted to behavioral and physiological measures obtained prior to the onset of puberty, defined as menarche. Together, our findings indicate that higher rates of aggression but lower rates of submission received from group mates; slower weight gain; and greater emotional reactivity, evidenced by higher anxiety, distress and appeasing behaviors, and lower cortisol responsivity in response to a potentially threatening situation, predicts delayed puberty. Together the combination of these variables accounted for 58% of the variance in the age of menarche, 71% in age at first ovulation, and 45% in the duration of adolescent sterility. While early puberty may be more advantageous for the individual from a fertility standpoint, it presents significant health risks, including increased risk for a number of estrogen dependent cancers and as well as the emergence of mood disorders during adulthood. On the other hand, it is possible that increased emotional reactivity associated with delayed puberty could persist, increasing the risk for emotional dysregulation to socially challenging situations. The data argue for prospective studies that will determine how emotional reactivity shown to be important for pubertal timing is affected by early social experience and temperament, and how these stress-related variables contribute to body weight accumulation, affecting the neuroendocrine regulation of puberty.
Collapse
Affiliation(s)
- Mark E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30032, United States.
| | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Dossus L, Kvaskoff M, Bijon A, Fervers B, Boutron-Ruault MC, Mesrine S, Clavel-Chapelon F. Determinants of age at menarche and time to menstrual cycle regularity in the French E3N cohort. Ann Epidemiol 2012; 22:723-30. [PMID: 22902044 DOI: 10.1016/j.annepidem.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/17/2022]
Abstract
PURPOSE Early menarche has been associated with a greater risk of several major chronic diseases. Although largely genetically determined, age at menarche also has been related to environmental and lifestyle factors. METHODS Using linear regression models, we explored simultaneously several pre- and postnatal factors as potential determinants of age at menarche and time to menstrual cycle regularity in 96,493 women participating, since 1990, in the French E3N prospective cohort. RESULTS Younger age at recruitment, greater father's income index, urban birth place, greater birth length, and larger body silhouette during childhood were associated with an earlier age at menarche (from -1.3 to -4.6 months, P(trend) < .0001) whereas greater family size, food deprivation during childhood, and greater birth weight resulted in a delayed menarche (from +1.5 months to +5.3 months, P(trend) < .0001). Father's income index, urban birth place, and prematurity predicted a shorter time to menstrual cycle regularity (from -1.1 to -1.9 months, P(trend) < .04), whereas birth cohort, larger body silhouette at menarche, and childhood exposure to passive smoking were associated with a longer time to menstrual cycle regularity (from +1.1 months to +8.6 months, P(trend) < .006). CONCLUSIONS Age at menarche and menstrual cycle regularity are significantly influenced by several individual, environmental and lifestyle factors.
Collapse
Affiliation(s)
- Laure Dossus
- Inserm U1018, Centre for Research in Epidemiology and Population Health (CESP), Nutrition, Hormones and Women's Health Team, Institut Gustave Roussy, F-94805, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
74
|
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2012; 70:841-62. [PMID: 22851226 PMCID: PMC3568469 DOI: 10.1007/s00018-012-1095-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Leptin is an adipocyte-derived hormone involved in a myriad of physiological process, including the control of energy balance and several neuroendocrine axes. Leptin-deficient mice and humans are obese, diabetic, and display a series of neuroendocrine and autonomic abnormalities. These individuals are infertile due to a lack of appropriate pubertal development and inadequate synthesis and secretion of gonadotropins and gonadal steroids. Leptin receptors are expressed in many organs and tissues, including those related to the control of reproductive physiology (e.g., the hypothalamus, pituitary gland, and gonads). In the last decade, it has become clear that leptin receptors located in the brain are major players in most leptin actions, including reproduction. Moreover, the recent development of molecular techniques for brain mapping and the use of genetically modified mouse models have generated crucial new findings for understanding leptin physiology and the metabolic influences on reproductive health. In the present review, we will highlight the new advances in the field, discuss the apparent contradictions, and underline the relevance of this complex physiological system to human health. We will focus our review on the hypothalamic circuitry and potential signaling pathways relevant to leptin’s effects in reproductive control, which have been identified with the use of cutting-edge technologies of molecular mapping and conditional knockouts.
Collapse
Affiliation(s)
- Carol F Elias
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Y6-220B, Dallas, TX, 75390-9077, USA.
| | | |
Collapse
|
75
|
Abstract
In various organisms, including flies, amphibians, and mammals, major developmental transitions such as metamorphosis and puberty are triggered by specific hormones. The requirement for a hormone to proceed to the next stage allows the organism to reestablish the temporal coordination of development between multiple organs that might develop at slightly different rates. Additionally, organisms appear to have evolved mechanisms for delaying these transitions in situations where growth in an organ is abnormal or delayed. New evidence in the fruit fly Drosophila melanogaster indicates that DILP8, a protein of the insulin and relaxin family, delays the onset of metamorphosis under several conditions that alter growth in imaginal discs. Similar mechanisms might operate in disease states in humans where alterations in growth or tissue inflammation can delay puberty.
Collapse
Affiliation(s)
- Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, 361 LSA, Berkeley, CA 94720-3200, USA.
| |
Collapse
|