51
|
Margeta MA, Shen K. Molecular mechanisms of synaptic specificity. Mol Cell Neurosci 2009; 43:261-7. [PMID: 19969086 DOI: 10.1016/j.mcn.2009.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/30/2009] [Indexed: 11/27/2022] Open
Abstract
Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity.
Collapse
Affiliation(s)
- Milica A Margeta
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
52
|
Ji L, Chauhan A, Brown WT, Chauhan V. Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci 2009; 85:788-93. [PMID: 19863947 DOI: 10.1016/j.lfs.2009.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/17/2009] [Accepted: 10/15/2009] [Indexed: 01/31/2023]
Abstract
AIMS Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase are enzymes known to maintain intracellular gradients of ions that are essential for signal transduction. The aim of this study was to compare the activities of Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase in postmortem brain samples from the cerebellum and frontal, temporal, parietal, and occipital cortices from autistic and age-matched control subjects. MAIN METHODS The frozen postmortem tissues from different brain regions of autistic and control subjects were homogenized. The activities of Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase were assessed in the brain homogenates by measuring inorganic phosphorus released by the action of Na(+)/K(+)- and Ca(2+)/Mg(2+)-dependent hydrolysis of ATP. KEY FINDINGS In the cerebellum, the activities of both Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase were significantly increased in the autistic samples compared with their age-matched controls. The activity of Na(+)/K(+)-ATPase but not Ca(2+)/Mg(2+)-ATPase was also significantly increased in the frontal cortex of the autistic samples as compared to the age-matched controls. In contrast, in other regions, i.e., the temporal, parietal and occipital cortices, the activities of these enzymes were similar in autism and control groups. SIGNIFICANCE The results of this study suggest brain-region specific increases in the activities of Na(+)/K(+)-ATPase and Ca(2+)/Mg(2+)-ATPase in autism. Increased activity of these enzymes in the frontal cortex and cerebellum may be due to compensatory responses to increased intracellular calcium concentration in autism. We suggest that altered activities of these enzymes may contribute to abnormal neuronal circuit functioning in autism.
Collapse
Affiliation(s)
- Lina Ji
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | | | |
Collapse
|
53
|
Fields DR, Shneider N, Mentis GZ, O'Donovan MJ. Imaging nervous system activity. CURRENT PROTOCOLS IN NEUROSCIENCE 2009; Chapter 2:Unit 2.3. [PMID: 19802815 DOI: 10.1002/0471142301.ns0203s49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This unit describes methods for loading ion- and voltage-sensitive dyes into neurons, with a particular focus on the spinal cord as a model system. In addition, we describe the use of these dyes to visualize neural activity. Although the protocols described here concern spinal networks in culture or an intact in vitro preparation, they can be, and have been, widely used in other parts of the nervous system.
Collapse
Affiliation(s)
- Douglas R Fields
- Section on Nervous System Development and Plasticity, National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
54
|
Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE. Enigmatic central canal contacting cells: immature neurons in "standby mode"? J Neurosci 2009; 29:10010-24. [PMID: 19675235 PMCID: PMC2753973 DOI: 10.1523/jneurosci.6183-08.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/16/2009] [Accepted: 07/05/2009] [Indexed: 12/15/2022] Open
Abstract
The region that surrounds the central canal of the spinal cord derives from the neural tube and retains a substantial degree of plasticity. In turtles, this region is a neurogenic niche where newborn neurons coexist with precursors, a fact that may be related with the endogenous repair capabilities of low vertebrates. Immunohistochemical evidence suggests that the ependyma of the mammalian spinal cord may contain cells with similar properties, but their actual nature remains unsolved. Here, we combined immunohistochemistry for cell-specific markers with patch-clamp recordings to test the hypothesis that the ependyma of neonatal rats contains immature neurons similar to those in low vertebrates. We found that a subclass of cells expressed HuC/D neuronal proteins, doublecortin, and PSA-NCAM (polysialylated neural cell adhesion molecule) but did not express NeuN (anti-neuronal nuclei). These immature neurons displayed electrophysiological properties ranging from slow Ca(2+)-mediated responses to fast repetitive Na(+) spikes, suggesting different stages of maturation. These cells originated in the embryo, because we found colocalization of neuronal markers with 5-bromo-2'-deoxyuridine when injected during embryonic day 7-17 but not in postnatal day 0-5. Our findings represent the first evidence that the ependyma of the rat spinal cord contains cells with molecular and functional features similar to immature neurons in adult neurogenic niches. The fact that these cells retain the expression of molecules that participate in migration and neuronal differentiation raises the possibility that the ependyma of the rat spinal cord is a reservoir of immature neurons in "standby mode," which under some circumstances (e.g., injury) may complete their maturation to integrate spinal circuits.
Collapse
Affiliation(s)
- Nicolás Marichal
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, CP11600, Montevideo, Uruguay, and
| | - Gabriela García
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, CP11600, Montevideo, Uruguay, and
| | - Milka Radmilovich
- Departamento de Histología y Embriología, Facultad de Medicina, CP 11800, Montevideo, Uruguay
| | - Omar Trujillo-Cenóz
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, CP11600, Montevideo, Uruguay, and
| | - Raúl E. Russo
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, CP11600, Montevideo, Uruguay, and
| |
Collapse
|
55
|
de Lima AD, Gieseler A, Voigt T. Relationship between GABAergic interneurons migration and early neocortical network activity. Dev Neurobiol 2009; 69:105-23. [PMID: 19086030 DOI: 10.1002/dneu.20696] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Available evidence converges to suggest that during the early development of the cerebral cortex, the emergence of the spontaneous network activity chronologically overlap with the end of the cell migration period in the developing cortex. We approached the functional regulation of neuronal migration in a culture model of neocortical networks, using time lapses to detect migratory movements, calcium-imaging to assess the activity of migratory neurons, and immunocytochemical methods to identify the migratory cells retrospectively. In cell cultures, early physiological development and cell migration are reproduced at a local network level, thus allowing the study of the interrelationships between cell migration and network development independent of the topographical complexity. Neurons migrate at least until 12 days in vitro and GABAergic neurons migrate faster compared with non-GABAergic neurons. A decline of migratory activity was coincident with the development of spontaneous synchronous network activity. Migrating interneurons did not participate in synchronous network activity, but interneurons that ended cell migration during observation time frequently engaged in synchronous activity within less than an hour. Application of GABA(A) and ionotropic glutamate receptor antagonists significantly increased the number of migrating GABAergic neurons without changing the dynamics of the migratory movements. Thus, neurotransmitters released by early network activity might favor the termination of neuronal migration. These results reinforce the idea that network activity plays an important role in the development of late-born GABAergic cells.
Collapse
Affiliation(s)
- Ana D de Lima
- Developmental Physiology, Institute of Physiology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
56
|
Kärkkäinen V, Louhivuori V, Castrén ML, Åkerman KE. Neurotransmitter responsiveness during early maturation of neural progenitor cells. Differentiation 2009; 77:188-98. [DOI: 10.1016/j.diff.2008.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 08/04/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
|
57
|
Mochida H, Fortin G, Champagnat J, Glover JC. Differential Involvement of Projection Neurons During Emergence of Spontaneous Activity in the Developing Avian Hindbrain. J Neurophysiol 2009; 101:591-602. [DOI: 10.1152/jn.90835.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better characterize the emergence of spontaneous neuronal activity in the developing hindbrain, spontaneous activity was recorded optically from defined projection neuron populations in isolated preparations of the brain stem of the chicken embryo. Ipsilaterally projecting reticulospinal (RS) neurons and several groups of vestibuloocular (VO) neurons were labeled retrogradely with Calcium Green-1 dextran amine and spontaneous calcium transients were recorded using a charge-coupled-device camera mounted on a fluorescence microscope. Simultaneous extracellular recordings were made from one of the trigeminal motor nerves (nV) to register the occurrence of spontaneous synchronous bursts of activity. Two types of spontaneous activity were observed: synchronous events (SEs), which occurred in register with spontaneous bursts in nV once every few minutes and were tetrodotoxin (TTX) dependent, and asynchronous events (AEs), which occurred in the intervals between SEs and were TTX resistant. AEs occurred developmentally before SEs and were in general smaller and more variable in amplitude than SEs. SEs appeared at the same stage as nV bursts early on embryonic day 4, first in RS neurons and then in VO neurons. All RS neurons participated equally in SEs from the outset, whereas different subpopulations of VO neurons participated differentially, both in terms of the proportion of neurons that exhibited SEs, the fidelity with which the SEs in individual neurons followed the nV bursts, and the developmental stage at which SEs appeared and matured. The results show that spontaneous activity is expressed heterogeneously among hindbrain projection neuron populations, suggesting its differential involvement in the formation of different functional neuronal circuits.
Collapse
|
58
|
Na,K-ATPase signal transduction triggers CREB activation and dendritic growth. Proc Natl Acad Sci U S A 2009; 106:2212-7. [PMID: 19164762 DOI: 10.1073/pnas.0809253106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic growth is pivotal in the neurogenesis of cortical neurons. The sodium pump, or Na,K-ATPase, is an evolutionarily conserved protein that, in addition to its central role in establishing the electrochemical gradient, has recently been reported to function as a receptor and signaling mediator. Although a large body of evidence points toward a dual function for the Na,K-ATPase, few biological implications of this signaling pathway have been described. Here we report that Na,K-ATPase signal transduction triggers dendritic growth as well as a transcriptional program dependent on cAMP response element binding protein (CREB) and cAMP response element (CRE)-mediated gene expression, primarily regulated via Ca(2+)/calmodulin-dependent protein (CaM) kinases. The signaling cascade mediating dendritic arbor growth also involves intracellular Ca(2+) oscillations and sustained phosphorylation of mitogen-activated protein (MAP) kinases. Thus, our results suggest a novel role for the Na,K-ATPase as a modulator of dendritic growth in developing neurons.
Collapse
|
59
|
Menelaou E, Husbands EE, Pollet RG, Coutts CA, Ali DW, Svoboda KR. Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish. Eur J Neurosci 2008; 28:1080-96. [PMID: 18823502 PMCID: PMC2741004 DOI: 10.1111/j.1460-9568.2008.06418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zebrafish embryos exhibit spontaneous contractions of the musculature as early as 18-19 h post fertilization (hpf) when removed from their protective chorion. These movements are likely initiated by early embryonic central nervous system activity. We have made the observation that narrowminded mutant embryos (hereafter, nrd(-/-)) lack normal embryonic motor output upon dechorionation. However, these mutants can swim and respond to tactile stimulation by larval stages of development. nrd(-/-) embryos exhibit defects in neural crest development, slow muscle development and also lack spinal mechanosensory neurons known as Rohon-Beard (RB) neurons. At early developmental stages (i.e. 21-22 hpf) and while still in their chorions, nrd siblings (nrd(+/?)) exhibited contractions of the musculature at a rate similar to wild-type embryos. Anatomical analysis indicated that RB neurons were present in the motile embryos, but absent in the non-motile embryos, indicating that the non-motile embryos were nrd(-/-) embryos. Further anatomical analysis of nrd(-/-) embryos revealed errors in motoneuron axonal pathfinding that persisted into the larval stage of development. These errors were reversed when nrd(-/-) embryos were raised in high [K(+)] beginning at 21 hpf, indicating that the abnormal axonal phenotypes may be related to a lack of depolarizing activity early in development. When activity was blocked with tricaine in wild-type embryos, motoneuron phenotypes were similar to the motoneuron phenotypes in nrd(-/-) embryos. These results implicate early embryonic activity in conjunction with other factors as necessary for normal motoneuron development.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
60
|
Acute nicotine exposure and modulation of a spinal motor circuit in embryonic zebrafish. Toxicol Appl Pharmacol 2008; 239:1-12. [PMID: 19121331 DOI: 10.1016/j.taap.2008.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/17/2008] [Accepted: 08/19/2008] [Indexed: 11/20/2022]
Abstract
The zebrafish model system is ideal for studying nervous system development. Ultimately, one would like to link the developmental biology to various aspects of behavior. We are studying the consequences of nicotine exposure on nervous system development in zebrafish and have previously shown that chronic nicotine exposure produces paralysis. We also have made observations that the embryos moved in the initial minutes of the exposure as the bend rates of the musculature increased. This nicotine induced behavior manifests as an increase in the rate of spinal musculature bends, which spontaneously begin at approximately 17 h post fertilization. The behavioral observations prompted the systematic characterization of nicotine-induced modulation of zebrafish embryonic motor output; bends of the trunk musculature. We first characterized embryonic motor output in zebrafish embryos with and without their chorions. We then characterized the motor output in embryos raised at 28 degrees C and 25 degrees C. The act of dechorionation along with temperature influenced the embryonic bend rate. We show that nicotine exposure increases embryonic motor output. Nicotine exposure caused the musculature bends to alternate in a left-right-left fashion. Nicotine was able to produce this phenotype in embryos lacking supraspinal input. We then characterize the kinetics of nicotine influx and efflux and demonstrate that nicotine as low as 1 microM can disrupt embryonic physiology. Taken together, these results indicate the presence of nicotinic acetylcholine receptors (nAChRs) associated with embryonic spinal motor circuits early in embryogenesis.
Collapse
|
61
|
Ben-Ari Y. Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends Neurosci 2008; 31:626-36. [DOI: 10.1016/j.tins.2008.09.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/26/2008] [Accepted: 09/26/2008] [Indexed: 01/16/2023]
|
62
|
Leininger E, Belousov AB. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade. Brain Res 2008; 1251:87-102. [PMID: 19059386 DOI: 10.1016/j.brainres.2008.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 11/18/2022]
Abstract
Previous studies indicated that a long-term decrease in the activity of ionotropic glutamate receptors induces cholinergic activity in rat and mouse hypothalamic neuronal cultures. Here we studied whether a prolonged inactivation of ionotropic glutamate receptors also induces cholinergic activity in hippocampal neurons. Receptor activity was chronically suppressed in rat hippocampal primary neuronal cultures with two proportionally increasing sets of concentrations of NMDA plus non-NMDA receptor antagonists: 100 microM/10 microM AP5/CNQX (1X cultures) and 200 microM/20 microM AP5/CNQX (2X cultures). Using calcium imaging we demonstrate that cholinergic activity does not develop in these cultures. Instead, network-driven glutamate-dependent activity, that normally is detected in hyper-excitable conditions, reappears in each culture group in the presence of these antagonists and can be reversibly suppressed by higher concentrations of AP5/CNQX. This activity is mediated by non-NMDA receptors and is modulated by NMDA receptors. Further, non-NMDA receptors, the general level of glutamate receptor activity and CaMK-dependent signaling are critical for development of this network-driven glutamatergic activity in the presence of receptor antagonists. Using electrophysiology, western blotting and calcium imaging we show that some neuronal parameters are either reduced or not affected by chronic glutamate receptor blockade. However, other parameters (including neuronal excitability, mEPSC frequency, and expression of GluR1, NR1 and betaCaMKII) become up-regulated and, in some cases, proportionally between the non-treated, 1X and 2X cultures. Our data suggest recovery of the network-driven glutamatergic activity after chronic glutamate receptor blockade. This recovery may represent a form of neuronal plasticity that compensates for the prolonged suppression of the activity of glutamate receptors.
Collapse
Affiliation(s)
- Eric Leininger
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | |
Collapse
|
63
|
Batista MF, Lewis KE. Pax2/8 act redundantly to specify glycinergic and GABAergic fates of multiple spinal interneurons. Dev Biol 2008; 323:88-97. [PMID: 18761336 PMCID: PMC2849013 DOI: 10.1016/j.ydbio.2008.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/22/2008] [Accepted: 08/08/2008] [Indexed: 01/07/2023]
Abstract
The spinal cord contains several distinct classes of neurons but it is still unclear how many of the functional characteristics of these cells are specified. One of the most crucial functional characteristics of a neuron is its neurotransmitter fate. In this paper, we show that in zebrafish most glycinergic and many GABAergic spinal interneurons express Pax2a, Pax2b and Pax8 and that these transcription factors are redundantly required for the neurotransmitter fates of many of these cells. We also demonstrate that the function of these Pax2/8 transcription factors is very specific: in embryos in which Pax2a, Pax2b and Pax8 are simultaneously knocked-down, many neurons lose their glycinergic and/or GABAergic characteristics, but they do not become glutamatergic or cholinergic and their soma morphologies and axon trajectories are unchanged. In mouse, Pax2 is required for correct specification of GABAergic interneurons in the dorsal horn, but it is not required for the neurotransmitter fates of other Pax2-expressing spinal neurons. Our results suggest that this is probably due to redundancy with Pax8 and that the function of Pax2/8 in specifying GABAergic and glycinergic neuronal fates is much broader than was previously appreciated and is highly conserved between different vertebrates.
Collapse
|
64
|
O'Donovan MJ, Bonnot A, Mentis GZ, Arai Y, Chub N, Shneider NA, Wenner P. Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Dev Neurobiol 2008; 68:788-803. [PMID: 18383543 DOI: 10.1002/dneu.20620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the use of imaging to visualize the spatiotemporal organization of network activity in the developing spinal cord of the chick embryo and the neonatal mouse. We describe several different methods for loading ion- and voltage-sensitive dyes into spinal neurons and consider the advantages and limitations of each one. We review work in the chick embryo, suggesting that motoneurons play a critical role in the initiation of each cycle of spontaneous network activity and describe how imaging has been used to identify a class of spinal interneuron that appears to be the avian homolog of mammalian Renshaw cells or 1a-inhibitory interneurons. Imaging of locomotor-like activity in the neonatal mouse revealed a wave-like activation of motoneurons during each cycle of discharge. We discuss the significance of this finding and its implications for understanding how locomotor-like activity is coordinated across different segments of the cord. In the last part of the review, we discuss some of the exciting new prospects for the future.
Collapse
Affiliation(s)
- Michael J O'Donovan
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Spitzer NC, Borodinsky LN. Implications of activity-dependent neurotransmitter-receptor matching. Philos Trans R Soc Lond B Biol Sci 2008; 363:1393-9. [PMID: 18198155 DOI: 10.1098/rstb.2007.2257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Electrical activity has numerous roles in early neuronal development. Calcium transients generated at low frequencies regulate neural induction and neuronal proliferation, migration and differentiation. Recent work demonstrates that these signals participate in specification of the transmitters expressed in different classes of neurons. Matching of postsynaptic receptor expression with the novel expression of transmitters ensues. These findings have intriguing implications for development, mature function and evolution of the nervous system.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, Center for Molecular Genetics, Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| | | |
Collapse
|
66
|
Liu X, Popescu IR, Denisova JV, Neve RL, Corriveau RA, Belousov AB. Regulation of cholinergic phenotype in developing neurons. J Neurophysiol 2008; 99:2443-55. [PMID: 18322006 PMCID: PMC6896333 DOI: 10.1152/jn.00762.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons. Using immunocytochemistry, electrophysiology, and calcium imaging, we demonstrate that hypothalamic expression of choline acetyltransferase (the cholinergic marker) and responsiveness of neurons to acetylcholine (ACh) receptor agonists increase during chronic administration of an N-methyl-D-aspartate receptor (NMDAR) blocker, MK-801, in developing rats in vivo and genetic and pharmacological inactivation of NMDARs in mouse and rat developing neuronal cultures. In hypothalamic cultures, an inactivation of NMDA receptors also induces ACh-dependent synaptic activity, as do inactivations of PKA, ERK/MAPK, CREB, and NF-kappaB, which are known to be regulated by NMDA receptors. Interestingly, the increase in cholinergic properties in developing neurons that is induced by NMDAR blockade is prevented by the blockade of ACh receptors, suggesting that function of ACh receptor is required for the cholinergic up-regulation. Using dual recording of monosynaptic excitatory postsynaptic currents, we further demonstrate that chronic inactivation of ionotropic glutamate receptors induces the cholinergic phenotype in a subset of glutamatergic neurons. The phenotypic switch is partial as ACh and glutamate are coreleased. The results suggest that developing neurons may not only coexpress multiple transmitter phenotypes, but can also change the phenotypes following changes in signaling in neuronal circuits.
Collapse
Affiliation(s)
- Xinhuai Liu
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, 2146 W. 39th Avenue, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
67
|
Deplano S, Giorgi M, Maccarone R, Santone R, Nuccetelli V, Basso M, Bisti S. Gene expression and protein localization of calmodulin-dependent phosphodiesterase during ontogenesis of chick retina. J Neurosci Res 2008; 86:1017-23. [PMID: 18041092 DOI: 10.1002/jnr.21570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calmodulin-dependent phosphodiesterase (PDE1) is a key enzyme in cyclic nucleotides metabolism. We studied its gene expression and protein localization during retinal development in chick embryos. Western blot and densitometric analysis demonstrated that the expression of the three isoforms changed during development. PDE1A was highly expressed at the early stages and decreased as development proceeded. PDE1B expression remained relatively low and constant over time. PDE1C showed a prominent increase (13-fold) between embryonic day (E) 7 and E13, followed by a moderate increase between E13 and postnatal day (P) 1. The presence of the enzyme in the different retinal locations was strongly modulated by development. PDE1A immunostaining was first detected at the ganglion cell level (E7), then in the outer retina (E15-E21). At P5, the immunostaining was confined in the optic fiber layer. Isoform C immunolocalization followed the same inner-outer pattern as isoform A. At 5 days posthatching (P5), the immunoreactivity was restricted, as well as for the isoform A, in the optic fiber layer. The isoform B immunolabelling was low and evenly distributed across the retina at all stages. The different developmental profiles of PDE1A, PDE1B, and PDE1C induced a temporal modulation in cyclic nucleotides concentration, suggesting specific roles of this enzyme in the morphofunctional development of retinal circuitry.
Collapse
|
68
|
Rao VS, Titushkin IA, Moros EG, Pickard WF, Thatte HS, Cho MR. Nonthermal Effects of Radiofrequency-Field Exposure on Calcium Dynamics in Stem Cell-Derived Neuronal Cells: Elucidation of Calcium Pathways. Radiat Res 2008; 169:319-29. [DOI: 10.1667/rr1118.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 11/08/2007] [Indexed: 12/31/2022]
|
69
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 892] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
70
|
Sun JJ, Luhmann HJ. Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Eur J Neurosci 2007; 26:1995-2004. [PMID: 17868367 DOI: 10.1111/j.1460-9568.2007.05819.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventional thickness (400 microm). Local non-propagating spontaneous oscillations with an average peak frequency of 15.6 Hz, duration of 1.7 s and maximal amplitude of 66.8 microV were highly synchronized in a network of approximately 200 microm in diameter. Spontaneous oscillations of lower frequency (10.4 Hz), longer duration (23.8 s) and larger amplitude (142.9 microV) propagated with 0.11 mm/s in the horizontal direction over at least 1 mm. These propagating oscillations were also synchronized in a columnar manner, but these waves synchronized the activity in a larger neuronal network of 300-400 microm in diameter. Both types of spontaneous network activity could be blocked by the gap junction antagonist carbenoxolone. Electrical stimulation of the subplate (SP) or bath application of the cholinergic agonist carbachol also elicited propagating network oscillations, emphasizing the role of the SP and the cholinergic system in the generation of early cortical network oscillations. Our data demonstrate that a sufficiently large network in thick neocortical slice preparations is capable of generating spontaneous and evoked network oscillations, which are highly synchronized via gap junctions in 200-400-microm-wide columns. These via synchronized oscillations coupled networks may represent a self-organized functional template for the activity-dependent formation of neocortical modules during the earliest stages of development.
Collapse
Affiliation(s)
- Jyh-Jang Sun
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | | |
Collapse
|
71
|
Majumder P, Trujillo CA, Lopes CG, Resende RR, Gomes KN, Yuahasi KK, Britto LRG, Ulrich H. New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 2007; 3:317-31. [PMID: 18404445 PMCID: PMC2072925 DOI: 10.1007/s11302-007-9074-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/09/2007] [Indexed: 05/07/2023] Open
Abstract
Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system and participate in the synaptic process particularly associated with acetylcholine, GABA, and glutamate neurotransmission. As a result of activation, the P2 receptors promote the elevation of free intracellular calcium concentration as the main signaling pathway. Purinergic signaling is present in early stages of embryogenesis and is involved in processes of cell proliferation, migration, and differentiation. The use of new techniques such as knockout animals, in vitro models of neuronal differentiation, antisense oligonucleotides to induce downregulation of purinergic receptor gene expression, and the development of selective inhibitors for purinergic receptor subtypes contribute to the comprehension of the role of purinergic signaling during neurogenesis. In this review, we shall discuss the participation of purinergic receptors in developmental processes and in brain physiology, including neuron-glia interactions and pathophysiology.
Collapse
Affiliation(s)
- Paromita Majumder
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Jean-Xavier C, Mentis GZ, O'Donovan MJ, Cattaert D, Vinay L. Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord. Proc Natl Acad Sci U S A 2007; 104:11477-82. [PMID: 17592145 PMCID: PMC2040923 DOI: 10.1073/pnas.0704832104] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitory action of glycine and GABA in adult neurons consists of both shunting incoming excitations and moving the membrane potential away from the action potential (AP) threshold. By contrast, in immature neurons, inhibitory postsynaptic potentials (IPSPs) are depolarizing; it is generally accepted that, despite their depolarizing action, these IPSPs are inhibitory because of the shunting action of the Cl(-) conductance increase. Here we investigated the integration of depolarizing IPSPs (dIPSPs) with excitatory inputs in the neonatal rodent spinal cord by means of both intracellular recordings from lumbar motoneurons and a simulation using the compartment model program "Neuron." We show that the ability of IPSPs to suppress suprathreshold excitatory events depends on E(Cl) and the location of inhibitory synapses. The depolarization outlasts the conductance changes and spreads electrotonically in the somatodendritic tree, whereas the shunting effect is restricted and local. As a consequence, dIPSPs facilitated AP generation by subthreshold excitatory events in the late phase of the response. The window of facilitation became wider as E(Cl) was more depolarized and started earlier as inhibitory synapses were moved away from the excitatory input. GAD65/67 immunohistochemistry demonstrated the existence of distal inhibitory synapses on motoneurons in the neonatal rodent spinal cord. This study demonstrates that small dIPSPs can either inhibit or facilitate excitatory inputs depending on timing and location. Our results raise the possibility that inhibitory synapses exert a facilitatory action on distant excitatory inputs and slight changes of E(Cl) may have important consequences for network processing.
Collapse
Affiliation(s)
- Céline Jean-Xavier
- *Laboratoire Plasticité et Physio-Pathologie de la Motricité, Centre National de la Recherche Scientifique, Aix-Marseille Université, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
| | - George Z. Mentis
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Michael J. O'Donovan
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Cattaert
- Laboratoire de Neurobiologie des Réseaux, Centre National de la Recherche Scientifique, Université de Bordeaux, 1 Avenue des Facultés, 33405 Talence Cedex, France; and
| | - Laurent Vinay
- *Laboratoire Plasticité et Physio-Pathologie de la Motricité, Centre National de la Recherche Scientifique, Aix-Marseille Université, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
73
|
Fricke O, Kow LM, Bogun M, Pfaff DW. Estrogen evokes a rapid effect on intracellular calcium in neurons characterized by calcium oscillations in the arcuate nucleus. Endocrine 2007; 31:279-88. [PMID: 17906376 DOI: 10.1007/s12020-007-0034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/11/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
Rapid estrogen effects became an interesting topic to explain estrogen effects not associated with the classical nuclear pathway. The rapid estrogen effect on intracellular calcium oscillations was characterized in neurons of the arcuate nucleus. Ratiometric calcium imaging (fura-2AM) was used to measure intracellular calcium in brain slices of female Swiss Webster mice (median of age 27 days p.n.). Calcium oscillations were dependent on intracellular calcium and also on calcium influx from the extracellular space. The perfusion of slices with calcium-free solution inhibited spontaneous calcium oscillations. The metabotropic glutamate receptor agonist t-ACPD (5 microM) and low concentrated ryanodine (100 nM) induced intracellular calcium release when slices were perfused with calcium-free solution. 17beta-estradiol (10 nM) also induced intracellular calcium release in calcium-free ACSF. This effect was inhibited by the preceding administration of thapsigargin (2 microM) indicating the association of the rapid estrogen effect with intracellular calcium stores. The administration of the non-selective phospholipase C-inhibitor ET-18 (30 microM), but not U73122 (10 microM), and the inhibition of protein kinase A by H-89 (0.25 microM) suppressed the rapid estrogen effect. Analyses indicated a qualitative, but not quantitatively significant effect of 17beta-estradiol on calcium oscillations.
Collapse
Affiliation(s)
- Oliver Fricke
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
74
|
Kotak VC, Sadahiro M, Fall CP. Developmental expression of endogenous oscillations and waves in the auditory cortex involves calcium, gap junctions, and GABA. Neuroscience 2007; 146:1629-39. [PMID: 17478052 DOI: 10.1016/j.neuroscience.2007.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Neuronal oscillations and population waves (OWs) may be important for the maturation of neural circuits in the cortex and other developing areas of the CNS. We examined endogenous network activity by whole-cell and paired extracellular recordings in the thalamorecipient auditory cortex (ACx) in slices of gerbil pups during the first three postnatal weeks. Separately, we examined network ensemble correlates of the OWs using population intracellular free calcium (Ca2+) imaging in slices bulk-loaded with fura-2 AM. In slices devoid of physiological or pharmacological manipulations, spontaneous multi-neuronal bursts recorded extracellularly at the perirhinal cortex precede bursts simultaneously recorded at the ACx, suggesting their caudorostral propagation. OWs waned after postnatal day (P) 7, ceased following hearing onset (P12), and accompanied altered membrane properties. Population imaging from P2-5 slices with fura-2 AM revealed endogenously generated waves that spread from the perirhinal cortex toward the thalamorecipient ACx. Wave incidence varied between 5 waves/min to 0.4 waves/min. OWs were disrupted by treatment of slices with [Ca2+]i chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the gap junction blocker mefloquine or the GABAA receptor blocker bicuculline. These results suggest that propagating activity involving calcium, gap junctions and GABAergic transmission exists in the gerbil ACx and it correlates with key developmental events in vivo. We speculate such activity may be integral to postnatal maturation of ACx.
Collapse
Affiliation(s)
- V C Kotak
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
75
|
Martins RAP, Pearson RA. Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 2007; 1192:37-60. [PMID: 17597590 DOI: 10.1016/j.brainres.2007.04.076] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/20/2007] [Indexed: 01/24/2023]
Abstract
In the developing vertebrate retina, precise coordination of retinal progenitor cell proliferation and cell-cycle exit is essential for the formation of a functionally mature retina. Unregulated or disrupted cell proliferation may lead to dysplasia, retinal degeneration or retinoblastoma. Both cell-intrinsic and -extrinsic factors regulate the proliferation of progenitor cells during CNS development. There is now growing evidence that in the developing vertebrate retina, both slow and fast neurotransmitter systems modulate the proliferation of retinal progenitor cells. Classic neurotransmitters, such as GABA (gamma-amino butyric acid), glycine, glutamate, ACh (acetylcholine) and ATP (adenosine triphosphate) are released, via vesicular or non-vesicular mechanisms, into the immature retinal environment. Furthermore, these neurotransmitters signal through functional receptors even before synapses are formed. Recent evidence indicates that the activation of purinergic and muscarinic receptors may regulate the cell-cycle machinery and consequently the expansion of the retinal progenitor pool. Interestingly, GABA and glutamate appear to have opposing roles, inducing retinal progenitor cell-cycle exit. In this review, we present recent findings that begin to elucidate the roles of neurotransmitters as regulators of progenitor cell proliferation at early stages of retinal development. These studies also raise several new questions, including how these neurotransmitters regulate specific cell-cycle pathways and the mechanisms by which retinal progenitor cells integrate the signals from neurotransmitters and other exogenous factors during vertebrate retina development.
Collapse
Affiliation(s)
- Rodrigo A P Martins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, MS323, Memphis, TN 38105, USA.
| | | |
Collapse
|
76
|
Ribiczey P, Tordai A, Andrikovics H, Filoteo AG, Penniston JT, Enouf J, Enyedi Á, Papp B, Kovács T. Isoform-specific up-regulation of plasma membrane Ca2+ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium 2007; 42:590-605. [PMID: 17433436 PMCID: PMC2096732 DOI: 10.1016/j.ceca.2007.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/09/2007] [Indexed: 02/06/2023]
Abstract
In this work we demonstrate a differentiation-induced up-regulation of the expression of plasma membrane Ca2+ATPase (PMCA) isoforms being present in various gastric/colon cancer cell types. We found PMCA1b as the major isoform in non-differentiated cancer cell lines, whereas the expression level of PMCA4b was significantly lower. Cell differentiation initiated with short chain fatty acids (SCFAs) and trichostatin A, or spontaneous differentiation of post-confluent cell cultures resulted in a marked induction of PMCA4b expression, while only moderately increased PMCA1b levels. Up-regulation of PMCA4b expression was demonstrated both at the protein and mRNA levels, and closely correlated with the induction of established differentiation markers. In contrast, the expression level of the Na+/K+-ATPase or that of the sarco/endoplasmic reticulum Ca2+ATPase 2 protein did not change significantly under these conditions. In membrane vesicles obtained from SCFA-treated gastric/colon cancer cells a marked increase in the PMCA-dependent Ca2+ transport activity was observed, indicating a general increase of PMCA function during the differentiation of these cancer cells. Because various PMCA isoforms display distinct functional characteristics, we suggest that up-regulated PMCA expression, together with a major switch in PMCA isoform pattern may significantly contribute to the differentiation of gastric/colon cancer cells. The analysis of PMCA expression may provide a new diagnostic tool for monitoring the tumor phenotype.
Collapse
Affiliation(s)
- Polett Ribiczey
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Attila Tordai
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Hajnalka Andrikovics
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Adelaida G. Filoteo
- Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, MN 55905, United States
| | | | - Jocelyne Enouf
- Institut National de la Santé et de la Recherche Médicale (INSERM) U689 E4, Paris, France
- Université Paris 7-Denis Diderot, IFR139, Site Lariboisière, Paris, France
| | - Ágnes Enyedi
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
| | - Béla Papp
- INSERM, U718, Laboratoire de Biologie Cellulaire Hématopoïétique, Paris, France
- Université Paris 7-Denis Diderot, Faculté de médecine, IFR105-Saint Louis-Institut Universitaire d’Hématologie, Paris, France
| | - Tünde Kovács
- National Medical Centre, Institute of Haematology and Immunology, Budapest, Hungary
- *Corresponding author at: National Medical Centre, Institute of Haematology and Immunology, Diószegi u. 64, H-1113 Budapest, Hungary, Tel/Fax: 36-1-372-4353 E-mail address:
| |
Collapse
|
77
|
Crépel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R. A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus. Neuron 2007; 54:105-20. [PMID: 17408581 DOI: 10.1016/j.neuron.2007.03.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 01/25/2007] [Accepted: 03/09/2007] [Indexed: 01/13/2023]
Abstract
Correlated neuronal activity is instrumental in the formation of networks, but its emergence during maturation is poorly understood. We have used multibeam two-photon calcium microscopy combined with targeted electrophysiological recordings in order to determine the development of population coherence from embryonic to postnatal stages in the hippocampus. At embryonic stages (E16-E19), synchronized activity is absent, and neurons are intrinsically active and generate L-type channel-mediated calcium spikes. At birth, small cell assemblies coupled by gap junctions spontaneously generate synchronous nonsynaptic calcium plateaus associated to recurrent burst discharges. The emergence of coherent calcium plateaus at birth is controlled by oxytocin, a maternal hormone initiating labour, and progressively shut down a few days later by the synapse-driven giant depolarizing potentials (GDPs) that synchronize the entire network. Therefore, in the developing hippocampus, delivery is an important signal that triggers the first coherent activity pattern, which is silenced by the emergence of synaptic transmission.
Collapse
Affiliation(s)
- Valérie Crépel
- INMED, INSERM, U29, Université de La Méditerranée, Parc scientifique de Luminy, BP 13, 13273 Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
78
|
Trinh HH, Reid J, Shin E, Liapi A, Parnavelas JG, Nadarajah B. Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures. Eur J Neurosci 2007; 24:2967-77. [PMID: 17156358 DOI: 10.1111/j.1460-9568.2006.05194.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is widely believed that the pyramidal cells and interneurons of the cerebral cortex are distinct in their origin, lineage and genetic make up. In view of these findings, the current thesis is that the phenotype determination of cortical neurons is primarily directed by genetic mechanisms. Using in vitro assays, the present study demonstrates that secreted factors from ganglionic eminence (GE) of the ventral telencephalon have the potency to induce the differentiation of a subset of cortical neurons towards gamma-aminobutyric acid (GABA)ergic lineage. Characterization of cortical cultures that were exposed to medium derived from GE illustrated a significant increase in the number of GABA-, calretinin- and calbindin-positive neurons. Calcium imaging together with pharmacological studies showed that the application of exogenous medium significantly elevated the intracellular calcium transients in cortical neurons through the activation of ionotropic glutamate receptors. The increase in GABA+ neurons appeared to be associated with the elevated calcium activity; treatment with blockers specific for glutamate receptors abolished both the synchronized transients and reduced the differentiation of GABAergic neurons. Such studies demonstrate that although intrinsic mechanisms determine the fate of cortical interneurons, extrinsic factors have the potency to influence their neurochemical differentiation and contribute towards their molecular diversity.
Collapse
Affiliation(s)
- H-h Trinh
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
79
|
Krey JF, Dolmetsch RE. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 2007; 17:112-9. [PMID: 17275285 DOI: 10.1016/j.conb.2007.01.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 01/19/2007] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of developmental disorders characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. The molecular mechanisms that underlie ASDs are not known, but several recent developments suggest that some forms of autism are caused by failures in activity-dependent regulation of neural development. Mutations of several voltage-gated and ligand-gated ion channels that regulate neuronal excitability and Ca2+ signaling have been associated with ASDs. In addition, Ca2+-regulated signaling proteins involved in synapse formation and dendritic growth have been implicated in ASDs. These recent advances suggest a set of signaling pathways that might have a role in generating these increasingly prevalent disorders.
Collapse
Affiliation(s)
- Jocelyn F Krey
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
80
|
Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, Zhang J, Tsien RY, Feller MB. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. J Neurosci 2006; 26:12807-15. [PMID: 17151284 PMCID: PMC2931275 DOI: 10.1523/jneurosci.3238-06.2006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recent evidence demonstrates that low-frequency oscillations of intracellular calcium on timescales of seconds to minutes drive distinct aspects of neuronal development, but the mechanisms by which these calcium transients are coupled to signaling cascades are not well understood. Here we test the hypothesis that spontaneous electrical activity activates protein kinase A (PKA). We use live-cell indicators to observe spontaneous and evoked changes in cAMP levels and PKA activity in developing retinal neurons. Expression of cAMP and PKA indicators in neonatal rat retinal explants reveals spontaneous oscillations in PKA activity that are temporally correlated with spontaneous depolarizations associated with retinal waves. In response to short applications of forskolin, dopamine, or high-potassium concentration, we image an increase in cAMP levels and PKA activity, indicating that this second-messenger pathway can be activated quickly by neural activity. Depolarization-evoked increases in PKA activity were blocked by the removal of extracellular calcium, indicating that they are mediated by a calcium-dependent mechanism. These findings demonstrate for the first time that spontaneous activity in developing circuits is correlated with activation of the cAMP/PKA pathway and that PKA activity is turned on and off on the timescale of tens of seconds. These results show a link between neural activity and an intracellular biochemical cascade associated with plasticity, axon guidance, and neural differentiation.
Collapse
Affiliation(s)
| | - Chih-Tien Wang
- Neurobiology Section, Division of Biological Sciences, and
| | | | - Manuela Zaccolo
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, I-35129 Padua, Italy, and
| | - Lisa M. DiPilato
- Departments of Pharmacology and
- Molecular Sciences and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Departments of Pharmacology and Chemistry/Biochemistry and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, and
- Departments of Pharmacology and
- Molecular Sciences and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Roger Y. Tsien
- Departments of Pharmacology and Chemistry/Biochemistry and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, and
| | | |
Collapse
|
81
|
Choi YM, Kim SH, Chung S, Uhm DY, Park MK. Regional interaction of endoplasmic reticulum Ca2+ signals between soma and dendrites through rapid luminal Ca2+ diffusion. J Neurosci 2006; 26:12127-36. [PMID: 17122037 PMCID: PMC6675421 DOI: 10.1523/jneurosci.3158-06.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endoplasmic reticulum (ER) Ca2+ store plays a key role in integration and conveyance of Ca2+ signals in highly polarized neurons. The interconnected ER network in neurons generates Ca2+ signals in local domains, but the regional interaction is unclear. Here, we show that continuous or repetitive applications of caffeine produced robust Ca2+ release from the ER Ca2+ store in dendritic areas without severe store depletion, but that similar stimuli applied to soma caused rapid store depletion in acutely isolated midbrain dopamine neurons. Partial emptying of the ER Ca2+ store within a dendrite caused a similar level of store depletion in unstimulated dendrites, as well as in soma. Photobleaching and local stimulation experiments revealed that Ca2+ and the dye trapped within the ER diffused rapidly from the soma to dendrites up to 90 microm, which we could resolve, suggesting that the ER network acts as a functional tunnel for rapid Ca2+ transport. These data imply that the ER in soma acts as a Ca2+ reservoir supplying Ca2+ to the dendritic store, and that the dendritic store, hence, is able to respond to Ca2+-mobilizing input signals endurably.
Collapse
Affiliation(s)
- Yu Mi Choi
- Department of Physiology, Sungkyunkwan University School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Shin Hye Kim
- Department of Physiology, Sungkyunkwan University School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Dae Yong Uhm
- Department of Physiology, Sungkyunkwan University School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute, 300 Chunchun-dong, Jangan-ku, Suwon, 440-746, Korea
| |
Collapse
|
82
|
Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M, Mizuno H, Ozawa M, Ohyama-Goto R, Kitamura N, Kawano M, Tan-Takeuchi K, Ohtsuka C, Miyawaki A, Takashima A, Ogawa M, Toyama Y, Okano H, Kondo T. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 2006; 25:562-70. [PMID: 17110622 DOI: 10.1634/stemcells.2006-0011] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A clear understanding of cell fate regulation during differentiation is key in successfully using stem cells for therapeutic applications. Here, we report that mild electrical stimulation strongly influences embryonic stem cells to assume a neuronal fate. Although the resulting neuronal cells showed no sign of specific terminal differentiation in culture, they showed potential to differentiate into various types of neurons in vivo, and, in adult mice, contributed to the injured spinal cord as neuronal cells. Induction of calcium ion influx is significant in this differentiation system. This phenomenon opens up possibilities for understanding novel mechanisms underlying cellular differentiation and early development, and, perhaps more importantly, suggests possibilities for treatments in medical contexts.
Collapse
Affiliation(s)
- Masahisa Yamada
- Laboratory for Cell Culture Development, Yamada Research Unit, Molecular Neuropathology Group, Institute of Physical and Chemical Research, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Lin JHC, Takano T, Arcuino G, Wang X, Hu F, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M. Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 2006; 302:356-66. [PMID: 17188262 PMCID: PMC1924912 DOI: 10.1016/j.ydbio.2006.09.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 09/06/2006] [Accepted: 09/11/2006] [Indexed: 12/24/2022]
Abstract
Neural stem and progenitor cells typically exhibit a density-dependent survival and expansion, such that critical densities are required below which clonogenic progenitors are lost. This suggests that short-range autocrine factors may be critical for progenitor cell maintenance. We report here that purines drive the expansion of ventricular zone neural stem and progenitor cells, and that purine receptor activation is required for progenitor cells to be maintained as such. Neural progenitors expressed P2Y purinergic receptors and mobilized intracellular calcium in response to agonist. Receptor antagonists suppressed proliferation and permitted differentiation into neurons and glia in vitro, while subsequent removal of purinergic inhibition restored progenitor cell expansion. Real-time bioluminescence imaging of extracellular ATP revealed that the source of extracellular nucleotides are the progenitor cells themselves, which appear to release ATP in episodic burst events. Enzyme histochemistry of the adult rat brain for ectonucleotidase activity revealed that NTDPase, which acts to degrade active ATP and thereby clears it from areas of active purinergic transmission, was selectively localized to the subventricular zone and the dentate gyrus, regions in which neuronal differentiation proceeds from the progenitor cell pool. These data suggest that purine nucleotides act as proliferation signals for neural progenitor cells, and thereby serve as negative regulators of terminal neuronal differentiation. As a result, progenitor cell-derived neurogenesis is thus associated with regions of both active purinergic signaling and modulation thereof.
Collapse
Affiliation(s)
- Jane H-C Lin
- Department of Cell Biology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Jagasia R, Song H, Gage FH, Lie DC. New regulators in adult neurogenesis and their potential role for repair. Trends Mol Med 2006; 12:400-5. [PMID: 16890023 DOI: 10.1016/j.molmed.2006.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/06/2006] [Accepted: 07/24/2006] [Indexed: 12/31/2022]
Abstract
Adult neural stem cells hold great promise for repair because of their unique location within the central nervous system, their potential to proliferate and to differentiate into all major neural lineages, and their ability to incorporate functionally into the existing neuronal circuitry. However, recruitment of these cells for repair is hampered by the lack of knowledge about the signals that control the generation of a functional neuron from adult neural stem cells. Here, we discuss recent findings on the regulatory mechanisms that underlie neurogenesis from neural stem cells in the adult hippocampus and the implications of these findings for future stem-cell-based repair strategies.
Collapse
Affiliation(s)
- Ravi Jagasia
- Institute of Developmental Genetics, GSF-National Research Center for Environment and Health, 85764 Munich Neuherberg, Germany
| | | | | | | |
Collapse
|
85
|
Pineda RH, Svoboda KR, Wright MA, Taylor AD, Novak AE, Gamse JT, Eisen JS, Ribera AB. Knockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development. Development 2006; 133:3827-36. [PMID: 16943272 DOI: 10.1242/dev.02559] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of electrical signaling. Here, we focus on the zebrafish Na+ channel isotype, Nav1.6a, which is encoded by the scn8a gene. A restricted set of spinal neurons, including dorsal sensory Rohon-Beard cells, two motoneuron subtypes with different axonal trajectories, express scn8a during embryonic development. CaP, an early born primary motoneuron subtype with ventrally projecting axons expresses scn8a, as does a class of secondary motoneurons with axons that project dorsally. To test for developmental roles of scn8a, we knocked down Nav1.6a protein using antisense morpholinos. Na+ channel protein and current amplitudes were reduced in neurons that express scn8a. Furthermore, Nav1.6a knockdown altered axonal morphologies of some but not all motoneurons. Dorsally projecting secondary motoneurons express scn8a and displayed delayed axonal outgrowth. By contrast, CaP axons developed normally, despite expression of the gene. Surprisingly, ventrally projecting secondary motoneurons, a population in which scn8a was not detected, displayed aberrant axonal morphologies. Mosaic analysis indicated that effects on ventrally projecting secondary motoneurons were non cell-autonomous. Thus, voltage-gated Na+ channels play cell-autonomous and non cell-autonomous roles during neuronal development.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Department of Physiology and Biophysics, 8307 University of Colorado Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Zhang ZW. Canadian Association of Neurosciences review: postnatal development of the mammalian neocortex: role of activity revisited. Can J Neurol Sci 2006; 33:158-69. [PMID: 16736724 DOI: 10.1017/s0317167100004911] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neocortex is the largest structure in the brain, and plays a key role in brain function. A critical period for the development of the neocortex is the early postnatal life, when the majority of synapses are formed and when much of synaptic remodeling takes place. Early studies suggest that initial synaptic connections lack precision, and this rudimentary wiring pattern is refined by experience-related activity through selective elimination and consolidation. This view has been challenged by recent studies revealing the presence of a relatively precise pattern of connections before the onset of sensory experience. The recent data support a model in which specificity of neuronal connections is largely determined by genetic factors. Spontaneous activity is required for the formation of neural circuits, but whether it plays an instructive role is still controversial. Neurotransmitters including acetylcholine, serotonin, and gamma-Aminobutyric acid (GABA) may have key roles in the regulation of spontaneous activity, and in the maturation of synapses in the developing brain.
Collapse
Affiliation(s)
- Zhong-wei Zhang
- Centre de recherche Université Laval Robert-Giffard, Department of Psychiatry, Laval University School of Medicine, Quebec, QC
| |
Collapse
|
87
|
Abstract
Transcription factors (TFs) play pivotal roles in directing the formation of neurons and glia. Here I will review the recent genome-scale analysis of the expression of TFs in the developing mouse nervous system and discuss the logic by which TFs control the establishment of neuronal phenotype. Accumulating evidence suggests that while combinatorial action of TFs is able to define the basic framework of the nervous system, other control mechanisms, such as stochastic and epigenetic regulation of gene expression, also contribute to the generation of nerve cell diversity.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Pozzo-Miller L. BDNF enhances dendritic Ca2+ signals evoked by coincident EPSPs and back-propagating action potentials in CA1 pyramidal neurons. Brain Res 2006; 1104:45-54. [PMID: 16797499 PMCID: PMC2806851 DOI: 10.1016/j.brainres.2006.05.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/04/2006] [Accepted: 05/21/2006] [Indexed: 11/21/2022]
Abstract
BDNF, a member of the neurotrophin family, is emerging as a key modulator of synaptic structure and function in the CNS. Due to the critical role of postsynaptic Ca(2+) signals in dendritic development and synaptic plasticity, we tested whether long-term exposure to BDNF affects Ca(2+) elevations evoked by coincident excitatory postsynaptic potentials (EPSPs) and back-propagating action potentials (bAPs) in spiny dendrites of CA1 pyramidal neurons within hippocampal slice cultures. In control neurons, a train of 5 coincident EPSPs and bAPs evoked Ca(2+) elevations in oblique radial branches of the main apical dendrite that were of similar amplitude than those evoked by a train of 5 bAPs alone. On the other hand, dendritic Ca(2+) signals evoked by coincident EPSPs and bAPs were always larger than those triggered by bAPs in CA1 neurons exposed to BDNF for 48 h. This difference was not observed after blockade of NMDA receptors (NMDARs) with D,L-APV, but only in BDNF-treated neurons, suggesting that Ca(2+) signals in oblique radial dendrites include a synaptic NMDAR-dependent component. Co-treatment with the receptor tyrosine kinase inhibitor k-252a prevented the effect of BDNF on coincident dendritic Ca(2+) signals, suggesting the involvement of neurotrophin Trk receptors. These results indicate that long-term exposure to BDNF enhances Ca(2+) signaling during coincident pre- and postsynaptic activity in small spiny dendrites of CA1 pyramidal neurons, representing a potential functional consequence of neurotrophin-mediated dendritic remodeling in developing neurons.
Collapse
Affiliation(s)
- Lucas Pozzo-Miller
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, 1825 University Blvd. Birmingham, AL 35294-2182, Alabama, USA.
| |
Collapse
|
89
|
Pizzi M, Brunelli G, Barlati S, Spano P. Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: a new paradigm in spinal cord injury repair. Curr Opin Neurobiol 2006; 16:323-8. [PMID: 16723220 DOI: 10.1016/j.conb.2006.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Acetylcholine is the specific chemical code of spinal nerve terminal transmission at the mammalian neuromuscular junction (NMJ), whereas nicotinic acetylcholine receptors inserted into the membrane of muscle fibres mediate signalling for the muscle response. Glutamate has a primary role in neuromuscular transmission of organisms that are phylogenetically distant from mammals, the invertebrates, including insect and molluscs. Recent research has shown that diverting descending glutamatergic fibres in the spinal cord to rat skeletal muscle by means of a peripheral nerve graft causes the cholinergic synapse to switch to the glutamatergic type. These data demonstrate that under appropriate surgical manipulation supraspinal neurons can directly target muscle fibres and specify the postsynaptic receptors to achieve a functional glutamatergic NMJ.
Collapse
Affiliation(s)
- Marina Pizzi
- Divisions of Pharmacology and Experimental Therapeutics, Italy
| | | | | | | |
Collapse
|
90
|
Khazipov R, Luhmann HJ. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 2006; 29:414-418. [PMID: 16713634 DOI: 10.1016/j.tins.2006.05.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 11/23/2022]
Abstract
During prenatal and early postnatal development, the cerebral cortex exhibits synchronized oscillatory network activity that is believed to be essential for the generation of neuronal cortical circuits. The nature and functional role of these early activity patterns are of central interest in neuroscience. Much of the research is performed in rodents and in vitro, but how closely do these model systems relate to the human fetal brain? In this review, we compare observations in humans with in vivo and in vitro rodent data, focusing on particular oscillatory activity patterns that share many common features: delta brushes, spindle bursts and spindle-like oscillations. There is considerable evidence that the basic functional properties of immature cortical networks are conserved through mammalian evolution, making the neonatal rodent an excellent model for studying early cortical activity and associated plasticity during the developmental period corresponding to the human fetal stage. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).
Collapse
Affiliation(s)
- Rustem Khazipov
- INMED, INSERM U29, 163 route de Luminy, 13273 Marseille, France.
| | - Heiko J Luhmann
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
91
|
Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G. Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci 2006; 25:4307-18. [PMID: 15858057 PMCID: PMC6725099 DOI: 10.1523/jneurosci.0551-05.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To obtain insights into the emergence of rhythmogenic circuits supporting respiration, we monitored spontaneous activities in isolated brainstem and medullary transverse slice preparations of mouse embryos, combining electrophysiological and calcium imaging techniques. At embryonic day 15 (E15), in a restricted region ventral to the nucleus ambiguus, we observed the onset of a sustained high-frequency (HF) respiratory-like activity in addition to a preexisting low-frequency activity having a distinct initiation site, spatial extension, and susceptibility to gap junction blockers. At the time of its onset, the HF generator starts to express the neurokinin 1 receptor, is connected bilaterally, requires active AMPA/kainate glutamatergic synapses, and is modulated by substance P and the mu-opioid agonist D-Ala2-N-Me-Phe4-Glycol5-enkephalin. We conclude that a rhythm generator sharing the properties of the neonatal pre-Bötzinger complex becomes active during E15 in mice.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Laboratoire de Neurobiologie Génétique et Intégrative, Institut Alfred Fessard, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
92
|
Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 2006; 25:5280-9. [PMID: 15930375 PMCID: PMC6725004 DOI: 10.1523/jneurosci.0378-05.2005] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Spontaneous periodic network events are a characteristic feature of developing neuronal networks, and they are thought to play a crucial role in the maturation of neuronal circuits. In the immature hippocampus, these types of events are seen in intracellular recordings as giant depolarizing potentials (GDPs) during the stage of neuronal development when GABA(A)-mediated transmission is depolarizing. However, the precise mechanism how GABAergic transmission promotes GDP occurrence is not known. Using whole-cell, cell-attached, perforated-patch, and field-potential recordings in hippocampal slices, we demonstrate here that CA3 pyramidal neurons in the newborn rat generate intrinsic bursts when depolarized. Furthermore, the characteristic rhythmicity of GDP generation is not based on a temporally patterned output of the GABAergic interneuronal network. However, GABAergic depolarization plays a key role in promoting voltage-dependent, intrinsic pyramidal bursting activity. The present data indicate that glutamatergic CA3 neurons have an instructive, pacemaker role in the generation of GDPs, whereas both synaptic and tonic depolarizing GABAergic mechanisms exert a temporally nonpatterned, facilitatory action in the generation of these network events.
Collapse
Affiliation(s)
- Sampsa T Sipilä
- Department of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
93
|
Sutachan JJ, Montoya G JV, Xu F, Chen D, Blanck TJJ, Recio-Pinto E. Pluronic F-127 affects the regulation of cytoplasmic Ca2+ in neuronal cells. Brain Res 2006; 1068:131-7. [PMID: 16387285 DOI: 10.1016/j.brainres.2005.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 10/31/2005] [Accepted: 11/09/2005] [Indexed: 01/28/2023]
Abstract
Fura-2 is one of the most widely used cytoplasmic Ca2+ ([Ca2+]cyt) sensors. In studies using isolated dorsal root ganglion (DRG) neurons, the loading of Fura-2 AM is often facilitated by the use of pluronic F-127. In preliminary studies, we detected that the use of pluronic F-127 appeared to be affecting the depolarization-evoked [Ca2+]cyt transient in DRG neurons. To determine whether this was the case, we conducted a systematic study. Adult rat DRG neurons were cultured, and their response to 50 mM KCl was measured in sister cultured cells (isolated on the same day) that were loaded with 5 microM Fura-2AM in the absence or in the presence of 0.02% pluronic F-127. In the absence of pluronic F-127, the KCl-evoked [Ca2+]cyt transient changed with time, being wider on day 1 than on day 2 after plating. On day 2, the KCl-evoked [Ca2+]cyt transient was wider in neurons Fura-2 loaded in the presence of pluronic F-127. These results indicate that pluronic F-127 significantly alters depolarization-evoked [Ca2+]cyt transients, which may reflect alteration in regulation of [Ca2+]cyt in neuronal cells.
Collapse
Affiliation(s)
- Jhon-Jairo Sutachan
- Department of Anesthesiology, New York University School of Medicine, 550 First Avenue, RR605, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
94
|
Adelsberger H, Garaschuk O, Konnerth A. Cortical calcium waves in resting newborn mice. Nat Neurosci 2005; 8:988-90. [PMID: 16007081 DOI: 10.1038/nn1502] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/23/2005] [Indexed: 11/09/2022]
Abstract
Using a new optical fiber-based approach, we demonstrate the presence of recurrent Ca(2+) transients in cortical neurons of non-anesthetized newborn mice in vivo. These Ca(2+) waves reflect the correlated activity of thousands of cells and were detected only in resting, but not in moving pups. Our results suggest that Ca(2+)-dependent cortical maturation occurs predominantly during the intermittent sleep-like resting periods that are characteristic for the first days of postnatal life.
Collapse
Affiliation(s)
- Helmuth Adelsberger
- Physiologisches Institut, Ludwig-Maximilians Universität München, Pettenkoferstr. 12, 80336 München, Germany
| | | | | |
Collapse
|
95
|
Jiang SA, Campusano JM, Su H, O'Dowd DK. DrosophilaMushroom Body Kenyon Cells Generate Spontaneous Calcium Transients Mediated by PLTX-Sensitive Calcium Channels. J Neurophysiol 2005; 94:491-500. [PMID: 15772240 DOI: 10.1152/jn.00096.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10–20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.
Collapse
Affiliation(s)
- Shaojuan Amy Jiang
- Department of Anatomy and Neurobiology, 112 Irvine Hall, University of California, Irvine, California 92697-1280, USA
| | | | | | | |
Collapse
|
96
|
Moe MC, Varghese M, Danilov AI, Westerlund U, Ramm-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen IA. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. ACTA ACUST UNITED AC 2005; 128:2189-99. [PMID: 15958504 DOI: 10.1093/brain/awh574] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It was long held as an axiom that new neurons are not produced in the adult human brain. More recent studies have identified multipotent cells whose progeny express glial or neuronal markers. This discovery may lead to new therapeutic strategies for CNS disorders, either by stimulating neurogenesis in vivo or by transplanting multipotent progenitor cells (MPCs) that have been propagated and differentiated in vitro. The clinical application of such approaches will be limited by the ability of these cells to develop into functional neurons. To facilitate an understanding of mechanisms regulating neurogenesis in the adult human brain, we characterized the developmental processes MPCs go through when progressing to a neuron. Human tissue was harvested during temporal lobe resections because of epilepsy, and cells were cultured as neurospheres. Our findings demonstrate that at an early stage, these cells often stain with neuronal markers without possessing any functional neuronal properties. Over a period of 4 weeks in culture, cells go through characteristic steps of morphological and electrophysiological development towards functional neurons; they develop a polarized appearance with multiple dendrites, whereas the membrane potential becomes more negative and the input resistance decreases [from -48 +/- 10 mV/557 +/- 85 MOmega (n = 15) between days 7 and 11 to -59 +/- 9 mV/380 +/- 79 MOmega (n = 9) between days 25 and 38, respectively]. Active membrane properties were first observed on day 7 and consisted of a voltage-gated K+-current. Later in the second week the cells developed voltage-gated Ca2+-channels and fired small Ca2+-driven action potentials. Immature Na+-driven action potentials developed from the beginning of the third week, and by the end of the fourth week the cells fired repetitive action potentials with a completely mature waveform generated by the combined action of the voltage-gated ionic channels INa, IA and IK. After 4 weeks, the newly formed neurons also communicated by the use of GABAergic and glutamatergic synapses. The adult human brain thus harbours MPCs, which have the ability to develop into neurons and in doing this follow characteristic steps of neurogenesis as seen in the developing brain.
Collapse
Affiliation(s)
- Morten C Moe
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Brunelli G, Spano P, Barlati S, Guarneri B, Barbon A, Bresciani R, Pizzi M. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc Natl Acad Sci U S A 2005; 102:8752-7. [PMID: 15937120 PMCID: PMC1142481 DOI: 10.1073/pnas.0500530102] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetylcholine is the main neurotransmitter at the mammalian neuromuscular junction (NMJ) where nicotinic acetylcholine receptors mediate the signaling between nerve terminals and muscle fibers. We show that under glutamatergic transmission, rat NMJ switches from cholinergic type synapse to glutamatergic synapse. Connecting skeletal muscle to the lateral white matter of the spinal cord by grafting the distal stump of the transected motor nerve produced functional muscle reinnervation. The restored neuromuscular activity became resistant to common curare blockers but sensitive to the glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist. Analysis of the regenerated nerve disclosed new glutamatergic axons and the disappearance of cholinergic fibers. Many axons belonged to the supraspinal neurons located in the red nucleus and the brainstem nuclei. Finally, the innervated muscle displayed high expression and clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits glutamate receptors 1 and 2. Our data suggest that supraspinal neurons can target skeletal muscle, which retains the plasticity to generate functional glutamatergic NMJ.
Collapse
Affiliation(s)
- Giorgio Brunelli
- Foundation for Experimental Spinal Cord Research, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
98
|
McKenzie GJ, Stevenson P, Ward G, Papadia S, Bading H, Chawla S, Privalsky M, Hardingham GE. Nuclear Ca2+ and CaM kinase IV specify hormonal- and Notch-responsiveness. J Neurochem 2005; 93:171-85. [PMID: 15773917 DOI: 10.1111/j.1471-4159.2005.03010.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many neuronal processes require gene activation by synaptically evoked Ca(2+) transients. Ca(2+)-dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca(2+)-responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co-repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca(2+)-dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad-specificity co-repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase-phosphatase balance of the neuron determines the efficacy of SMRT-mediated repression and the signal-responsiveness of a variety of transcription factors.
Collapse
|
99
|
Spitzer NC, Borodinsky LN, Root CM. Homeostatic activity-dependent paradigm for neurotransmitter specification. Cell Calcium 2005; 37:417-23. [PMID: 15820389 DOI: 10.1016/j.ceca.2005.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 01/21/2023]
Abstract
Calcium-signaling plays a central role in specification of the chemical transmitters neurons express, adjusting the numbers of cells that express excitatory and inhibitory transmitters as if to achieve homeostatic regulation of excitability. Here we review the extent to which this activity-dependent regulation is observed for a range of different transmitters. Strikingly the homeostatic paradigm is observed both for classical and for peptide transmitters and in mature as well as in embryonic nervous systems. Transmitter homeostasis adds another dimension to homeostatic regulation of function in the nervous system that includes regulation of levels of voltage-gated ion channels, densities of neurotransmitter receptors, and synapse numbers and strength.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Center for Molecular Genetics, UCSD, La Jolla, CA 92093-0357, USA.
| | | | | |
Collapse
|
100
|
Affiliation(s)
- Jane Dodd
- Department of Physiology and Cellular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032
| | | |
Collapse
|