51
|
Atzei A, Jense I, Zwart EP, Legradi J, Venhuis BJ, van der Ven LT, Heusinkveld HJ, Hessel EV. Developmental Neurotoxicity of Environmentally Relevant Pharmaceuticals and Mixtures Thereof in a Zebrafish Embryo Behavioural Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136717. [PMID: 34206423 PMCID: PMC8297305 DOI: 10.3390/ijerph18136717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.
Collapse
Affiliation(s)
- Alessandro Atzei
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Ingrid Jense
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Edwin P. Zwart
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Jessica Legradi
- Environment & Health, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Bastiaan J. Venhuis
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Leo T.M. van der Ven
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| | - Harm J. Heusinkveld
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
- Correspondence:
| | - Ellen V.S. Hessel
- National Institute for Public Health and the Environment (RIVM), 3721 AB Bilthoven, The Netherlands; (A.A.); (I.J.); (E.P.Z.); (B.J.V.); (L.T.M.v.d.V.); (E.V.S.H.)
| |
Collapse
|
52
|
Lin H, Lin F, Yuan J, Cui F, Chen J. Toxic effects and potential mechanisms of Fluxapyroxad to zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144519. [PMID: 33482547 DOI: 10.1016/j.scitotenv.2020.144519] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Fluxapyroxad is a broad-spectrum and high-efficiency succinate dehydrogenase inhibitor fungicide that can control plant fungal pathogens on many crops. However, fluxapyroxad can enter the aquatic environment when applied in the field, which has an impact on the aquatic environment. The potential threat and toxicological mechanisms of fluxapyroxad in aquatic organisms remain poorly understood. In this study, zebrafish embryos were exposed to fluxapyroxad to investigate the toxic effects and potential mechanisms of fluxapyroxad. In the acute toxicity test, the lethal sensitivity rank of the zebrafish during the three stages was larvae (0.699 mg/L) > adult fish (0.913 mg/L) > embryo (1.388 mg/L). Fluxapyroxad induced abnormal spontaneous movement, malformations and decreased heartbeat, hatching percentage, and body length of the embryos. In the sublethal toxicity test, succinate dehydrogenase activity was significantly increased in all treatment groups, while the activities of the electron transport chain complex II and ATPase were markedly inhibited in 0.347 and 0.694 mg/L fluxapyroxad groups compared to that of the control group. Exposure to fluxapyroxad resulted in significant increases in MDA production, and GPx activity was significantly reduced at 0.694 mg/L. Moreover, caspase-3 activity was significantly increased in the 0.694 mg/L group, and the expression of the genes related to growth (bmp4 and lox) was inhibited after fluxapyroxad exposure. These results indicated that oxidative stress, cell apoptosis and mitochondrial damage might be the potential mechanism underlying the toxic effects of fluxapyroxad on zebrafish embryos.
Collapse
Affiliation(s)
- Hai Lin
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Fangrui Lin
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jing Yuan
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Feng Cui
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China.
| | - Jie Chen
- National Joint Engineering Laboratory of Biopesticide Preparation, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
53
|
Koch BEV, Spaink HP, Meijer AH. A quantitative in vivo assay for craniofacial developmental toxicity of histone deacetylases. Toxicol Lett 2021; 342:20-25. [PMID: 33581288 DOI: 10.1016/j.toxlet.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Many bony features of the face develop from endochondral ossification of preexisting collagen-rich cartilage structures. The proper development of these cartilage structures is essential to the morphological formation of the face. The developmental programs governing the formation of the pre-bone facial cartilages are sensitive to chemical compounds that disturb histone acetylation patterns and chromatin structure. We have taken advantage of this fact to develop a quantitative morphological assay of craniofacial developmental toxicity based on the distortion and deterioration of facial cartilage structures in zebrafish larvae upon exposure to increasing concentrations of several well-described histone deacetylase inhibitors. In this assay, we measure the angle formed by the developing ceratohyal bone as a precise, sensitive and quantitative proxy for the overall developmental status of facial cartilages. Using the well-established developmental toxicant and histone deacetylase-inhibiting compound valproic acid along with 12 structurally related compounds, we demonstrate the applicability of the ceratohyal angle assay to investigate structure-activity relationships.
Collapse
Affiliation(s)
- Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, the Netherlands
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, the Netherlands
| | | |
Collapse
|
54
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MDC, Islas-Flores H, Galar-Martínez M, García-Medina S. Survival and malformations rates, oxidative status in early life stages of Cyprinus carpio due to exposure to environmentally realistic concentrations of paracetamol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144585. [PMID: 33454465 DOI: 10.1016/j.scitotenv.2020.144585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Paracetamol (PCM) is among the most consumed analgesic and antipyretic drugs worldwide. Due to its high consumption, this drug has been reported ubiquitously on different water bodies, posing a real threat to aquatic organisms. Until now, several studies have pointed out that PCM may induce oxidative stress, histological damage and developmental disorders on different aquatic species. Nonetheless, there is still a huge knowledge gap about the toxic effects that PCM may induce in species of commercial interest such as the common carp Cyprinus carpio. The aim of this study was to evaluate survival and malformation rates induced by PCM (0.5 μg/L - 3.5 μg/L) in early life stages of common carp. Furthermore, oxidative stress biomarkers were evaluated at 72 and 96 h post fecundation. PCM reduced the survival rate of the embryos of up to 90%, as concentration increased. LC50 and EC50m were 1.29 μg/L and 2.84 μg/L, respectively. Biomarkers of cellular oxidation and antioxidant enzymes were modified in a concentration-dependent way with respect to the control group (p < 0.05). The main developmental alterations observed were lordosis, scoliosis, craniofacial malformations, hypopigmentation, growth retardation, pericardial edema and rachyschisis. These data indicate that environmentally realistic concentrations of PCM could be hazardous and affects the development in early stages of C. carpio. Moreover, our findings also indicate that C. carpio embryos may be a useful in vivo model to evaluate embryonic and teratogenic effects of drugs such as PCM.
Collapse
Affiliation(s)
- Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| |
Collapse
|
55
|
Li X, Xiong D, Ju Z, Xiong Y, Ding G, Liao G. Phenotypic and transcriptomic consequences in zebrafish early-life stages following exposure to crude oil and chemical dispersant at sublethal concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143053. [PMID: 33129528 DOI: 10.1016/j.scitotenv.2020.143053] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
To further understand the underlying mechanisms involved in the developmental toxicity of crude oil and chemically dispersed crude oil on fish early-life stages (ELS), zebrafish (Danio rerio) embryos were exposed to GM-2 chemical dispersant (DISP), low-energy water-accommodated fractions (LEWAF), and chemically enhanced WAF (CEWAF) of Merey crude oil at sublethal concentrations for 120 h. We employed the General Morphology Score (GMS) and General Teratogenic Score (GTS) systems in conjunction with high-throughput RNA-Seq analysis to evaluate the phenotypic and transcriptomic responses in zebrafish ELS. Results showed that ΣPAHs concentrations in LEWAF and CEWAF solutions were 507.63 ± 80.95 ng·L-1 and 4039.51 ± 241.26 ng·L-1, respectively. The GMS and GTS values indicated that CEWAF exposure caused more severe developmental delay and higher frequencies of teratogenic effects than LEWAF exposure. Moreover, no significant change in heart rate was observed in LEWAF treatment, while CEWAF exposure caused a significant reduction in heart rate. LEWAF and CEWAF exposure exhibited an overt change in eye area, with a reduction of 4.0% and 25.3% (relative to the control), respectively. Additionally, no obvious impact on phenotypic development was observed in zebrafish embryo-larvae following DISP exposure. Significant changes in gene expression were detected in LEWAF and CEWAF treatments, with a total of 957 and 2062 differentially expressed genes (DEGs), respectively, while DISP exposure altered only 91 DEGs. Functional enrichment analysis revealed that LEWAF and CEWAF exposure caused significant perturbations in the pathways associated with phototransduction, retinol metabolism, metabolism of xenobiotics by cytochrome P450, and immune response-related pathways. Our results provide more valid evidence to corroborate the previous suggestion that ocular impairment is an equal or possibly more sensitive biomarker than cardiotoxicity in fish ELS exposed to oil-derived PAHs. All these findings could gain further mechanistic insights into the effects of crude oil and chemical dispersant on fish ELS.
Collapse
Affiliation(s)
- Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhonglei Ju
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yijun Xiong
- Department of Biological Chemistry, Grinnell College, Grinnell, IA 50112, USA
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guoxiang Liao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
56
|
Quiroga-Santos EH, Galar-Martínez M, García-Medina S, Gasca-Pérez E, Cano-Viveros S, Ruíz-Lara K, Gómez-Oliván LM, Islas-Flores H. Geno-cytotoxicity and congenital malformations produced by relevant environmental concentrations of aluminum, diclofenac and their mixture on Cyprinus carpio. An interactions study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103555. [PMID: 33309951 DOI: 10.1016/j.etap.2020.103555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Several studies highlight the presence of aluminum and diclofenac in water bodies around the world and their ability to induce oxidative stress and a negative effect on biomolecules in several aquatic species. However, studies evaluating the toxic effect of mixtures of these contaminants are scarce. The objective of this work was to determine the genotoxic, cytotoxic and embryotoxic effect of the mixture of aluminum and diclofenac at environmentally relevant concentrations on Cyprinus carpio. Juveniles of Cyprinus carpio were exposed to 0.31 μg L-1 of diclofenac, 24.45 mg L-1 of aluminum, and a mixture of both contaminants at the same concentrations for 12, 24, 48, 72 and 96 h. After the exposure time the liver, gills and blood were extracted and the following biomarkers were evaluated: micronucleus frequency, comet assay, caspase activity and TUNEL test. On the other hand, Cyprinus carpio embryos were exposed to diclofenac (0.31 μg L-1), aluminum (0.06 mg L-1) and their mixture at the same concentrations and exposure time. Microscopic observation was performed to evaluate embryonic development at 12, 24, 48, 72 and 96 h. Diclofenac (0.31 μg L-1) induces significant increases in micronucleus frequency with respect to control (p < 0.05), in all tissues. Aluminum (24.45 mg L-1) significantly increases DNA damage index in liver and blood cells with respect to control (p < 0.05). All treatments increase caspases activity in all tissues with respect to control (p < 0.05). Diclofenac increases the percentage of TUNEL-positive cells in liver and blood; while aluminum and the mixture increases it significantly in gills and blood with respect to the control (p < 0.05). The mixture significantly delays embryonic development, while aluminum and the mixture significantly increase teratogenic index with respect to control (p < 0.05). In conclusion, exposure to environmental concentrations of aluminium, diclofenac and their mixture induces genotoxic damage, cell death by apoptosis and negative effects on the development of Cyprinus carpio and the toxic response is modified by the interaction of the xenobiotics.
Collapse
Affiliation(s)
- Eldher Hissadam Quiroga-Santos
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico.
| | - Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Selene Cano-Viveros
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico
| | - Karina Ruíz-Lara
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Facultad de Química, Departamento de Farmacia. Paseo Tollocan, esq. Paseo Colón, Toluca, Estado de México, C. P. 50100, Mexico
| | - Hariz Islas-Flores
- Universidad Autónoma del Estado de México, Facultad de Química, Departamento de Farmacia. Paseo Tollocan, esq. Paseo Colón, Toluca, Estado de México, C. P. 50100, Mexico
| |
Collapse
|
57
|
Álvarez-Alarcón N, Osorio-Méndez JJ, Ayala-Fajardo A, Garzón-Méndez WF, Garavito-Aguilar ZV. Zebrafish and Artemia salina in vivo evaluation of the recreational 25C-NBOMe drug demonstrates its high toxicity. Toxicol Rep 2021; 8:315-323. [PMID: 33598409 PMCID: PMC7868744 DOI: 10.1016/j.toxrep.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022] Open
Abstract
The NBOMe (N-2-methoxybenzyl-phenethylamines) family of compounds are synthetic hallucinogens derived from the 2C series. Although this family of compounds has been responsible for multiple cases of acute toxicity and several deaths around the world, to date there are few studies. These compounds act as potent 5-HT2A receptor agonists, including the hallucinogen 25C-NBOMe (2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine). In this study, we first evaluated the toxicity of 25C-NBOMe in two animal models: Artemia salina and zebrafish using the lethality test of Meyer et al. (1982) modified for Artemia salina and the Fish Embryo Toxicity test (FET) for zebrafish (Danio rerio). Subsequently, we determined the behavioral and morphological effects using different concentrations of the 25C-NBOMe. As a result, we found that this substance is highly toxic according to lethality tests in both animal models. We also observe that this hallucinogen induces alterations in swimming and motility patterns in Artemia salina. Similarly, there were alterations in the motor response to a stimulus, as well as abnormal development in the zebrafish. The developmental effects of zebrafish suggest a teratogenic potential for 25C-NBOMe. Therefore, these findings are correlated with side effects, such as motor response abnormalities and muscle deterioration, clinically reported for consumers of this recreational drug. Finally, although recent studies are addressing the neurotoxicity and cardiotoxicity of 25C-NBOMe in cell cultures, to the best of our knowledge, this is the first in vivo report for 25C-NBOMe related to toxicological parameters and their global effects on development. Therefore, it could represent an advance in the study of the substance that contributes to the understanding of the effects on behavior and development in humans.
Collapse
Affiliation(s)
- Natalie Álvarez-Alarcón
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Jhon Jairo Osorio-Méndez
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Adis Ayala-Fajardo
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - William F. Garzón-Méndez
- Chemistry Group, Central-Level, Fiscalía General de la Nación, Diagonal 22B # 52-01, Building L, 3rd Floor, Bogotá D.C., Colombia
| | - Zayra V. Garavito-Aguilar
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
| |
Collapse
|
58
|
Assessment of the in vitro developmental toxicity of diethylstilbestrol and estradiol in the zebrafish embryotoxicity test. Toxicol In Vitro 2021; 72:105088. [PMID: 33429043 DOI: 10.1016/j.tiv.2021.105088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
The present study investigated the developmental toxicity of diethylstilbestrol (DES) in the zebrafish embryotoxicity test (ZET). This was done to investigate whether the ZET would better capture the developmental toxicity of DES than the embryonic stem cells test (EST) that was previously shown to underpredict the DES-induced developmental toxicity as compared to in vivo data, potentially because the EST does not capture late events in the developmental process. The ZET results showed DES-induced growth retardation, cumulative mortality and dysmorphisms (i.e. induction of pericardial edema) in zebrafish embryos while the endogenous ERα agonist 17β-estradiol (E2) showed only growth retardation and cumulative mortality with lower potency compared to DES. Furthermore, the DES-induced pericardial edema formation in zebrafish embryos could be counteracted by co-exposure with ERα antagonist fulvestrant, indicating that the ZET captures the role of ERα in the mode of action underlying the developmental toxicity of DES. Altogether, it is concluded that the ZET differentiates DES from E2 with respect to their developmental toxicity effects, while confirming the role of ERα in mediating the developmental toxicity of DES. Furthermore, comparison to in vivo data revealed that, like the EST, in a quantitative way also the ZET did not capture the relatively high in vivo potency of DES as a developmental toxicant.
Collapse
|
59
|
Liu G, Zeng Y, Lv T, Mao T, Wei Y, Jia S, Gou Y, Tao L. High-throughput preparation of radioprotective polymers via Hantzsch's reaction for in vivo X-ray damage determination. Nat Commun 2020; 11:6214. [PMID: 33277480 PMCID: PMC7718248 DOI: 10.1038/s41467-020-20027-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Radioprotectors for acute injuries caused by large doses of ionizing radiation are vital to national security, public health and future development of humankind. Here, we develop a strategy to explore safe and efficient radioprotectors by combining Hantzsch's reaction, high-throughput methods and polymer chemistry. A water-soluble polymer with low-cytotoxicity and an excellent anti-radiation capability has been achieved. In in vivo experiments, this polymer is even better than amifostine, which is the only approved radioprotector for clinical applications, in effectively protecting zebrafish embryos from fatally large doses of ionizing radiation (80 Gy X-ray). A mechanistic study also reveals that the radioprotective ability of this polymer originates from its ability to efficiently prevent DNA damage due to high doses of radiation. This is an initial attempt to explore polymer radioprotectors via a multi-component reaction. It allows exploiting functional polymers and provides the underlying insights to guide the design of radioprotective polymers.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tong Lv
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tengfei Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
60
|
Cordeiro MF, Gomides LS, Vian CO, Carboni MT, Santos AP, Bruch GE, Horn AP, Barros DM. Multi-walled carbon nanotubes functionalized with pyrene-PEG via π-π interactions: toxicological assessment in zebrafish embryos. NANOTECHNOLOGY 2020; 31:465103. [PMID: 32857732 DOI: 10.1088/1361-6528/abae2f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-walled carbon nanotubes (MWCNT) have many promising biological applications, even though functionalization is needed for better biocompatibility. Functionalization of MWCNT with polyethylene glycol (PEG) is a promising and widely studied approach, but the best PEGylation method is still under investigation. In this work, we have tested the biological implications of MWCNT functionalized via π-stacking with pyrene-PEG (MWCNT-Pyr-PEG) in zebrafish embryos. As Pyr toxicity is well documented and represents a major concern for the safety of the proposed approach, we have also tested the effects of the exposure to the isolated conjugate (Pyr-PEG). The resulting suspensions were stable in saline medium and well dispersed. Zebrafish embryos at 24 h post-fertilization (hpf) were dechorionated and randomly assigned to seven experimental groups (n = 50 per group): control, MWCNT-Pyr-PEG at 0.2, 2.0, and 20.0 mg l-1, and Pyr-PEG at the same concentrations, and exposures were performed in 96-well plates. Specimens were observed for heart rate, malformations, body length, mortality, traveled distance, and number of new movements. Heart rate was reduced in embryos exposed to any tested concentration of MWCNT-Pyr-PEG, while this effect was observed with Pyr-PEG from 2 mg l-1. The highest concentration of MWCNT-Pyr-PEG also led to increased occurrence of malformations, shortened body length and reduced traveled distance. The functionalization approach shows promise due to the stability in saline media, even though toxic effects were observed in the highest tested concentrations, being the MWCNT the main actors underlying these outcomes.
Collapse
Affiliation(s)
- Marcos F Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, SC, Brazil. Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. PLANTS 2020; 9:plants9101345. [PMID: 33053800 PMCID: PMC7601530 DOI: 10.3390/plants9101345] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022]
Abstract
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research.
Collapse
|
62
|
Qiao K, Fu W, Jiang Y, Chen L, Li S, Ye Q, Gui W. QSAR models for the acute toxicity of 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114837. [PMID: 32460121 DOI: 10.1016/j.envpol.2020.114837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In recent decades, the 1,2,4-triazole fungicides are widely used for crop diseases control, and their toxicity to wild lives and pollution to ecosystem have attracted more and more attention. However, how to quickly and efficiently evaluate the toxicity of these compounds to environmental organisms is still a challenge. In silico method, such like Quantitative Structure-Activity Relationship (QSAR), provides a good alternative to evaluate the environmental toxicity of a large number of chemicals. At the present study, the acute toxicity of 23 1,2,4-triazole fungicides to zebrafish (Danio rerio) embryos was firstly tested, and the LC50 (median lethal concentration) values were used as the bio-activity endpoint to conduct QSAR modelling for these triazoles. After the comparative study of several QSAR models, the 2D-QSAR model was finally constructed using the stepwise multiple linear regression algorithm combining with two physicochemical parameters (logD and μ), an electronic parameter (QN1) and a topological parameter (XvPC4). The optimal model could be mathematically described as following: pLC50 = -7.24-0.30XvPC4 + 0.76logD - 26.15QN1 - 0.08μ. The internal validation by leave-one-out (LOO) cross-validation showed that the R2adj (adjusted noncross-validation squared correlation coefficient), Q2 (cross-validation correlation coefficient) and RMSD (root-mean-square error) was 0.88, 0.84 and 0.17, respectively. The external validation indicated the model had a robust predictability with the q2 (predictive squared correlation coefficient) of 0.90 when eliminated tricyclazole. The present study provided a potential tool for predicting the acute toxicity of new 1,2,4-triazole fungicides which contained an independent triazole ring group in their molecules to zebrafish embryos, and also provided a reference for the development of more environmentally-friendly 1,2,4-triazole pesticides in the future.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjie Fu
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Lili Chen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
63
|
Jiang J, Chen L, Wu S, Lv L, Liu X, Wang Q, Zhao X. Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114844. [PMID: 32480235 DOI: 10.1016/j.envpol.2020.114844] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
In current study, larvae and adult zebrafish were exposed to difenoconazole to assess its effect on hepatotoxicity, lipid metabolism and gut microbiota. Results demonstrated that difenoconazole could induce hepatotoxicity in zebrafish larvae and adult, 0.400, 1.00, 2.00 mg/L difenoconazole caused yolk retention, yolk sac edema or liver degeneration after embryos exposure for 120 h, hepatocyte vacuolization and neoplasm necrosis were observed in adult liver after 0.400 mg/L difenoconazole exposure for 21 d. RNA sequencing showed that the 41 and 567 differentially expressed genes in zebrafish larvae and liver induced by 0.400 mg/L difenoconazole, were concentrated in pathways related to protein digestion and absorption, pancreatic secretion, steroid biosynthesis, and different metabolic pathways including galactose or sugar metabolism. Difenoconazole exposure caused lipid accumulation in larval yolk sac, and the elevated triglyceride (TG), malondialdehyde (MDA) and reactive oxygen species (ROS) levels in larvae and liver, which further confirmed the lipid metabolism disorders induced by difenoconazole. The results further showed that difenoconazole increased the abundance of gut microbiota such as Firmicutes, Aeromonas, Enterobacteriaceae and Bacteroides, further suggested that gut microbiota might participate in lipid metabolism and hepatotoxicity during zebrafish development. These findings advanced the field of the difenoconazole-induced developmental toxicity in larvae and adult zebrafish, and the imbalance of gut microbiota provided the plausible mode of action for the liver damage and disordered lipid metabolism in zebrafish.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
64
|
van der Ven LTM, Schoonen WG, Groot RM, den Ouden F, Heusinkveld HJ, Zwart EP, Hodemaekers HM, Rorije E, de Knecht J. The effects of aliphatic alcohols and related acid metabolites in zebrafish embryos - correlations with rat developmental toxicity and with effects in advanced life stages in fish. Toxicol Appl Pharmacol 2020; 407:115249. [PMID: 32979392 DOI: 10.1016/j.taap.2020.115249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 01/05/2023]
Abstract
The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish. In this study, we compared the effects within a series of 12 aliphatic alcohols and related carboxylic acid derivatives (ethanol, acetic acid, 2-methoxyethanol, 2-methoxyacetic acid, 2-butoxyethanol, 2-butoxyacetic acid, 2-hydroxyacetic acid, 2-ethylhexan-1-ol, 2-ethylhexanoic acid, valproic acid, 2-aminoethanol, 2-(2-hydroxyethylamino)ethanol) in ZFET and early life stage (ELS, 28d) exposures, and compared ZFET results with existing results of rat developmental studies and LC50s in adult fish. High correlation scores were observed between compound potencies in ZFET with either ELS, LC50 in fish and developmental toxicity in rats, indicating similar potency ranking among the models. Compounds could be mapped to specific pathways in an adverse outcome pathway (AOP) network through morphological scoring and gene expression analysis in ZFET. Similarity of morphological effects and gene expression profiles in pairs of alcohols with their acid metabolites suggested metabolic activation of the parent alcohols, although with additional, metabolite-independent activity independent for ethanol and 2-ethylhexanol. Overall, phenotypical and gene expression analysis with these compounds indicates that the ZFET can potentially contribute to the AOP for developmental effects in rodents, and to predict toxicity of acute and chronic exposure in advanced life stages in fish.
Collapse
Affiliation(s)
- Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Willem G Schoonen
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Renate M Groot
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fatima den Ouden
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Edwin P Zwart
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hennie M Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Joop de Knecht
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
65
|
Baran A, Yildirim S, Ghosigharehaghaji A, Bolat İ, Sulukan E, Ceyhun SB. An approach to evaluating the potential teratogenic and neurotoxic mechanism of BHA based on apoptosis induced by oxidative stress in zebrafish embryo ( Danio rerio). Hum Exp Toxicol 2020; 40:425-438. [PMID: 32909836 DOI: 10.1177/0960327120952140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Butylated hydroxyanisole (BHA) has been widely used in the cosmetics, pharmaceutical, and food industries due to its antioxidant activity. Despite the antioxidant effects, reported adverse effects of BHA at the cellular level have made its use controversial. In this regard, this study was performed to elucidate the potential toxicity mechanism caused by BHA at the molecular level in zebrafish embryos. For this purpose, zebrafish embryos were exposed to BHA at levels of 0.5, 1, 5, 7.5 and 10 ppm and monitored at 24, 48, 72 and 96 hours. Survival rate, hatching rate and malformations were evaluated. We examined the potential for reactive oxygen species (ROS) production and apoptosis signalling accumulation in the whole body. Moreover, we evaluated histopathological and immunohistochemical (8-OHDG) characterization of the brain in zebrafish embryos at the 96th hour. We also examined apoptosis, histopathological and immunohistochemical (8-OHDG) characteristics in 96 hpf zebrafish larvae exposed to tertiary butylhydroquinone (TBHQ), one of the major metabolites of BHA, at doses of 0.5, 2.5, 3.75 and 5 ppm. Consequently, it has been considered that increased embryonic and larval malformations in this study may have been caused by ROS-induced apoptosis. After 96 h of exposure, positive 8-OHdG immunofluorescence, degenerative changes, and necrosis were observed in the brain of BHA and TBHQ-treated zebrafish larvae in a dose-dependent manner. BHA and TBHQ exposure could lead to an increase in 8-OHdG activities by resulting oxidative DNA damage. In particular, the obtained data indicate that the induction of ROS formation, occurring during exposure to BHA and/or multiple hydroxyl groups, could be responsible for apoptosis.
Collapse
Affiliation(s)
- A Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, 37503Atatürk University, Erzurum, Turkey
| | - S Yildirim
- Department of Pathology, Faculty of Veterinary, 37503Atatürk University, Erzurum, Turkey
| | - A Ghosigharehaghaji
- Aquatic Biotechnology Laboratory, Fisheries Faculty, 37503Atatürk University, Erzurum, Turkey
| | - İ Bolat
- Department of Pathology, Faculty of Veterinary, 37503Atatürk University, Erzurum, Turkey
| | - E Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, 37503Atatürk University, Erzurum, Turkey
| | - S B Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, 37503Atatürk University, Erzurum, Turkey.,Aquaculture Department, Fisheries Faculty, 37503Atatürk University, Erzurum, Turkey
| |
Collapse
|
66
|
Tenorio-Chávez P, Cerro-López M, Castro-Pastrana LI, Ramírez-Rodrigues MM, Orozco-Hernández JM, Gómez-Oliván LM. Effects of effluent from a hospital in Mexico on the embryonic development of zebrafish, Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138716. [PMID: 32334233 DOI: 10.1016/j.scitotenv.2020.138716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Hospitals consume a large amount of water, so they also generate large amounts of wastewater, which contain a wide variety of contaminants. It is important to consider that hospital effluents are a mixture of pollutants that can interact with each other and have a negative impact on aquatic species of water bodies. The aim of this study was to evaluate the effects induced by a hospital effluent using Danio rerio embryos. In this study, Danio rerio embryos were exposed to different concentrations of the hospital effluent and a lethality test was evaluated and the malformations present in zebrafish embryos were evaluated. The lethal concentration of effluent 50% was 6.1% and the effective malformation concentration was of 2.5%. The teratogenic index was 2.45%. The main malformations identified were yolc sac malformation, pericardial edema, hatching abnormalities, hypopigmentation, tail deformation, chorda malformation, without fin, chorion deformation and craniofacial malformation. The risks that this type of water represents for the survival of living organisms, as well as the presence of malformations in them, are reference indicators for a future regulation focused on the adequate treatment of hospital effluents.
Collapse
Affiliation(s)
- Paulina Tenorio-Chávez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón i2antersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Mónica Cerro-López
- Universidad de las Américas Puebla, Departamento de Ciencias Químico-Biológicas, ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, Mexico.
| | - Lucila Isabel Castro-Pastrana
- Universidad de las Américas Puebla, Departamento de Ciencias Químico-Biológicas, ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, Mexico
| | - Milena María Ramírez-Rodrigues
- Universidad de las Américas Puebla, Departamento de Ciencias Químico-Biológicas, ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón i2antersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón i2antersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
67
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
68
|
Lillicrap A, Moe SJ, Wolf R, Connors KA, Rawlings JM, Landis WG, Madsen A, Belanger SE. Evaluation of a Bayesian Network for Strengthening the Weight of Evidence to Predict Acute Fish Toxicity from Fish Embryo Toxicity Data. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:452-460. [PMID: 32125082 DOI: 10.1002/ieam.4258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The use of fish embryo toxicity (FET) data for hazard assessments of chemicals, in place of acute fish toxicity (AFT) data, has long been the goal for many environmental scientists. The FET test was first proposed as a replacement to the standardized AFT test nearly 15 y ago, but as of now, it has still not been accepted as a standalone replacement by regulatory authorities such as the European Chemicals Agency (ECHA). However, the ECHA has indicated that FET data can be used in a weight of evidence (WoE) approach, if enough information is available to support the conclusions related to the hazard assessment. To determine how such a WoE approach could be applied in practice has been challenging. To provide a conclusive WoE for FET data, we have developed a Bayesian network (BN) to incorporate multiple lines of evidence to predict AFT. There are 4 different lines of evidence in this BN model: 1) physicochemical properties, 2) AFT data from chemicals in a similar class or category, 3) ecotoxicity data from other trophic levels of organisms (e.g., daphnids and algae), and 4) measured FET data. The BN model was constructed from data obtained from a curated database and conditional probabilities assigned for the outcomes of each line of evidence. To evaluate the model, 20 data-rich chemicals, containing a minimum of 3 AFT and FET test data points, were selected to ensure a suitable comparison could be performed. The results of the AFT predictions indicated that the BN model could accurately predict the toxicity interval for 80% of the chemicals evaluated. For the remaining chemicals (20%), either daphnids or algae were the most sensitive test species, and for those chemicals, the daphnid or algal hazard data would have driven the environmental classification. Integr Environ Assess Manag 2020;16:452-460. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Raoul Wolf
- Norwegian Institute for Water Research (NIVA), Oslo
| | | | | | - Wayne G Landis
- Western Washington University, Bellingham, Washington, USA
| | - Anders Madsen
- Department of Computer Science, Aalborg University, Aalborg, Denmark
- HUGIN EXPERT A/S, Aalborg, Denmark
| | | |
Collapse
|
69
|
Tomilina II, Grebenyuk LP. Malformations of Mouthpart Structures of Chironomusriparius Larvae (Diptera, Chironomidae) under the Effect of Metal-Containing Nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s0013873820010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Viganò L, Casatta N, Farkas A, Mascolo G, Roscioli C, Stefani F, Vitelli M, Olivo F, Clerici L, Robles P, Dellavedova P. Embryo/larval toxicity and transcriptional effects in zebrafish (Danio rerio) exposed to endocrine active riverbed sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10729-10747. [PMID: 31942721 DOI: 10.1007/s11356-019-07417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Sediment toxicity plays a fundamental role in the health of inland fish communities; however, the assessment of the hazard potential of contaminated sediments is not a common objective in environmental diagnostics or remediation. This study examined the potential of transcriptional endpoints investigated in zebrafish (Danio rerio) exposed to riverbed sediments in ecotoxicity testing. Embryo-larval 10-day tests were conducted on sediment samples collected from five sites (one upstream and four downstream of the city of Milan) along a polluted tributary of the Po River, the Lambro River. Sediment chemistry showed a progressive downstream deterioration in river quality, so that the final sampling site showed up to eight times higher concentrations of, for example, triclosan, galaxolide, PAH, PCB, BPA, Ni, and Pb, compared with the uppermost site. The embryo/larval tests showed widespread toxicity although the middle river sections evidenced worse effects, as evidenced by delayed embryo development, hatching rate, larval survival, and growth. At the mRNA transcript level, the genes encoding biotransformation enzymes (cyp1a, gst, ugt) showed increasing upregulations after exposure to sediment from further downstream sites. The genes involved in antioxidant responses (sod, gpx) suggested that more critical conditions may be present at downstream sites, but even upstream of Milan there seemed to be some level of oxidative stress. Indirect evidences of potential apoptotic activity (bcl2/bax < 1) in turn suggested the possibility of genotoxic effects. The genes encoding for estrogen receptors (erα, erβ1, erβ2) showed exposure to (xeno)estrogens with a progressive increase after exposure to sediments from downstream sites, paralleled by a corresponding downregulation of the ar gene, likely related to antiandrogenic compounds. Multiple levels of thyroid disruption were also evident particularly in downstream zebrafish, as for thyroid growth (nkx2.1), hormone synthesis and transport (tg, ttr, d2), and signal transduction (trα, trβ). The inhibition of the igf2 gene reasonably reflected larval growth inhibitions. Although none of the sediment chemicals could singly explain fish responses, principal component analysis suggested a good correlation between gene transcripts and the overall trend of contamination. Thus, the combined impacts from known and unknown covarying chemicals were proposed as the most probable explanation of fish responses. In summary, transcriptional endpoints applied to zebrafish embryo/larval test can provide sensitive, comprehensive, and timeliness information which may greatly enable the assessment of the hazard potential of sediments to fish, complementing morphological endpoints and being potentially predictive of longer studies.
Collapse
Affiliation(s)
- Luigi Viganò
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Nadia Casatta
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3, P.O. Box 35, Tihany, H-8237, Hungary
| | - Giuseppe Mascolo
- CNR - National Research Council of Italy, IRSA - Water Research Institute, Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Fabrizio Stefani
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Matteo Vitelli
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Fabio Olivo
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Laura Clerici
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pasquale Robles
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pierluisa Dellavedova
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| |
Collapse
|
71
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MDC, Islas-Flores H, Galar-Martínez M, Dublán-García O, Romero R. Ibuprofen at environmentally relevant concentrations alters embryonic development, induces teratogenesis and oxidative stress in Cyprinus carpio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136327. [PMID: 31923683 DOI: 10.1016/j.scitotenv.2019.136327] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory (NSAIDs) that is used in various conditions. The prescriptions and the global consumption of this drug are very high and its annual production oscillates in millions of tons, this generates that the IBU is present in many waterbodies because it is discharged through the municipal, hospital and industrial effluents. For the above, the purpose of this work was to determine if IBU at environmentally relevant concentrations was capable of inducing alterations to embryonic development, teratogenic effects and oxidative stress in oocytes and embryos of Cyprinus carpio. Oocytes of common carp were exposed to IBU concentrations between 1.5 and 11.5 μg L-1 (environmentally relevant). LC50 and EC50 of malformations were determined to calculate the teratogenic index (TI). Also, main alterations to embryonic development and teratogenic effects were evaluated. Oxidative stress was evaluated by determining biomarkers of cellular oxidation and antioxidation using the same concentrations at 72 and 96 hpf in embryos of Cyprinus carpio. The results showed a LC50 of 4.17 μg L-1, EC50 of 1.39 μg L-1 and TI of 3.0. The main embryonic development disorders and teratogenic effects were delayed hatching, hypopigmentation, pericardial edema, yolk deformation, and developmental delay. Biomarkers of cellular oxidation and antioxidants were increased with respect to the control in a concentration-dependent manner. The results of the study allow us to conclude that IBU at environmentally relevant concentrations is capable of inducing embryotoxicity and teratogenicity in a fish of commercial interest like Cyprinus carpio.
Collapse
Affiliation(s)
- Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Rubi Romero
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Universidad Autónoma del Estado de México, Km 14.5 Carretera Toluca-Atlacomulco, CP 50200 Toluca, Mexico
| |
Collapse
|
72
|
SanJuan-Reyes N, Gómez-Oliván LM, Pérez-Pastén Borja R, Luja-Mondragón M, Orozco-Hernández JM, Heredia-García G, Islas-Flores H, Galar-Martínez M, Escobar-Huérfano F. Survival and malformation rate in oocytes and larvae of Cyprinus carpio by exposure to an industrial effluent. ENVIRONMENTAL RESEARCH 2020; 182:108992. [PMID: 31830696 DOI: 10.1016/j.envres.2019.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Marlenne Luja-Mondragón
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - José Manuel Orozco-Hernández
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Gerardo Heredia-García
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Francisco Escobar-Huérfano
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| |
Collapse
|
73
|
Yang Q, Wu F, Mi Y, Wang F, Cai K, Yang X, Zhang R, Liu L, Zhang Y, Wang Y, Wang X, Xu M, Gui Y, Li Q. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 2020; 53:e12764. [PMID: 32077168 PMCID: PMC7106969 DOI: 10.1111/cpr.12764] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives microRNA‐29 (miR‐29) family have shown different expression patterns in cardiovascular diseases. Our study aims to explore the effect and mechanism of miR‐29 family on cardiac development. Materials and methods A total of 13 patients with congenital heart disease (CHD) and 7 controls were included in our study. Tissues were obtained from the right ventricular outflow tract (RVOT) after surgical resection or autopsy. The next‐generation sequencing was applied to screen the microRNA expression profiles of CHD. Quantitative RT‐PCR and Western blot were employed to measure genes expression. Tg Cmlc2: GFP reporter zebrafish embryos were injected with microRNA (miRNA) to explore its role in cardiac development in vivo. Dual‐luciferase reporter assay was designed to validate the target gene of miRNAs. CCK‐8 and EdU incorporation assays were performed to evaluate cardiomyocyte proliferation. Results Our study showed miR‐29b‐3p expression was significantly increased in the RVOT of the CHD patients. Injection of miR‐29b‐3p into zebrafish embryos induced higher mortality and malformation rates, developmental delay, cardiac malformation and dysfunction. miR‐29b‐3p inhibited cardiomyocyte proliferation, and its inhibitor promoted cardiomyocyte proliferation in vitro and in vivo. Furthermore, we identified that miR‐29b‐3p influenced cardiomyocyte proliferation by targeting NOTCH2, which was down‐regulated in the RVOT of the CHD patients. Conclusion This study reveals that miR‐29b‐3p functions as a novel regulator of cardiac development and inhibits cardiomyocyte proliferation via NOTCH2, which provides novel insights into the aetiology and potential treatment of CHD.
Collapse
Affiliation(s)
- Qian Yang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yaping Mi
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoshan Yang
- Department of Bioscience, Bengbu Medical College, Bengbu, China
| | - Ranran Zhang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonghao Gui
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
74
|
Souders CL, Perez-Rodriguez V, El Ahmadie N, Zhang X, Tischuk C, Martyniuk CJ. Investigation into the sub-lethal effects of the triazole fungicide triticonazole in zebrafish (Danio rerio) embryos/larvae. ENVIRONMENTAL TOXICOLOGY 2020; 35:254-267. [PMID: 31670470 DOI: 10.1002/tox.22862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Global use of azole fungicides is expected to increase over the next several years. Triticonazole is a triazole fungicide that is used for turf protection, residential, and other commercial applications. As such, it can enter local rural and urban water systems via run-off and rain events. Early life stages of aquatic organisms can be susceptible to pesticides that enter the water, but in the case of triticonazole, data on the potential for subacute toxicity are lacking. Here, we determined the effects of triticonazole on development, oxygen consumption rates, and locomotor activity in zebrafish to address this knowledge gap. Wild-type zebrafish (ABTu strain) embryos and larvae were exposed to triticonazole (1-100 μM) in early development for different lengths of time depending on the assay conducted. Triticonazole did not affect survival nor induce significant deformity (pericardial edema, skeletal defects) in zebrafish at doses up to 100 μM. Oxygen consumption rate was measured in embryos after 24 and 48 hour exposure to triticonazole beginning at ∼6 hpf using the XFe flux analyzer. Triticonazole did not affect basal respiration, oligomycin-induced ATP linked respiration, FCCP-induced maximum respiration, proton leak, spare capacity, nor non-mitochondrial respiration at doses up to 100 μM for 24 hours, even for exposure up to 250 μM for 48 hours. To determine whether the fungicide affected larval swimming activity, the visual motor response test was conducted following triticonazole exposure for 6 days. Larval zebrafish exposed to triticonazole showed hypoactivity in the dark following a 100 μM treatment, suggesting that the fungicide can affect the locomotor activity of zebrafish, albeit at relatively high levels. Given the fact that sublethal biological responses were absent at lower environmentally relevant concentrations, we conclude that triticonazole, relative to other triazole fungicides and types of pesticides, exhibits a relatively low risk of toxicity to the early life stages of fish.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Nader El Ahmadie
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Xujia Zhang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Claire Tischuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
75
|
Escobar-Huerfano F, Gómez-Oliván LM, Luja-Mondragón M, SanJuan-Reyes N, Islas-Flores H, Hernández-Navarro MD. Embryotoxic and teratogenic profile of tretracycline at environmentally relevant concentrations on Cyprinus carpio. CHEMOSPHERE 2020; 240:124969. [PMID: 31726589 DOI: 10.1016/j.chemosphere.2019.124969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The objective of this work was to evaluate whether tetracycline (TC) in environmentally relevant concentrations was able to induce alterations to embryonic development and teratogenic effects in oocytes and embryos of Cyprinus carpio. For this purpose, an embryolethality study was conducted and the lethal concentration 50 (LC50) and effective concentration 50 of malformations (EC50) were calculated, and with these data the teratogenic index (TI) was determined. The main alterations to embryonic development and the teratogenic effects produced by TC on embryos of C. carpio were determined using the Kimmel and Hersem scale adapted for Cyprinus carpio. LC50 and EC50 were respectively 500.08 and 145.3 μg L-1.TC was shown to be teratogenic with teratogenic index of 3.44, and the main malformations identified in concentrations of 90-900 μg L-1 were malformation in tail, modified chorda structure, pericardical edema, scoliosis and malformations of the heart. A significant decrease in concentration-dependent in Kimmel and Hersem score was observed. The results allow us to conclude that TC at environmentally relevant concentrations is capable of inducing embryotoxic and teratogenic effects, generating risk in the integrity of the common carp C. Carpio.
Collapse
Affiliation(s)
- Francisco Escobar-Huerfano
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico.
| | - Marlenee Luja-Mondragón
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
76
|
Galeane MC, Gomes PC, L Singulani JD, de Souza BM, Palma MS, Mendes-Giannini MJ, Almeida AM. Study of mastoparan analog peptides against Candida albicans and safety in zebrafish embryos ( Danio rerio). Future Microbiol 2020; 14:1087-1097. [PMID: 31512522 DOI: 10.2217/fmb-2019-0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: In this work, mastoparan analog peptides from wasp venom were tested against Candida albicans and safety assays were performed using cell culture and model zebrafish. Materials & methods: Minimal inhibitory concentration was determined and toxicity was performed using human skin keratinocyte and embryo zebrafish. Also, permeation of peptides through embryo chorion was performed. Results: The peptides demonstrated anti-C. albicans activity, with low cytotoxicity and nonteratogenicity in Danio rerio. The compounds had different permeation through chorion, suggesting that this occurs due to modifications in their amino acid sequence. Conclusion: The results showed that the studied peptides can be used as structural study models for novel potential antifungal agents.
Collapse
Affiliation(s)
- Mariana C Galeane
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Paulo C Gomes
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Junya de L Singulani
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Bibiana M de Souza
- Department of Biology, CEIS / LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900 SP, Brazil
| | - Mario S Palma
- Department of Biology, CEIS / LSBZ, Institute of Biosciences, São Paulo State University-UNESP, Rio Claro, 13506-900 SP, Brazil
| | - Maria Js Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| | - Ana Mf Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, 14800-903 SP, Brazil
| |
Collapse
|
77
|
Zoupa M, Zwart EP, Gremmer ER, Nugraha A, Compeer S, Slob W, van der Ven LTM. Dose addition in chemical mixtures inducing craniofacial malformations in zebrafish (Danio rerio) embryos. Food Chem Toxicol 2020; 137:111117. [PMID: 31927004 DOI: 10.1016/j.fct.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
A challenge in cumulative risk assessment is to model hazard of mixtures. EFSA proposed to only combine chemicals linked to a defined endpoint, in so-called cumulative assessment groups, and use the dose-addition model as a default to predict combined effects. We investigated the effect of binary mixtures of compounds known to cause craniofacial malformations, by assessing the effect in the head skeleton (M-PQ angle) in 120hpf zebrafish embryos. We combined chemicals with similar mode of action (MOA), i.e. the triazoles cyproconazole, triadimefon and flusilazole; next, reference compounds cyproconazole or triadimefon were combined with dissimilar acting compounds, TCDD, thiram, VPA, prochloraz, fenpropimorph, PFOS, or endosulfan. These mixtures were designed as (near) equipotent combinations of the contributing compounds, in a range of cumulative concentrations. Dose-addition was assessed by evaluation of the overlap of responses of each of the 14 tested binary mixtures with those of the single compounds. All 10 test compounds induced an increase of the M-PQ angle, with varying potency and specificity. Mixture responses as predicted by dose-addition did not deviate from the observed responses, supporting dose-addition as a valid assumption for mixture risk assessment. Importantly, dose-addition was found irrespective of MOA of contributing chemicals.
Collapse
Affiliation(s)
- Maria Zoupa
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Attika, 44561, Greece
| | - Edwin P Zwart
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Eric R Gremmer
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ananditya Nugraha
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sharon Compeer
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wout Slob
- Department of Food Safety, Center for Food, Prevention and Care, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo T M van der Ven
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
78
|
The urinary metabolic profile of diethylene glycol methyl ether and triethylene glycol methyl ether in Sprague-Dawley rats and the role of the metabolite methoxyacetic acid in their toxicity. Regul Toxicol Pharmacol 2019; 110:104512. [PMID: 31704259 DOI: 10.1016/j.yrtph.2019.104512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 11/20/2022]
Abstract
Ethylene glycol ethers are a well-known series of solvents and hydraulic fluids derived from the reaction of ethylene oxide and monoalcohols. Use of methanol as the alcohol results in a series of mono, di and triethylene glycol methyl ethers. The first in the series, monoethylene glycol methyl ether (EGME or 2-methoxyethanol) is well characterised and metabolises in vivo to methoxyacetic acid (MAA), a known reproductive toxicant. Metabolism data is not available for the di and triethylene glycol ethers (DEGME and TEGME respectively). This study evaluated the metabolism of these two substances in male rats following single oral gavage doses of 500, 1000 and 2000 mg/kg for DEGME and 1000 mg/kg for TEGME. As for EGME, the dominant metabolite of each was the acid metabolite derived by oxidation of the terminal hydroxyl group. Elimination of these metabolites was rapid, with half-lives <4 h for each one. Both substances were also found to produce small amounts of MAA (~0.5% for TEGME and ~1.1% for DEGME at doses of 1000 mg/kg) through cleavage of the ether groups in the molecules. These small amounts of MAA produced can explain the effects seen at high doses in reproductive studies using DEGME and TEGME.
Collapse
|
79
|
Li X, Xiong D, Ding G, Fan Y, Ma X, Wang C, Xiong Y, Jiang X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. CHEMOSPHERE 2019; 235:423-433. [PMID: 31272002 DOI: 10.1016/j.chemosphere.2019.06.199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The present study investigated the developmental toxicity of water-accommodated fractions (WAFs) of Oman crude oil (OCO) and Merey crude oil (MCO) on zebrafish (Danio rerio) in early-life stages (ELS). Based on total petroleum hydrocarbons (TPH), LC50 values manifested that OCO WAF was 1.2-fold more lethal to zebrafish embryos than MCO WAF. As for hatching rate, EC50 value for OCO WAF was 5.7-fold lower than that for MCO WAF. To evaluate the sublethal morphological effects, semi-quantitative extended general morphological score (GMS) and general teratogenic score (GTS) systems were adopted. The GMS and GTS scores indicated that the WAFs caused remarkable developmental delay and high frequencies of malformation in a dose-dependent manner. Additionally, OCO and MCO WAFs exposure exhibited severe bradycardia (reduced heart rate) and overt reduction of stroke volume, with a concomitant decrease in the cardiac output. Meanwhile, the WAFs also induced dose-dependent down-regulated expressions of several key functional genes of excitation-contraction coupling in cardiomyocytes, including ryr2, atp2a2a, atp2a2b, ncx1h, and kcnh2. For key gene markers of swim bladder development, results showed that high dose of TPH induced significant down-regulation of hb9 and anxa5 with no obvious change of acta2, suggesting that the WAFs could affect the specification and development of epithelium and outer mesothelium of swim bladder in zebrafish ELS. A strong negative relationship between the failure of swim bladder inflation and cardiac dysfunction via cardiac output was found. All these findings provide novel insights into the complicated mechanisms of the developmental toxicity of crude oil on fish in ELS.
Collapse
Affiliation(s)
- Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Youmei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinrui Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yijun Xiong
- Biological Chemistry & Statistics, Grinnell College, IA, 50112, USA
| | - Xi Jiang
- China Railway No.9 Group Fourth Engineering Co., Ltd, Shenyang, 110013, China
| |
Collapse
|
80
|
In vitro prenatal developmental toxicity induced by some petroleum substances is mediated by their 3- to 7-ring PAH constituent with a potential role for the aryl hydrocarbon receptor (AhR). Toxicol Lett 2019; 315:64-76. [DOI: 10.1016/j.toxlet.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/05/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
|
81
|
Kohl A, Golan N, Cinnamon Y, Genin O, Chefetz B, Sela-Donenfeld D. A proof of concept study demonstrating that environmental levels of carbamazepine impair early stages of chick embryonic development. ENVIRONMENT INTERNATIONAL 2019; 129:583-594. [PMID: 31174146 DOI: 10.1016/j.envint.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/20/2023]
Abstract
Carbamazepine (CBZ) is an anticonvulsant drug used for epilepsy and other disorders. Prescription of CBZ during pregnancy increases the risk for congenital malformations. CBZ is ubiquitous in effluents and persistent during wastewater treatment. Thus, it is re-introduced into agricultural ecosystems upon irrigation with reclaimed wastewater. People consuming produce irrigated with reclaimed wastewater were found to be exposed to CBZ. However, environmental concentrations of CBZ (μgL-1) are magnitudes lower than its therapeutic levels (μgml-1), raising the question of whether and how environmental levels of CBZ affect embryonic development. The chick embryo is a powerful and highly sensitive amniotic model system that enables to assess environmental contaminants in the living organism. Since the chick embryonic development is highly similar to mammalians, yet, it develops in an egg, toxic effects can be directly analyzed in a well-controlled system without maternal influences. This research utilized the chick embryo to test whether CBZ is embryo-toxic by using morphological, cellular, molecular and imaging strategies. Three key embryonic stages were monitored: after blastulation (st.1HH), gastrulation/neurulation (st.8HH) and organogenesis (st.15HH). Here we demonstrate that environmental relevant concentrations of CBZ impair morphogenesis in a dose- and stage- dependent manner. Effects on gastrulation, neural tube closure, differentiation and proliferation were exhibited in early stages by exposing embryos to CBZ dose as low as 0.1μgL-1. Quantification of developmental progression revealed a significant difference in the total score obtained by CBZ-treated embryos compared to controls (up to 5-fold difference, p<0.05). Yet, defects were unnoticed as embryos passed gastrulation/neurulation. This study provides the first evidence for teratogenic effect of environmental-relevant concentrations of CBZ in amniotic embryos that impair early but not late stages of development. These findings call for in-depth risk analysis to ensure that the environmental presence of CBZ and other drugs is not causing irreversible ecological and public-health damages.
Collapse
Affiliation(s)
- Ayelet Kohl
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Golan
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization - The Volcani Center, Rishon LeZiyon 7528809, Israel
| | - Benny Chefetz
- Department of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
82
|
Pérez-Coyotl I, Galar-Martínez M, García-Medina S, Gómez-Oliván LM, Gasca-Pérez E, Martínez-Galero E, Islas-Flores H, Pérez-Pastén BR, Barceló D, López de Alda M, Pérez-Solsona S, Serra-Roig MP, Montemurro N, Peña-Herrera JM, Sánchez-Aceves LM. Polluted water from an urban reservoir (Madín dam, México) induces toxicity and oxidative stress in Cyprinus carpio embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:510-521. [PMID: 31103011 DOI: 10.1016/j.envpol.2019.04.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The Madín Dam is a reservoir located in the municipalities of Naucalpan and Atizapán, in the metropolitan area adjacent to Mexico City. The reservoir supplies drinking water to nearby communities and provides an area for various recreational activities, including kayaking, sailing and carp fishing. Over time, the number of specimens of common carp has notably diminished in the reservoir, which receives direct domestic drainage from two towns as well as numerous neighborhoods along the Tlalnepantla River. Diverse studies have demonstrated that the pollutants in the water of the reservoir produce oxidative stress, genotoxicity and cytotoxicity in juvenile Cyprinus carpio, possibly explaining the reduction in the population of this species; however, it is necessary to assess whether these effects may also be occurring directly in the embryos. Hence, surface water samples were taken at five sites and pharmaceutical drugs, personal care products (especially sunscreens), organophosphate and organochlorine pesticides, and other persistent organic pollutants (e.g., polychlorinated biphenyls and polycyclic aromatic hydrocarbons) were identified. Embryos of C. carpio were exposed to the water samples to evaluate embryolethality, modifications in embryonic development, lipoperoxidation, the quantity of hydroperoxide and oxidized proteins, and antioxidant enzyme activity (superoxide dismutase, catalase and glutathione peroxidase). It was found that the polluted water of the Madín Dam gave rise to embryolethality, embryotoxicity, congenital abnormalities, and oxidative stress on the common carp embryos.
Collapse
Affiliation(s)
- I Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - M Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - S García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico.
| | - L M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - E Gasca-Pérez
- Cátedra CONACYT. Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - E Martínez-Galero
- Laboratory of Reproductive Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - H Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Borja R Pérez-Pastén
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - D Barceló
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M López de Alda
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez-Solsona
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - M P Serra-Roig
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - N Montemurro
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J M Peña-Herrera
- Departamento de Química Ambiental del Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas de España, Calle Jordi Girona 18-26, 08034, Barcelona, Spain
| | - L M Sánchez-Aceves
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n. Col, Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
83
|
Yang Q, Wu F, Wang F, Cai K, Zhang Y, Sun Q, Zhao X, Gui Y, Li Q. Impact of DNA methyltransferase inhibitor 5-azacytidine on cardiac development of zebrafish in vivo and cardiomyocyte proliferation, apoptosis, and the homeostasis of gene expression in vitro. J Cell Biochem 2019; 120:17459-17471. [PMID: 31271227 DOI: 10.1002/jcb.29010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Cardiac development is a peculiar process involving coordinated cellular differentiation, migration, proliferation, and apoptosis. DNA methylation plays a key role in genomic stability, tissue-specific gene expression, cell proliferation, and apoptosis. Hypomethylation in the global genome has been reported in cardiovascular diseases. However, little is known about the impact and specific mechanism of global hypomethylation on cardiomyocytes. In the present study, we explored the impact of DNA methyltransferase inhibitors 5-azacytidine on cardiac development. In vivo experiment showed that hypomethylation of zebrafish embryos with 5-azacytidine exposure significantly reduced survival, induced malformations, and delayed general development process. Furthermore, zebrafish embryos injected with 5-azacytidine developed pericardial edema, ventricular volume reduction, looping deformity, and reduction in heart rate and ventricular shortening fraction. Cardiomyocytes treated with 5-azacytidine in vitro decreased proliferation and induced apoptosis in a concentration-dependent manner. Furthermore, 5-azacytidine treatment in cardiomyocytes resulted in 20 downregulated genes expression and two upregulated genes expression in 45 candidate genes, which indicated that DNA methylation functions as a bidirectional modulator in regulating gene expression. In conclusion, these results show the regulative effects of the epigenetic modifier 5-azacytidine in cardiac development of zebrafish embryos in vivo and cardiomyocyte proliferation and apoptosis and the homeostasis of gene expression in vitro, which offer a novel understanding of aberrant DNA methylation in the etiology of cardiovascular disease.
Collapse
Affiliation(s)
- Qian Yang
- Shanghai Key Laboratory of Birth Defect, Translational Medical Center for Development and Disease, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Shanghai Key Laboratory of Birth Defect, Translational Medical Center for Development and Disease, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Shanghai Key Laboratory of Birth Defect, Translational Medical Center for Development and Disease, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yawen Zhang
- Shanghai Key Laboratory of Birth Defect, Translational Medical Center for Development and Disease, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Quanya Sun
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolong Zhao
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yonghao Gui
- Shanghai Key Laboratory of Birth Defect, Translational Medical Center for Development and Disease, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Shanghai Key Laboratory of Birth Defect, Translational Medical Center for Development and Disease, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
84
|
Hedgpeth BM, Redman AD, Alyea RA, Letinski DJ, Connelly MJ, Butler JD, Zhou H, Lampi MA. Analysis of Sublethal Toxicity in Developing Zebrafish Embryos Exposed to a Range of Petroleum Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1302-1312. [PMID: 30919522 PMCID: PMC6849576 DOI: 10.1002/etc.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 05/31/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) test guideline 236 (fish embryo acute toxicity test; 2013) relies on 4 endpoints to describe exposure-related effects (coagulation, lack of somite formation, tail-bud detachment from the yolk sac, and the presence of a heartbeat). Danio rerio (zebrafish) embryos were used to investigate these endpoints along with a number of additional sublethal effects (cardiac dysfunction, pericardial edema, yolk sac edema, tail curvature, hatch success, pericardial edema area, craniofacial malformation, swim bladder development, fin development, and heart rate) following 5-d exposures to 7 petroleum substances. The substances investigated included 2 crude oils, 3 gas oils, a diluted bitumen, and a petrochemical containing a mixture of branched alcohols. Biomimetic extraction-solid-phase microextraction (BE-SPME) was used to quantify freely dissolved concentrations of test substances as the exposure metric. The results indicated that the most prevalent effects observed were pericardial and yolk sac edema, tail curvature, and lack of embryo viability. A BE-SPME threshold was determined to characterize sublethal morphological alterations that preceded embryo mortality. Our results aid in the understanding of aquatic hazards of petroleum substances to developing zebrafish beyond traditional OECD test guideline 236 endpoints and show the applicability of BE-SPME as a simple analytical tool that can be used to predict sublethal embryo toxicity. Environ Toxicol Chem 2019;38:1302-1312. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Bryan M. Hedgpeth
- ExxonMobil Biomedical ScienceAnnandaleNew JerseyUSA
- Seton Hall University, South OrangeNew JerseyUSA
| | | | | | | | | | | | - Heping Zhou
- Seton Hall University, South OrangeNew JerseyUSA
| | | |
Collapse
|
85
|
Luja-Mondragón M, Gómez-Oliván LM, SanJuan-Reyes N, Islas-Flores H, Orozco-Hernández JM, Heredia-García G, Galar-Martínez M, Dublán-García O. Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:751-764. [PMID: 30743961 DOI: 10.1016/j.scitotenv.2019.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Hospital functioning generates a great quantity of contaminants, among which organic materials, heavy metals, and diverse pharmaceuticals are noteworthy that can affect organisms if they are not properly removed from the effluents. The hospital effluent evaluated in the present study came from IMSS (Instituto Mexicano del Seguro Social) Clinic 221 in downtown Toluca, State of Mexico, a secondary care facility. The contaminants identified in hospitals have been associated with deleterious effects on aquatic organisms; however, it is necessary to continue with more studies in order to be able to regulate the production of said contaminants which are generally dumped into the city sewage system. The present study had the purpose of evaluating the alterations to embryonic development and teratogenic effects on oocytes Cyprinus carpio after exposure to different proportions of hospital effluent. For said purpose, the physicochemical properties of the effluent were determined. Concentrations of the main microcontaminants were also determined. An embryolethality study out and the determination of the main alterations to embryonic development and teratogenic effects produced, due to exposure of C. carpio at different proportions of the effluent, were carried out. The results showed that the physicochemical properties were within the values permitted by Mexican regulation; however, the presence of contaminants such as NaClO, metals, anti-biotics, anti-diabetics, non-steroidal anti-inflammatory drugs, hormones and beta-blockers, was detected. Lethal concentration 50 was 5.65% and the effective concentration for malformations was 3.85%, with a teratogenic index of 1.46. The main teratogenic alterations were yolk deformation, scoliosis, modified chorda structure, tail malformation, fin deformity and mouth hyperplasia. A high rate of hatching delay was observed. The results suggest that the hospital effluent under study is capable of inducing embryotoxicity and teratogenicity in oocytes of C. carpio.
Collapse
Affiliation(s)
- Marlenne Luja-Mondragón
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico.
| | - Nely SanJuan-Reyes
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Hariz Islas-Flores
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - José Manuel Orozco-Hernández
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Gerardo Heredia-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Marcela Galar-Martínez
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Octavio Dublán-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| |
Collapse
|
86
|
Iaria C, Saoca C, Guerrera MC, Ciulli S, Brundo MV, Piccione G, Lanteri G. Occurrence of diseases in fish used for experimental research. Lab Anim 2019; 53:619-629. [DOI: 10.1177/0023677219830441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to evaluate the occurrence of pathogens and diseases in laboratory fish over a 10-year period at the Centre for Experimental Fish Pathology of Sicily, University of Messina. This report also emphasizes the adverse effects of subclinical infections on research endpoints, as well as the importance of animal health with respect to welfare. Infections in fish used for research can alter experimental outcomes, increase the variability of data, and impede experimental reproducibility. For this purpose, 411 diseased fish of different species (out of a total of 2820 fish) that belonged to four marine species ( Dicentrarchus labrax, Sparus aurata, Argyrosomus regius and Mugil cephalus) and to four fresh water species ( Danio rerio, Carassius auratus, Xiphophorus variatus and Poecilia reticulata) were examined in this study. Our results showed that mycobacteriosis and myxosporidiosis were the most important diseases found in our research fish, and the results represent a useful tool to obtain wider knowledge on the incidence of various diseases in different fish species. Further studies in this field are necessary to improve knowledge on the state of the health of fish used for research.
Collapse
Affiliation(s)
- Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Concetta Saoca
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Giovanni Lanteri
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| |
Collapse
|
87
|
Teixidó E, Kießling TR, Krupp E, Quevedo C, Muriana A, Scholz S. Automated Morphological Feature Assessment for Zebrafish Embryo Developmental Toxicity Screens. Toxicol Sci 2019; 167:438-449. [PMID: 30295906 PMCID: PMC6358258 DOI: 10.1093/toxsci/kfy250] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Detection of developmental phenotypes in zebrafish embryos typically involves a visual assessment and scoring of morphological features by an individual researcher. Subjective scoring could impact results and be of particular concern when phenotypic effect patterns are also used as a diagnostic tool to classify compounds. Here we introduce a quantitative morphometric approach based on image analysis of zebrafish embryos. A software called FishInspector was developed to detect morphological features from images collected using an automated system to position zebrafish embryos. The analysis was verified and compared with visual assessments of 3 participating laboratories using 3 known developmental toxicants (methotrexate, dexamethasone, and topiramate) and 2 negative compounds (loratadine and glibenclamide). The quantitative approach exhibited higher sensitivity and made it possible to compare patterns of effects with the potential to establish a grouping and classification of developmental toxicants. Our approach improves the robustness of phenotype scoring and reliability of assay performance and, hence, is anticipated to improve the predictivity of developmental toxicity screening using the zebrafish embryo.
Collapse
Affiliation(s)
- Elisabet Teixidó
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| | | | | | | | | | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research—UFZ, Leipzig 04318, Germany
| |
Collapse
|
88
|
Cao F, Souders CL, Li P, Pang S, Qiu L, Martyniuk CJ. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4913-4923. [PMID: 30569354 DOI: 10.1007/s11356-018-3957-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Cyproconazole is a triazole fungicide used to protect a diverse range of fruits, vegetables, and grain crops. As such, it has the potential to enter aquatic environments and affect non-target organisms. The objective of this study was to assess the acute toxicity of the triazole fungicide cyproconazole to zebrafish embryos by assessing mortality, developmental defects, morphological abnormality, oxidative respiration, and locomotor activity following a 96-h exposure. Zebrafish embryos at 6-h post-fertilization (hpf) were exposed to either a solvent control (0.1% DMSO, v/v), or one dose of 10, 25, 50, 100, 250, and 500 μM cyproconazole for 96 h. Data indicated that cyproconazole exhibited low toxicity to zebrafish embryos, with a 96-h LC50 value of 90.6 μM (~ 26.4 mg/L). Zebrafish embryos/larvae displayed a significant decrease in spontaneous movement, hatching rate, and heartbeats/20 s with 50, 100, and 250 μM cyproconazole exposure. Malformations (i.e., pericardial edema, yolk sac edema, tail deformation, and spine deformation) were also detected in zebrafish exposed to ≥ 50 μM cyproconazole, with significant increases in cumulative deformity rate at 48, 72, and 96 hpf. In addition, a 20-30% decrease in basal and oligomycin-induced ATP respiration was observed after 24-h exposure to 500 μM cyproconazole in embryos. To determine if cyproconazole affected locomotor activity, a dark photokinesis assay was conducted in larvae following 7-day exposure to 1, 10, and 25 μM cyproconazole in two independent trials. Activity in the dark period was decreased for zebrafish exposed to 25 μM cyproconazole in the first trial, and hypoactivity was also observed in zebrafish exposed to 1 μM cyproconazole in a second trial, suggesting that cyproconazole can affect locomotor activity. These data improve understanding of the toxicity of cyproconazole in developing zebrafish and contribute to environmental risk assessments for the triazole fungicides on aquatic organisms. We report that, based on the overall endpoints assessed, cyproconazole exhibits low risk for developing fish embryos, as many effects were observed above environmentally-relevant levels.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sen Pang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Lihong Qiu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
89
|
Staal YCM, Meijer J, van der Kris RJC, de Bruijn AC, Boersma AY, Gremmer ER, Zwart EP, Beekhof PK, Slob W, van der Ven LTM. Head skeleton malformations in zebrafish (Danio rerio) to assess adverse effects of mixtures of compounds. Arch Toxicol 2018; 92:3549-3564. [PMID: 30288550 PMCID: PMC6290702 DOI: 10.1007/s00204-018-2320-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
The EU-EuroMix project adopted the strategy of the European Food Safety Authority (EFSA) for cumulative risk assessment, which limits the number of chemicals to consider in a mixture to those that induce a specific toxicological phenotype. These so-called cumulative assessment groups (CAGs) are refined at several levels, including the target organ and specific phenotype. Here, we explore the zebrafish embryo as a test model for quantitative evaluation in one such CAG, skeletal malformations, through exposure to test compounds 0-120 hpf and alcian blue cartilage staining at 120 hpf, focusing on the head skeleton. Reference compounds cyproconazole, flusilazole, metam, and thiram induced distinctive phenotypes in the head skeleton between the triazoles and dithiocarbamates. Of many evaluated parameters, the Meckel's-palatoquadrate (M-PQ) angle was selected for further assessment, based on the best combination of a small confidence interval, an intermediate maximal effect size and a gentle slope of the dose-response curve with cyproconazole and metam. Additional test compounds included in the CAG skeletal malformations database were tested for M-PQ effects, and this set was supplemented with compounds associated with craniofacial malformations or cleft palate to accommodate otherwise organized databases. This additional set included hexaconazole, all-trans-retinoic acid, AM580, CD3254, maneb, pyrimethanil, imidacloprid, pirimiphos-methyl, 2,4-dinitrophenol, 5-fluorouracil, 17alpha-ethynylestradiol (EE2), ethanol, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 126, methylmercury, boric acid, and MEHP. Most of these compounds produced a dose-response for M-PQ effects. Application of the assay in mixture testing was provided by combined exposure to cyproconazole and TCDD through the isobole method, supporting that in this case the combined effect can be modeled through concentration addition.
Collapse
Affiliation(s)
- Yvonne C. M. Staal
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Jeroen Meijer
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Remco J. C. van der Kris
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Annamaria C. de Bruijn
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Anke Y. Boersma
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Eric R. Gremmer
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Edwin P. Zwart
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Piet K. Beekhof
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Wout Slob
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| | - Leo T. M. van der Ven
- RIVM: National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, PO Box 1, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
90
|
Yao H, Xu X, Zhou Y, Xu C. Impacts of isopyrazam exposure on the development of early-life zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23799-23808. [PMID: 29876854 DOI: 10.1007/s11356-018-2449-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Isopyrazam (IPZ) is a broad spectrum succinate dehydrogenase inhibitor fungicide. Little is known about its potential ecological risks of aquatic organisms recently. The present study examined the embryonic development effects of zebrafish exposed to IPZ under static condition using a fish embryo toxicity test. The lowest observed effect concentration of IPZ was 0.025 mg/L in 4-day exposure. Developmental abnormalities, including edema, small head deformity, body deformation and decreased pigmentation, and mortality were observed in zebrafish embryos of 0.05 mg/L and higher concentrations, which shown concentration dependency. The heart rate of zebrafish was disrupted by IPZ. Moreover, enzyme and gene experiments shown that IPZ exposure caused oxidative stress of zebrafish. Furthermore, it induced a decrease of succinate dehydrogenase (SDH) enzyme activity and gene transcription level in zebrafish larvae. It can be speculated that IPZ may have a lethal effect on zebrafish, which is accompanied by decreased SDH activity, oxidative stress, and abnormality. These results provide toxicological data about the IPZ on aquatic non-target organisms, which could be useful for further understanding potential environmental risks.
Collapse
Affiliation(s)
- Hongzhou Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
91
|
Jayapal M, Jagadeesan H, Shanmugam M, Danisha J P, Murugesan S. Sequential anaerobic-aerobic treatment using plant microbe integrated system for degradation of azo dyes and their aromatic amines by-products. JOURNAL OF HAZARDOUS MATERIALS 2018; 354:231-243. [PMID: 29754041 DOI: 10.1016/j.jhazmat.2018.04.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/24/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The presence of unused dyes and dye degradation intermediates in the textile industry wastewaters is the major challenge in its treatment. A wide range of treatments including various physicochemical processes are used for this wastewater. Incomplete dye degradation results in hazardous colorless aromatic amine intermediates that are teratogenic in nature. A synergistic plant-microbe system operated in a sequential anaerobic-aerobic mode was evaluated for the complete degradation of a model azo dye methyl red under laboratory conditions. The degradation of methyl red and its break down products 2-aminobenzoic acid and N,N-dimethyl-p-phenylenediamine were analysed by HPLC, FTIR and GC-MS. The vetiver-microbe system had shown enhanced dye degradation. The dye decolourization percentage achieved for integrated plant-microbe treatment system (T) after anaerobic condition was 53.5 ± 6.2% and aerobic condition was 92 ± 3.4%. The removal efficiency of the intermediates 2-ABA and DMPD was found to be 89.79% in the integrated plant-microbe treatment system. The plant-microbe system was most effective in the removal of toxic aromatic amine as seen by lesser phytotoxicity for seed germination and teratogenicity in case of zebrafish development in the treated water.
Collapse
|
92
|
Rah YC, Han EJ, Park S, Rhee J, Koun S, Park HC, Choi J. In vivo assay of the potential gadolinium-induced toxicity for sensory hair cells using a zebrafish animal model. J Appl Toxicol 2018; 38:1398-1404. [DOI: 10.1002/jat.3656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Eun Jung Han
- Korea University Graduate School of Medicine; Laboratory of Neurodevelopmental Genetics; Seoul Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Jihye Rhee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Soonil Koun
- Biomedical Research Center Korea University Ansan Hospital; Seoul Republic of Korea
| | - Hae-Chul Park
- Korea University Graduate School of Medicine; Laboratory of Neurodevelopmental Genetics; Seoul Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| |
Collapse
|
93
|
Chen Y, Yang Y, Ou F, Liu L, Liu XH, Wang ZJ, Jin L. InP/ZnS QDs exposure induces developmental toxicity in rare minnow (Gobiocypris rarus) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:28-36. [PMID: 29655014 DOI: 10.1016/j.etap.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
We investigated the in vivo toxicity of InP/ZnS quantum dots (QDs) in Chinese rare minnow (Gobiocypris rarus) embryos. The 72 h post-fertilization (hpf) LC50 (median lethal concentration) was 1678.007 nmol/L. Rare minnows exposed to InP/ZnS QDs exhibited decreased spontaneous movement, decreased survival and hatchability rates, and an increased malformation rate. Pericardial edema, spinal curvature, bent tails and vitelline cysts were observed. Embryonic Wnt8a and Mstn mRNA levels were significantly up-regulated after InP/ZnS QDs treatment at 48 hpf (200 nmol/L) (p < 0.05). The superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels at 96 hpf (800 nmol/L) had an increasing trend. Hsp70 mRNA expression was significantly changed at 48 hpf (200 nmol/L), but compared with the blank control, the different InP/ZnS QDs treatments did not significantly change the Olive tail moments (p > 0.05). Thus, InP/ZnS QDs caused teratogenic effects and death during the development of Chinese rare minnow embryos, but InP/ZnS QDs did not cause significant genetic toxicity during Chinese rare minnow development.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Yang Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Fang Ou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
94
|
Cordeiro MF, Girardi FA, Gonçalves CO, Peixoto CS, Dal Bosco L, Sahoo SK, Santos AP, Fantini C, Bruch GE, Horn AP, Barros DM. Toxicological assessment of PEGylated single-walled carbon nanotubes in early developing zebrafish. Toxicol Appl Pharmacol 2018; 347:54-59. [DOI: 10.1016/j.taap.2018.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/30/2023]
|
95
|
Abramenko NB, Demidova TB, Abkhalimov ЕV, Ershov BG, Krysanov EY, Kustov LM. Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:89-94. [PMID: 29291521 DOI: 10.1016/j.jhazmat.2017.12.060] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 05/27/2023]
Abstract
As the worldwide application of silver nanomaterials in commercial products increases every year, and concern about the environmental risks of such nanoparticles also grows. A clear understanding of how different characteristics of nanoparticles contribute in their toxic behavior to organisms are imperative for predicting and control nanotoxicity. Within our research, we investigated the toxic effect of two types of silver nanoparticles (spherical and flat Ag nanoparticles) on zebrafish (Danio rerio) embryos. Particular interest was paid to proper characterization of Ag nanoparticles initially and during the experiment. A proper test medium was found and used for ecotoxicity evaluation. The behavior of flat silver nanoparticles with respect to embryos of zebrafish was analyzed and compared to the ecotoxicity of silver ionic form (AgNO3). Both types of nanoparticles showed a more pronounced toxic effect to Danio rerio embryos than silver ions (AgNO3), while silver nanoplates were more harmful than Ag nanospheres. While previous investigations showed that toxicity of Ag nanoparticles can be explained by the presence of Ag+ in solution of silver nanoparticles, our results demonstrate that the harmful effects of nanosilver may be associated with silver nanoparticles themselves than with ionic silver released into solution.
Collapse
Affiliation(s)
- Natalia B Abramenko
- N.D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky Prospect, 47, Moscow, Russia; National Science and Technology University MISiS, 119071, Leninsky Prospekt 4, Moscow, Russia
| | - Tatiana B Demidova
- A.N. Severtsov Institute of Ecology and Evolution, 119071, Leninsky Prospect, 33, Moscow, Russia
| | - Еvgeny V Abkhalimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071, Leninsky Prospect, 31-4, Moscow, Russia.
| | - Boris G Ershov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071, Leninsky Prospect, 31-4, Moscow, Russia
| | - Eugene Yu Krysanov
- A.N. Severtsov Institute of Ecology and Evolution, 119071, Leninsky Prospect, 33, Moscow, Russia
| | - Leonid M Kustov
- N.D. Zelinsky Institute of Organic Chemistry, 119991, Leninsky Prospect, 47, Moscow, Russia; National Science and Technology University MISiS, 119071, Leninsky Prospekt 4, Moscow, Russia.
| |
Collapse
|
96
|
Yao H, Yu J, Zhou Y, Xiang Q, Xu C. The embryonic developmental effect of sedaxane on zebrafish (Danio rerio). CHEMOSPHERE 2018; 197:299-305. [PMID: 29360593 DOI: 10.1016/j.chemosphere.2018.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The succinate dehydrogenase inhibitor (SDHI) fungicides have been extensively used in agriculture, and some of their potential ecological risks to aquatic organisms have been demonstrated recently. Sedaxane (SDX) is a broad spectrum SDHI fungicide. Despite being extensively used in environment, little is known about its potential developmental effect in zebrafish embryo. This study examined the effects of which SDX triggered in zebrafish through embryonic development assessments. Results show that SDX induced mortality, hatch delay and failure in zebrafish embryos, which were concentration dependent. In addition, several developmental abnormalities were observed at 2 mg/L and higher concentrations, including edema, microcephaly, body deformation, and swim bladder not fully inflated. SDX exposure influenced reactive oxygen species, malondialdehyde, peroxidase, glutathione S-transferase, superoxide dismutase and glutathione in live larvae, which indicated that oxidative stress was caused in zebrafish. Furthermore, SDX induced decrease of succinate dehydrogenase activity in zebrafish larvae. These results provide toxicological data of SDX on developing zebrafish embryo, which could be help for further understanding the potential risk on the environment.
Collapse
Affiliation(s)
- Hongzhou Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianping Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Qingqing Xiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
97
|
He Y, Sun C, Zhang Y, Folkerts EJ, Martin JW, Goss GG. Developmental Toxicity of the Organic Fraction from Hydraulic Fracturing Flowback and Produced Waters to Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3820-3830. [PMID: 29376370 DOI: 10.1021/acs.est.7b06557] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydraulic fracturing (HF) has emerged as a major recovery method of unconventional oil and gas reservoirs and concerns have been raised regarding the environmental impact of releases of Flowback and Produced Water (FPW) to aquatic ecosystems. To investigate potential effects of HF-FPW on fish embryo development, HF-FPW samples were collected from two different wells and the organic fractions were isolated from both aqueous and particle phases to eliminate the confounding effects of high salinity. Each organic extract was characterized by non-target analysis with HPLC-Orbitrap-MS, with targeted analysis for polycyclic aromatic hydrocarbons provided as markers of petroleum-affected water. The organic profiles differed between samples, including PAHs and alkyl PAHs, and major substances identified by non-target analysis included polyethylene glycols, alkyl ethoxylates, octylphenol ethoxylates, and other high molecular weight (C49-79) ethylene oxide polymeric material. Zebrafish embryos were exposed to various concentrations of FPW organic extracts to investigate acute (7-day) and developmental toxicity in early life stages. The acute toxicity (LD50) of the extracted FPW fractions ranged from 2.8× to 26× the original organic content. Each extracted FPW fraction significantly increased spinal malformation, pericardial edema, and delayed hatch in exposed embryos and altered the expression of a suite of target genes related to biotransformation, oxidative stress, and endocrine-mediation in developing zebrafish embryos. These results provide novel information on the variation of organic profiles and developmental toxicity among different sources and fractions of HF-FPWs.
Collapse
Affiliation(s)
- Yuhe He
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| | - Chenxing Sun
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Erik J Folkerts
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology , University of Alberta , Edmonton , Alberta T6G 2G3 , Canada
| | - Greg G Goss
- Department of Biological Sciences , University of Alberta , Edmonton , Alberta T6G 2E9 , Canada
| |
Collapse
|
98
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
99
|
Schüttler A, Reiche K, Altenburger R, Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol Sci 2018; 157:291-304. [PMID: 28329862 PMCID: PMC5443304 DOI: 10.1093/toxsci/kfx045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have been published in the past years investigating the transcriptome of the zebrafish embryo (ZFE) upon being subjected to chemical stress. Aiming at a more mechanistic understanding of the results of such studies, knowledge about commonalities of transcript regulation in response to chemical stress is needed. Thus, our goal in this study was to identify and interpret genes and gene sets constituting a general response to chemical exposure. Therefore, we aggregated and reanalyzed published toxicogenomics data obtained with the ZFE. We found that overlap of differentially transcribed genes in response to chemical stress across independent studies is generally low and the most commonly differentially transcribed genes appear in less than 50% of all treatments across studies. However, effect size analysis revealed several genes showing a common trend of differential expression, among which genes related to calcium homeostasis emerged as key, especially in exposure settings up to 24 h post-fertilization. Additionally, we found that these and other downregulated genes are often linked to anatomical regions developing during the respective exposure period. Genes showing a trend of increased expression were, among others, linked to signaling pathways (e.g., Wnt, Fgf) as well as lysosomal structures and apoptosis. The findings of this study help to increase the understanding of chemical stress responses in the developing zebrafish embryo and provide a starting point to improve experimental designs for this model system. In future, improved time- and concentration-resolved experiments should offer better understanding of stress response patterns and access to mechanistic information.
Collapse
Affiliation(s)
- Andreas Schüttler
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraβe 1, Leipzig, Germany
| | - Rolf Altenburger
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraβe 15, Leipig, Germany.,Institute for Environmental Research, RWTH Aachen, Worringerweg 1, Aachen, Germany
| | - Wibke Busch
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipig, Germany
| |
Collapse
|
100
|
Raghunath A, Perumal E. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development. Methods Mol Biol 2018; 1797:337-363. [PMID: 29896702 DOI: 10.1007/978-1-4939-7883-0_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India.
| |
Collapse
|