51
|
Vega-García S, Sánchez-García L, Prieto-Ballesteros O, Carrizo D. Molecular and isotopic biogeochemistry on recently-formed soils on King George Island (Maritime Antarctica) after glacier retreat upon warming climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142662. [PMID: 33049523 DOI: 10.1016/j.scitotenv.2020.142662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Maritime Antarctica is a climate-sensitive region that has experienced a continuous increase of temperature over the last 50 years. This phenomenon accelerates glacier retreat and promotes the exposure of ice-covered surfaces, triggering physico-chemical alteration of the ground and subsequent soil formation. Here, we studied the biogeochemical composition and evolution extent of soil on three recently exposed peninsulas (Fildes, Barton and Potter) on Southwest (SW) King George Island (KGI). Nine soil samples were analyzed for their lipid biomarkers, stable isotope composition, bulk geochemistry and mineralogy. Their biomarkers profiles were compared to those of local fresh biomass of microbial mats (n = 3) and vegetation (1 moss, 1 grass, and 3 lichens) to assess their contribution to the soil organic matter (SOM). The molecular and isotopic distribution of lipids in the soil samples revealed contributions to the SOM dominated by biogenic sources, mostly vegetal (i.e. odd HMW n-alkanes distributions and generally depleted δ13C ratios). Microbial sources were also present to a lesser extent (i.e. even LMW n-alkanes and n-alkanoic acids, heptadecane, 1-alkenes, 9-octadecenoic acid, or iso/anteiso 15: 0 and 17:0 alkanoic acids). Additional contribution from petrogenic sources (bedrock erosion-derived hydrocarbons) was also considered although found to be minor. Results from mineralogy (relative abundance of plagioclases and virtual absence of clay minerals) and bulk geochemistry (low chemical weathering indexes) suggested little chemical alteration of the original geology. This together with the low content of total nitrogen and organic carbon, as well as moderate microbial activity in the soils, confirmed little edaphological development on the recently-exposed KGI surfaces. This study provides molecular and isotopic fingerprints of SOM composition in young Antarctic soils, and contributes to the understanding of soil formation and biogeochemistry in this unexplored region which is currently being affected by thermal destabilization.
Collapse
Affiliation(s)
| | | | | | - D Carrizo
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain.
| |
Collapse
|
52
|
Sorption Constant of Bisphenol A and Octylphenol Onto Size-Fractioned Dissolved Organic Matter Using a Fluorescence Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031102. [PMID: 33513677 PMCID: PMC7908396 DOI: 10.3390/ijerph18031102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023]
Abstract
Dissolved organic matter (DOM) is a complex and heterogeneous mixture ubiquitously present in aquatic systems. DOM affects octylphenol (OP) and bisphenol A (BPA) distribution, transport, bioavailability, and toxicity. This study investigated OP and BPA sorption constants, log KCOC, with three size-fractioned DOM. The molecular weights of the sized fractions were low molecular weight DOM (LDOM, <1 kDa), middle molecular weight DOM (MDOM, 1–10 kDa), and high molecular weight DOM (HDOM, 10 kDa–0.45 μm). The log KCOC ranged from 5.34 to 6.14 L/kg-C for OP and from 5.59 to 6.04 L/kg-C for BPA. The OP and BPA log KCOC values were insignificantly different (p = 0.37) and had a strong positive correlation (r = 0.85, p < 0.001). The OP and BPA LDOM log KCOC was significantly higher than the HDOM and MDOM log KCOC (p = 0.012 for BPA, p = 0.023 for OP). The average specific ultraviolet absorption (SUVA254) values were 32.0 ± 5.4, 13.8 ± 1.0, and 17.9 ± 2.8 L/mg-C/m for LDOM, MDOM, and HDOM, respectively. The log KCOC values for both OP and BPA had a moderately positive correlation with the SUVA254 values (r = 0.79–0.84, p < 0.002), which suggested the aromatic group content in the DOM had a positive impact on sorption behavior.
Collapse
|
53
|
He Y, Song K, Yang C, He W, Li Y, Xu F. Geographical location and water depth are important driving factors for the differences of suspended particulate organic matter (SPOM) in lake environment across nationwide scale: Evidences from n-alkane fingerprints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142948. [PMID: 33109370 DOI: 10.1016/j.scitotenv.2020.142948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Suspended particulate organic matter (SPOM) plays a connective role in global biogeochemical carbon cycles and energy flows in aquatic ecosystems. However, little is known about the occurrence and source of SPOM in lake environment and their driving factors across nationwide scale. Here, we utilize the molecular markers of n-alkanes and their fingerprints in 46 typical lakes and reservoirs with different water depths across China from both sides of the Hu Line to study this issue. Σ29n-alkanes, Σ biogenic n-alkanes and Σ anthropogenic n-alkanes ranged from 104.8 to 10332 ng·L-1, from 88.5 to 4843 ng·L-1, and from 16.2 to 5488 ng·L-1, respectively. Their occurrences were only associated with water depth. Then, we compared the differences of carbon-chain distribution of both biogenic and anthropogenic n-alkanes and related proxies in different lake groups. The profiles of different biogenic and anthropogenic n-alkanes posed large differences in different lake groups. Finally, linear discriminant analysis (LDA) was applied to test the possible effects of geographical location and water depth on the holistic differences of SPOM in different lakes and reservoirs across China. The results illustrated that both geographical location and water depth were important driving factors for the holistic differences of SPOM in different lakes and reservoirs across China. Intensive anthropogenic activities narrowed the differences between shallow and deep lakes in eastern China. In conclusion, this study provided new insights into the driving factor analysis of SPOM in lakes and reservoirs on large scale.
Collapse
Affiliation(s)
- Yong He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kai Song
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chen Yang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yilong Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
54
|
Shi W, Zhuang WE, Hur J, Yang L. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. WATER RESEARCH 2021; 188:116406. [PMID: 33010601 DOI: 10.1016/j.watres.2020.116406] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 05/27/2023]
Abstract
Dissolved organic matter (DOM) plays a critical role in determining the quality of wastewater and the safety of drinking water. This is the first review to compare two types of popular DOM monitoring techniques, including absorption spectroscopy and fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) vs. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), for the applications in wastewater and drinking water treatments. The optical techniques provide a series of indices for tracking the quantity and quality of chromophoric and fluorescent DOM, while FT-ICR-MS is capable of identifying thousands of DOM compounds in wastewater and drinking water at the molecule level. Both types of monitoring techniques are increasingly used in studying DOM in wastewater and drinking water treatments. They provide valuable insights into the variability of DOM composition in wastewater and drinking water. The complexity and diversity of DOM highlight the challenges for effective water treatments. Different effects of various treatment processes on DOM are also assessed, which indicates that the information on DOM composition and its removal is key to optimize the treatment processes. Considering notable progress in advanced treatment processes and novel materials for removing DOM, it is important to continuously utilize these powerful monitoring tools for assessing the responses of different DOM constituents to a series of treatment processes, which can achieve an effective removal of DOM and the quality of treated water.
Collapse
Affiliation(s)
- Weixin Shi
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
55
|
Kosten S, Almeida RM, Barbosa I, Mendonça R, Santos Muzitano I, Sobreira Oliveira-Junior E, Vroom RJE, Wang HJ, Barros N. Better assessments of greenhouse gas emissions from global fish ponds needed to adequately evaluate aquaculture footprint. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141247. [PMID: 32798864 DOI: 10.1016/j.scitotenv.2020.141247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
While providing protein for a fast-growing human population, the ongoing boom in global aquaculture comes with environmental costs. Particularly, the intense greenhouse gas (GHG) emissions reported for several aquaculture systems are a source of concern. Still, we argue that actual emissions could be multiple times higher than currently thought. Most studies supporting existing estimates solely rely on measurements of water-atmosphere diffusive fluxes of GHG, whereas methane (CH4) and nitrous oxide (N2O) emissions during drainage and refilling and CH4 bubbles emerging from sediments are largely ignored. Yet, abundant evidence for similar aquatic ecosystems suggests that these largely unaccounted emission pathways may be responsible for a large share of annual GHG emissions. Uncertainties from overlooking important emission pathways may have serious consequences, including incorrect advice on mitigation strategies and overly optimistic assessments of the GHG footprint of cultured freshwater fish. To ensure a low-carbon future for global aquaculture, we contend that GHG assessments in fish-farming ponds must extend beyond the focus on diffusive water-atmosphere fluxes and include all emission pathways and possible carbon burial in the sediment. In parallel, we call for a better understanding of the biological, microbiological and physical drivers of aquaculture emissions to effectively support mitigation strategies to minimize the footprint of this nutritionally valuable protein source.
Collapse
Affiliation(s)
- Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Rafael M Almeida
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Icaro Barbosa
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Raquel Mendonça
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ive Santos Muzitano
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Fundação Instituto de Pesca do Estado do Rio de Janeiro, Brazil
| | - Ernandes Sobreira Oliveira-Junior
- Graduate Program in Environmental Sciences, Laboratory of Ichthyology of the North Pantanal, University of the State of Mato Grosso, 78200-000 Cáceres, Brazil
| | - Renske J E Vroom
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Hai-Jun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nathan Barros
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| |
Collapse
|
56
|
Xiao K, Abbt-Braun G, Horn H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. WATER RESEARCH 2020; 187:116441. [PMID: 33022515 DOI: 10.1016/j.watres.2020.116441] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) of sludge is a heterogeneous mixture of high to low molecular weight organic substances which is including proteinaceous compounds, carbohydrates, humic substances, lipids, lignins, organic acids, organic micropollutants and other biological derived substances generated during wastewater treatment. This paper reviews definition, composition, quantification, and transformation of DOM during different sludge treatments, and the complex interplay of DOM with microbial communities. In anaerobic digestion, anaerobic digestion-refractory organic matter, particularly compounds showing polycyclic steroid-like, alkane and aromatic structures can be generated after pretreatment. During dewatering, the DOM fraction of low molecular weight proteins (< 20,000 Dalton) is the key parameter deteriorating sludge dewaterability. During composting, decomposition and polymerization of DOM occur, followed by the formation of humic substances. During landfill treatment, the composition of DOM, particularly humic substances, are related with leachate quality. Finally, suggestions are proposed for a better understanding of the transformation and degradation of DOM during sludge treatment. Future work in sludge studies needs the establishment and implementation of definitions for sample handling and the standardization of DOM methods for analysis, including sample preparation and fractionation, and data integration. A more detailed knowledge of DOM in sludge facilitates the operation and optimization of sludge treatment technologies.
Collapse
Affiliation(s)
- Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China; Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
| |
Collapse
|
57
|
Are Sterols Useful for the Identification of Sources of Faecal Contamination in Shellfish? A Case Study. WATER 2020. [DOI: 10.3390/w12113076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This work aimed to identify the major source(s) of faecal pollution impacting Salcott Creek oyster fisheries in the UK through the examination of the sterol profiles. The concentration of the major sewage biomarker, coprostanol, in water overlying the oysters varied between 0.01 µg L−1 and 1.20 µg L−1. The coprostanol/epicoprostanol ratio ranged from 1.32 (September) to 33.25 (February), suggesting that human sewage represents the key input of faecal material into the estuary. However, a correlation between the sterol profile of water above the oysters with that of water that enters from Tiptree Sewage Treatment Works (r = 0.82), and a sample from a site (Quinces Corner) observed to have a high population of Brent geese (r = 0.82), suggests that both sources contribute to the faecal pollution affecting the oysters. In identifying these key faecal inputs, sterol profiling has allowed targeted management practices to be employed to ensure that oyster quality is optimised.
Collapse
|
58
|
Ma Y, Li S. Spatial and temporal comparisons of dissolved organic matter in river systems of the Three Gorges Reservoir region using fluorescence and UV-Visible spectroscopy. ENVIRONMENTAL RESEARCH 2020; 189:109925. [PMID: 32980013 DOI: 10.1016/j.envres.2020.109925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Understanding optical characteristics, composition and source of dissolved organic matter (DOM) in rivers of the Three Gorges Reservoir (TGR) region is important for region and global carbon cycle. However, chemical compositions and source of DOM from the tributary to mainstream in the TGR region are not well studied. Consequently, 126 water samples were collected from rivers in different land use region, and these rivers covered the main tributaries of the Yangtze River in the TGR region. The temporal and spatial variations of DOM structure and source identification in different land use region were investigated using UV-visible absorbance and fluorescence spectroscopy. Overall, there were higher ratio of humic acid to fulvic, aromaticity, molecular weight and proportion of colored humic substances in DOM in the wet season than in the dry season. The weaker biologic/microbial and stronger terrestrial sources in DOM were observed in the wet season than in the dry season. DOM comparison in variable land use demonstrated the higher terrestrial sources and weaker biologic/microbial sources in DOM in the forest-affected rivers irrespective of hydrological seasonality, as well as in the wet season irrespective of land use types. DOM in the farmland-affected rivers showed more protein-like signal. We found that monsoonal precipitation, anthropogenic activities and land use were important drivers for the DOM quality variations. These findings will be beneficial to unravel riverine DOM structure and sources in relation to anthropogenic activities and also improve our understanding of DOM biogeochemical cycle in the rivers.
Collapse
Affiliation(s)
- Yongmei Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Siyue Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
59
|
Trubetskaya OE, Richard C, Patsaeva SV, Trubetskoj OA. Evaluation of aliphatic/aromatic compounds and fluorophores in dissolved organic matter of contrasting natural waters by SEC-HPLC with multi-wavelength absorbance and fluorescence detections. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118450. [PMID: 32413721 DOI: 10.1016/j.saa.2020.118450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/05/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
The analytical high performance size exclusion liquid chromatography (SEC-HPLC) with multi-wavelength absorbance and fluorescence detections and fluorescence 3D-excitation/emission matrix (EEM) were used for the analysis of average molecular size (MS), molecular size distribution of aliphatic/aromatic compounds and fluorophores in dissolved organic matter (DOM) from Suwannee River (SRDOM) and two Karelian lakes (Vodoprovodnoe Lake - L1DOM and Onego Lake - L2DOM). The average MS of DOM samples varied in the order SRDOM > L1DOM > L2DOM. The absorbance ratios A250/A365 and A210/A254 have been used for the DOM samples characterization. The absorbance ratio A250/A365 provided significant information about average MS of the bulk aquatic DOMs but was not exactly correlated with the results of SEC-HPLC data. The absorbance ratio A210/A254 in combination with SEC was well correlated with the content of DOM aliphatic/aromatic compounds and could be used as an important water quality index to estimate the level of protein-like material in the aquatic DOM. Regardless of the origin (river or lakes), different geographical locations and different average MS of DOM, several similar types of humic-like SEC-separated fluorophores were found within the samples. In all DOM samples the decrease of the fluorophores emission maxima paralleled the decrease of their relative MS. The combination of SEC-HPLC with multi-wavelength fluorescence and absorbance detection and EEM analyses appears very useful for DOM characterization and for tracking of microbial activity resulting from anthropogenic and/or eutrophic impact in aquatic environments.
Collapse
Affiliation(s)
- Olga E Trubetskaya
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Moscow region, Russia
| | - Claire Richard
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, Equipe Photochimie, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Svetlana V Patsaeva
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Oleg A Trubetskoj
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290 Pushchino, Moscow region, Russia.
| |
Collapse
|
60
|
Characteristics of Fluorescence Spectra, UV Spectra, and Specific Growth Rates during the Outbreak of Toxic Microcystis Aeruginosa FACHB-905 and Non-Toxic FACHB-469 under Different Nutrient Conditions in a Eutrophic Microcosmic Simulation Device. WATER 2020. [DOI: 10.3390/w12082305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microcystis aeruginosa is the dominant alga forming cyanobacteria blooms, the growth of which is limited by available nutrients. Thus, it is necessary to study cyanobacteria blooms and explore the growth of Microcystis aeruginosa under different nutrient conditions. In this paper, we take Microcystis aeruginosa, including toxic Freshwater Algae Culture of Hydrobiology Collection (FACHB)-905 and non-toxic FACHB-469 strains, into account. The strains were cultured using a simulation device under different nutrient conditions. Ultraviolet spectra, three-dimensional fluorescence spectra, and kinetic parameter indicators of the two species are studied. Compared to FACHB-469, the results show that the specific growth rate of FACHB-905 is much higher, in particular, FACHB-905 is the dominant species under low nutrient conditions. Furthermore, the UV spectral characteristics indicate that the molecular weight of dissolved organic matter in the culture tank of toxic FACHB-905 is greater than that of FACHB-469. Additionally, the humification index of toxic FACHB-905 is slightly higher as well, which suggests that it is more stable in the presence of dissolved organic matter during blooms. Therefore, the toxic Microcystis strain is more likely to become the dominant species in water blooms under lower eutrophic conditions and water blooms formed by the toxic Microcystis strain may be more difficult to recover from.
Collapse
|
61
|
Derrien M, Lee MH, Choi K, Lee KS, Hur J. Tracking the evolution of particulate organic matter sources during summer storm events via end-member mixing analysis based on spectroscopic proxies. CHEMOSPHERE 2020; 252:126445. [PMID: 32197173 DOI: 10.1016/j.chemosphere.2020.126445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Despite the growing attention to the effects of hydrological precipitation on organic carbon export along the continuum land-river-ocean, limited effort has been made to understand the export and the reactivity of particulate organic carbon (POC) compared to those of dissolved organic carbon (DOC). Yet, further understanding of the controlling mechanisms on the export of particulate organic matter (POM) from terrestrial systems is fundamental. In this study, we assessed the temporal changes of the source contributions to riverine POM in two adjacent rivers of the same watershed during two summer storm events, which included the early and the late events, using end-member mixing analysis (EMMA) based on spectroscopic proxies. The EMMA showed relatively high contributions of terrestrial materials to the riverine POM for both rivers during the early summer storm event. However, this trend did not persist until the late summer storm event, which presented the decreased contributions of the terrestrial sources and less dynamic changes in the source distributions compared to those observed in the early summer rain event. These results demonstrate the combined impacts of the land use/surrounding area, the hydrology, and the intra-seasonal variations on the dominant riverine POM sources. This study provides an interesting insight into the importance of the intense hydrological events on the export of the terrestrial OM and further on the potential modification of the existing carbon mass balance along the continuum land-river-ocean.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mi-Hee Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Kwangsoon Choi
- K-Water Institute, 1689 Beon-gil 125, Yuseong-daero, Yuseong-gu, Daejeon, 34045, South Korea
| | - Kwang-Sik Lee
- Korea Basic Science Institute, Yeongudanji-ro 162, Cheongwon-gu, Cheongju, Chungcheongbuk-do, 169-148, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
62
|
Wang W, Li W, Yan Y, Liu B, Wang T, Mao S, Song L, Dou H, Ao W, Zou C. Organic Matter Pollution During the Spring Thaw in Hulun Lake Basin: Contribution of Multiform Human Activities. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:307-316. [PMID: 32564098 DOI: 10.1007/s00128-020-02911-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
It has recently been reported that plateau lakes have been seriously polluted by organic matter, however, the sources of this organic matter and their relative contributions remain unknown. In this study, to determine the sources and composition of the organic matter in the Hulun Lake basin during the spring-thaw period, a total of twenty-three sampling sites were investigated. Results showed high levels of organic matter pollution in the surface water of Hulun Lake, with an average COD values of 119.35 mg L-1. Organic matter came from natural sources as well as a variety of anthropogenic activities. The direct sources included urbanization, industrial and residential wastewater discharge, and emission from burning fossile fuels. A large indirect source was organic matter from tumbleweed decomposition, which had increased due to desertification caused by overgrazing. The principal component analysis showed that organic matter from Hulun lake shared composition and sources with the upstream sections of the natural tributaries and the downstream section of the artificial tributary. The artificial inflow river contributed more organic matter than the other tributaries. Notably, a large portion of organic matter in Hulun Lake came from decomposing tumbleweed concentrated in the downstream section of one of the natural rivers. New indirect consequences of human activities must be factored into the rule and regulations that protect plateau lake ecosystems alongside the direct effects of established human activities.
Collapse
Affiliation(s)
- Wenlin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 8, Jiangwangmiao Road, XuanWu District, 210042, Nanjing, People's Republic of China
| | - Wenjing Li
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 8, Jiangwangmiao Road, XuanWu District, 210042, Nanjing, People's Republic of China
| | - Yan Yan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 8, Jiangwangmiao Road, XuanWu District, 210042, Nanjing, People's Republic of China
| | - Bo Liu
- School of Geographical Science, Nantong University, 226007, Nantong, People's Republic of China
| | - Tanjing Wang
- School of Geographical Science, Nantong University, 226007, Nantong, People's Republic of China
| | - Sichen Mao
- School of Geographical Science, Nantong University, 226007, Nantong, People's Republic of China
| | - Linhui Song
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 8, Jiangwangmiao Road, XuanWu District, 210042, Nanjing, People's Republic of China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, 021008, Hulunbuir, People's Republic of China
| | - Wen Ao
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, 021008, Hulunbuir, People's Republic of China.
| | - Changxin Zou
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 8, Jiangwangmiao Road, XuanWu District, 210042, Nanjing, People's Republic of China.
| |
Collapse
|
63
|
Cabral AC, Dauner ALL, Xavier FCB, Garcia MRD, Wilhelm MM, Dos Santos VCG, Netto SA, Martins CC. Tracking the sources of allochthonous organic matter along a subtropical fluvial-estuarine gradient using molecular proxies in view of land uses. CHEMOSPHERE 2020; 251:126435. [PMID: 32169703 DOI: 10.1016/j.chemosphere.2020.126435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Sedimentary sterols and linear alkylbenzenes associated with allochthonous organic matter (AOM) inputs were studied in surface sediments along the Tubarão riverbed, South Brazil. These markers were analysed in terms of concentrations, diagnostic ratios and by using multivariate analyses to identify the main organic matter sources. It was necessary to integrate all these factors to distinguish the sources and determine sewage contamination. Phytosterols predominated over faecal sterols, but the contributions of livestock waste along the river (determined in 50% of the sites) were confirmed by the fingerprint analysis. Raw sewage contamination was verified at one site, according to the increased levels of sewage molecular markers and confirmed by the multivariate analyses and diagnostic ratios calibrated to this region. A possible synergistic effect between inorganic nanoparticles from coal mine waste and organic contaminants related to AOM input was suggested and should not be ignored since both activities severely contribute to the environmental changes in much of this fluvial-estuarine gradient from the South Atlantic.
Collapse
Affiliation(s)
- Ana Caroline Cabral
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil; Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Ana Lúcia Lindroth Dauner
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil; Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | | | - Marina Reback Domingues Garcia
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Marines Maria Wilhelm
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | | | - Sergio Antônio Netto
- Laboratório de Ciências Marinhas, Universidade do Sul de Santa Catarina, 88704-900, Tubarão, Santa Catarina, Brazil
| | - César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil.
| |
Collapse
|
64
|
Argiriadis E, Martino M, Segnana M, Poto L, Vecchiato M, Battistel D, Gambaro A, Barbante C. Multi-proxy biomarker determination in peat: Optimized extraction and cleanup method for paleoenvironmental application. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
65
|
Zhang P, Shao Y, Xu X, Huang P, Sun H. Phototransformation of biochar-derived dissolved organic matter and the effects on photodegradation of imidacloprid in aqueous solution under ultraviolet light. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137913. [PMID: 32251880 DOI: 10.1016/j.scitotenv.2020.137913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) strongly influences the photodegradation of organic pollutants, varying depending on the structure of DOM. With the wide application of biochar, increasing amounts of DOM is released from biochar to the environment, which has different structural characteristics compared to natural DOM. In this study, DOM was derived from maize straw (MS) and pig manure (PM) and biochars by pyrolyzing MS and PM at 300 °C and 500 °C and the optical characteristics of DOM before and after phototransformation were explored via ultraviolet-visible spectroscopy and excitation-emission matrix fluorescence. Photodegradation of an insecticide, imidacloprid (IMI) in the presence of DOM was examined. The results showed that DOM derived from biochar obtained by pyrolyzing MS and PM mainly contained two identified fluorescent components and high pyrolysis temperature (500 °C) was associated with low molecular weight, small light-screening effects and great aromaticity of the DOM. After exposure to UV light, the aromaticity and molecular weight of the DOM declined due to phototransformation. Significant enhancement was observed in IMI photodegradation in the presence of biochar-derived DOM, and the enhancement was the greatest with DOM derived from pig manure biochar pyrolyzed at 500 °C. In addition to the light shielding effect, the 1O2 generated from DOM played an important role in the phototransformation of IMI and DOM. The loss of the nitro group and oxidation at the imidazolidine ring were the main photodegradation pathways for IMI. This study expands our understanding of the fate of biochar-derived DOM and its effects on the fate of coexisting organic pollutants.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yifei Shao
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xuejing Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
66
|
Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, Riyahi Bakhtiari A, Cappello T. Steroid Fingerprint Analysis of Endangered Caspian Seal ( Pusa caspica) through the Gorgan Bay (Caspian Sea). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7339-7353. [PMID: 32459473 DOI: 10.1021/acs.est.0c01479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The profile of steroid congeners was evaluated in Caspian seals Pusa caspica by age, sex, and tissue-specific bioaccumulation, and compared with that of abiotic matrices (seawater, surface sediment, and suspended particulate materials, SPMs) from Miankaleh Wildlife/Gorgan Bay, (Caspian Sea, Iran). To identify the level of human fecal contamination, ∑25 sterol congeners were measured in all abiotic/biotic samples, revealing coprostanol, a proxy for human feces, as the most abundant sterol (seawater: 45.1-20.3 ng L-1; surface sediment: 90.2-70.3 ng g-1 dw; SPMs: 187.7-157.6 ng g-1 dw). The quantification of ∑25 sterols in seals followed the order of brain > liver > kidney > heart > blood > spleen > muscle > intestine > blubber > fur, and in both sexes coprostanol level (8.95-21.01% of ∑25s) was higher in blubber and fur, followed by cholesterol in brain, liver, kidney, heart, and blood, cholestanone in intestine and muscle, and β-sitosterol in spleen. Though no age/sex differentiation was observed, the mean concentration of ∑25s was higher in male than females and pup. Different diagnostic ratios revealed sterols originating from human and nonhuman sewage sources. Findings pinpoint the urgent necessity to investigate the ecotoxicity of fecal sterols in mammals, and consequent implications for human health.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Sakineh Mashjoor
- Department of Marine biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran 14115-111, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98122, Italy
| |
Collapse
|
67
|
A Novel Procedure of Total Organic Carbon Analysis for Water Samples Containing Suspended Solids with Alkaline Extraction and Homogeneity Evaluation by Turbidity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113901. [PMID: 32486395 PMCID: PMC7311996 DOI: 10.3390/ijerph17113901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
This study was conducted to develop and validate a more reliable total organic carbon (TOC) analytical procedure for water samples containing suspended solids (SS). The effects of the combined ultrasonic and alkaline pretreatment (CULA) on the TOC measurement were studied in water samples containing SS from three origins (algae, sewage particles, and soil) under different analytical conditions (SS concentration, oxidation methods, and sieve size). The applicability of turbidity as a homogeneity index was also evaluated. With CULA, TOC recovery remained high (> 80%) for SS concentration ranges up to four times larger than ultrasonic pretreatment alone (UL) due to enhanced particulate organic carbon (POC) solubilization, and did not significantly differ depending on the oxidation methods, at low SS concentrations, or with varying sieve sizes. In particular, the turbidity change rate (i.e., NTU5/NTU0) of the pretreated water sample showed a high correlation with TOC precision (r2 = 0.73, p < 0.01), which suggests that turbidity can be used as an indicator of sample homogeneity. A novel TOC analytical procedure is expected to be useful for more accurate assessments of the impact of particulate pollutants on water quality than current methods, and for the analysis of the carbon cycle, including POCs, in the environment.
Collapse
|
68
|
Derrien M, Choi H, Jardé E, Shin KH, Hur J. Do early diagenetic processes affect the applicability of commonly-used organic matter source tracking tools? An assessment through controlled degradation end-member mixing experiments. WATER RESEARCH 2020; 173:115588. [PMID: 32059126 DOI: 10.1016/j.watres.2020.115588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
In the development of organic matter (OM) source tracking tools, it is critical to validate if (1) the tracers are conservative with source mixing, and (2) they can be conservative under diagenetic processes (e.g., microbial degradation). In this study, these two critical points were rigorously tested for three commonly-used source tracking tools (i.e., absorbance and fluorescence proxies, stable carbon isotopes and lipid biomarkers) via a controlled experiment at laboratory scale. To this end, two end-members (e.g., soil and algae), which represent the most common and contrasted sources of OM to sediments in an aquatic environment, were mixed in different ratios and then incubated under different oxygen conditions (oxic versus anoxic) in the dark at 25 °C for 60 days. The initial and final signals of the source tracking tools were analyzed and compared for each mixing ratio. Based on three evaluation criteria concerning the linearity of the relationships, discrimination sensitivity, and conservative mixing behavior, we evaluated the applicability of the tools to trace the sediment organic matter in the aquatic environment. Although most of the source tracking proxies evaluated in this study showed a conservative nature after incubation, there are only a few that demonstrated both conservative behaviors with the sources mixing and under early diagenetic processes. The fluorescence proxies such as the relative distribution of a humic-like component associated with refractory source material (Ex/Em: 220/430 nm), modified fluorescence index (YFI), humification index (HIX), and carbon stable isotope ratios were identified to be the most reliable tracers for tracking sedimentary OM sources under early diagenetic processes. This study provides strong insights into the validation of common OM source tracking tools for sediment and a reasonable guideline to select the optimum indices for source discrimination via end-member mixing analysis.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea.
| | - Heybin Choi
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do, 15588, South Korea
| | - Emilie Jardé
- University of Rennes 1, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Kyung-Hoon Shin
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do, 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
69
|
Lee HS, Hur J, Shin HS. Enhancing the total organic carbon measurement efficiency for water samples containing suspended solids using alkaline and ultrasonic pretreatment methods. J Environ Sci (China) 2020; 90:20-28. [PMID: 32081316 DOI: 10.1016/j.jes.2019.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the effect of sample pretreatments (ultrasonication and alkaline extraction) on total organic carbon (TOC) measurements for water samples containing suspended solids (SS) of four different origins (algae, soil, sewage sludge, and leaf litter) to more clearly assess the impact of particulate organic carbon (POC) in water. The effects each of ultrasonication (power, pulse, etc.) and alkaline extraction condition (concentration, time, etc.) on the TOC recovery and precision were investigated, and the results were compared with those of a new sample pretreatment method combining both methods. Alkaline treatment (0.01 mol/L NaOH) showed higher precision than ultrasonication (100/5 on/off pulse), and notably, the differences among the measured TOC values in samples of different origins were also further reduced in the alkaline treatment. This suggests that the ultrasonic pretreatment results can be mainly attributed to the increase in POC recovery through particle size reduction, whereas the alkaline treatment results are achieved through the enhancement of POC solubilization. It is also particularly noteworthy that a higher TOC recovery of 87.6% ± 7.4% with a higher precision of 8.4% could be obtained using the combined method, compared to each treatment (ultrasonic: TOC recovery 34.7%, relative standard deviation 63.1%; alkaline: 49.6% and 23.0%, respectively). Thus, simultaneous pretreatment with ultrasonication and alkaline extraction is expected to increase the oxidation rate of organic matter and the homogeneity of the samples, minimizing the loss of POC measurement values, and thereby improving the reliability of the TOC measurements of water samples containing SS.
Collapse
Affiliation(s)
- Han-Saem Lee
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul, 01811, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul, 05006, South Korea
| | - Hyun-Sang Shin
- Department of Environment Energy Engineering, Seoul National University of Science & Technology, Seoul, 01811, South Korea.
| |
Collapse
|
70
|
Zhang P, Huang P, Xu X, Sun H, Jiang B, Liao Y. Spectroscopic and molecular characterization of biochar-derived dissolved organic matter and the associations with soil microbial responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134619. [PMID: 31791751 DOI: 10.1016/j.scitotenv.2019.134619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) released from biochar can influence the microbial community structure, but the inherent mechanism associated with the structure of biochar-derived DOM remains insufficiently elucidated. In this study, the spectroscopic characteristics and molecular structures of biochar-derived DOM were studied, and the microbial responses to biochar-derived DOM were explored. With increasing biochar pyrolysis temperature (PT), the molecular weight and proportions of aliphatic and fulvic acid-like compounds in the biochar-derived DOM decrease along with an reduction in the amount of DOM released from the biochars, but the proportions of combustion-derived condensed polycyclic aromatics and humic acid-like and soluble microbial byproduct-like compounds increased. Accordingly, the humification index, H/C and (O + N)/C values also decreased. The spectroscopic characteristics of biochar-derived DOM were distinct from those of natural substrates. Moreover, the DOM extracted from biochar raw materials contained a high proportion of aliphatic compounds, while the DOM derived from high-PT biochars (500 °C) had similar characteristics to fulvic acid-like and soluble microbial byproduct-like compounds. The microbial abundance and community structure varied in different DOM solutions. The relative abundances (RAs) of eight genera (e.g. Dyadobacter, Sphingobacterium and Novosphingobium) had significantly positive correlations with the content of aliphatic compounds, while RAs of seven genera (e.g. Methylotenera, Acinetobacter and Reyranella) had significant positive correlations with the content of high-aromatic combustion-derived condensed polycyclic aromatics. These results are helpful for obtaining a deep understanding of the potential influences of various types of biochar-derived DOM on terrestrial and aquatic microbiology.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejing Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
71
|
Liu S, He Z, Tang Z, Liu L, Hou J, Li T, Zhang Y, Shi Q, Giesy JP, Wu F. Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134764. [PMID: 31726300 DOI: 10.1016/j.scitotenv.2019.134764] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Autochthonous dissolved organic matter (DOM) is increasingly released in lakes due to eutrophication, and thus affects the composition and environmental behaviors of DOM in eutrophic lakes. However, there are only limited studies on the molecular characteristics of autochthonous DOM and its influencing mechanisms. Herein, end-member DOM samples of macrophytes, algae, sediments and freshwater DOM samples in eutrophic lakes (Ch:Taihu and Dianchi) were collected and characterized by optical spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The results revealed the chemical structures of autochthonous DOM were more aliphatic and less oxidized, which was marked by increases in lipid compounds and decreases in the lignin components as compared to the allochthonous DOM-dominated freshwaters. More specially, algae-derived DOM contains more lipid compounds, while macrophyte-derived DOM was dominated by lignin and tannin compounds according to Van Krevelen plots. Sediment-derived DOM contained more N-containing compounds. The traditional optical indices indicated the relative aromaticity covaried with polyphenolic and polycyclic aromatics, whereas those reflecting autochthonous DOM covaried with more aliphatic compounds. Multivariate analysis of FT-ICR-MS data of end-members and freshwaters revealed the predominant terrestrial input to Lake Taihu and greater contribution of algae released DOM to Dianchi. This study provides critical information about the characteristics of autochthonous DOM at a molecular level and confirmed autochthonous DOM was compositionally distinct from allochthonous DOM. Overall autochthonous DOM should be gained more attention in the eutrophic lakes.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124, USA
| | - Zhi Tang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Leizhen Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Junwen Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yahe Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18 Fuxue Road, Changping, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18 Fuxue Road, Changping, Beijing 102249, China
| | - John P Giesy
- Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan SK S7N 5B3, Canada
| | - Fengchang Wu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
72
|
Zhang H, Cui K, Guo Z, Li X, Chen J, Qi Z, Xu S. Spatiotemporal variations of spectral characteristics of dissolved organic matter in river flowing into a key drinking water source in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134360. [PMID: 31629259 DOI: 10.1016/j.scitotenv.2019.134360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 05/27/2023]
Abstract
The characteristics of dissolved organic matter (DOM) in inflowing river, flowing into drinking water, have profound influences on the quality and safety of water. Here, ultraviolet-visible (UV-vis) spectroscopy and three-dimensional fluorescence (EEM) spectroscopy were combined to investigate the spatiotemporal variations of DOM in Nanfei River flowing into Chaohu Lake in China. 24 water samples and 24 surface sediments samples (including dry-to-wet transition season and wet season in 2018) were collected from different types of outlets. Parallel factor analysis (PARAFAC) model and correlation analysis were conducted to identify the primary sources of DOM. Two humic-like components (C1 235-250 nm/385-430 nm and C3 255-270 nm/455-510 nm) and one tryptophan-like component (C2 270-290 nm/320-350 nm) were effectively identified by PARAFAC model. The results showed DOM concentration presented significant spatiotemporal variations. The concentration was much lower in water than in surface sediments in dry-to-wet transition season, but higher in the wet season. Fluorescence index (FI), biological index (BIX) and humification index (HIX) were used to judge characteristic of DOM origination. These indexes indicated that, DOM in Nanfei River had both the characteristics of humus and autogenous, but neogene autogenic feature was stronger, which was largely due to mixture of water, resuspension and desorption of DOM in sediments and photochemical degradation. In addition, the characteristic parameter of molecular mass of DOM (the values of M) had an obvious linear relationship with the fluorescence intensity ratio of fulvic acid-like to humic acid-like (C1/C3), indicating that macromolecular substances could be removed by adding or improving membrane treatment. These provided technical support for improving quality and comprehensive treatment of drinking water sources.
Collapse
Affiliation(s)
- Huan Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China; Anhui Zhonghuan Environmental Protection Technology Co., Ltd., Hefei 230051, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China.
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China.
| | - Xiaoyang Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China
| | - Juan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China
| | - Zhaoguo Qi
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China
| | - Siyuan Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230022, China
| |
Collapse
|
73
|
Xu J, Lei S, Bi S, Li Y, Lyu H, Xu J, Xu X, Mu M, Miao S, Zeng S, Zheng Z. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing. WATER RESEARCH 2020; 168:115162. [PMID: 31629230 DOI: 10.1016/j.watres.2019.115162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/17/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Estimating the proportions of particulate organic carbon (POC) endmembers is essential to fully understand the carbon cycle, the function of aquatic ecosystems, and the migration of contaminants in eutrophic lakes. There is currently no effective remote sensing optical algorithm in the literature to solve this problem. In this study, a POC-source color index (SPOC) was constructed based on the terrestrial and endogenous POC ratios calculated from field-measured stable isotope (δ13CPOC) values. The SPOC algorithm traces the sources of POC by utilizing three spectral bands centered approximately at 560 nm, 674 nm, and 709 nm, covering the intrinsic optical information of different POC sources. At the same time, the SPOC algorithm shows good applicability to Ocean and Land Color Instrument (OLCI), Medium-Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Geostationary Ocean Color Imager (GOCI) image data. The POC sources estimated using the algorithm and monthly OLCI data showed that from March 2018 to January 2019, the POC at the surface of Lake Taihu was mainly terrigenous. In addition, due to multiple factors such as algal blooms, plant physiology, river transport, regional rainfall, and carbon cycling, the distribution of POC sources exhibited strong spatial and temporal heterogeneity. Compared with other methods, it is more convenient to use remote sensing to identify the proportion of POC in different endmembers, which offers a more comprehensive understanding of the energy flows and material circulation in lakes.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shaohua Lei
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shun Bi
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yunmei Li
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing, 210023, PR China.
| | - Heng Lyu
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaboration Invocation in Geographical Information Resource Development and Application, Nanjing, 210023, PR China
| | - Jiafeng Xu
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Meng Mu
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Song Miao
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shuai Zeng
- Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhubin Zheng
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
74
|
El-Naggar A, Lee MH, Hur J, Lee YH, Igalavithana AD, Shaheen SM, Ryu C, Rinklebe J, Tsang DCW, Ok YS. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134112. [PMID: 31783442 DOI: 10.1016/j.scitotenv.2019.134112] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 05/10/2023]
Abstract
The nature of biochar-derived dissolved organic matter (DOM) has a crucial role in the interactions between biochar and metal immobilization, carbon dynamics, and microbial communities in soil. This study utilized excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) modeling to provide mechanistic evidence of biochar-induced influences on main soil biogeochemical processes. Three biochars produced from rice straw, wood, and grass residues were added to sandy and sandy loam soils and incubated for 473 d. Microbial and terrestrial humic-like fluorescent components were identified in the soils after incubation. The sandy loam soil exhibited a higher DOM with microbial sources than did the sandy soil. All biochars reduced Pb bioavailability, whereas the rice straw biochar enhanced the As bioavailability in the sandy loam soil. The biochar-derived aliphatic-DOM positively correlated with As bioavailability (r = 0.82) in the sandy loam soil and enhanced the cumulative CO2-C (r = 0.59) in the sandy soil. The promoted cumulative CO2-C in the sandy soil with all biochars correlated with the enhanced microbial communities, in particular, gram-positive (r = 0.59) and gram-negative (r = 0.59) bacteria. Our results suggest that the integration of EEM-PARAFAC with spectroscopic indices could be useful for a comprehensive interpretation of the soil quality changes in response to the application of biochar.
Collapse
Affiliation(s)
- Ali El-Naggar
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Mi-Hee Lee
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hur
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Young Han Lee
- Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52773, Republic of Korea
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Changkook Ryu
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
75
|
Spatiotemporal Variations in Seston C:N:P Stoichiometry in a Large Eutrophic Floodplain Lake (Lake Taihu): Do the Sources of Seston Explain Stoichiometric Flexibility? WATER 2019. [DOI: 10.3390/w12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although sources of seston are much more complicated in lakes compared to oceans, the influences of different sources on the spatiotemporal variations in seston stoichiometry are still underexplored, especially in large eutrophic floodplain lakes. Here, we investigated seston stoichiometric ratios across a typical large eutrophic floodplain lake (Lake Taihu, East China) over one year. In addition, we used the n-alkane proxies to examine the influence of the seston source on seston stoichiometry variation. Throughout the study, the average value of the C:N:P ratio of 143:19:1 across Lake Taihu was close to the canonical lake’s ratios (166:20:1). Similar to other eutrophic lakes, seston C:N ratios varied the least across all environments, but C:P and N:P ratios varied widely and showed a strong decreasing trend in ratios of N:P and C:P from growing season to senescence season. This seasonal change was mainly associated with the decreasing contribution from algal-derived materials in seston pools because the non-algal dominated seston exhibited significantly lower ratios than algal-dominated seston. Furthermore, the spatial heterogeneity of stoichiometric ratios was also related to the seston source. During the senescence season, the terrestrial-dominated seston from agricultural watershed exhibited the lowest ratios in estuary sites compared with other areas. Statistically, the predictive power of environmental variables on stoichiometric ratios was strongly improved by adding n-alkanes proxies. Apart from source indicators, particulate phosphorus (PP) contents also partly explained the spatiotemporal variations in stoichiometric ratios. This study, thus, highlights the utility of multiple-combined n-alkane proxies in addition to simple C:N ratios to get more robust source information, which is essential for interpreting the spatiotemporal variations in seston stoichiometric ratios among eutrophic floodplain lakes and other freshwater ecosystems.
Collapse
|
76
|
Derrien M, Shin KH, Hur J. Biodegradation-induced signatures in sediment pore water dissolved organic matter: Implications from artificial sediments composed of two contrasting sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133714. [PMID: 31398642 DOI: 10.1016/j.scitotenv.2019.133714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Biodegradation is one of the main processes causing the changes in amount, composition and properties of organic matter in sediment and water-sediment interface. The degradation processes of sediment organic matter lead to a release of dissolved organic matter (DOM) into the pore water via hydrolysis and depolymerization of particulate organic matter (POM). Whereas the pore waters represent a reactive zone in sediment closely linked to biogeochemistry of the substrate, they are still poorly characterized under diagenetic processes. In this study, we examined the DOM alterations in sediment pore water originating from the mixtures of two contrasting POM sources at known ratios through controlled incubation experiments with two different oxygen conditions (i.e., oxic versus anoxic). The changes in pore water DOM were tracked using fluorescence and absorbance spectroscopy and size exclusion chromatography. The results based on the sediments artificially mixed of two end-member sources (e.g., soil and algae) showed that the most affected parameter during the biodegradation process was the amount of the pore water DOM. It was also demonstrated that the changes in the spectroscopic and molecular properties were more dependent on the POM sources and the mixing ratios rather than on the oxygen conditions. This study provides insights into the responding features of DOM in a reactive sediment zone as pore water to the main biogeochemical process.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea
| | - Kyung-Hoon Shin
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
77
|
Lee HS, Hur J, Lee MH, Brogi SR, Kim TW, Shin HS. Photochemical release of dissolved organic matter from particulate organic matter: Spectroscopic characteristics and disinfection by-product formation potential. CHEMOSPHERE 2019; 235:586-595. [PMID: 31276871 DOI: 10.1016/j.chemosphere.2019.06.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the photochemical release of dissolved organic matter (DOM) from the particulate organic matter (POM) of soil and litter leaves (broad leaves; coniferous leaves) and compared the releasing characteristics of the DOM using UV-visible and fluorescence spectroscopy. The disinfection by-product formation potential (DBPFP) of the released DOM was also examined. Additional dissolved organic carbon (DOC) was released by UV irradiation for all POM sources (10.58 ± 2.7 mg-C L-1 g-1 for BL, 8.32 ± 2.6 mg-C L-1 g-1 for CL, and 0.20 ± 0.1 mg-C L-1 g-1 for soil). The excitation-emission matrix combined with parallel factor analysis results showed that the photo-released DOM from soil was mainly humic-like components (C1, C3) produced by photodesorption, resulting in high trihalomethane formation potential, while protein-like component (C2) was the major component of the photodissolved DOM from litter leaves, resulting in high haloaceticacid formation potential. Further, DBPFP from soil and litter leaves showed high correlation with humic-like components (C1+C3) and SUVA254, respectively. In conclusion, this study demonstrates that significant amounts of DOM could be released from POM under UV irradiation, although the characteristics and DBP formation of the photo-released DOM were highly dependent upon the POM source.
Collapse
Affiliation(s)
- Han-Saem Lee
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Mi-Hee Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | | | - Tae-Wook Kim
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea
| | - Hyun-Sang Shin
- Department of Environmental Energy Engineering, Seoul National University of Science & Technology, Seoul 01811, South Korea.
| |
Collapse
|
78
|
Derrien M, Brogi SR, Gonçalves-Araujo R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities. WATER RESEARCH 2019; 163:114908. [PMID: 31362212 DOI: 10.1016/j.watres.2019.114908] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Organic matter (OM) refers to the largest reactive reservoir of carbon-based compounds on Earth. Aside of its role as a source of carbon, OM is also actively involved in a wide range of ecological functions. It also plays an important role in the solubility, toxicity, bioavailability, mobility and distribution of pollutants. Therefore, OM is a key component in the local and global carbon cycle. About 12,000 articles containing organic matter in the title were published during the past decade, with a continuous increasing number each year (ISI Web of Science). Although this topic was widely explored and its interest has significantly increased, some limitations remain. These limitations can be technical (e.g., pre-treatment processes, low-resolution instrument, data handling) and can be related to the current approach. In this review, we first present the current strategies and tools to characterize the organic matter in the aquatic environment, then we tackle several aspects of current characterization limitations. Finally, we suggest new perspectives and priorities of research to improve the current limitations. From our point of view, simultaneous studies of particulate and dissolved OM fractions should be prioritized and multi-disciplinary approach, creation of databases, controlled experiments and collaborative works should be the next targets for future OM research priorities.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea.
| | - Simona Retelletti Brogi
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea; Biophysics Institute, Italian National Research Council, Pisa, Italy
| | | |
Collapse
|
79
|
Chiu TP, Huang WS, Chen TC, Yeh YL. Fluorescence Characteristics of Dissolved Organic Matter (DOM) in Percolation Water and Lateral Seepage Affected by Soil Solution (S-S) in a Lysimeter Test. SENSORS 2019; 19:s19184016. [PMID: 31533366 PMCID: PMC6767287 DOI: 10.3390/s19184016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 12/02/2022]
Abstract
The composition and structure of dissolved organic matter (DOM) are sensitive indicators that guide the water infiltration process in soil. The DOM chemical composition in seepage affects river water quality and changes soil organic matter (SOM). In this lysimeter test study, fluorescence spectra and optical indices were used to examine the interaction between the percolation water (P-W) and leachate water (L-W) DOMs affected by the soil solution (S-S). The L-W DOM had a higher aromaticity (SUVA254), average molecular weight (S275-295) and terrestrial source (fluorescence index (FI)), but fewer autochthonous sources (biological index (BIX)) than the P-W DOM. Organic carbon standardization (OCS) and protein- (PLF), fulvic- (FLF) and humic-like fluorescence (HLF) intensity showed that L-W DOM increased 44%, 55% and 81%, respectively, compared to the P-W DOM. The linear regression slopes between OCS FLF and PLF were 0.62, 1.74 and 1.79 for P-W, L-W and S-S, respectively. The slopes between OCS HLF and PLF were 0.15, 0.58 and 0.64 for P-W, L-W and S-S, respectively. The P-W DOM was in contact with the soil litter layer, where S-S labile lignin phenolic compounds released and dissolved into the L-W DOM. This increased its aromaticity, and extent of humification.
Collapse
Affiliation(s)
- Teng-Pao Chiu
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wei-Shiang Huang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Yi-Lung Yeh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
80
|
Hsieh SH, Chiu TP, Huang WS, Chen TC, Yeh YL. Cadmium (Cd) and Nickel (Ni) Distribution on Size-Fractioned Soil Humic Substance (SHS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183398. [PMID: 31540224 PMCID: PMC6765809 DOI: 10.3390/ijerph16183398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
Soil humic substances (SHS) are heterogeneous, complex mixtures, whose concentration, chemical composition, and structure affect the transport and distribution of heavy metals. This study investigated the distribution behavior of two heavy metals [cadmium (Cd) and nickel (Ni)] in high molecular weight SHS (HMHS, 1 kDa-0.45 μm) and low molecular weight SHS (LMHS, <1 kDa) extracted from agricultural soils. The HMHS mass fractions were 45.1 ± 19.3%, 17.1 ± 6.7%, and 57.7 ± 18.5% for dissolved organic carbon (DOC), Cd, and Ni, respectively. The metal binding affinity, unit organic carbon binding with heavy metal ratios ([Me]/[DOC]), were between 0.41 ± 0.09 μmol/g-C and 7.29 ± 2.27 μmol/g-C. Cd preferred binding with LMHS (p < 0.001), while Ni preferred binding with HMHS (p < 0.001). The optical indicators SUVA254, SR, and FI were 3.16 ± 1.62 L/mg-C/m, 0.54 ± 0.18 and 1.57 ± 0.15, respectively for HMHS and 2.65 ± 1.25 L/mg-C/m, 0.40 ± 0.17, and 1.68 ± 0.12, respectively for LMHS. The HMHS contained more aromatic and lower FI values than LMHS. Multilinear regression showed a significant positive correlation between the measured predicted [Me]/[DOC] ratios (r = 0.52-0.72, p < 0.001). The results show that the optical indices can distinguish the chemical composition and structure of different size SHS and predict the binding ability of Me-SHS.
Collapse
Affiliation(s)
- Sheng-Hsien Hsieh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Teng-Pao Chiu
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Wei-Shiang Huang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yi-Lung Yeh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
81
|
Dashtbozorg M, Riyahi Bakhtiari A, Shushizadeh MR, Taghavi L. Quantitative evaluation of n-alkanes, PAHs, and petroleum biomarker accumulation in beach-stranded tar balls and coastal surface sediments in the Bushehr Province, Persian Gulf (Iran). MARINE POLLUTION BULLETIN 2019; 146:801-815. [PMID: 31426222 DOI: 10.1016/j.marpolbul.2019.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/29/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Coastal areas within the Bushehr Province (BP), Persian Gulf, Iran, face great challenges due to the heavy organic contamination caused by rapid industrialization, and the presence of numerous oil fields. In addition, in 2014, a significant number of tar balls are found along the coasts of BP. A total of 96 samples (48 coastal sediments and 48 tar balls) were taken from eight sampling points at the BP coast during the summer of 2014. These samples were analyzed to identify the sources and characteristics of their organic matter using diagnostic ratios and fingerprint analysis based on the distribution of the source-specific biomarkers of n-alkanes, PAHs,1 hopanes and steranes. Mean concentration of n-alkanes (μg g-1 dw) and PAHs (ng g-1 dw) varied respectively from 405 to 220,626, and 267 to 23,568 in coastal sediments, while ranged respectively from 664 to 145,285 and 390 to 46,426 in tar balls. In addition, mean concentration of hopanes and steranes (ng g-1 dw) were between 18.17 and 3349 and 184.66 to 1578 in coastal sediments, whereas in tar balls were 235-1899 and 520-1504, respectively. Pri/Phy2 ratio was 0.25 to 1.51 (0.65) and 0.36 to 1 (0.63) in coastal sediment and tar ball samples, respectively, and the occurrence of UCM3 in both matrices, reflecting the petrogenic OM4 inputs and chronic oil contamination, respectively. The C30 and C29 homologues followed Gammacerane were detected in both matrices, in particular those collected from intensive industrial activities, suggesting petrogenic sources of OM. The coastal sediment PAHs profiles were significantly dominated by HMW5-PAHs in the Bahregan Beach (BAB) (78% of total PAHs), Bandare-Genaveh (GP) (66%), and Bandare-Bushehr (BUB) (61%) stations, while the Bashi Beach (BSB) (40%), Bandare-Kangan (KP) (57%), and Bandare-Asaluyeh (AP) (51%) stations exhibited higher proportion of LMW6-PAHs. PCA7 indicated that the tar ball and coastal sediment samples deposited along the Southwest of the BP beaches are most likely originated from the Abuzar oil. Based on the intensity of the anthropogenic activities, NPMDS8 analysis revealed that the GP, BAB, NNP, AP, and KP sampling sites had a high concentration of detected organic pollutants. To the best of our knowledge, this is the first study that investigates oil pollution in costal sediments and tar balls in the BP, providing insights in to the fate of oil in the coastal areas of the Persian Gulf, Iran.
Collapse
Affiliation(s)
- Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mohammad Reza Shushizadeh
- Marine Pharmaceutical Science Research Center and Department of Medicinal Chemistry, Ahvaz Jundishahpour University of Medical Science, Ahvaz, Iran
| | - Lobat Taghavi
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
82
|
Begum MS, Jang I, Lee JM, Oh HB, Jin H, Park JH. Synergistic effects of urban tributary mixing on dissolved organic matter biodegradation in an impounded river system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:105-119. [PMID: 31029895 DOI: 10.1016/j.scitotenv.2019.04.123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Dams and wastewater may greatly perturb riverine fluxes of dissolved organic matter (DOM) and CO2, yet little is known about the relationships between altered DOM quality and CO2 emission in eutrophic impounded river systems. A basin-wide field survey of surface water CO2 and dissolved organic carbon (DOC) was combined with laboratory incubations to examine how dams and urban tributaries delivering treated wastewater influence longitudinal patterns in DOM properties and CO2 along the impounded Han River traversing Seoul metropolitan area. Fluorescent DOM indices including parallel factor analysis (PARAFAC) components were used to characterize DOM in relation to biodegradable DOC (BDOC). Compared with distinct downstream increases in DOC and CO2, BDOC concentration and its proportion in DOC (%BDOC) were highly variable along the mainstem and peaked at urban tributaries. Longitudinal increases in fluorescence index (FI), biological index (BIX), and two PARAFAC components (C2 and C3) contrasted with general decreases in humification index (HIX) and C1, reflecting increasing downstream inputs of anthropogenic DOM. During a 5-day incubation employing continuous CO2 measurements, the cumulative production of CO2 in the mainstem water mixed with urban tributary water was significantly higher than the level expected for conservative mixing of the two samples, indicating a synergistic enhancement of DOM biodegradation. Molecular formulas identified by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) revealed more consumed molecules in the mainstem water and more newly produced molecules in the tributary water over the 5-day incubation, implying abundant labile components in the mainstem water discharged from the upstream dam and highly processed tributary DOM limited in immediately biodegradable organic materials. Downstream increases in CO2 and DOC along the Han River, combined with the synergistic effect observed in the mixed water, suggest that mixing wastewater-derived DOM with labile autochthonous DOM can enhance CO2 production in the river system perturbed by impoundment and wastewater.
Collapse
Affiliation(s)
- Most Shirina Begum
- Department of Environmental Science & Engineering, Ewha Womans University, Republic of Korea
| | - Inae Jang
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jung-Min Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
| | - Hyojin Jin
- Department of Environmental Science & Engineering, Ewha Womans University, Republic of Korea
| | - Ji-Hyung Park
- Department of Environmental Science & Engineering, Ewha Womans University, Republic of Korea.
| |
Collapse
|
83
|
Zhang Y, Su Y, Yu J, Liu Z, Du Y, Jin M. Anthropogenically driven differences in n-alkane distributions of surface sediments from 19 lakes along the middle Yangtze River, Eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22472-22484. [PMID: 31161541 DOI: 10.1007/s11356-019-05536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
During the past few decades, the Yangtze River basin has undergone massive anthropogenic change. In order to evaluate the impacts of human interventions on sediment n-alkanes of lakes across this region, the aliphatic hydrocarbon fractions of 19 surface sediment samples collected from lakes along the middle reaches of the Yangtze River (MYR) were analyzed using gas chromatography-mass spectrometry. The n-alkanes extracted from the sediments contained a homologous series from C15 to C34, with a notable predominance of odd carbon compounds except for sediments from the more intensively industrialized Lake Daye, in which > C21 n-alkanes showed no odd/even predominance, and carbon preference index (CPI) approached unity. Abundance values of middle-chain (C21, C23, and C25) and long-chain (C27, C29, C31, and C33) n-alkanes in Lake Daye were approximately 4 to 3 times greater than the average for other lakes, reaching 272.4 and 486.3 μg/g TOC, respectively, in the study. Short-chain n-alkanes (C15, C17, and C19) in the sediments varied in abundance from 10.0 to 76.2 μg/g TOC across the study and showed a moderate correlation with total phosphorus (TP) concentrations in the overlying water. The results indicated anthropogenic eutrophication enhanced the accumulation of short-chain n-alkanes in sediments because the primary producers in which they are synthesized are highly susceptible to nutrient forcing. Middle-chain n-alkane abundances were less affected by eutrophication and generally enriched in macrophyte lakes, while long-chain n-alkanes tend to be low in sediments from more eutrophic water. In the case of Lake Daye, direct discharges of petroleum products from heavy industry have introduced quantities of petroleum n-alkanes (> C21), far exceeding the amounts of biogenic input, and the sediment > C21 n-alkanes detected in this study showed typical characteristics of petroleum source. In other lakes, inputs of petroleum products from surface runoff of vehicle/traffic emissions associated with urbanization and economic growth contributed comparatively few n-alkanes to sediments, resulting in declines in CPI for > C21 n-alkanes, most obviously in Lakes Huanggai, Donghu, and Futou. Calculated CPI values suggest that a major proportion of the n-alkanes present in these lakes are derived from biogenic input. The results of this study provided evidences that n-alkane profiles of lake sediments respond sensitively to human-induced eutrophication and different sources of petroleum pollution.
Collapse
Affiliation(s)
- Yongdong Zhang
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| | - Yaling Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Department of Ecology and Hydrobiology, Jinan University, Guangzhou, 510632, China.
- Sino-Danish Center, University of the Chinese Academy of Sciences, Beijing, China.
| | - Yingxun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
84
|
Fujibayashi M, Sakamaki T, Nishimura O. Effect of sedimentary organic matter on species richness of deposit feeders in enclosed bay ecosystems: Insight from fatty acid nutritional indicators. MARINE ENVIRONMENTAL RESEARCH 2019; 149:1-6. [PMID: 31132526 DOI: 10.1016/j.marenvres.2019.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
How nutritional quality of dietary resources affects species richness of consumer communities is poorly understood. We used fatty acids as indicators of nutritional quality of sedimentary organic matter to evaluate the effects of highly unsaturated fatty acid (HUFA) content in sediments and fatty acid diversity in sedimentary organic matter on species richness of deposit feeders. We sampled benthic animals and sedimentary organic matter, a potential dietary source for deposit feeders, at 54 locations in two bay ecosystems. The species richness of deposit feeders ranged between 1 and 29 and had a parabolic relationship with the organic carbon content of sediments. At intermediate range of sedimentary organic carbon content, the species richness of deposit feeders was positively related to HUFA content and fatty acid diversity. These findings indicate that nutritional quality is one of the important factors determining species richness. In particular, HUFA content and fatty acid diversity are useful indicators of the nutritional quality of potential diets and good predictors of the occurrences of benthic invertebrates in marine habitats.
Collapse
Affiliation(s)
- Megumu Fujibayashi
- School of Engineering, Tohoku University, Aramaki-Aoba 6-6-06, Aoba, Sendai, Miyagi, 980-8759, Japan; Faculty of Bioresource Sciences, Akita Prefectural University, Kaidobata-Nishi 241-438, Simoshinjo Nakano, Akita City, Akita Prefecture, 010-0195, Japan.
| | - Takashi Sakamaki
- School of Engineering, Tohoku University, Aramaki-Aoba 6-6-06, Aoba, Sendai, Miyagi, 980-8759, Japan
| | - Osamu Nishimura
- School of Engineering, Tohoku University, Aramaki-Aoba 6-6-06, Aoba, Sendai, Miyagi, 980-8759, Japan
| |
Collapse
|
85
|
Wu M, Liu W, Liang Y. Probing size characteristics of disinfection by-products precursors during the bioavailability study of soluble microbial products using ultrafiltration fractionation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:1-7. [PMID: 30878659 DOI: 10.1016/j.ecoenv.2019.02.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Soluble microbial products (SMPs) discharged into surface water may increase the formation of disinfection by-products (DBPs) in downstream drinking water treatment plants. In this study, ultrafiltration (UF) fractionation was used to separate SMPs into homogenous components. An aerobic microbial experiment was conducted to evaluate the bioavailability of individual molecular weight (MW) fractions of SMPs in surface water and the impact on their DBP formation, facilitating the interpretation of SMPs characterization and DBPs reactivity. For SMPs, organics with MW < 1 kDa were the primary fraction, containing the most abundant humic substances. The 30 kDa < MW < 100 kDa fraction was the lowest in SMPs but had the highest SUVA values. After biodegradation, the bioavailability of physical fractions increased with the increasing MW size. However, the SUVA value, except for MW < 1 kDa, increased in individual fraction after biodegradation. Low molecular weight SMPs fractions (MW<10 kDa) were major precursors for DBP in which trichloromethane (TCM) was the most abundant. The 10 kDa <MW < 100 kDa fractions were found to be more active in formation of chloral hydrate (CH), and MW> 100KDa had relative abundant dichloroacetonitrile (DCAN) formation. After biodegradation, TCM precursors with MW < 1 kDa were removed by approximately 20%, whereas the increase of TCM formation was observed in 1 kDa < MW < 100 kDa fraction. CH formation from 1 kDa < MW < 10 kDa increased considerably, but those from 10 kDa < MW < 30 kDa decreased after biodegradation, as a result of the biotransformation of large organic acids to small organic acids. In terms of DBP reactivity, the TCM yield for the MW < 1 kDa fraction had no significant change while the 30 kDa < MW < 100 kDa fraction exhibited the greatest increase (approximately 8 times) in TCM yield.
Collapse
Affiliation(s)
- Meirou Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China
| | - Yongmei Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, PR China.
| |
Collapse
|
86
|
In-Depth Assessment of the Effect of Sodium Azide on the Optical Properties of Dissolved Organic Matter. J Fluoresc 2019; 29:877-885. [DOI: 10.1007/s10895-019-02398-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
|
87
|
Derrien M, Shin KH, Hur J. Assessment on applicability of common source tracking tools for particulate organic matter in controlled end member mixing experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:187-196. [PMID: 30798229 DOI: 10.1016/j.scitotenv.2019.02.258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, ideal mixing behaviors of the three commonly-used source tracking tools, which include fluorescence spectroscopy, stable isotope ratios, and lipid biomarkers, were evaluated in controlled particular organic matter (POM) mixtures of two contrasting end members e.g., soil and algae. In parallel, three different extraction methods based on water (WEOM) and two alkaline solutions were compared to identify the preferential pre-treatment option that leads to a good performance of the spectroscopic source tracking indices on the dissolved organic matter (DOM) extracted from the POM. Based on three evaluation criteria concerning the linearity of the relationships, the discrimination sensitivity, and the conservative mixing behavior of fourteen tested indices, the fluorescence proxies such as the relative distribution of the fluorescence components and the modified fluorescence index YFI of the WEOM were found to be reliable and robust indices for POM source tracking. The carbon stable isotope ratios of the POM samples exhibited an ideal mixing behavior even after the DOM extraction, while the biomarkers of sterols/stanols did not present a good linear and conservative behavior at similar conditions. In addition, the WEOM was identified as the preferred extraction method for the application of spectroscopic indices for POM source discrimination. This study provides a guideline to select the optimum indices for the POM source discrimination via the end member mixing analysis.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea
| | - Kyung-Hoon Shin
- Department of Environmental Marine Sciences, Hanyang University, Ansan, Gyeonggi do 15588, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
88
|
Ho HJ, Cao JW, Kao CM, Lai WL. Characterization of released metabolic organics during AOC analyses by P17 and NOX strains using 3-D fluorescent signals. CHEMOSPHERE 2019; 222:205-213. [PMID: 30708154 DOI: 10.1016/j.chemosphere.2019.01.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Assimilable organic carbon (AOC) serves as an indicator of the biostability of drinking water distribution systems; however, the properties of the released organic metabolites by Pseudomonas fluorescens (P17) and Spirillum (NOX) used in AOC bioassays are seldom discussed. In this study, fluorescence excitation emission matrix (FEEM) was selected to characterize organic metabolites after substrate biotransformation and their divergences at different growth stages of both strains in AOC bioassay. Excellent correlation between ATP and colony-forming units (CFUs) was observed for both strains. The concentration of ATP per colony was six times higher in the P17 strain than in the NOX strain. A retarding phenomenon was observed for the NOX strain in the presence of high acetate-C content (100-150 μg acetate-C/L). The fluorescence wavelength peaks were wider for the protein-like substance released by the P17 strain than for those released by the NOX strain. However, fluorescent fulvic-like substances only existed in the NOX strain. Relative humus accumulation (RHA), the ratio of protein-like fluorescence intensity to humus-like fluorescence intensity, decreased in the P17 strain but substantially increased in the NOX strain in the logarithmic growth phase. RHA showed a descending trend for the P17 strain as compared to that of the NOX strain during the progress from logarithmic to stationary growth phase at three different acetate-C concentrations; however, the opposite was observed at 100 μg acetate-C/L, indicating that high acetate-C content may affect the properties of released organic matter from both strains.
Collapse
Affiliation(s)
- Hsiao-Jung Ho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Wen Cao
- Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wen-Liang Lai
- Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan.
| |
Collapse
|
89
|
Liu H, Fu C, Ding G, Fang Y, Yun Y, Norra S. Effects of hairy crab breeding on drinking water quality in a shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:48-56. [PMID: 30690378 DOI: 10.1016/j.scitotenv.2018.12.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The Yangcheng Lake, connected to Taihu, is partly served as drinking water source for Suzhou, China; the temporal and spatial changes of water quality parameters of it are investigated in this study. The Yangcheng Middle Lake with aquaculture area and the Yangcheng East Lake with important water intake are chosen to make a comparative investigation of the relationship between crab breeding and water quality. Phytoplankton community and the composition of dissolved organic matters (DOM) at different areas of the Yangcheng Lake are characterized with spectral fluorescence signatures. Results reveal that biopolymers and humic substances (HS) are the two major DOM compositions in the Yangcheng Lake. In the Yangcheng Middle Lake, the CODMn concentration at the large breeding area was lower than that in most other areas; while the concentration of algae and HS fluorescence intensity are positively correlated with each other in the Yangcheng Middle Lake. Crab breeding could accelerate nitrogen transformation and utilization. In summer and winter, the cumulative risk of building up potential harmful by-products such as DPBs caused by the biopolymers and HS is greater; the breeding of hairy crabs could reduce biopolymers and improve drinking water safety.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Cegan Fu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Genbao Ding
- Qingyuan-Hong Kong & China Water Co. Ltd., 215000 Suzhou, China
| | - Yueying Fang
- Qingyuan-Hong Kong & China Water Co. Ltd., 215000 Suzhou, China
| | - Yunbo Yun
- Research Institute for Water and Waste Management at RWTH Aachen University, 52056 Aachen, Germany
| | - Stefan Norra
- Institute for Mineralogy and Geochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| |
Collapse
|
90
|
Marques JA, Costa PG, Marangoni LFB, Pereira CM, Abrantes DP, Calderon EN, Castro CB, Bianchini A. Environmental health in southwestern Atlantic coral reefs: Geochemical, water quality and ecological indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:261-270. [PMID: 30236843 DOI: 10.1016/j.scitotenv.2018.09.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/19/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Climate change, pollution and increased runoff are some of the main drivers of coral reefs degradation worldwide. However, the occurrence of runoff and marine pollution, as well as its ecological effects in South Atlantic coral reefs are still poorly understood. The aim of the present work is to characterize the terrigenous influence and contamination impact on the environmental health of five reefs located along a gradient of distance from a river source, using geochemical, water quality, and ecological indicators. Stable isotopes and sterols were used as geochemical indicators of sewage and terrigenous organic matter. Dissolved metal concentrations (Cu, Zn, Cd, and Pb) were used as indicators of water quality. Population density, bleaching and chlorophyll α content of the symbiont-bearing foraminifer Amphistegina gibbosa, were used as indicators of ecological effects. Sampling was performed four times during the year to assess temporal variability. Sediment and water quality indicators showed that reefs close to the river discharge experience nutrient enrichment and sewage contamination, and metals concentrations above international environmental quality guidelines. Higher levels of contamination were strongly related to the higher frequency of bleaching and lower density in A. gibbosa populations. The integrated evaluation of stable isotopes, sterols and metals provided a consistent diagnostic about sewage influence on the studied reefs. Additionally, the observed bioindicator responses evidenced relevant ecological effects. The water quality, geochemical and ecological indicators employed in the present study were effective as biomonitoring tools to be applied in reefs worldwide.
Collapse
Affiliation(s)
- Joseane A Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande (IO/FURG), Av. Itália, km 8, Rio Grande, RS 96203900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabralia, BA 45807000, Brazil.
| | - Patricia G Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av Itália, km 8, Rio Grande, RS 96203900, Brazil
| | - Laura F B Marangoni
- Programa de Pós-Graduação em Oceanografia Biológica, Universidade Federal do Rio Grande (IO/FURG), Av. Itália, km 8, Rio Grande, RS 96203900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabralia, BA 45807000, Brazil
| | - Cristiano M Pereira
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabralia, BA 45807000, Brazil; Programa de Pós-Graduação em Zoologia, Universidade Federal do Rio de Janeiro (MNRJ/UFRJ), Quinta da Boa Vista, Rio de Janeiro, RJ 20940040, Brazil
| | - Douglas P Abrantes
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Rio de Janeiro (MNRJ/UFRJ), Quinta da Boa Vista, Rio de Janeiro, RJ 20940040, Brazil
| | - Emiliano N Calderon
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabralia, BA 45807000, Brazil; Programa de Pós-Graduação em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro (NUPEM/UFRJ), Av São José do Barreto, s/n, Macaé, RJ 27971550, Brazil
| | - Clovis B Castro
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabralia, BA 45807000, Brazil; Museu Nacional, Universidade Federal do Rio de Janeiro (MNRJ/UFRJ), Quinta da Boa Vista, Rio de Janeiro, RJ 20940-040, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Rua dos Coqueiros, 87, Santa Cruz Cabralia, BA 45807000, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av Itália, km 8, Rio Grande, RS 96203900, Brazil
| |
Collapse
|
91
|
Harrault L, Milek K, Jardé E, Jeanneau L, Derrien M, Anderson DG. Faecal biomarkers can distinguish specific mammalian species in modern and past environments. PLoS One 2019; 14:e0211119. [PMID: 30730906 PMCID: PMC6366745 DOI: 10.1371/journal.pone.0211119] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
Identifying the presence of animals based on faecal deposits in modern and ancient environments is of primary importance to archaeologists, ecologists, forensic scientists, and watershed managers, but it has proven difficult to distinguish faecal material to the species level. Until now, four 5β-stanols have been deployed as faecal biomarkers to distinguish between omnivores and herbivores, but they cannot distinguish between species. Here we present a database of faecal signatures from ten omnivore and herbivore species based on eleven 5β-stanol compounds, which enables us to distinguish for the first time the faecal signatures of a wide range of animals. We validated this fingerprinting method by testing it on modern and ancient soil samples containing known faecal inputs and successfully distinguished the signatures of different omnivores and herbivores.
Collapse
Affiliation(s)
- Loïc Harrault
- Department of Archaeology, Durham University, Durham, United Kingdom
- Department of Archaeology, University of Aberdeen, Aberdeen, United Kingdom
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
- * E-mail:
| | - Karen Milek
- Department of Archaeology, Durham University, Durham, United Kingdom
- Department of Archaeology, University of Aberdeen, Aberdeen, United Kingdom
| | - Emilie Jardé
- Université Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Laurent Jeanneau
- Université Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, South Korea
| | - David G. Anderson
- Department of Anthropology, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
92
|
Artifon V, Zanardi-Lamardo E, Fillmann G. Aquatic organic matter: Classification and interaction with organic microcontaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1620-1635. [PMID: 30308930 DOI: 10.1016/j.scitotenv.2018.08.385] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Organic matter (OM) in aquatic system is originated from autochthonous and allochthonous natural sources as well as anthropogenic inputs, and can be found in dissolved, particulate or colloidal form. According to the type/composition, OM can be divided in non-humic substances (NHS) or humic substances (HS). The present review focuses on the main groups that constitute the NHS (carbohydrates, proteins, lipids, and lignin) and their role as chemical biomarkers, as well as the main characteristics of HS are presented. HS functions, properties and mechanisms are discussed, in addition to their association to the fate, bioavailability, and toxicity of organic microcontaminants in the aquatic systems. Despite the growing diversity and potential impacts of organic microcontaminants to the aquatic environment, limited information is available about their association with OM. A protective effect is, however, normally seen since the presence of OM (HS mainly) may reduce bioavailability and, consequently, the concentration of organic microcontaminants within the organism. It may also affect the toxicity by either absorbing ultraviolet radiation incidence and, then, reducing the formation of phototoxic compounds, or by increasing the oxygen reactive species and, thus, affecting the decomposition of natural and anthropogenic organic compounds. In addition, the outcome data is hard to compare since each study follows unique experimental protocols. The often use of commercial humic acid (Aldrich) as a generic source of OM in studies can also hinder comparisons since differences in composition makes this type of OM not representative of any aquatic environment. Thus, the current challenge is find out how this clear fragmentation can be overcome.
Collapse
Affiliation(s)
- Vanda Artifon
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos, Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife 50740-550, PE, Brazil
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande 96203-900, RS, Brazil.
| |
Collapse
|
93
|
Kuznetsova OV, Sevastyanov VS, Timerbaev AR. What are the current analytical approaches for sediment analysis related to the study of diagenesis? Highlights from 2010 to 2018. Talanta 2019; 191:435-442. [PMID: 30262081 DOI: 10.1016/j.talanta.2018.08.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/15/2022]
Abstract
This review is aimed at critical analysis of current and emerging capabilities of analytical methods as employed for sediment analysis. An emphasis is given to the most reliable experimental strategies used to acquiring analytical information that is relevant to study the diagenetic processes affecting the composition of sediments. Advanced analytical methodology in use basically rely on the application of mass spectrometry (or a few alternative techniques) to determine various inorganic elements, to measure their isotopic composition, to characterize organic matter, or to identify and quantify its principle components (biomarkers). Also brought into focus are sample preparation techniques which - given the complexity of sediment matrices and the diverse and multiple nature of analytes under scrutiny - are often a key for successful analysis.
Collapse
Affiliation(s)
- O V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991 Moscow, Russian Federation.
| | - V S Sevastyanov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991 Moscow, Russian Federation
| | - A R Timerbaev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991 Moscow, Russian Federation
| |
Collapse
|
94
|
de Melo MG, da Silva BA, Costa GDS, da Silva Neto JCA, Soares PK, Val AL, Chaar JDS, Koolen HHF, Bataglion GA. Sewage contamination of Amazon streams crossing Manaus (Brazil) by sterol biomarkers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:818-826. [PMID: 30390455 DOI: 10.1016/j.envpol.2018.10.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Sewage pollution is a principal factor of decreasing water quality, although it has not been considered a real impact in Amazonia that is still considered a pristine environment around the world. Thus, this study aimed to assess the levels of sewage contamination in sediments from three streams crossing Manaus - a Brazilian city of 2,403,796 inhabitants in the heart of the Amazon rain forest. Cholesterol, cholestanol, brassicasterol, ergosterol, stigmasterol, β-sitosterol, campesterol, stigmastanol, coprostanol, and epicoprostanol levels were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS). The fecal indicator, coprostanol, was found in high concentrations (509-12 830 ng g-1) and high relative proportions (21-54%) in all samples collected in the Mindu stream that crosses many heavily populated districts of the city, and in the Quarenta stream that crosses the Industrial District of Manaus. The sediments of the Tarumã-Açu stream also presented coprostanol; however, concentrations (<LOQ-142 ng g-1) and relative proportions (0-7%) were much lower in this stream. Sterol ratios indicate a severe contamination of the urban streams (Mindu and Quarenta) and a low to moderate contamination of the partially urban stream (Tarumã-Açu). This is the first study evaluating the levels of sewage contamination of Amazon streams using sterol biomarkers and the results obtained herein indicate the need of an immediate implementation of effective sewage treatment strategies. Additionally, these findings may be considered as baseline concentrations for future monitoring programs of that globally important environment.
Collapse
Affiliation(s)
- Moacir Guimarães de Melo
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Brina Aguiar da Silva
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Gilcllys de Souza Costa
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - João Cândido André da Silva Neto
- Department of Geography, Institute of Philosophy, Human and Social Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Patrícia Kaori Soares
- Science and Technology School, Federal University of Rio Grande do Norte (UFRN), Passeio dos Girassóis Avenue, Natal, RN, Brazil
| | - Adalberto Luis Val
- Brazilian National Institute for Research of the Amazon (INPA), Laboratory of Ecophysiology and Molecular Evolution, André Araújo Avenue, 2936 Aleixo, Manaus, AM, Brazil
| | - Jamal da Silva Chaar
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil
| | - Hector Henrique Ferreira Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Carvalho Leal Avenue, 1777 Cachoeirinha, Manaus, AM, Brazil
| | - Giovana Anceski Bataglion
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200 Coroado, Manaus, AM, Brazil.
| |
Collapse
|
95
|
Lee MH, Osburn CL, Shin KH, Hur J. New insight into the applicability of spectroscopic indices for dissolved organic matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes. WATER RESEARCH 2018; 147:164-176. [PMID: 30308375 DOI: 10.1016/j.watres.2018.09.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Despite numerous studies on changes to optical proxies of dissolved organic matter (DOM) by biogeochemical processing, the applicability of commonly-used spectroscopic indices has not been explored as DOM source tracking tools under conditions where biogeochemical processes may alter them. For this study, two contrasting DOM end members, Suwannee River fulvic acid (SRFA) and algogenic DOM (ADOM), and their mixtures, were used to examine the potential changes in the conservative mixing behaviors of several well-known optical indices via end member mixing analysis under the influence of biodegradation, UV irradiation, and clay mineral (kaolin) adsorption. Most of the source tracking indices exhibited large deviations from conservative mixing behavior between the two end-members. Biodegradation tended to lower the portions of labile and ADOM in the mixtures, while the allochthonous end member (SRFA) was reduced by a greater extent after the process of UV irradiation or adsorption. The extent of the variations in biological index (BIX) and fluorescence index (FI) was smaller for more allochthonous DOM mixtures under the processes of biodegradation and UV irradiation. Overall, the process-driven variations in ratios of humic-like: protein-like fluorescence (as modeled by parallel factor analysis, PARAFAC) were greater for the SRFA versus ADOM. Evaluation criteria used in this study suggested that BIX, specific UV absorbance (SUVA), and FI each could be the reliable discrimination parameter least affected by biodegradation, UV irradiation, and adsorption, respectively. This study provided criterion information for the choice and the interpretation of the optical indices for DOM source discrimination in aquatic environments after substantial biogeochemical processing.
Collapse
Affiliation(s)
- Mi-Hee Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| | - Christopher L Osburn
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
96
|
Li Z, Xu X, Ji M, Wang G, Han R, Ma J, Yan X, Liu J. Estimating sedimentary organic matter sources by multi-combined proxies for spatial heterogeneity in a large and shallow eutrophic lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 224:147-155. [PMID: 30036809 DOI: 10.1016/j.jenvman.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/15/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
The multiple proxies involving elemental and stable isotope ratios (C/N, δ15N and δ13C) and biomarkers are powerful tools for estimating sedimentary organic matter (SOM) sources. However, the systematic and reasonable evaluation of organic matter sources existing with serious spatial heterogeneity in large, shallow and eutrophic lakes is still far from clear. Samples of sediments, aquatic plants and particulate organic matter (POM) collected from different ecotype regions of Taihu Lake, China, including algae-type lakeshore, grass-type lakeshore, algae-grass-type lakeshore, inflow rivers and estuary, groove reed zone, offshore and central regions, were analyzed for their SOM sources via elemental and stable isotope ratios (C/N, δ15N and δ13C), n-alkanes and fatty acids (FA). More depleted δ13CTOC values (-26.3‰ to -25.4‰) and higher relative percentages of odd n-alkanes (C26 to C35) and long-chain FA (C24:0 to C32:0) clarified the influence of inflow rivers carrying terrestrial inputs on SOM. The higher relative percentages of n-alkanes from C14 to C20, FA (C16:0), and polyunsaturated FA (C18:2 and C18:3) in the reed belt of the groove demonstrated that some special terrain was important for the accumulation of algae-derived OM in sediments. Short-chain and middle-chain biomarker compounds revealed a large contribution from macrophytes in the grass-type region and an obvious algae-derived organic matter accumulation in the algae-type region, respectively. However, some overlapping ranges of C/N, δ15N and δ13C among aquatic plants, the ubiquity of lipid biomarkers compounds, anthropogenic influences, meteorological factors and lake topography caused some biased identification results for partial samples using different indicators. These biased identifications were mainly embodied in the source category and contribution difference based on principal component analysis and an end-member mixing model. Therefore, the estimation of SOM sources by multiple proxies cannot be uniformly applied in large freshwater lakes. The systematic investigation and comprehensive understanding of the different ecotypes and their surrounding environments are the important links in the identification of SOM sources via multiple indicators.
Collapse
Affiliation(s)
- Zhichun Li
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China; School of Environment and Surveying Engineering, Suzhou University, Anhui, 234000, China; National Engineering Research Center of Coal Mine Water Hazard Controlling, Anhui, 234000, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Ming Ji
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Ruiming Han
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ma
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Xingcheng Yan
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jine Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
97
|
Mao R, Guo H, Xiu W, Yang Y, Huang X, Zhou Y, Li X, Jin J. Characteristics and compound-specific carbon isotope compositions of sedimentary lipids in high arsenic aquifers in the Hetao basin, Inner Mongolia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:85-95. [PMID: 29803028 DOI: 10.1016/j.envpol.2018.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Organic matter, as an electron donor, plays a vital role in As mobilization mediated by microorganisms during reductive dissolution of Fe/Mn oxides in shallow aquifers. However, the specific types and sources of organic matter involved in biogeochemical processes accelerating As mobilization are still controversial. Both sediment and groundwater samples were collected at different depths from aquifers of the Hetao Basin, a typical inland basin hosting high As groundwater. Sedimentary lipids and their compound-specific carbon isotope ratios were analyzed to evaluate characteristics and sources of organic matter. Results show that sedimentary As were well correlated with Fe and Mn oxides, suggesting that As exist as Fe/Mn oxide bound forms. Groundwater As far exceeded the drinking water guide value of 10 μg/L. Moreover, As concentrations in shallow groundwater were relatively higher. Lipids in clay were mainly originated from terrestrial higher plants, while that in fine sand samples were derived from terrestrial higher plants, microorganism and petroleum. Shallow fine sand samples were also characterized by evident in-situ biodegradation. Compound-specific carbon isotope compositions of sedimentary lipids showed that short-chain n-alkanes and n-alkanoic acids had more positive δ13C values compared to long-chain compounds, especially in shallow fine sand samples. δ13CTOC were also low in shallow fine sand samples. These results jointly indicate that these lipids in shallow fine sand samples acted as carbon source for indigenous microorganism and the short-chain components were particularly more vulnerable to biodegradation, which may contribute to high As concentrations in shallow groundwater. The new findings provide the first evidence that short chain length n-alkyl compounds afforded a source of potential electron donors for microbially mediated As mobilization process in the shallow aquifers.
Collapse
Affiliation(s)
- Ruoyu Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuance Yang
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xianyu Huang
- Laboratory of Critical Zone Evolution, School of Earth Science, China University of Geosciences (Wuhan), Wuhan 430074, PR China
| | - Yinzhu Zhou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xiaomeng Li
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jianyi Jin
- MOE Key Laboratory of Groundwater Circulation & Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
98
|
Cabral AC, Martins CC. Insights about sources, distribution, and degradation of sewage and biogenic molecular markers in surficial sediments and suspended particulate matter from a human-impacted subtropical estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1071-1081. [PMID: 30029315 DOI: 10.1016/j.envpol.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/21/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
The molecular markers sterols and linear alkylbenzenes (LABs) were analyzed in the surficial sediments and suspended particulate matter (SPM) of a subtropical estuary in South Atlantic (Paranaguá Estuarine System). The purpose of this study was identify the spatial distribution of sewage and the input of biogenic organic matter (OM) and to provide comparative insights about their behavior, compositions, and sources. The concentration of coprostanol ranged from < DL (detection limit) to 2.67 μg g-1 in SPM and from < DL to 0.94 μg g-1 in sediments. Total LABs ranged from 43.8 to 480.0 ng g-1 in SPM and from < DL to 21.0 ng g-1 in sediments. LABs homologs composition varied between the two matrices. The local hydrodynamic pattern may promote water column homogenization, dispersion, and dilution of sewage particles, and preferential sedimentation in fluvial and mixture zones. Results suggest that SPM is a good matrix for larger spatial and short time scale evaluation while sediments may help to define hot spot areas of input and final deposition of sewage particles. Marine sterols predominated in SPM while no dominance patterns of marine/terrestrial sterols occurred in surficial sediments. The higher degradation rates of sterols and LABs in the water column must be the main factor for the sharp drop in concentration towards the sediment and the variation of the preferential composition of these markers between compartments.
Collapse
Affiliation(s)
- Ana Caroline Cabral
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO) da Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil; Centro de Estudos do Mar da Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - César C Martins
- Centro de Estudos do Mar da Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil.
| |
Collapse
|
99
|
He D, Zhang K, Tang J, Cui X, Sun Y. Using fecal sterols to assess dynamics of sewage input in sediments along a human-impacted river-estuary system in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:787-797. [PMID: 29727845 DOI: 10.1016/j.scitotenv.2018.04.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Sedimentary fecal sterols and other sterol biomarkers, combined with bulk total organic carbon (TOC) and its stable carbon isotope were applied to characterize the sewage contamination across a ca. 280 km transect from the Xiaoqing River to the Laizhou Bay, a typical river-estuary system subjected to extensive anthropogenic stress due to rapid regional urbanization and industrialization in eastern China. Two sampling events were performed in both spring and summer seasons in the Laizhou Bay adjacent to the Xiaoqing River in order to assess the potential seasonal variation. Fecal sterols such as coprostanol and epicoprostanol, which are typical indicators of anthropogenic sewage input, displayed high concentrations of up to 63.2 μg g-1 dry weight (dw) and 13.1 μg g-1 dw, respectively. Results suggested that most of the stations along the Xiaoqing River were severely contaminated by fecal inputs with a decreasing trend from the river to the estuary that was mainly explained by the increasing distance from the diffuse sewage sources and the gradual dilution by sea water. Although there was no significant difference in fecal sterol concentrations between spring and summer in the Laizhou Bay, suggestive of no significant difference in sewage abundance, significantly higher average epicoprostanol/coprostanol and lower coprostanol/epicoprostanol ratios were observed in spring than summer, indicative of different sewage sources (e.g., human vs. non-human). Seasonal discharge and land-runoff, air temperature related to microbial activity differences and different extend of animal manure irrigation during agricultural planting could be additional reasons and need further investigation. Nevertheless, fecal sterol concentrations, distributions and diagnostic ratios should all be taken into consideration to better understand sewage inputs and source dynamics in river-estuary ecosystems.
Collapse
Affiliation(s)
- Ding He
- Institute of Environment & Biogeochemistry (eBig), School of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
| | - Kai Zhang
- Institute of Environment & Biogeochemistry (eBig), School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jianhui Tang
- Yantai Institute of Coastal Zone Research, CAS, Yantai, Shandong 264003, China
| | - Xingqian Cui
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongge Sun
- Institute of Environment & Biogeochemistry (eBig), School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
100
|
Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Sci Rep 2018; 8:12113. [PMID: 30108240 PMCID: PMC6092367 DOI: 10.1038/s41598-018-30606-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022] Open
Abstract
Deforestation associated with the initial settlement of New Zealand is a dramatic example of how humans can alter landscapes through fire. However, evidence linking early human presence and land-cover change is inferential in most continental sites. We employed a multi-proxy approach to reconstruct anthropogenic land use in New Zealand’s South Island over the last millennium using fecal and plant sterols as indicators of human activity and monosaccharide anhydrides, polycyclic aromatic hydrocarbons, charcoal and pollen as tracers of fire and vegetation change in lake-sediment cores. Our data provide a direct record of local human presence in Lake Kirkpatrick and Lake Diamond watersheds at the time of deforestation and a new and stronger case of human agency linked with forest clearance. The first detection of human presence matches charcoal and biomarker evidence for initial burning at c. AD 1350. Sterols decreased shortly after to values suggesting the sporadic presence of people and then rose to unprecedented levels after the European settlement. Our results confirm that initial human arrival in New Zealand was associated with brief and intense burning activities. Testing our approach in a context of well-established fire history provides a new tool for understanding cause-effect relationships in more complex continental reconstructions.
Collapse
|