51
|
Boucher-Carrier O, Brisson J, Abas K, Duy SV, Sauvé S, Kõiv-Vainik M. Effects of macrophyte species and biochar on the performance of treatment wetlands for the removal of glyphosate from agricultural runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156061. [PMID: 35598666 DOI: 10.1016/j.scitotenv.2022.156061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is the most widely used herbicide in the world, and consequently has polluted numerous water bodies through agricultural runoff. Treatment wetlands (TWs) have shown great promise for mitigating such pesticide contamination. The objectives of our study were to determine the effects of adding biochar to subsurface flow TW substrate, and to evaluate the performance of three North American macrophyte species (Phragmites australis subsp. americanus, Scirpus cyperinus and Sporobolus michauxianus) for removal of glyphosate. A synthetic agricultural runoff comprising 50 μg/L of glyphosate was applied to water-saturated TW mesocosms with mature vegetation during a 5.5-week period. Average removal efficiency, calculated on a mass balance basis, reached 78 and 82% for mesocosms with biochar (without and with plants, respectively), and 54 to 76% for those with macrophytes. Sporobolus michauxianus showed a lower evapotranspiration rate and less anoxic conditions in the lower part of the substrate, which resulted in lower overall removal performance. Aminomethylphosphonic acid (AMPA), the main toxic metabolite of glyphosate, was detected in all mesocosms, but at higher levels in planted ones. Results show that both the sorption capacity of biochar and the biodegradation processes associated with macrophytes contribute to glyphosate removal in TWs. Additionally, our results suggest that species selection is important to enhance favorable conditions and maximize removal of targeted pollutants.
Collapse
Affiliation(s)
- Olivier Boucher-Carrier
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, QC, H1X 2B2 Montréal, Québec, Canada
| | - Jacques Brisson
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, QC, H1X 2B2 Montréal, Québec, Canada
| | - Khalil Abas
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, QC, H1X 2B2 Montréal, Québec, Canada
| | - Sung Vo Duy
- Département de Chimie, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, H2V 0B3 Montréal, Québec, Canada
| | - Sébastien Sauvé
- Département de Chimie, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, H2V 0B3 Montréal, Québec, Canada
| | - Margit Kõiv-Vainik
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Sherbrooke East, QC, H1X 2B2 Montréal, Québec, Canada; Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise St., 51003 Tartu, Estonia.
| |
Collapse
|
52
|
Makris KC, Efthymiou N, Konstantinou C, Anastasi E, Schoeters G, Kolossa-Gehring M, Katsonouri A. Oxidative stress of glyphosate, AMPA and metabolites of pyrethroids and chlorpyrifos pesticides among primary school children in Cyprus. ENVIRONMENTAL RESEARCH 2022; 212:113316. [PMID: 35439459 DOI: 10.1016/j.envres.2022.113316] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to various pesticides, such as pyrethroids and chlorpyrifos, has been previously associated with adverse effects on children's health. Scientific evidence on the human toxicity of glyphosate (GLY) and its primary metabolite, aminomethylphosphonic acid (AMPA) is limited, particularly for children. This study aimed to i) assess the exposure determinants of the studied pesticides measured in children in Cyprus, and ii) determine the association between the urinary pesticides and the biomarkers of DNA and lipid oxidative damage. METHODS A children's health study was set up in Cyprus (ORGANIKO study) by aligning it with the methodology and tools used in the European Human Biomonitoring Initiative (HBM4EU). Urinary GLY and AMPA, pyrethroid metabolites and the chlorpyrifos metabolite TCPy were measured in 177 children aged 10-11 years old, using mass spectrometry. Oxidative stress was assessed with 8-iso-prostaglandin F2a (8-iso-PGF2α) as a marker of lipid damage and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a DNA oxidative damage marker, both measured with immunoassays. Questionnaires about demographic characteristics, pesticide usage, and dietary habits were filled out by the parents. Μultivariable regression models examined associations between pesticides and biomarkers of effect using two creatinine adjustments (cr1: adding it as covariate and cr2: biomarkers of exposure and effect were creatinine-adjusted). RESULTS Parental educational level was a significant predictor of urinary pyrethroids but not for GLY/AMPA. Median [interquartile range, IQR] values for GLY and AMPA were 0.05). Similar significant associations with 8-OHdG were shown for a pyrethroid metabolite (3-PBA) and the chlorpyrifos metabolite (TCPy). No associations were observed between the aforementioned pesticides and 8-iso-PGF2α (p > 0.05). CONCLUSIONS This is the first children's health dataset demonstrating the association between AMPA and DNA oxidative damage, globally. More data is needed to replicate the observed trends in other children's populations around the globe.
Collapse
Affiliation(s)
- Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | - Nikolaos Efthymiou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Elena Anastasi
- Cyprus State General Laboratory, Ministry of Health, Nicosia, Cyprus
| | - Greet Schoeters
- The Flemish Institute for Technological Research (VITO) and the University of Antwerp, Belgium
| | | | | |
Collapse
|
53
|
Buekers J, Remy S, Bessems J, Govarts E, Rambaud L, Riou M, Tratnik JS, Stajnko A, Katsonouri A, Makris KC, De Decker A, Morrens B, Vogel N, Kolossa-Gehring M, Esteban-López M, Castaño A, Andersen HR, Schoeters G. Glyphosate and AMPA in Human Urine of HBM4EU Aligned Studies: Part A Children. TOXICS 2022; 10:470. [PMID: 36006149 PMCID: PMC9415901 DOI: 10.3390/toxics10080470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Few data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 µg/L). The 95th percentiles ranged between 0.18 and 1.03 µg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed.
Collapse
Affiliation(s)
- Jurgen Buekers
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sylvie Remy
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Jos Bessems
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Eva Govarts
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Bert Morrens
- Department of Social Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Nina Vogel
- German Environment Agency (UBA), Berlin, 06844 Dessau-Roßlau, Germany
| | | | - Marta Esteban-López
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Helle Raun Andersen
- Department of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Greet Schoeters
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
54
|
Shu H, Wang S, Liu B, Ma J. Effects of salt matrices on the determination of glyphosate, glufosinate, aminomethylphosphonic acid and 2-aminoethylphosphonic acid using reversed-phase liquid chromatography after fluorescence derivatization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Garau A, Picci G, Bencini A, Caltagirone C, Conti L, Lippolis V, Paoli P, Romano GM, Rossi P, Scorciapino MA. Glyphosate sensing in aqueous solutions by fluorescent zinc(II) complexes of [9]aneN 3-based receptors. Dalton Trans 2022; 51:8733-8742. [PMID: 35612268 DOI: 10.1039/d2dt00738j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the binding abilities of Zn(II) complexes of [12]aneN4- (L1) and [9]aneN3-based receptors (L2, L3) towards the herbicides N-(phosphonomethyl)glycine (glyphosate, H3PMG) and 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (glufosinate, H2GLU), and also aminomethylphosphonic acid (H2AMPA), the main metabolite of H3PMG, and phosphate. All ligands form stable Zn(II) complexes, whose coordination geometries allow a possible interaction of the metal center with exogenous anionic substrates. Potentiometric studies evidenced the marked coordination ability of the L2/Zn(II) system for the analytes considered, with a preferential binding affinity for H3PMG over the other substrates, in a wide range of pH values. 1H and 31P NMR experiments supported the effective coordination of such substrates by the Zn(II) complex of L2, while fluorescence titrations and a test strip experiment were performed to evaluate whether the H3PMG recognition processes could be detected by fluorescence signaling.
Collapse
Affiliation(s)
- Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Luca Conti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Paola Paoli
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Giammarco Maria Romano
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Patrizia Rossi
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Mariano Andrea Scorciapino
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
56
|
Overview of Environmental and Health Effects Related to Glyphosate Usage. SUSTAINABILITY 2022. [DOI: 10.3390/su14116868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the introduction of glyphosate (N-(phosphomethyl) glycine) in 1974, it has been the most used nonselective and broad-spectrum herbicide around the world. The widespread use of glyphosate and glyphosate-based herbicides is due to their low-cost efficiency in killing weeds, their rapid absorption by plants, and the general mistaken perception of their low toxicity to the environment and living organisms. As a consequence of the intensive use and accumulation of glyphosate and its derivatives on environmental sources, major concerns about the harmful side effects of glyphosate and its metabolites on human, plant, and animal health, and for water and soil quality, are emerging. Glyphosate can reach water bodies by soil leaching, runoff, and sometimes by the direct application of some approved formulations. Moreover, glyphosate can reach nontarget plants by different mechanisms, such as spray application, release through the tissue of treated plants, and dead tissue from weeds. As a consequence of this nontarget exposure, glyphosate residues are being detected in the food chains of diverse products, such as bread, cereal products, wheat, vegetable oil, fruit juice, beer, wine, honey, eggs, and others. The World Health Organization reclassified glyphosate as probably carcinogenic to humans in 2015 by the IARC. Thus, many review articles concerning different glyphosate-related aspects have been published recently. The risks, disagreements, and concerns regarding glyphosate usage have led to a general controversy about whether glyphosate should be banned, restricted, or promoted. Thus, this review article makes an overview of the basis for scientists, regulatory agencies, and the public in general, with consideration to the facts on and recommendations for the future of glyphosate usage.
Collapse
|
57
|
Wimmer B, Neidhardt H, Schwientek M, Haderlein SB, Huhn C. Phosphate addition enhances alkaline extraction of glyphosate from highly sorptive soils and aquatic sediments. PEST MANAGEMENT SCIENCE 2022; 78:2550-2559. [PMID: 35322519 DOI: 10.1002/ps.6883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Analytical constraints complicate environmental monitoring campaigns of the herbicide glyphosate and its major degradation product aminomethylphosphonic acid (AMPA): their strong sorption to soil minerals requires harsh extraction conditions. Coextracted matrix compounds impair downstream analysis and must be removed before analysis. RESULTS A new extraction method combined with subsequent capillary electrophoresis-mass spectrometry for derivatization-free analysis of glyphosate and AMPA in soil and sediment was developed and applied to a suite of environmental samples. It was compared to three extraction methods from literature. We show that no extraction medium reaches 100% recovery. The new phosphate-supported alkaline extraction method revealed (1) high recoveries of 70-90% for soils and aquatic sediments, (2) limits of detections below 20 μg kg-1 , and (3) a high robustness, because impairing matrix components (trivalent cations and humic acids) were precipitated prior to the analysis. Soil and sediment samples collected around Tübingen, Germany, revealed maximum glyphosate and AMPA residues of 80 and 2100 μg kg-1 , respectively, with residues observed along a core of lake sediments. Glyphosate and/or AMPA were found in 40% of arable soils and 57% of aquatic sediment samples. CONCLUSION In this work, we discuss soil parameters that influence (de)sorption and thus extraction. From our results we conclude that residues of glyphosate in environmental samples are easily underestimated. With its possible high throughput, the method presented here can resolve current limitations in monitoring campaigns of glyphosate by addressing soil and aquatic sediment samples with critical sorption characteristics.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Harald Neidhardt
- Geoscience, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marc Schwientek
- Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan B Haderlein
- Center for Applied Geosciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
58
|
Zhang Y, Pham TM, Kayrouz C, Ju KS. Biosynthesis of Argolaphos Illuminates the Unusual Biochemical Origins of Aminomethylphosphonate and N ε-Hydroxyarginine Containing Natural Products. J Am Chem Soc 2022; 144:9634-9644. [PMID: 35616638 DOI: 10.1021/jacs.2c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphonate natural products have a history of successful application in medicine and biotechnology due to their ability to inhibit essential cellular pathways. This has inspired efforts to discover phosphonate natural products by prioritizing microbial strains whose genomes encode uncharacterized biosynthetic gene clusters (BGCs). Thus, success in genome mining is dependent on establishing the fundamental principles underlying the biosynthesis of inhibitory chemical moieties to facilitate accurate prediction of BGCs and the bioactivities of their products. Here, we report the complete biosynthetic pathway for the argolaphos phosphonopeptides. We uncovered the biochemical origins of aminomethylphosphonate (AMPn) and Nε-hydroxyarginine, two noncanonical amino acids integral to the antimicrobial function of argolaphos. Critical to this pathway were dehydrogenase and transaminase enzymes dedicated to the conversion of hydroxymethylphosphonate to AMPn. The interconnected activities of both enzymes provided a solution to overcome unfavorable energetics, empower cofactor regeneration, and mediate intermediate toxicity during these transformations. Sequential ligation of l-arginine and l-valine was afforded by two GCN5-related N-acetyltransferases in a tRNA-dependent manner. AglA was revealed to be an unusual heme-dependent monooxygenase that hydroxylated the Nε position of AMPn-Arg. As the first biochemically characterized member of the YqcI/YcgG protein family, AglA enlightens the potential functions of this elusive group, which remains biochemically distinct from the well-established P450 monooxygenases. The widespread distribution of AMPn and YqcI/YcgG genes among actinobacterial genomes suggests their involvement in diverse metabolic pathways and cellular functions. Our findings illuminate new paradigms in natural product biosynthesis and realize a significant trove of AmPn and Nε-hydroxyarginine natural products that await discovery.
Collapse
Affiliation(s)
- Yeying Zhang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tiffany M Pham
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chase Kayrouz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kou-San Ju
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States.,Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States.,Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
59
|
Potential Risks of Microplastic Fomites to Aquatic Organisms with Special Emphasis on Polyethylene-Microplastic-Glyphosate Exposure Case in Aquacultured Shrimp. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plastic litter is increasingly becoming pervasive in aquatic environments, characterized by circulatory patterns between different compartments and continual loading with new debris. Microplastic pollution can cause a variety of effects on aquatic organisms. This review presents the current knowledge of microplastics distribution and sorption capacity, reflecting on possible bioaccumulation and health effects in aquatic organisms. A model case study reveals the fate and toxic effects of glyphosate, focusing on the simultaneous exposure of aquacultured shrimp to polyethylene and glyphosate and their contact route and on the potential effects on their health and the risk for transmission of the contaminants. The toxicity and bioaccumulation of glyphosate-sorbed polyethylene microplastics in shrimp are not well understood, although individual effects have been studied extensively in various organisms. We aim to delineate this knowledge gap by compiling current information regarding the co-exposure to polyethylene microplastic adsorbed with glyphosate to assist in the assessment of the possible health risks to aquacultured shrimp and their consumers.
Collapse
|
60
|
KARTLAŞMIŞ K, DİKMEN N. Evaluation of the effect of glyphosate on glucose-6-phosphate dehydrogenase enzyme activity in vitro conditions. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.996838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
61
|
Eaton JL, Cathey AL, Fernandez JA, Watkins DJ, Silver MK, Milne GL, Velez-Vega C, Rosario Z, Cordero J, Alshawabkeh A, Meeker JD. The association between urinary glyphosate and aminomethyl phosphonic acid with biomarkers of oxidative stress among pregnant women in the PROTECT birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113300. [PMID: 35158254 PMCID: PMC8920761 DOI: 10.1016/j.ecoenv.2022.113300] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Glyphosate is a widely used herbicide in global agriculture. Glyphosate and its primary environmental degradate, aminomethyl phosphonic acid (AMPA), have been shown to disrupt endocrine function and induce oxidative stress in in vitro and animal studies. To our knowledge, these relationships have not been previously characterized in epidemiological settings. Elevated urinary levels of glyphosate and AMPA may be indicative of health effects caused by previous exposure via multiple mechanisms including oxidative stress. METHODS Glyphosate and AMPA were measured in 347 urine samples collected between 16 and 20 weeks gestation and 24-28 weeks gestation from pregnant women in the PROTECT birth cohort. Urinary biomarkers of oxidative stress, comprising 8-isoprostane-prostaglandin-F2α (8-iso-PGF2α), its metabolite 2,3-dinor-5,6-dihydro-15-F2 t-isoprostane (8-isoprostane metabolite) and prostaglandin-F2α (PGF2α), were also measured. Linear mixed effect models assessed the association between exposures and oxidative stress adjusting for maternal age, smoking status, alcohol consumption, household income and specific gravity. Potential nonlinear trends were also assessed using tertiles of glyphosate and AMPA exposure levels. RESULTS No significant differences in exposure or oxidative stress biomarker concentrations were observed between study visits. An interquartile range (IQR) increase in AMPA was associated with 9.5% (95% CI: 0.5-19.3%) higher 8-iso-PGF2α metabolite concentrations. Significant linear trends were also identified when examining tertiles of exposure variables. Compared to the lowest exposure group, the second and third tertiles of AMPA were significantly associated with 12.8% (0.6-26.5%) and 15.2% (1.8-30.3%) higher 8-isoprostane metabolite, respectively. An IQR increase in glyphosate was suggestively associated with 4.7% (-0.9 to 10.7%) higher 8-iso-PGF2α. CONCLUSIONS Urinary concentrations of the main environmental degradate of glyphosate, AMPA, were associated with higher levels of certain oxidative stress biomarkers. Associations with glyphosate reflected similar trends, although findings were not as strong. Additional research is required to better characterize the association between glyphosate exposure and biomarkers of oxidative stress, as well as potential downstream health consequences.
Collapse
Affiliation(s)
- Jarrod L Eaton
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Jennifer A Fernandez
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Monica K Silver
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Ginger L Milne
- Department of Medicine - Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Carmen Velez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - Jose Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, MA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
62
|
Yan B, Lei L, Chen X, Men J, Sun Y, Guo Y, Yang L, Wang Q, Han J, Zhou B. Glyphosate and glufosinate-ammonium in aquaculture ponds and aquatic products: Occurrence and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118742. [PMID: 34953954 DOI: 10.1016/j.envpol.2021.118742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
As the two most commonly used organophosphorus herbicides, glyphosate (Gly) and glufosinate-ammonium (Glu) have unique properties for weed control and algae removal in aquaculture. However, the occurrences and health risks of Gly and Glu in aquaculture ponds are rare known. This study aimed to investigate the occurrences of Gly, AMPA (primary metabolity of Gly) and Glu in surface water, sediment and aquatic products from the grass carp (ctenopharyngodon idella), crayfish (procambarus clarkii) and crab (eriocheir sinensis) ponds around Lake Honghu, the largest freshwater lake in Hubei province, China where aquaculture has become the local pillar industry. Three age groups (children, young adults, middle-aged and elderly) exposure to these compounds through edible aquatic products (muscle) consumption were also assessed by target hazard quotient (THQ) method. The results indicated that Gly, AMPA and Glu were widely occurred in surface water, sediment and organisms in the fish, crayfish and crab ponds. AMPA was more likely to accumulate in the intestine of aquatic products than Gly and Glu. According to the total THQ value (1.04>1), muscle consumption of grass carp may pose potential risk to children.
Collapse
Affiliation(s)
- Biao Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Research Center of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China
| | - Jun Men
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China; The Analysis and Testing Center of Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China
| | - Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan, 430072, PR China
| |
Collapse
|
63
|
Feltracco M, Barbaro E, Morabito E, Zangrando R, Piazza R, Barbante C, Gambaro A. Assessing glyphosate in water, marine particulate matter, and sediments in the Lagoon of Venice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16383-16391. [PMID: 34651274 PMCID: PMC8827352 DOI: 10.1007/s11356-021-16957-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 05/11/2023]
Abstract
Lagoon water, suspended particulate matter, and sediment samples from seven sites at Lagoon of Venice were collected from 2019 to 2021 in order to study the presence of the herbicide glyphosate (N-(phosphonomethyl)glycine), among the most widely used agricultural chemicals worldwide, but its occurrence in lagoon water environment has not been deeply investigated. The sites were selected considering a supposed diversity of inputs and of pollution levels. An analytical method based on ion chromatography coupled with tandem mass spectrometry was optimized and validated for lagoon water, marine particulate matter, and sediment samples. Maximum concentrations of glyphosate were 260 and 7 ng L-1 for lagoon water and suspended particulate matter, respectively, and 15 ng g-1 for sediment, with some spatial and temporal fluctuations. Our results demonstrate that glyphosate content in the Venice Lagoon mainly depends on external forcing from river inlets and agricultural lagoon activities.
Collapse
Affiliation(s)
- Matteo Feltracco
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy.
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Elisa Morabito
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Carlo Barbante
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Andrea Gambaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| |
Collapse
|
64
|
Effect of Processing on the Nutritional Quality of Ilex paraguariensis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ilex paraguariensisA.St.-Hil. (IP) is a South American plant. IP-dried leaves have been consumed in the form of infusion by indigenous peoples since pre-Hispanic times. In recent years, IP has gained many beverage markets and new ways of consumption, reaching the category of a global consumer product. A side consequence is the increase in IP crops for the specification of human consumption. This situation is the driving force for the investigation of new uses of IP, including feed supplements for livestock and functional food for human consumption. A deep understanding of the influence of processing on the nutritional value of IP is crucial for the development of these alternative products. It is known that the quality and quantity of nutritional compounds occurring in IP depend on the origin, plant condition, and harvest time. However, the effects of the drying method of the leaves and the ageing time of dried leaves on the final IP products deserve further investigation. The present work presents the variation of the nutritional, digestibility, energy, and mineral assets of IP submitted to three different processes: open-air dried and crushed; dried under direct fire and grounded; and dried under direct fire, grounded, and aged for 6 months under controlled conditions. The presence of agrochemical residues and antinutritional factors were also studied. Processing widely influenced the nutritional and digestibility assets of IP leaves. The inorganic content (K, Mg, Ca, P, Zn, B and Fe) significantly varied among leaves treated using different processes. IP samples dried in open air resulted in the highest % of crude protein, Mg, K, S, and Mn. IP samples dried under direct fire resulted in the highest % of carbohydrates and Fe. IP samples dried under direct fire and aged for 6 months resulted in the highest % of digestible matter, Ca, P, Zn, and B. The results also showed quality protein levels between 10.03 and 19.06% of dry matter. The digestibility values showed that IP leaves are suitable for human functional foods and for enriched supplements for livestock feeds. No traces of agrochemicals or antinutritional factors were found.
Collapse
|
65
|
Dereumeaux C, Mercier F, Soulard P, Hulin M, Oleko A, Pecheux M, Fillol C, Denys S, Quenel P. Identification of pesticides exposure biomarkers for residents living close to vineyards in France. ENVIRONMENT INTERNATIONAL 2022; 159:107013. [PMID: 34890902 DOI: 10.1016/j.envint.2021.107013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 05/12/2023]
Abstract
Biomonitoring can be relevant for assessing pesticides exposure of residents living close to vineyards (LCTV). However, because xenobiotics are generally present at low levels in human biological matrices and the sources of pesticide exposure are multiple, several challenges need to be overcome to reliably assess exposure in residents LCTV. This includes particularly identifying the most appropriate exposure biomarkers, the biological matrices in which they should be measured, and analytical methods that are sufficiently sensitive and specific to quantify them. The aim of the present study was to develop a tiered approach to identify relevant biomarkers and matrices for assessing pesticide exposure in residents LCTV. We used samples from a biobank for 121 adults and children included in a national prevalence study conducted between 2014 and 2016 who lived near or far from vineyards. We analyzed five priority pesticides (folpet, mancozeb, tebuconazole, glyphosate, and copper) and their metabolites in urine and hair samples. We identified relevant biomarkers according to three criteria related to: i) the detection frequency of those pesticides and metabolites in urine and hair, ii) the difference in concentrations depending on residence proximity to vineyards and, iii) the influence of other environmental and occupational exposure sources on pesticide levels. This tiered approach helped us to identify three relevant metabolites (two metabolites of folpet and one of tebuconazole) that were quantified in urine, tended to be higher in residents LCTV than in controls, and were not significantly influenced by occupational, dietary, or household sources of pesticide exposure. Our approach also helped us to identify the most appropriate measurement strategies (biological matrices, analytical methods) to assess pesticide exposure in residents LCTV. The approach developed here was a prerequisite step for guiding a large-scale epidemiological study aimed at comprehensively measuring pesticides exposures in French residents LCTV with a view to developing appropriate prevention strategies.
Collapse
Affiliation(s)
- Clémentine Dereumeaux
- Direction of Environmental and Occupational Health, Santé Publique France, Saint Maurice Cedex, France.
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Pauline Soulard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Marion Hulin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Amivi Oleko
- Direction of Environmental and Occupational Health, Santé Publique France, Saint Maurice Cedex, France
| | - Marie Pecheux
- Direction of Environmental and Occupational Health, Santé Publique France, Saint Maurice Cedex, France
| | - Clémence Fillol
- Direction of Environmental and Occupational Health, Santé Publique France, Saint Maurice Cedex, France
| | - Sébastien Denys
- Direction of Environmental and Occupational Health, Santé Publique France, Saint Maurice Cedex, France
| | - Philippe Quenel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, F-35000 Rennes, France
| |
Collapse
|
66
|
Sun S, Shan C, Yang Z, Wang S, Pan B. Self-Enhanced Selective Oxidation of Phosphonate into Phosphate by Cu(II)/H 2O 2: Performance, Mechanism, and Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:634-641. [PMID: 34902966 DOI: 10.1021/acs.est.1c06471] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphonate is an important category of highly soluble organophosphorus in contaminated waters, and its oxidative transformation into phosphate is usually a prerequisite step to achieve the in-depth removal of the total phosphorus. Currently, selective oxidation of phosphonate into phosphate is urgently desired as conventional advanced oxidation processes suffer from severe matrix interferences. Herein, we employed 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) as a model phosphonate and demonstrated its efficient and selective oxidation by the Cu(II)/H2O2 process at alkaline pH. In the presence of trace Cu(II) (0.020 mM), 90.8% of HEDP (0.10 mM) was converted to phosphate by H2O2 in 30 min at pH 9.5, whereas negligible conversion was observed by UV/H2O2 or a Fenton reaction (pH = 3.0). The oxidation of HEDP by Cu(II)/H2O2 was insignificantly affected by natural organic matters (10.0 mg TOC/L) and various anions including chloride, sulfate, and nitrate (10.0 mM). The complexation of Cu(II) with HEDP coupling Cu(III) produced in situ enabled an intramolecular electron transfer process, which features high selective oxidation. Selective degradation of HEDP was further validated by adding stoichiometric H2O2 into an industrial effluent, where the existing Cu(II) could serve as the catalyst. This study also provides a successful case to trigger selective oxidation of trace pollutants of concern upon synergizing with the nature of the contaminated water.
Collapse
Affiliation(s)
- Shuhui Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
67
|
Lesseur C, Pathak KV, Pirrotte P, Martinez MN, Ferguson KK, Barrett ES, Nguyen RHN, Sathyanarayana S, Mandrioli D, Swan SH, Chen J. Urinary glyphosate concentration in pregnant women in relation to length of gestation. ENVIRONMENTAL RESEARCH 2022; 203:111811. [PMID: 34339697 PMCID: PMC8616796 DOI: 10.1016/j.envres.2021.111811] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 05/11/2023]
Abstract
Human exposure to glyphosate-based herbicides (GBH) is increasing rapidly worldwide. Most existing studies on health effects of glyphosate have focused on occupational settings and cancer outcomes and few have examined this common exposure in relation to the health of pregnant women and newborns in the general population. We investigated associations between prenatal glyphosate exposure and length of gestation in The Infant Development and the Environment Study (TIDES), a multi-center US pregnancy cohort. Glyphosate and its primary degradation product [aminomethylphosphonic acid (AMPA)] were measured in urine samples collected during the second trimester from 163 pregnant women: 69 preterm births (<37 weeks) and 94 term births, the latter randomly selected as a subset of TIDES term births. We examined the relationship between exposure and length of gestation using multivariable logistic regression models (dichotomous outcome; term versus preterm) and with weighted time-to-event Cox proportional hazards models (gestational age in days). We conducted these analyses in the overall sample and secondarily, restricted to women with spontaneous deliveries (n = 90). Glyphosate and AMPA were detected in most urine samples (>94 %). A shortened gestational length was associated with maternal glyphosate (hazard ratio (HR): 1.31, 95 % confidence interval (CI) 1.00-1.71) and AMPA (HR: 1.32, 95%CI: 1.00-1.73) only among spontaneous deliveries using adjusted Cox proportional hazards models. In binary analysis, glyphosate and AMPA were not associated with preterm birth risk (<37 weeks). Our results indicate widespread exposure to glyphosate in the general population which may impact reproductive health by shortening length of gestation. Given the increasing exposure to GBHs and the public health burden of preterm delivery, larger confirmatory studies are needed, especially in vulnerable populations such as pregnant women and newborns.
Collapse
Affiliation(s)
- Corina Lesseur
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Melissa N Martinez
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Emily S Barrett
- Department of Biostatistics & Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Ruby H N Nguyen
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010, Bentivoglio, Bologna, Italy
| | - Shanna H Swan
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Heath, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
68
|
Cheron M, Costantini D, Angelier F, Ribout C, Brischoux F. Aminomethylphosphonic acid (AMPA) alters oxidative status during embryonic development in an amphibian species. CHEMOSPHERE 2022; 287:131882. [PMID: 34509012 DOI: 10.1016/j.chemosphere.2021.131882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 05/09/2023]
Abstract
Glyphosate's primary metabolite (aminomethylphosphonic acid, AMPA) is known to alter embryonic development at environmentally relevant concentrations in amphibians. However, we have limited understanding of the physiological mechanisms through which AMPA affects organisms. In this study, we tested whether alteration of the oxidative status is one mechanism through which AMPA affects organism performance. To this end, we analysed several oxidative status markers in hatchling tadpoles that were exposed to sublethal concentrations of AMPA during embryonic development (~16 days). We compared the influence of environmentally relevant concentrations of AMPA (from 0.07 to 3.57 μg l-1) on the relation between developmental traits (i.e, embryonic development duration, embryonic mortality and hatchling size) and oxidative status markers known to alter homeostasis when unbalanced (superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), thiols and ratios thereof). We included measures of telomere length as an indicator of physiological state. We found that AMPA concentrations induce non-monotonic effects on some oxidative status markers with hatchlings displaying elevated antioxidant responses (elevated thiols and unbalanced SOD/(GPx + CAT) ratio). The lack of effect of AMPA on the relation between developmental traits, oxidative status and telomere length suggests that selective mortality of embryos susceptible to oxidative stress may have occurred prior to hatching in individuals less resistant to AMPA which display lower hatching success. Future studies are required to disentangle whether oxidative unbalance is a cause or a consequence of AMPA exposition. This study highlights the need to investigate effects of the metabolites of contaminants at environmental concentrations to comprehensively assess impacts of anthropogenic contamination on wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), UMR 7221 Muséum National d'Histoire Naturelle, CNRS, CP32, 7 Rue Cuvier, Paris, France
| | - Frédéric Angelier
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
69
|
Determination of Glyphosate and AMPA in Food Samples Using Membrane Extraction Technique for Analytes Preconcentration. MEMBRANES 2021; 12:membranes12010020. [PMID: 35054546 PMCID: PMC8781213 DOI: 10.3390/membranes12010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022]
Abstract
The method for determining glyphosate (NPG) and its metabolite AMPA (aminomethyl phosphonic acid) in solid food samples using UAE-SLM-HPLC–PDA technique was developed. Firstly, ultrasonic-assisted solvent extraction (UAE) and protein precipitation step were used for the analyte isolation. Then, the supernatant was evaporated to dryness and redissolved in distilled water (100 mL). The obtained solution was alkalized to pH 11 (with 1 M NaOH) and used directly as donor phase in SLM (supported liquid membrane) extraction. The SLM extraction was performed using 2 M NaCl (5 mL) as an acceptor phase. The flow rate of both phases (donor and acceptor) was set at 0.2 mL/min. The membrane extraction took 24 h but did not require any additional workload. Finally, the SLM extracts were analyzed using the HPLC technique with photo-diode array detector (PDA) and an application of pre-column derivatization with p-toluenesulfonyl chloride. Glyphosate residues were determined in food samples of walnuts, soybeans, barley and lentil samples. The LOD values obtained for the studied food were 0.002 μg g−1 and 0.021 μg g−1 for NPG and AMPA, respectively. Recoveries values ranged from 32% to 69% for NPG, 29% to 56% for AMPA and depended on the type of sample matrix. In the case of buckwheat and rice flour samples, the content of NPG and AMPA was below the detection level of a used analytical method.
Collapse
|
70
|
Lemke N, Murawski A, Schmied-Tobies MIH, Rucic E, Hoppe HW, Conrad A, Kolossa-Gehring M. Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V). ENVIRONMENT INTERNATIONAL 2021; 156:106769. [PMID: 34274860 DOI: 10.1016/j.envint.2021.106769] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 05/21/2023]
Abstract
Since the 1970s, glyphosate has become the most used herbicide of the world. The general population is ubiquitously exposed to glyphosate. Its long-term toxicity, carcinogenic potential and other health effects are controversially discussed. Even though the possible health impacts of glyphosate are of global concern, no population-wide monitoring of glyphosate was done yet. This study presents the worldwide first population-representative data on glyphosate and its metabolite aminomethylphosphonic acid (AMPA) for children and adolescents. 2144 first-morning void urine samples of 3-17-year-old children and adolescents living in Germany were analysed for concentrations of glyphosate and AMPA in the German Environmental Survey for Children and Adolescents 2014-2017 (GerESV). In 52 % of the samples (46 % for AMPA) the urinary glyphosate concentrations were above the limit of quantification of 0.1 µg/L. The geometric mean concentrations were 0.107 µg/L (0.090 µg/gcreatinine) for glyphosate and 0.100 µg/L (0.085 µg/gcreatinine) for AMPA. No clear association between exposure to glyphosate or AMPA and vegetarian diet or consumption of cereals, pulses, or vegetables could be identified. The low quantification rate and the 95th percentiles for glyphosate and AMPA of around 0.5 µg/L demonstrate an overall low exposure of the young population in Germany.
Collapse
Affiliation(s)
- Nora Lemke
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany.
| | - Aline Murawski
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany
| | | | - Enrico Rucic
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany
| | | | - André Conrad
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany
| | | |
Collapse
|
71
|
Rossi F, Carles L, Donnadieu F, Batisson I, Artigas J. Glyphosate-degrading behavior of five bacterial strains isolated from stream biofilms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126651. [PMID: 34329075 DOI: 10.1016/j.jhazmat.2021.126651] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The present study investigates the individual degrading behavior of bacterial strains isolated from glyphosate-degrading stream biofilms. In this aim, biofilms were subjected to enrichment experiments using glyphosate or its metabolite AMPA (aminomethyl phosphonic acid) as the sole phosphorus source. Five bacterial strains were isolated and taxonomically affiliated to Ensifer sp. CNII15, Acidovorax sp. CNI26, Agrobacterium tumefaciens CNI28, Novosphingobium sp. CNI35 and Ochrobactrum pituitosum CNI52. All strains were capable of completely dissipating glyphosate after 125-400 h and AMPA after 30-120 h, except for Ensifer sp. CNII15 that was not able to dissipate glyphosate but entirely dissipated AMPA after 200 h. AMPA dissipation was overall faster than glyphosate dissipation. The five strains degraded AMPA completely since formaldehyde and/or glycine accumulation was observed. During glyphosate degradation, the strain CNI26 used the C-P lyase degradation pathway since sarcosine was quantitatively produced, and C-P lyase gene expression was enhanced 30× compared to the control treatment. However, strains CNI28, CNI35 and CNI52 accumulated both formaldehyde and glycine after glyphosate transformation suggesting that both C-P lyase and/or glyphosate oxidase degradation pathways took place. Our study shows different and complementary glyphosate degradation pathways for bacteria co-existing in stream biofilms.
Collapse
Affiliation(s)
- Florent Rossi
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Louis Carles
- Department of Environmental Toxicology (Utox), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Florence Donnadieu
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Joan Artigas
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
72
|
Marques JGDC, Veríssimo KJDS, Fernandes BS, Ferreira SRDM, Montenegro SMGL, Motteran F. Glyphosate: A Review on the Current Environmental Impacts from a Brazilian Perspective. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:385-397. [PMID: 34142191 DOI: 10.1007/s00128-021-03295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The indiscriminate use of glyphosate is one of the main agricultural practices to combat weeds and grasses; however, its incorrect application increases soil and water contamination caused by the product. This situation is even more critical due to its great versatility for use in different cultivars and at lower prices, making it the most used pesticide in the world. Nevertheless, there is still a lack of in-depth studies regarding the damage that its use may cause. Therefore, this review focused on the analysis of environmental impacts at the soil-water interface caused by the use of glyphosate. In this sense, studies have shown that the intensive use of glyphosate has the potential to cause harmful effects on soil microorganisms, leading to changes in soil fertility and ecological imbalance, as well as impacts on aquatic environments derived from changes in the food chain. This situation is similar in Brazil, with the harmful effects of glyphosate in nontarget species and the contamination of the atmosphere. Therefore, it is necessary to change this scenario by modifying the type of pest control in agriculture, and actions such as crop rotation and biological control.
Collapse
Affiliation(s)
- Jonathas Gomes de Carvalho Marques
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil.
| | - Klayde Janny da Silva Veríssimo
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Bruna Soares Fernandes
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Silvio Romero de Melo Ferreira
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Suzana Maria Gico Lima Montenegro
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| | - Fabrício Motteran
- Department of Civil Engineering, Federal University of Pernambuco - UFPE. Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, PE, 50740-530, Brazil
| |
Collapse
|
73
|
Mindubaev AZ, Babynin EV, Bedeeva EK, Minzanova ST, Mironova LG, Akosah YA. Biological Degradation of Yellow (White) Phosphorus, a Compound of First Class Hazard. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621080155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
De María M, Silva-Sanchez C, Kroll KJ, Walsh MT, Nouri MZ, Hunter ME, Ross M, Clauss TM, Denslow ND. Chronic exposure to glyphosate in Florida manatee. ENVIRONMENT INTERNATIONAL 2021; 152:106493. [PMID: 33740675 DOI: 10.1016/j.envint.2021.106493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/25/2023]
Abstract
Florida manatees depend on freshwater environments as a source of drinking water and as warm-water refuges. These freshwater environments are in direct contact with human activities where glyphosate-based herbicides are being used. Glyphosate is the most used herbicide worldwide and it is intensively used in Florida as a sugarcane ripener and to control invasive aquatic plants. The objective of the present study was to determine the concentration of glyphosate and its breakdown product, aminomethylphosphonic acid (AMPA), in Florida manatee plasma and assess their exposure to manatees seeking a warm-water refuge in Crystal River (west central Florida), and in South Florida. We analyzed glyphosate's and AMPA's concentrations in Florida manatee plasma (n = 105) collected during 2009-2019 using HPLC-MS/MS. We sampled eight Florida water bodies between 2019 and 2020, three times a year: before, during and after the sugarcane harvest using grab samples and molecular imprinted passive Polar Organic Chemical Integrative Samplers (MIP-POCIS). Glyphosate was present in 55.8% of the sampled Florida manatees' plasma. The concentration of glyphosate has significantly increased in Florida manatee samples from 2009 until 2019. Glyphosate and AMPA were ubiquitous in water bodies. The concentration of glyphosate and AMPA was higher in South Florida than in Crystal River, particularly before and during the sugarcane harvest when Florida manatees depend on warm water refuges. Based on our results, Florida manatees were chronically exposed to glyphosate and AMPA, during and beyond the glyphosate applications to sugarcane, possibly associated with multiple uses of glyphosate-based herbicides for other crops or to control aquatic weeds. This chronic exposure in Florida water bodies may have consequences for Florida manatees' immune and renal systems which may further be compounded by other environmental exposures such as red tide or cold stress.
Collapse
Affiliation(s)
- Maite De María
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Aquatic Animal Health Program, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL 32610, USA.
| | - Cecilia Silva-Sanchez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Michael T Walsh
- Aquatic Animal Health Program, College of Veterinary Medicine, University of Florida, PO Box 100136, Gainesville, FL 32610, USA.
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL 32653, United States.
| | - Monica Ross
- Clearwater Marine Aquarium, 249 Windward Passage, Clearwater, FL 33767, USA.
| | - Tonya M Clauss
- Georgia Aquarium, Atlanta, Georgia, 225 Baker Street Northwest, Atlanta, GA 30313, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
75
|
Kuhn R, Vornholt C, Preuß V, Bryant IM, Martienssen M. Aminophosphonates in Nanofiltration and Reverse Osmosis Permeates. MEMBRANES 2021; 11:membranes11060446. [PMID: 34203777 PMCID: PMC8232610 DOI: 10.3390/membranes11060446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Aminophosphonates such as aminotris(methylenephosphonic acid) (ATMP) are common constituents of antiscalants. In nanofiltration (NF) and reverse osmosis (RO) processes, ATMP prevents inorganic scaling leading to more stable membrane performance. So far, little attention has been paid to the possible permeation of aminophosphonates through NF and RO membranes. We have investigated the permeability of these membrane types for ATMP and its potential metabolites iminodi(methylenephosphonic acid) (IDMP) and amino(methylenephosphonic acid) (AMPA) with two different NF membranes (TS40 and TS80) and one RO membrane (ACM2) and three different water compositions (ultra-pure water, synthetic tap water and local tap water). We found traces of phosphonates in all investigated permeates. The highest phosphonate rejection occurred with local tap water for all three membranes investigated. Filtration experiments with a technical antiscalant formulation containing ATMP indicated similar trends of phosphonate permeability through all three membranes. We assume that the separation mechanisms of the membranes are the results of a very complex relationship between physico-chemical properties such as Donnan exclusion, feed pH, feed ionic strength and feed concentration, as well as solute-solute interactions.
Collapse
Affiliation(s)
- Ramona Kuhn
- Chair of Biotechnology of Water Treatment, Brandenburg University of Technology Cottbus/Senftenberg, 03046 Cottbus, Germany;
- Correspondence:
| | - Carsten Vornholt
- Chair of Water Treatment and Urban Hydraulic Engineering, Brandenburg University of Technology Cottbus/Senftenberg, 03046 Cottbus, Germany; (C.V.); (V.P.)
| | - Volker Preuß
- Chair of Water Treatment and Urban Hydraulic Engineering, Brandenburg University of Technology Cottbus/Senftenberg, 03046 Cottbus, Germany; (C.V.); (V.P.)
| | - Isaac Mbir Bryant
- Department of Environmental Science, University of Cape Coast, Cape Coast 4P4872, Ghana;
| | - Marion Martienssen
- Chair of Biotechnology of Water Treatment, Brandenburg University of Technology Cottbus/Senftenberg, 03046 Cottbus, Germany;
| |
Collapse
|
76
|
Silver MK, Fernandez J, Tang J, McDade A, Sabino J, Rosario Z, Vélez Vega C, Alshawabkeh A, Cordero JF, Meeker JD. Prenatal Exposure to Glyphosate and Its Environmental Degradate, Aminomethylphosphonic Acid (AMPA), and Preterm Birth: A Nested Case-Control Study in the PROTECT Cohort (Puerto Rico). ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57011. [PMID: 34009015 PMCID: PMC8132611 DOI: 10.1289/ehp7295] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Glyphosate (GLY) is the most heavily used herbicide in the world. Despite nearly ubiquitous exposure, few studies have examined prenatal GLY exposure and potentially adverse pregnancy outcomes. Preterm birth (PTB) is a risk factor for neonatal mortality and adverse health effects in childhood. OBJECTIVES We examined prenatal exposure to GLY and a highly persistent environmental degradate of GLY, aminomethylphosphonic acid (AMPA), and odds of PTB in a nested case-control study within the ongoing Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) pregnancy cohort in northern Puerto Rico. METHODS GLY and AMPA in urine samples collected at 18 ± 2 (Visit 1) and 26 ± 2 (Visit 3) wk gestation (53 cases/194 randomly selected controls) were measured using gas chromatography tandem mass spectrometry. Multivariable logistic regression was used to estimate associations with PTB (delivery < 37 wk completed gestation). RESULTS Detection rates in controls were 77.4% and 77.5% for GLY and 52.8% and 47.7% for AMPA, and geometric means (geometric standard deviations) were 0.44 (2.50) and 0.41 ( 2.56 ) μ g / L for GLY and 0.25 (3.06) and 0.20 ( 2.87 ) μ g / L for AMPA, for Visits 1 and 3, respectively. PTB was significantly associated with specific gravity-corrected urinary GLY and AMPA at Visit 3, whereas associations with levels at Visit 1 and the Visits 1-3 average were largely null or inconsistent. Adjusted odds ratios (ORs) for an interquartile range increase in exposure at Visit 3 were 1.35 (95% CI: 0.99, 1.83) and 1.67 (95% CI: 1.26, 2.20) for GLY and AMPA, respectively. ORs for Visit 1 and the visit average were closer to the null. DISCUSSION Urine GLY and AMPA levels in samples collected near the 26th week of pregnancy were associated with increased odds of PTB in this modestly sized nested case-control study. Given the widespread use of GLY, multiple potential sources of AMPA, and AMPA's persistence in the environment, as well as the potential for long-term adverse health effects in preterm infants, further investigation in other populations is warranted. https://doi.org/10.1289/EHP7295.
Collapse
Affiliation(s)
- Monica K. Silver
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jennifer Fernandez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jason Tang
- NSF International, Ann Arbor, Michigan, USA
| | | | | | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Carmen Vélez Vega
- University of Puerto Rico Graduate School of Public Health, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, Massachusetts, USA
| | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
77
|
Cruz JM, Murray JA. Determination of glyphosate and AMPA in oat products for the selection of candidate reference materials. Food Chem 2021; 342:128213. [PMID: 33129618 PMCID: PMC8207808 DOI: 10.1016/j.foodchem.2020.128213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/08/2020] [Accepted: 09/23/2020] [Indexed: 02/02/2023]
Abstract
The use of reference materials (RMs) is critical for validating and testing the accuracy of analytical protocols. The National Institute of Standards and Technology (NIST) is in initial stages of developing a glyphosate in oats RM. The first aim of this study was to optimize and validate a robust method for the extraction and analysis of glyphosate and aminomethylphosphonic acid (AMPA). The optimized method was used to screen thirteen commercially available oat products to identify candidate RMs. Glyphosate was detected in all samples, with the highest glyphosate mass fraction of 1100 ng/g; lower levels were measured in grains from organic agriculture. AMPA was quantified in nine samples up to 40 ng/g. The findings of this study led to the identification of candidate RMs, with "high" and "low" glyphosate levels. A preliminary stability study determined that glyphosate is stable in oat material at room temperature for six months.
Collapse
Affiliation(s)
- Justine M Cruz
- U.S. National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD 20899-8392, USA
| | - Jacolin A Murray
- U.S. National Institute of Standards and Technology, Chemical Sciences Division, 100 Bureau Drive, Gaithersburg, MD 20899-8392, USA.
| |
Collapse
|
78
|
Limon AW, Moingt M, Widory D. The carbon stable isotope compositions of glyphosate and aminomethylphosphonic acid (AMPA): Improved analytical sensitivity and first application to environmental water matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9017. [PMID: 33270272 DOI: 10.1002/rcm.9017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
RATIONALE The presence of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in the environment has adverse effects on environmental quality, raising the need to better constrain their fates, in particular the processes that control their production and degradation. Our aim was to improve the sensitivity of their δ13 C analysis and demonstrate the feasibility of measuring them in natural surface water. METHODS The δ13 C values of dissolved glyphosate and AMPA were determined using isotope ratio mass spectrometry (IRMS) (Delta V Plus instrument) coupled to a high-performance liquid chromatography (HPLC) unit, where glyphosate and AMPA were separated on a Hypercarb column. RESULTS We demonstrated an improved sensitivity of the δ13 C analysis for glyphosate and AMPA by LC/IRMS compared with previous studies. For waters from the carbonate and silicate hydrofacies, while no pretreatment was required for the isotope analysis of glyphosate, removal by H3 PO4 acidification of dissolved inorganic carbon, that co-elutes with AMPA, was required prior to its analysis. We successfully tested a freeze-drying pre-concentration method showing no associated isotope fractionation up to concentration factors of 500 and 50 for glyphosate and AMPA, respectively. CONCLUSIONS We demonstrated, for the first time, the feasibility of measuring the δ13 C values of glyphosate and AMPA in natural surface waters with contrasted hydrofacies (calcium carbonate and silicate types). This opens new fields in pesticide research, especially on the characterization of processes that control their degradation and the production of their secondary byproducts.
Collapse
Affiliation(s)
- A Williams Limon
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - Matthieu Moingt
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| | - David Widory
- GEOTOP/Université du Québec à Montréal, case postale 8888, , Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
79
|
Sang Y, Mejuto JC, Xiao J, Simal-Gandara J. Assessment of Glyphosate Impact on the Agrofood Ecosystem. PLANTS (BASEL, SWITZERLAND) 2021; 10:405. [PMID: 33672572 PMCID: PMC7924050 DOI: 10.3390/plants10020405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA-(aminomethyl)phosphonic acid-on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.
Collapse
Affiliation(s)
- Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Juan-Carlos Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
80
|
Piel S, Grandcoin A, Baurès E. Understanding the origins of herbicides metabolites in an agricultural watershed through their spatial and seasonal variations. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:313-332. [PMID: 33560904 DOI: 10.1080/03601234.2021.1883390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aim of this study is to understand the spatial and seasonal variations of persistent herbicides metabolites and to determine their origins in the Vilaine River watershed, Britany-France. Improving knowledge on herbicides metabolites sources and seasonality is important for drinking water resource management. Data were collected at 13 sampling stations during five sampling campaigns in 2016 and 2017. Relations between water quality parameters, herbicides and metabolites were analyzed using statistical methods. The influence of land use and wastewater treatment plants (WWTP) on streams water quality has been identified. Cluster Analysis revealed that two groups of sampling stations can be described as "urban" with stations downstream the urban area and as "agricultural" with stations located downstream of the watershed. Chloroacetamids metabolites have been associated together with nitrates and agricultural areas as could be expected. Thus, the drinking water treatment plant located in the estuary of the Vilaine River is exposed to high metolachlor ESA and nitrate loads all year long. Aminomethylphosphonic acid (AMPA) is associated to anthropogenic urban contamination and nutrient loads. AMPA has its major sources in both glyphosate and phosphonate detergents issued from WWTP. This can help to adapt surface water treatment process and water management policies concerning herbicides metabolites.
Collapse
Affiliation(s)
| | - Alexis Grandcoin
- SAUR R&D, Maurepas, France
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Estelle Baurès
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
81
|
Aemig Q, Hélias A, Patureau D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. WATER RESEARCH 2021; 188:116524. [PMID: 33099267 DOI: 10.1016/j.watres.2020.116524] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Micropollutants emitted by Human activities represent a potential threat to our health and aquatic environment. Thousands of active substances are used and go to WWTP through wastewaters. During water treatment, incomplete elimination occurs. Effluents released to the environment still contain part of the micropollutants present in the influents. Here, we studied the potential impacts on Human health and aquatic environment of the release of 261 organic micropollutants and 25 inorganic micropollutants at the scale of France. Data were gathered from national surveys, reports, papers and PhD works. The USEtox ® model was used to assess potential impacts. The impacts on Human health were estimated for 94 organic and 15 inorganic micropollutants and on aquatic environment for 88 organic and 19 inorganic micropollutants highlighting lack of concentration and toxicological data in literature. Some Polycyclic Aromatic Hydrocarbons and pesticides as well as As and Zn showed highest potential impacts on Human health. Some pesticides, PCB 101, βE2, Al, Fe and Cu showed highest potential impacts on aquatic environment.
Collapse
Affiliation(s)
- Quentin Aemig
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France.
| | - Arnaud Hélias
- ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; ELSA, Research group for environmental life cycle sustainability assessment and ELSA-Pact industrial chair, Montpellier, France
| | - Dominique Patureau
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| |
Collapse
|
82
|
Rodríguez-Gil JL, Prosser RS, Duke SO, Solomon KR. Ecotoxicology of Glyphosate, Its Formulants, and Environmental Degradation Products. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 255:129-205. [PMID: 34104986 DOI: 10.1007/398_2020_56] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical and biological properties of glyphosate are key to understanding its fate in the environment and potential risks to non-target organisms. Glyphosate is polar and water soluble and therefore does not bioaccumulate, biomagnify, or accumulate to high levels in the environment. It sorbs strongly to particles in soil and sediments and this reduces bioavailability so that exposures to non-target organisms in the environment are acute and decrease with half-lives in the order of hours to a few days. The target site for glyphosate is not known to be expressed in animals, which reduces the probability of toxicity and small risks. Technical glyphosate (acid or salts) is of low to moderate toxicity; however, when mixed with some formulants such as polyoxyethylene amines (POEAs), toxicity to aquatic animals increases about 15-fold on average. However, glyphosate and the formulants have different fates in the environment and they do not necessarily co-occur. Therefore, toxicity tests on formulated products in scenarios where they would not be used are unrealistic and of limited use for assessment of risk. Concentrations of glyphosate in surface water are generally low with minimal risk to aquatic organisms, including plants. Toxicity and risks to non-target terrestrial organisms other than plants treated directly are low and risks to terrestrial invertebrates and microbial processes in soil are very small. Formulations containing POEAs are not labeled for use over water but, because POEA rapidly partitions into sediment, risks to aquatic organisms from accidental over-sprays are reduced in shallow water bodies. We conclude that use of formulations of glyphosate under good agricultural practices presents a de minimis risk of direct and indirect adverse effects in non-target organisms.
Collapse
Affiliation(s)
- Jose Luis Rodríguez-Gil
- IISD - Experimental Lakes Area, Winnipeg, MB, Canada.
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Keith R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
83
|
Robichaud CD, Rooney RC. Title: Low concentrations of glyphosate in water and sediment after direct over-water application to control an invasive aquatic plant. WATER RESEARCH 2021; 188:116573. [PMID: 33152590 DOI: 10.1016/j.watres.2020.116573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
When an invasive wetland grass degrades a Ramsar wetland and Important Bird Area, decisive management action is called for. To limit the extent and spread of European Phragmites australis, the Ontario government began the first, large-scale application of glyphosate (Roundup CustomⓇ) over standing water to control an invasive species in Canadian history. Between 2016 and 2018, over 1000 ha of marsh were treated. To assess the concentration, movement and longevity of this herbicide in treated marshes, we measured the concentration of glyphosate, its primary breakdown product aminomethylphosphonic acid (AMPA), and the alcohol ethoxylate-based adjuvant AquasurfⓇ in water and sediments in areas of the highest exposure and up to 150 m into adjacent bays. The maximum observed concentration of glyphosate in water was 0.320 mg/L, occurring within 24 hr of application. The maximum glyphosate concentration in sediment was 0.250 mg/kg, occurring within about 30 days of application. AMPA was detectable in water and sediment, indicating microbial breakdown of glyphosate in the marsh, but at low concentrations (maxwater = 0.025 mg/L, maxsed = 0.012 mg/kg). The maximum distance from the point of application that glyphosate was detected in the water was 100 m, while AMPA was detectable only at the edge of where glyphosate was applied (0 m). Concentrations in water returned to pre-treatment levels ( 0.005 mg/kg) for over one year but less than two years. Concentrations of alcohol ethoxylates were variable in space and time, following a pattern that could not be attributed to AquasurfⓇ use. The direct, over-water application of Roundup CustomⓇ with AquasurfⓇ to control invasive P. australis did not reach concentrations deemed to pose toxicological concern to aquatic biota by the Canadian Council of Ministers of the Environment.
Collapse
|
84
|
Suppa A, Kvist J, Li X, Dhandapani V, Almulla H, Tian AY, Kissane S, Zhou J, Perotti A, Mangelson H, Langford K, Rossi V, Brown JB, Orsini L. Roundup causes embryonic development failure and alters metabolic pathways and gut microbiota functionality in non-target species. MICROBIOME 2020; 8:170. [PMID: 33339542 PMCID: PMC7780628 DOI: 10.1186/s40168-020-00943-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 11/09/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Research around the weedkiller Roundup is among the most contentious of the twenty-first century. Scientists have provided inconclusive evidence that the weedkiller causes cancer and other life-threatening diseases, while industry-paid research reports that the weedkiller has no adverse effect on humans or animals. Much of the controversial evidence on Roundup is rooted in the approach used to determine safe use of chemicals, defined by outdated toxicity tests. We apply a system biology approach to the biomedical and ecological model species Daphnia to quantify the impact of glyphosate and of its commercial formula, Roundup, on fitness, genome-wide transcription and gut microbiota, taking full advantage of clonal reproduction in Daphnia. We then apply machine learning-based statistical analysis to identify and prioritize correlations between genome-wide transcriptional and microbiota changes. RESULTS We demonstrate that chronic exposure to ecologically relevant concentrations of glyphosate and Roundup at the approved regulatory threshold for drinking water in the US induce embryonic developmental failure, induce significant DNA damage (genotoxicity), and interfere with signaling. Furthermore, chronic exposure to the weedkiller alters the gut microbiota functionality and composition interfering with carbon and fat metabolism, as well as homeostasis. Using the "Reactome," we identify conserved pathways across the Tree of Life, which are potential targets for Roundup in other species, including liver metabolism, inflammation pathways, and collagen degradation, responsible for the repair of wounds and tissue remodeling. CONCLUSIONS Our results show that chronic exposure to concentrations of Roundup and glyphosate at the approved regulatory threshold for drinking water causes embryonic development failure and alteration of key metabolic functions via direct effect on the host molecular processes and indirect effect on the gut microbiota. The ecological model species Daphnia occupies a central position in the food web of aquatic ecosystems, being the preferred food of small vertebrates and invertebrates as well as a grazer of algae and bacteria. The impact of the weedkiller on this keystone species has cascading effects on aquatic food webs, affecting their ability to deliver critical ecosystem services. Video Abstract.
Collapse
Affiliation(s)
- Antonio Suppa
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Department of Life Sciences, Viale Usberti, 11/A, Parma, Italy
| | - Jouni Kvist
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
| | - Hanan Almulla
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
| | | | - Stephen Kissane
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
| | - Alessio Perotti
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT UK
| | | | | | - Valeria Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability University of Parma, Department of Life Sciences, Viale Usberti, 11/A, Parma, Italy
| | - James B. Brown
- Environmental Bioinformatics, Centre for Computational Biology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT UK
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Statistics Department, University of California, Berkeley, Berkeley, CA, 94720 USA, Preminon LLC, Rodeo, CA 94572 USA
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham, B15 2TT UK
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
85
|
Franke AA, Li X, Lai JF. Analysis of glyphosate, aminomethylphosphonic acid, and glufosinate from human urine by HRAM LC-MS. Anal Bioanal Chem 2020; 412:8313-8324. [PMID: 33011839 PMCID: PMC8061706 DOI: 10.1007/s00216-020-02966-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/26/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Aminomethylphosphonic acid (AMPA) is the main metabolite of glyphosate (GLYP) and phosphonic acids in detergents. GLYP is a synthetic herbicide frequently used worldwide alone or together with its analog glufosinate (GLUF). The general public can be exposed to these potentially harmful chemicals; thus, sensitive methods to monitor them in humans are urgently required to evaluate health risks. We attempted to simultaneously detect GLYP, AMPA, and GLUF in human urine by high-resolution accurate-mass liquid chromatography mass spectrometry (HRAM LC-MS) before and after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) or 1-methylimidazole-sulfonyl chloride (ImS-Cl) with several urine pre-treatment and solid phase extraction (SPE) steps. Fmoc-Cl derivatization achieved the best combination of method sensitivity (limit of detection; LOD) and accuracy for all compounds compared to underivatized urine or ImS-Cl-derivatized urine. Before derivatization, the best steps for GLYP involved 0.4 mM ethylenediaminetetraacetic acid (EDTA) pre-treatment followed by SPE pre-cleanup (LOD 37 pg/mL), for AMPA involved no EDTA pre-treatment and no SPE pre-cleanup (LOD 20 pg/mL) or 0.2-0.4 mM EDTA pre-treatment with no SPE pre-cleanup (LOD 19-21 pg/mL), and for GLUF involved 0.4 mM EDTA pre-treatment and no SPE pre-cleanup (LOD 7 pg/mL). However, for these methods, accuracy was sufficient only for AMPA (101-105%), while being modest for GLYP (61%) and GLUF (63%). Different EDTA and SPE treatments prior to Fmoc-Cl derivatization resulted in high sensitivity for all analytes but satisfactory accuracy only for AMPA. Thus, we conclude that our HRAM LC-MS method is suited for urinary AMPA analysis in cross-sectional studies.
Collapse
Affiliation(s)
- Adrian A Franke
- University of Hawaii Cancer Center, Analytical Biochemistry Shared Resource, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Xingnan Li
- University of Hawaii Cancer Center, Analytical Biochemistry Shared Resource, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Jennifer F Lai
- University of Hawaii Cancer Center, Analytical Biochemistry Shared Resource, 701 Ilalo Street, Honolulu, HI, 96813, USA
| |
Collapse
|
86
|
Tauchnitz N, Kurzius F, Rupp H, Schmidt G, Hauser B, Schrödter M, Meissner R. Assessment of pesticide inputs into surface waters by agricultural and urban sources - A case study in the Querne/Weida catchment, central Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115186. [PMID: 32889519 DOI: 10.1016/j.envpol.2020.115186] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Pesticide inputs into surface waters may cause harmful effects on aquatic life communities and substantially contribute to environmental pollution. The present study aimed at evaluating the input pathways in the Querne/Weida catchment (central Germany) to efficiently target mitigation measures of pesticide losses. Relevant pesticide substances were measured in surface waters in agricultural and urban surroundings and in soil samples within the catchment area. Pesticides application data from farmers were analyzed. Additionally, batch tests were performed to determine sorption and degradation of relevant pesticides for site specific soil properties. Frequency of detection, number of pesticides and maximum concentrations were much higher in the surface water samples in mainly urban surroundings compared to those in agricultural surrounding. The most frequently detected substances were glyphosate, AMPA, diflufenican and tebuconazole in surface water samples and diflufenican, boscalid, tebuconazole and epoxiconazole in the topsoil samples. Glyphosate and AMPA contributed to the highest concentrations in surface water samples (max. 58 μg L-1) and soil samples (max. 0.19 mg kg-1). In most cases, pesticide detections in surface water and soil were not consistent with application data from farmers, indicating that urban sources may affect water quality in the catchment area substantially. However, it was observed that pesticide substances remain in the soil over a long time supported by sorption on the soil matrix. Therefore, delayed inputs into surface waters could be suspected. For the implementation of reduction measures, both urban and agricultural sources should be considered. Novel findings of the study: pesticide detections were not consistent with application data from farmers, urban sources contributed substantially to pesticide pollution of surface waters.
Collapse
Affiliation(s)
- Nadine Tauchnitz
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agronomy and Crop Production, Strenzfelder Allee 22, 06406, Bernburg, Germany.
| | - Florian Kurzius
- BGD ECOSAX GmbH, Tiergartenstraße 48, 01219, Dresden, Germany
| | - Holger Rupp
- Helmholtz Centre for Environmental Research-UFZ, Dept. of Soil System Science, Lysimeter Station, Falkenberg 55, D-39615, Altmärkische Wische, Germany
| | - Gerd Schmidt
- Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Geosciences and Geography, Geology, Von-Seckendorff-Platz 4, 06120, Halle (S.), Germany
| | - Barbara Hauser
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agricultural Analyses, Schiepziger Strasse 29, 06120, Halle (S.), Germany
| | - Matthias Schrödter
- State Institute for Agriculture and Horticulture Saxony-Anhalt, Centre for Agronomy and Crop Production, Strenzfelder Allee 22, 06406, Bernburg, Germany
| | - Ralph Meissner
- Helmholtz Centre for Environmental Research-UFZ, Dept. of Soil System Science, Lysimeter Station, Falkenberg 55, D-39615, Altmärkische Wische, Germany
| |
Collapse
|
87
|
Cheron M, Brischoux F. Aminomethylphosphonic acid alters amphibian embryonic development at environmental concentrations. ENVIRONMENTAL RESEARCH 2020; 190:109944. [PMID: 32771800 DOI: 10.1016/j.envres.2020.109944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 05/27/2023]
Abstract
Despite intense societal and scientific debates regarding glyphosate toxicity, it remains the most widely used herbicide. The primary metabolite of glyphosate, AMPA (aminomethylphosphonic acid), is the main contaminant detected in surface waters worldwide, both because of the extensive use of glyphosate and because of other widespread sources of AMPA (i.e., industrial detergents). Studies on potential effects of glyphosate using environmentally relevant concentrations of AMPA on non-target wildlife species are lacking. We experimentally tested the effects of AMPA on embryonic development in a common European toad at concentrations spanning the range found in natural water bodies (from 0.07 to 3.57 μg l-1). Our experimental concentrations of AMPA were 100-6000 times lower than official Predicted-No-Effect-Concentrations. We found that these low-level concentrations of AMPA decreased embryonic survival, increased development duration and influenced hatchling morphology. Response patterns were more complex than classical linear concentration-response relationships, as concentration responses were nonmonotonic, with greater effects at low-concentrations of AMPA than at high levels. Based on our results we recommend that investigators focus not only on effects of "parent compounds," but also their metabolites at environmentally relevant concentrations in order to comprehensively assess impacts of anthropogenic contaminants on the environment.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France.
| |
Collapse
|
88
|
Do MH, Dubreuil B, Peydecastaing J, Vaca-Medina G, Nhu-Trang TT, Jaffrezic-Renault N, Behra P. Chitosan-Based Nanocomposites for Glyphosate Detection Using Surface Plasmon Resonance Sensor. SENSORS 2020; 20:s20205942. [PMID: 33096666 PMCID: PMC7589946 DOI: 10.3390/s20205942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/28/2023]
Abstract
This article describes an optical method based on the association of surface plasmon resonance (SPR) with chitosan (CS) film and its nanocomposites, including zinc oxide (ZnO) or graphene oxide (GO) for glyphosate detection. CS and CS/ZnO or CS/GO thin films were deposited on an Au chip using the spin coating technique. The characterization, morphology, and composition of these films were performed by Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and contact angle technique. Sensor preparation conditions including the cross-linking and mobile phase (pH and salinity) were investigated and thoroughly optimized. Results showed that the CS/ZnO thin-film composite provides the highest sensitivity for glyphosate sensing with a low detection limit of 8 nM and with high reproducibility. From the Langmuir-type adsorption model and the effect of ionic strength, the adsorption mechanisms of glyphosate could be controlled by electrostatic and steric interaction with possible formation of 1:1 outer-sphere surface complexes. The selectivity of the optical method was investigated with respect to the sorption of glyphosate metabolite (aminomethylphosphonic acid) (AMPA), glufosinate, and one of the glufonisate metabolites (3-methyl-phosphinico-propionic acid) (MPPA). Results showed that the SPR sensor offers a very good selectivity for glyphosate, but the competition of other molecules could still occur in aqueous systems.
Collapse
Affiliation(s)
- Minh Huy Do
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
- “Water–Environment–Oceanography” Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 100000 Hanoi, Vietnam
| | - Brigitte Dubreuil
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
| | - Guadalupe Vaca-Medina
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
- Centre d’Application et de Traitement des Agroressources (CATAR), Université de Toulouse, 31030 Toulouse CEDEX 4, France
| | - Tran-Thi Nhu-Trang
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University (NTTU), 700000 Ho Chi Minh, Vietnam;
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR 5280 CNRS-Université Claude Bernard, 69100 Villeurbanne, France;
| | - Philippe Behra
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRAE, 31030 Toulouse CEDEX 4, France; (M.H.D.); (B.D.); (J.P.); (G.V.-M.)
- “Water–Environment–Oceanography” Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 100000 Hanoi, Vietnam
- Correspondence:
| |
Collapse
|
89
|
Mendonça CFR, Boroski M, Cordeiro GA, Toci AT. Glyphosate and AMPA occurrence in agricultural watershed: the case of Paraná Basin 3, Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:909-920. [PMID: 33084505 DOI: 10.1080/03601234.2020.1794703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Glyphosate is the main herbicide used in soybean crops, and Brazil is one of the major soybean producers around the world. GLY and AMPA were evaluated in 124 surface waters samples of twenty one micro basins in Paraná Basin 3 (State of Parana, Brazil) over six subsequent weeks. A simple and economical routine methodology was established, based on lyophilization as a pre-concentration method. The validated method showed a limit of detection of 0.0125 and 0.025 µg L-1 for GLY and AMPA, respectively. In general, water samples presented concentrations ranging from 0.31 to 1.65 μg L-1 for GLY. Those values are below the maximum allowed amounts in Brazilian Law (65 μg L-1). The AMPA values were found in the range from 0.50 to 1.40 μg L-1. In summary, GLY was detected in 19.3% and it was quantified in 17.7% of the samples. AMPA was detected in 21.8% and it was quantified in 1.6% of the samples. Although samples did not present values higher than the established by Brazilian Law, GLY and AMPA appear constantly in the samples, which highlight the importance of monitoring studies in watersheds.
Collapse
Affiliation(s)
| | - Marcela Boroski
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Research Group LEIMAA, Foz do Iguaçu, Brazil
| | - Gilcélia Aparecido Cordeiro
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Research Group LEIMAA, Foz do Iguaçu, Brazil
| | - Aline Theodoro Toci
- Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), Research Group LEIMAA, Foz do Iguaçu, Brazil
| |
Collapse
|
90
|
Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J. Herbicide Glyphosate: Toxicity and Microbial Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7519. [PMID: 33076575 PMCID: PMC7602795 DOI: 10.3390/ijerph17207519] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
Glyphosate is a non-specific organophosphate pesticide, which finds widespread application in shielding crops against the weeds. Its high solubility in hydrophilic solvents, especially water and high mobility allows the rapid leaching of the glyphosate into the soil leading to contamination of groundwater and accumulation into the plant tissues, therefore intricating the elimination of the herbicides. Despite the widespread application, only a few percentages of the total applied glyphosate serve the actual purpose, dispensing the rest in the environment, thus resulting in reduced crop yields, low quality agricultural products, deteriorating soil fertility, contributing to water pollution, and consequently threatening human and animal life. This review gives an insight into the toxicological effects of the herbicide glyphosate and current approaches to track and identify trace amounts of this agrochemical along with its biodegradability and possible remediating strategies. Efforts have also been made to summarize the biodegradation mechanisms and catabolic enzymes involved in glyphosate metabolism.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab 160059, India
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior 474009, India;
| | | | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar 144001, India;
| | - Satyender Singh
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vaishali Dhaka
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara 144411, India;
| | - Abdul Basit Wani
- Department of Chemistry, Lovely Professional University, Phagwara 144411, India;
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Manoj Kumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - S. L. Harikumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| |
Collapse
|
91
|
Delile H, Masson M, Miège C, Le Coz J, Poulier G, Le Bescond C, Radakovitch O, Coquery M. Hydro-climatic drivers of land-based organic and inorganic particulate micropollutant fluxes: The regime of the largest river water inflow of the Mediterranean Sea. WATER RESEARCH 2020; 185:116067. [PMID: 33086458 DOI: 10.1016/j.watres.2020.116067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Land-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood. Here, we address this issue by continuous measurements throughout the Rhône River basin (∼100,000 km2) of 1) particulate micropollutant concentrations (persistant organic micropollutants: polychlorobiphenyls [PCBi] and polycyclic aromatic hydrocarbons [PAHs]; emerging compounds: glyphosate and aminomethylphosphonic acid [AMPA]; and trace metal elements [TME]), 2) suspended particulate matter [SPM], and 3) water discharge. From these data, we computed daily fluxes for a wide range of micropollutants (n = 29) over a long-term period (2008-2018). We argue that almost two-thirds of annual micropollutant fluxes are released to the Mediterranean Sea during three short-term periods over the year. The watershed hydro-climatic heterogeneity determines this dynamic by triggering seasonal floods. Unexpectedly, the large deficit of the inter-annual monthly micropollutant fluxes inputs (tributaries and the Upper Rhône River) compared to the output (Beaucaire station) claims for the presence of highly contaminated missing sources of micropollutants in the Rhône River watershed. Based on a SPM-flux-averaged micropollutant concentrations mass balance of the system and the estimates of the relative uncertainty of the missing sources concentration, we assessed their location within the Rhône River catchment. We assume that the potential missing sources of PAHs, PCBi and TME would be, respectively, the metropolitan areas, the alluvial margins of the Rhône River valley, and the unmonitored Cevenol tributaries.
Collapse
Affiliation(s)
- Hugo Delile
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France.
| | - Matthieu Masson
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Cécile Miège
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Jérôme Le Coz
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Gaëlle Poulier
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Chloé Le Bescond
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| | - Olivier Radakovitch
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, BP3, 13115, Saint-Paul Lez Durance, France; Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-provence, France
| | - Marina Coquery
- INRAE, UR RiverLy, 5 Rue de la Doua CS 20244, F-69625, Villeurbanne, France
| |
Collapse
|
92
|
Stajnko A, Snoj Tratnik J, Kosjek T, Mazej D, Jagodic M, Eržen I, Horvat M. Seasonal glyphosate and AMPA levels in urine of children and adolescents living in rural regions of Northeastern Slovenia. ENVIRONMENT INTERNATIONAL 2020; 143:105985. [PMID: 32731096 DOI: 10.1016/j.envint.2020.105985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
There are extensive data on the toxicity of glyphosate (GLY) based herbicides (GBH), however the interpretation of some data (e.g. carcinogenic effect) are subject to controversy. For the appropriate health risk assessment more data on exposure levels in the general population, especially in susceptible groups such as pregnant women, the elderly and children are needed. The aims of the present study were to estimate the exposure to GLY and its major metabolite aminomethylphosphonic acid (AMPA) in children and adolescents living in agricultural areas, to identify possible determinants of the exposure, and to assess co-exposure with elements. In total, 149 children (aged 7-10 years, 55% girls) and 97 adolescents (aged 12-15 years; 44% girls) were recruited in 2018 from rural areas of Northeastern Slovenia. The effect of seasonal GLY application on the exposure was estimated using GLY and AMPA levels determined by GC-MS/MS in first morning urine in winter (n = 246) and in late-spring/early-summer seasons (n = 225). Levels of elements were determined by ICP-MS in urine in both samplings and in blood or plasma in the first sampling. Questionnaire data on basic characteristics, dietary habits, living environments and use of pesticides were obtained for all participants. GLY and AMPA were detected in 27% and 50% of urine samples from the first sampling period, respectively; and in 22% and 56% from the second sampling period, respectively. Geometric means and medians of both AMPA and GLY were below or at the limit of quantification (≤LOQ; 0.1 µg/L). Children rather than adolescents tended to have higher exposure, as did, boys rather than girls among adolescents. The exposure did not significantly differ between both sampling periods. Except for one individual, exposure was not higher among participants who reported use of GLY or herbicides in the vicinity of child's home or live in close vicinity of agriculture, orchards, vineyards, gardens, sport courts or cemeteries. The extensive food consumption frequency data revealed higher exposure to GLY and AMPA only among individuals with higher consumption of nuts and wholegrain rice. Levels of AMPA and GLY were significantly positively correlated, with considerably stronger correlation in urine of the second than the first sampling (Spearman's rank coefficient: 0.49 vs 0.22, respectively). Urine levels of As, Pb, Co, Zn and Cu were significantly higher in participants with GLY and/or AMPA levels ≥LOQ than with levels
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Marta Jagodic
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Ivan Eržen
- National Institute of Public Health, Trubarjeva 2, 1000 Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
93
|
Wang S, Zhang B, Shan C, Yan X, Chen H, Pan B. Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. WATER RESEARCH 2020; 184:116173. [PMID: 32712507 DOI: 10.1016/j.watres.2020.116173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Phosphonates discharged from wastewater treatment plants (WWTPs) have attracted increasing concerns because of their potential impact on eutrophication and potential risks to aquatic ecosystems. However, very few studies are available on their occurrence and transformation in WWTPs, partly due to the lack of sensitive methods for phosphonate analysis in complex matrices. Herein, based on our recent progress in phosphonate analysis, the occurrence and transformation of phosphonates along the full-scale wastewater treatment processes of two textile dyeing WWTPs were revealed. A set of typical phosphonates, including six phosphonate chelators (PCs) and four potential degradation products of PCs (DP-PCs) were quantified in different units and the final dewatered sludge. Three PCs (2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), 1-hydroxyethane 1,1-diphosphonic acid (HEDP) and nitrilotris(methylene phosphonic acid) (NTMP)) at upmost mg/L and a considerable amount of four DP-PCs (9.12-608 μg/L) were detected in the influents of both WWTPs. In the subsequent treatment, NTMP could be removed more efficiently than PBTC and HEDP, especially in the coagulation unit, and the dissolved phosphonates were eliminated more readily than other dissolved organic phosphorus fractions. Of particular note, the toxicologically critical DP-PC (i.e., aminomethylphosphonic acid) was produced during the coagulation and biological treatment units. The final precipitation unit seemed essential to ensure satisfactory removal of PCs and DP-PCs. In addition, a significant accumulation of phosphonates in dewatered sludge (up to 7.81 g/kg) and the widespread occurrence of harmful DP-PCs also reminded us to pay more concerns on their potential risks during further sludge disposal in future.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xing Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Hong Chen
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
94
|
Reynoso EC, Peña RD, Reyes D, Chavarin-Pineda Y, Palchetti I, Torres E. Determination of Glyphosate in Water from a Rural Locality in México and Its Implications for the Population Based on Water Consumption and Use Habits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7102. [PMID: 32998276 PMCID: PMC7579432 DOI: 10.3390/ijerph17197102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
Glyphosate is a broad-spectrum herbicide widely used worldwide. Indeed, it is the herbicide most applied to all Mexican crops. Due to the overuse and poor disposal of the waste, this herbicide can reach the aquatic environments such as groundwater and surface water. Thus, there is a clear need to implement monitoring and surveillance programs for evaluating and controlling the exposure to this herbicide in rural populations. The goal of this study was to quantify the presence of glyphosate in different water bodies (groundwater, surface and drinking water) as well as to identify the uses and managements of water resources by rural communities to evaluate the potential human exposure to glyphosate in the Tenampulco region of the Mexican state of Puebla. Measurements were performed by a rapid and cost-effective ELISA-based method in groundwater and surface water from various sampling sites of the Tenampulco region. Glyphosate was detected in all groundwater samples to be below the maximum limit for glyphosate in water in Mexico. Nevertheless, these results indicate an exposure of glyphosate in these agricultural communities and the need to establish a monitoring program.
Collapse
Affiliation(s)
- Eduardo C. Reynoso
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita, Universidad Autónoma de Puebla, Puebla 72570, Mexico; (E.C.R.); (Y.C.-P.)
| | - Ricardo D. Peña
- Centro de Quìmica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Delfino Reyes
- Facultad de Ingeniería Agrohidráulica, Benemérita Universidad Autónoma de Puebla, Av. Universidad s/n, Teziutlán, Puebla 73695, Mexico;
| | - Yaselda Chavarin-Pineda
- Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita, Universidad Autónoma de Puebla, Puebla 72570, Mexico; (E.C.R.); (Y.C.-P.)
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Eduardo Torres
- Centro de Quìmica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
95
|
Tajnaiová L, Vurm R, Kholomyeva M, Kobera M, Kočí V. Determination of the Ecotoxicity of Herbicides Roundup ® Classic Pro and Garlon New in Aquatic and Terrestrial Environments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1203. [PMID: 32937994 PMCID: PMC7569783 DOI: 10.3390/plants9091203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 05/11/2023]
Abstract
Herbicides help increase agricultural yields significantly, but they may negatively impact the life of non-target organisms. Modifying the life cycle of primary producers can affect other organisms in the food chain, and consequently in the whole ecosystem. We investigated the effect of common herbicides Roundup® Classic Pro (active substance glyphosate) and Garlon New (triclopyr and fluroxypyr) on aquatic organisms duckweed Lemna minor and green algae Desmodesmus subspicatus, and on the enzymatic activity of soil. We also compared the effects of Roundup® Classic Pro to that of a metabolite of its active substance, aminomethylphosphonic acid (AMPA). The results of an algal growth test showed that AMPA has a 1.5× weaker inhibitory effect on the growth of D. subspicatus than the Roundup formula, and the strongest growth inhibition was caused by Garlon New (IC50Roundup = 267.3 µg/L, IC50Garlon = 21.0 µg/L, IC50AMPA = 117.8 mg/L). The results of the duckweed growth inhibition test revealed that Roundup and Garlon New caused 100% growth inhibition of L. minor even at significantly lower concentrations than the ready-to-use concentration. The total chlorophyll content in the fronds was lowest when Garlon New was used. The highest dehydrogenase activity was observed in soil treated with Garlon New, and the lowest in soil treated with Roundup® Classic Pro. The results of this study showed that all three tested substances were ecotoxic to the tested organisms.
Collapse
Affiliation(s)
- Lucia Tajnaiová
- Faculty of Environmental Technology, Department of Environmental Chemistry, UCT Prague, Technická 5, 166 28 Prague, Czech Republic; (R.V.); (M.K.); (M.K.); (V.K.)
| | | | | | | | | |
Collapse
|
96
|
Solomon KR. Estimated exposure to glyphosate in humans via environmental, occupational, and dietary pathways: an updated review of the scientific literature. PEST MANAGEMENT SCIENCE 2020; 76:2878-2885. [PMID: 31840380 DOI: 10.1002/ps.5717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is one of the most widely used herbicides in the world, but it has also been the focus of discussion and restrictions in several countries since it was declared 'probably carcinogenic to humans (Group 2A)' by the International Agency for Research on Cancer in 2015. Since that time, several regulatory agencies have reviewed the public literature and guideline studies submitted for regulatory purposes and have concluded that it is not a carcinogen, and revised acceptable daily intakes (ADIs) and the reference dose (RfD) have been published. Also, restrictions on use have been lifted in many locations. Risk assessment for any pesticide requires knowledge of exposure in humans and the environment, and this paper is an update on a previous review in 2016 and includes papers published after 2016. These exposure data for air, water, bystanders, the general public, domesticated animals, pets, and applicators were combined and compared to the revised exposure criteria published by regulatory agencies. In all cases, measured and estimated systemic exposures to glyphosate in humans and animals were less than the ADIs and the RfD. Based on this large dataset, these exposures represent a de minimis risk. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keith R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
97
|
Connolly A, Coggins MA, Koch HM. Human Biomonitoring of Glyphosate Exposures: State-of-the-Art and Future Research Challenges. TOXICS 2020; 8:E60. [PMID: 32824707 PMCID: PMC7560361 DOI: 10.3390/toxics8030060] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Glyphosate continues to attract controversial debate following the International Agency for Research on Cancer carcinogenicity classification in 2015. Despite its ubiquitous presence in our environment, there remains a dearth of data on human exposure to both glyphosate and its main biodegradation product aminomethylphosphonic (AMPA). Herein, we reviewed and compared results from 21 studies that use human biomonitoring (HBM) to measure urinary glyphosate and AMPA. Elucidation of the level and range of exposure was complicated by differences in sampling strategy, analytical methods, and data presentation. Exposure data is required to enable a more robust regulatory risk assessment, and these studies included higher occupational exposures, environmental exposures, and vulnerable groups such as children. There was also considerable uncertainty regarding the absorption and excretion pattern of glyphosate and AMPA in humans. This information is required to back-calculate exposure doses from urinary levels and thus, compared with health-based guidance values. Back-calculations based on animal-derived excretion rates suggested that there were no health concerns in relation to glyphosate exposure (when compared with EFSA acceptable daily intake (ADI)). However, recent human metabolism data has reported as low as a 1% urinary excretion rate of glyphosate. Human exposures extrapolated from urinary glyphosate concentrations found that upper-bound levels may be much closer to the ADI than previously reported.
Collapse
Affiliation(s)
- Alison Connolly
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance—Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
- Centre for Climate and Air Pollution Studies, School of Physics and the Ryan Institute, National University of Ireland, University Road, H91 CF50 Galway, Ireland;
| | - Marie A. Coggins
- Centre for Climate and Air Pollution Studies, School of Physics and the Ryan Institute, National University of Ireland, University Road, H91 CF50 Galway, Ireland;
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance—Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| |
Collapse
|
98
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114372. [PMID: 32203845 DOI: 10.1016/j.envpol.2020.114372] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
99
|
Wimmer B, Pattky M, Zada LG, Meixner M, Haderlein SB, Zimmermann HP, Huhn C. Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: method development and application to beer beverages and environmental studies. Anal Bioanal Chem 2020; 412:4967-4983. [PMID: 32524371 PMCID: PMC7334262 DOI: 10.1007/s00216-020-02751-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
In this study, we developed and validated a CE-TOF-MS method for the quantification of glyphosate (N-(phosphonomethyl)glycine) and its major degradation product aminomethylphosphonic acid (AMPA) in different samples including beer, media from toxicological analysis with Daphnia magna, and sorption experiments. Using a background electrolyte (BGE) of very low pH, where glyphosate is still negatively charged but many matrix components become neutral or protonated, a very high separation selectivity was reached. The presence of inorganic salts in the sample was advantageous with regard to preconcentration via transient isotachophoresis. The advantages of our new method are the following: no derivatization is needed, high separation selectivity and thus matrix tolerance, speed of analysis, limits of detection suitable for many applications in food and environmental science, negligible disturbance by metal chelation. LODs for glyphosate were < 5 μg/L for both aqueous and beer samples, the linear range in aqueous samples was 5-3000 μg/L, for beer samples 10-3000 μg/L. For AMPA, LODs were 3.3 and 30.6 μg/L, and the linear range 10-3000 μg/L and 50-3000 μg/L, for aqueous and beer samples, respectively. Recoveries in beer samples for glyphosate were 94.3-110.7% and for AMPA 80.2-100.4%. We analyzed 12 German and 2 Danish beer samples. Quantification of glyphosate and AMPA was possible using isotopically labeled standards without enrichment, purification, or dilution, only degassing and filtration were required for sample preparation. Finally, we demonstrate the applicability of the method for other strong acids, relevant in food and environmental sciences such as N-acetyl glyphosate, N-acetyl AMPA (present in some glyphosate resistant crop), trifluoroacetic acid, 2-methyl-4-chlorophenoxyacetic acid, glufosinate and its degradation product 3-(methylphosphinico)propionic acid, oxamic acid, and others.
Collapse
Affiliation(s)
- Benedikt Wimmer
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Martin Pattky
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Leyla Gulu Zada
- Center for Applied Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Martin Meixner
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Stefan B Haderlein
- Center for Applied Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls Universität Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | | | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
100
|
Woźniak E, Reszka E, Jabłońska E, Mokra K, Balcerczyk A, Huras B, Zakrzewski J, Bukowska B. The selected epigenetic effects of aminomethylphosphonic acid, a primary metabolite of glyphosate on human peripheral blood mononuclear cells (in vitro). Toxicol In Vitro 2020; 66:104878. [PMID: 32360641 DOI: 10.1016/j.tiv.2020.104878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022]
Abstract
Aminomethylphosphonic acid (AMPA) is a primary metabolite of glyphosate and amino-polyphosphonate. We have determined the effect of AMPA on selected epigenetic parameters and major cell cycle drivers in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with AMPA at 0.5, 10 and 250 μM for 24 h. The performed analysis included: global DNA methylation by colorimetric measurement of 5-methylcytosine in DNA, methylation in the promoter regions of selected tumor suppressor genes (P16, P21, TP53) and proto-oncogenes (BCL2, CCND1) as well as the expression profile of the indicated genes by Real-Time PCR assays. The obtained results have revealed significant reduction of global DNA methylation level in PBMCs exposed to AMPA. Investigated xenobiotic changed methylation pattern of the P21 and TP53 suppressor gene promoters, but in case of other analyzed genes: P16, BCL2 and CCND1 no statistically significant changes have been noted. Gene profiling have shown that AMPA only changed the expression of CCND1. Summing up, our results have revealed a small potential disturbance in methylation processes and the absence of changes in expression of tested tumor suppressor genes (P16, P21, TP53) and protooncogenes (BCL2) in human PBMCs exposed to AMPA.
Collapse
Affiliation(s)
- Ewelina Woźniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland; Medical University of Lodz, Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Kniaziewicza Str. 1/5, 91-347 Lodz, Poland
| | - Edyta Reszka
- Nofer Institute of Occupational Medicine, Department of Molecular Genetics and Epigenetics, Teresy Str. 8, 91-348 Lodz, Poland
| | - Ewa Jabłońska
- Nofer Institute of Occupational Medicine, Department of Molecular Genetics and Epigenetics, Teresy Str. 8, 91-348 Lodz, Poland
| | - Katarzyna Mokra
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Aneta Balcerczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, Pomorska Str. 141/143, 90-236 Lodz, Poland
| | - Bogumiła Huras
- Łukasiewicz Research Network, Institute of Industrial Organic Chemistry, Annopol 6 Str, 03-236 Warsaw, Poland
| | - Jerzy Zakrzewski
- Łukasiewicz Research Network, Institute of Industrial Organic Chemistry, Annopol 6 Str, 03-236 Warsaw, Poland
| | - Bożena Bukowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, Pomorska Str. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|