51
|
Elliott L, Bennett AS, Szott K, Golub A. Competing Constructivisms: The Negotiation of PTSD and Related Stigma Among Post-9/11 Veterans in New York City. Cult Med Psychiatry 2018; 42:778-799. [PMID: 29796782 PMCID: PMC6251768 DOI: 10.1007/s11013-018-9586-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Posttraumatic stress disorder (PTSD) stands as a form of psychopathology that straddles moral and psychiatric domains. Grounded in discrete instances of trauma, PTSD represents an etiological outlier in an era of increased attention to the genetics of mental illness and a prime location for social constructivist analyses of mental illness. This examination of PTSD narratives-as voiced in qualitative interviews and focus groups with 50 veterans of the recent Iraq and Afghanistan wars living in New York City-attends to the processes through which veterans conceive and navigate PTSD symptoms and diagnoses. In so doing we highlight the social constructivist positions undertaken by veterans themselves as they varyingly challenge and internalize symptomology in dialogue with psychiatric definitions and the stigma associated with PTSD. Findings demonstrate the rejection of classic psychopathological etiology-in brain disease, for example-by many veterans as well as the complex balancing of benefit and stigma that veterans undertake when making decisions about presenting to psychiatric clinicians. Drawing on veterans' accounts, we argue for greater cultural specificity in characterizing the diagnosis-seeking behavior of trauma survivors and a greater appreciation for the contradictions and compromise related to both acceptance and rejection of a mental health diagnosis.
Collapse
Affiliation(s)
| | | | - Kelly Szott
- National Development and Research Institutes
| | | |
Collapse
|
52
|
Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S, Benevento M, Pifl C, Zachar G, Perugini J, Severi I, Leitgeb P, Bakker J, Miklosi AG, Tretiakov E, Keimpema E, Arque G, Tasan RO, Sperk G, Malenczyk K, Máté Z, Erdélyi F, Szabó G, Lubec G, Palkovits M, Giordano A, Hökfelt TG, Romanov RA, Horvath TL, Harkany T. Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J 2018; 37:e100087. [PMID: 30209240 PMCID: PMC6213283 DOI: 10.15252/embj.2018100087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Stress-induced cortical alertness is maintained by a heightened excitability of noradrenergic neurons innervating, notably, the prefrontal cortex. However, neither the signaling axis linking hypothalamic activation to delayed and lasting noradrenergic excitability nor the molecular cascade gating noradrenaline synthesis is defined. Here, we show that hypothalamic corticotropin-releasing hormone-releasing neurons innervate ependymal cells of the 3rd ventricle to induce ciliary neurotrophic factor (CNTF) release for transport through the brain's aqueductal system. CNTF binding to its cognate receptors on norepinephrinergic neurons in the locus coeruleus then initiates sequential phosphorylation of extracellular signal-regulated kinase 1 and tyrosine hydroxylase with the Ca2+-sensor secretagogin ensuring activity dependence in both rodent and human brains. Both CNTF and secretagogin ablation occlude stress-induced cortical norepinephrine synthesis, ensuing neuronal excitation and behavioral stereotypes. Cumulatively, we identify a multimodal pathway that is rate-limited by CNTF volume transmission and poised to directly convert hypothalamic activation into long-lasting cortical excitability following acute stress.
Collapse
Affiliation(s)
- Alán Alpár
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Péter Zahola
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - János Hanics
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsófia Hevesi
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, Hungary
| | - Solomiia Korchynska
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Patrick Leitgeb
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joanne Bakker
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andras G Miklosi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gloria Arque
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gert Lubec
- Paracelsus Medical University, Salzburg, Austria
| | - Miklós Palkovits
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Tomas Gm Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Departments of Comparative Medicine and Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
53
|
Stress influences the dynamics of hippocampal structural remodeling associated with fear memory extinction. Neurobiol Learn Mem 2018; 155:412-421. [DOI: 10.1016/j.nlm.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/11/2018] [Accepted: 09/04/2018] [Indexed: 01/12/2023]
|
54
|
Voth Schrag RJ, Edmond TE. Intimate partner violence, trauma, and mental health need among female community college students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2018; 66:702-711. [PMID: 29672245 DOI: 10.1080/07448481.2018.1456443] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/06/2018] [Accepted: 03/18/2018] [Indexed: 05/12/2023]
Abstract
OBJECTIVE The impact of interpersonal violence on college students has received considerable attention, yet no studies have been conducted among community college students, who comprise 40% of all American college students, and have unique risk factors and needs. Community College students are more likely to be women, people of color, working, parenting, and first generation college students. PARTICIPANTS Data were collected from a simple random sample from four community colleges (n=435). METHODS A cross-sectional quantitative survey was used to assess the extent of intimate partner violence, trauma exposure, sexual violence, and associated mental health consequences among female students. RESULTS Over 27% of participants reported IPV in the past year, while 25% reported sexual assault and 34% reported other uncomfortable sexual experiences in their lifetime. Nearly 20%of participants were currently reporting PTSD symptoms. CONCLUSIONS Community Colleges should work with service providers to build their capacity to respond to students' needs.
Collapse
Affiliation(s)
| | - Tonya E Edmond
- b Washington University in St. Louis , St. Louis , Missouri , USA
| |
Collapse
|
55
|
Nolfe G, Cirillo M, Iavarone A, Negro A, Garofalo E, Cotena A, Lazazzara M, Zontini G, Cirillo S. Bullying at Workplace and Brain-Imaging Correlates. J Clin Med 2018; 7:jcm7080200. [PMID: 30081562 PMCID: PMC6111669 DOI: 10.3390/jcm7080200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/05/2023] Open
Abstract
The relationship between psychosocial stress at work and mental health outcome is well-known. Brain-imaging studies hypothesize morphological brain modifications connected to work-related stress. To our knowledge this is the first study describing the link between work characteristics and brain imaging in a sample of work-related psychiatric patients assessed according to standardized clinical and diagnostic criteria. The aims of the study are: (1) to evaluate hippocampal and whole brain volumes in work-related psychiatric disturbances; (2) to verify the relationship between brain changes and the anxious and/or depressive symptoms; (3) to observe the relationship between the brain changes and the degree of the bullying at workplace. The hippocampus and whole brain volumes of 23 patients with work-related adjustment-disorders were compared with 15 controls by means of MRI. MR images highlight a smaller hippocampal volume in patients compared with controls. Significant reduction in the patients’ gray matter was found in three brain areas: right inferior temporal gyrus, left cuneus, left inferior occipital gyrus. The reduction of the hippocampi volumes was related to work distress and, above all, to bullying at workplace. The results confirm that the morphological brain abnormalities could be involved in work-related psychiatric disturbances.
Collapse
Affiliation(s)
- Giovanni Nolfe
- Department of Mental Health Naples 1, Work Psychopathology Medical Centre, Naples 89122, Italy.
| | - Mario Cirillo
- Neuroradiology Service, Department of Medical, Surgical, Neurological, Metabolic & Aging Sciences, University of Campania "Luigi Vanvitelli", Naples 80131, Italy.
| | - Alessandro Iavarone
- Neurological and Stroke Unit, Centro Traumatologico Ortopedico Hospital, AORN "Ospedali dei Colli", Naples 80131, Italy.
| | - Alberto Negro
- Neuroradiology Service, Department of Medical, Surgical, Neurological, Metabolic & Aging Sciences, University of Campania "Luigi Vanvitelli", Naples 80131, Italy.
| | - Elisabetta Garofalo
- Neurological and Stroke Unit, Centro Traumatologico Ortopedico Hospital, AORN "Ospedali dei Colli", Naples 80131, Italy.
| | - Annisa Cotena
- Department of Mental Health Naples 1, Work Psychopathology Medical Centre, Naples 89122, Italy.
| | - Massimo Lazazzara
- Department of Mental Health Naples 1, Work Psychopathology Medical Centre, Naples 89122, Italy.
| | - Gemma Zontini
- Department of Mental Health Naples 1, Work Psychopathology Medical Centre, Naples 89122, Italy.
| | - Sossio Cirillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples 80131, Italy.
| |
Collapse
|
56
|
Frías-Lasserre D, Villagra CA, Guerrero-Bosagna C. Stress in the Educational System as a Potential Source of Epigenetic Influences on Children's Development and Behavior. Front Behav Neurosci 2018; 12:143. [PMID: 30057532 PMCID: PMC6053942 DOI: 10.3389/fnbeh.2018.00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022] Open
Abstract
Despite current advances on the relevance of environmental cues and epigenetic mechanisms in biological processes, including behavior, little attention has been paid to the potential link between epigenetic influences and educational sciences. For instance, could the learning environment and stress determine epigenetic marking, affecting students' behavior development? Could this have consequences on educational outcomes? So far, it has been shown that environmental stress influences neurological processes and behavior both in humans and rats. Through epigenetic mechanisms, offspring from stressed individuals develop altered behavior without any exposure to traumatizing experiences. Methylated DNA and noncoding RNAs regulate neurological processes such as synaptic plasticity and brain cortex development in children. The malfunctioning of these processes is associated with several neurological disorders, and these findings open up new avenues for the design of enriched environments for education and therapy. In this article, we discuss current cases of stress and behavioral disorders found in youngsters, and highlight the importance of considering epigenetic processes affecting the development of cognitive abilities and learning within the educational environment and for the development of teaching methodologies.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Cristian A. Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
57
|
Inflammatory markers and their possible effects on cognitive function in women with posttraumatic stress disorder. J Psychiatr Res 2018; 102:192-200. [PMID: 29684628 DOI: 10.1016/j.jpsychires.2018.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 01/24/2023]
Abstract
Posttraumatic stress disorder (PTSD) has been associated with increased inflammation, albeit with some controversy. Another key feature of PTSD is compromised function in wide-ranging cognitive domains. Increased peripheral inflammation can contribute to cognitive dysfunction, although this relationship has not been studied in patients with PTSD. Here, we examined blood inflammatory markers in adult patients with PTSD compared to healthy controls taking account of potentially confounding effects of childhood maltreatment and comorbid major depressive disorder (MDD), and explored the association between inflammation and cognition. We enrolled 40 women with PTSD, most of whom developed the disorder after interpersonal violence during adulthood, and 65 healthy control women. Diagnoses were made based on DSM-IV. History of childhood maltreatment was assessed using the Childhood Trauma Questionnaire (CTQ). Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Blood samples were collected for the measurement of 5 inflammatory markers including interleukin-6 (IL-6), soluble IL-6 receptor, interleukin-1β, high-sensitivity tumor necrosis factor-α, and high-sensitivity C-reactive protein. Compared to controls, patients with PTSD showed significantly higher IL-6 levels (p = 0.009) and lower scores on all RBANS domains (all p < 0.01). IL-6 levels in patients were not significantly associated with the presence/absence of comorbid MDD or CTQ scores. IL-6 levels in patients were significantly negatively correlated with RBANS visuospatial construction (p = 0.046), language (p = 0.008), attention (p = 0.036) and total score (p = 0.008). These results suggest that elevated IL-6 is associated with PTSD and that the lower cognitive function in PTSD may be due at least partly to increased inflammation.
Collapse
|
58
|
Persistent Stress-Induced Neuroplastic Changes in the Locus Coeruleus/Norepinephrine System. Neural Plast 2018; 2018:1892570. [PMID: 30008741 PMCID: PMC6020552 DOI: 10.1155/2018/1892570] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 11/25/2022] Open
Abstract
Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.
Collapse
|
59
|
Schultz IZ, Sepehry AA, Greer SC. Impact of Common Mental Health Disorders on Cognition: Depression and Posttraumatic Stress Disorder in Forensic Neuropsychology Context. PSYCHOLOGICAL INJURY & LAW 2018. [DOI: 10.1007/s12207-018-9322-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
60
|
Feng P, Becker B, Feng T, Zheng Y. Alter spontaneous activity in amygdala and vmPFC during fear consolidation following 24 h sleep deprivation. Neuroimage 2018; 172:461-469. [DOI: 10.1016/j.neuroimage.2018.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022] Open
|
61
|
Ben-Zion Z, Fine NB, Keynan NJ, Admon R, Green N, Halevi M, Fonzo GA, Achituv M, Merin O, Sharon H, Halpern P, Liberzon I, Etkin A, Hendler T, Shalev AY. Cognitive Flexibility Predicts PTSD Symptoms: Observational and Interventional Studies. Front Psychiatry 2018; 9:477. [PMID: 30337890 PMCID: PMC6180246 DOI: 10.3389/fpsyt.2018.00477] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Post-Traumatic Stress Disorder (PTSD) is a prevalent, severe and tenacious psychopathological consequence of traumatic events. Neurobehavioral mechanisms underlying PTSD pathogenesis have been identified, and may serve as risk-resilience factors during the early aftermath of trauma exposure. Longitudinally documenting the neurobehavioral dimensions of early responses to trauma may help characterize survivors at risk and inform mechanism-based interventions. We present two independent longitudinal studies that repeatedly probed clinical symptoms and neurocognitive domains in recent trauma survivors. We hypothesized that better neurocognitive functioning shortly after trauma will be associated with less severe PTSD symptoms a year later, and that an early neurocognitive intervention will improve cognitive functioning and reduce PTSD symptoms. Methods: Participants in both studies were adult survivors of traumatic events admitted to two general hospitals' emergency departments (EDs) in Israel. The studies used identical clinical and neurocognitive tools, which included assessment of PTSD symptoms and diagnosis, and a battery of neurocognitive tests. The first study evaluated 181 trauma-exposed individuals one-, six-, and 14 months following trauma exposure. The second study evaluated 97 trauma survivors 1 month after trauma exposure, randomly allocated to 30 days of web-based neurocognitive intervention (n = 50) or control tasks (n = 47), and re-evaluated all subjects three- and 6 months after trauma exposure. Results: In the first study, individuals with better cognitive flexibility at 1 month post-trauma showed significantly less severe PTSD symptoms after 13 months (p = 0.002). In the second study, the neurocognitive training group showed more improvement in cognitive flexibility post-intervention (p = 0.019), and lower PTSD symptoms 6 months post-trauma (p = 0.017), compared with controls. Intervention- induced improvement in cognitive flexibility positively correlated with clinical improvement (p = 0.002). Discussion: Cognitive flexibility, shortly after trauma exposure, emerged as a significant predictor of PTSD symptom severity. It was also ameliorated by a neurocognitive intervention and associated with a better treatment outcome. These findings support further research into the implementation of mechanism-driven neurocognitive preventive interventions for PTSD.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Naomi B Fine
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Psychological Trauma Care Center, Shaare-Zedek Medical Center, Jerusalem, Israel.,School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nimrod Jackob Keynan
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Nili Green
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Mor Halevi
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Greg A Fonzo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.,Stanford Neurosciences Institute, Stanford University, Stanford, CA, United States.,Veterans Affairs Palo Alto Healthcare System, The Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, United States
| | - Michal Achituv
- Psychological Trauma Care Center, Shaare-Zedek Medical Center, Jerusalem, Israel
| | - Ofer Merin
- Trauma Unit and Department of Cardiothoracic Surgery, Shaare-Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haggai Sharon
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Anesthesiology and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Pain Management and Neuromodulation Centre, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Pinchas Halpern
- Department of Emergency Medicine, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States.,Stanford Neurosciences Institute, Stanford University, Stanford, CA, United States.,Veterans Affairs Palo Alto Healthcare System, The Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, United States
| | - Talma Hendler
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
62
|
Mehta D, Bruenig D, Carrillo-Roa T, Lawford B, Harvey W, Morris CP, Smith AK, Binder EB, Young RM, Voisey J. Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD. Acta Psychiatr Scand 2017; 136:493-505. [PMID: 28795405 DOI: 10.1111/acps.12778] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Epigenetic modifications such as DNA methylation may play a key role in the aetiology and serve as biomarkers for post-traumatic stress disorder (PTSD). We performed a genomewide analysis to identify genes whose DNA methylation levels are associated with PTSD. METHOD A total of 211 individuals comprising Australian male Vietnam War veterans (n = 96) and males from a general population belonging to the Grady Trauma Project (n = 115) were included. Genomewide DNA methylation was performed from peripheral blood using the Illumina arrays. Data analysis was performed using generalized linear regression models. RESULTS Differential DNA methylation of 17 previously reported PTSD candidate genes was associated with PTSD symptom severity. Genomewide analyses revealed CpG sites spanning BRSK1, LCN8, NFG and DOCK2 genes were associated with PTSD symptom severity. We replicated the findings of DOCK2 in an independent cohort. Pathway analysis revealed that among the associated genes, genes within actin cytoskeleton and focal adhesion molecular pathways were enriched. CONCLUSION These data highlight the role of DNA methylation as biomarkers of PTSD. The results support the role of previous candidates and uncover novel genes associated with PTSD, such as DOCK2. This study contributes to our understanding of the biological underpinnings of PTSD.
Collapse
Affiliation(s)
- D Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - D Bruenig
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - T Carrillo-Roa
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - B Lawford
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - W Harvey
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - C P Morris
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - A K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.,Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - E B Binder
- Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - R McD Young
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - J Voisey
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
63
|
Abstract
Progress in clinical and affective neuroscience is redefining psychiatric illness as symptomatic expression of cellular/molecular dysfunctions in specific brain circuits. Post-traumatic stress disorder (PTSD) has been an exemplar of this progress, with improved understanding of neurobiological systems subserving fear learning, salience detection, and emotion regulation explaining much of its phenomenology and neurobiology. However, many features remain unexplained and a parsimonious model that more fully accounts for symptoms and the core neurobiology remains elusive. Contextual processing is a key modulatory function of hippocampal-prefrontal-thalamic circuitry, allowing organisms to disambiguate cues and derive situation-specific meaning from the world. We propose that dysregulation within this context-processing circuit is at the core of PTSD pathophysiology, accounting for much of its phenomenology and most of its biological findings. Understanding core mechanisms like this, and their underlying neural circuits, will sharpen diagnostic precision and understanding of risk factors, enhancing our ability to develop preventive and "personalized" interventions.
Collapse
Affiliation(s)
- Israel Liberzon
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA; Mental Health Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - James L Abelson
- University of Michigan, Department of Psychiatry, Ann Arbor, MI 48109-2700, USA
| |
Collapse
|
64
|
Boukezzi S, El Khoury-Malhame M, Auzias G, Reynaud E, Rousseau PF, Richard E, Zendjidjian X, Roques J, Castelli N, Correard N, Guyon V, Gellato C, Samuelian JC, Cancel A, Comte M, Latinus M, Guedj E, Khalfa S. Grey matter density changes of structures involved in Posttraumatic Stress Disorder (PTSD) after recovery following Eye Movement Desensitization and Reprocessing (EMDR) therapy. Psychiatry Res Neuroimaging 2017; 266:146-152. [PMID: 28667881 DOI: 10.1016/j.pscychresns.2017.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/16/2017] [Accepted: 06/18/2017] [Indexed: 12/21/2022]
Abstract
Recovery of stress-induced structural alterations in Posttraumatic Stress Disorder (PTSD) remains largely unexplored. This study aimed to determine whether symptoms improvement is associated with grey matter (GM) density changes of brain structures involved in PTSD. Two groups of PTSD patients were involved in this study. The first group was treated with Eye Movement Desensitization and Reprocessing (EMDR) therapy and recovered from their symptoms (recovery group) (n = 11); Patients were scanned prior to therapy (T1), one week (T2) and five months after the end of therapy (T3). The second group included patients which followed a supportive therapy and remained symptomatic (wait-list group) (n = 7). They were scanned at three time-steps mimicking the same inter-scan intervals. Voxel-based morphometry (VBM) was used to characterize GM density evolution. GM density values showed a significant group-by-time interaction effect between T1 and T3 in prefrontal cortex areas. These interaction effects were driven by a GM density increase in the recovery group with respect to the wait-list group. Symptoms removal goes hand-in-hand with GM density enhancement of structures involved in emotional regulation.
Collapse
Affiliation(s)
- Sarah Boukezzi
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France.
| | | | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France; Laboratoire des Sciences de l'Information et des Systèmes, UMR 7296, Aix-Marseille Université & CNRS, Marseille, France
| | - Emmanuelle Reynaud
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Pierre-François Rousseau
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Emmanuel Richard
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Xavier Zendjidjian
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Jacques Roques
- Centre de Traitement des Traumatismes Psychiques de Montpellier, Montpellier, France
| | | | - Nadia Correard
- Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite, Pôle de psychiatrie, Marseille, France
| | - Valérie Guyon
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Caroline Gellato
- Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite, Pôle de psychiatrie, Marseille, France
| | - Jean-Claude Samuelian
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Aida Cancel
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France; Centre Hospitalier Universitaire de Saint-Etienne, Pôle de Psychiatrie, Saint-Etienne, France
| | - Magali Comte
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Marianne Latinus
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| | - Eric Guedj
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France; Assistance Publiques des Hôpitaux de Marseille (APHM), Timone, Service Central de Biophysique et Médecine Nucléaire, Marseille, France; Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
| | - Stéphanie Khalfa
- Institut de Neurosciences de la Timone UMR 7289, CNRS-AMU, Campus santé timone, 27, Bd Jean Moulin, 13385 Marseille cedex 5e, France
| |
Collapse
|
65
|
|
66
|
Muhie S, Gautam A, Chakraborty N, Hoke A, Meyerhoff J, Hammamieh R, Jett M. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl Psychiatry 2017; 7:e1135. [PMID: 28534873 PMCID: PMC5534959 DOI: 10.1038/tp.2017.91] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 12/26/2022] Open
Abstract
A social-stress mouse model was used to simulate features of post-traumatic stress disorder (PTSD). The model involved exposure of an intruder (male C57BL/6) mouse to a resident aggressor (male SJL) mouse for 5 or 10 consecutive days. Transcriptome changes in brain regions (hippocampus, amygdala, medial prefrontal cortex and hemibrain), blood and spleen as well as epigenome changes in the hemibrain were assayed after 1- and 10-day intervals following the 5-day trauma or after 1- and 42-day intervals following the 10-day trauma. Analyses of differentially expressed genes (common among brain, blood and spleen) and differentially methylated promoter regions revealed that neurogenesis and synaptic plasticity pathways were activated during the early responses but were inhibited after the later post-trauma intervals. However, inflammatory pathways were activated throughout the observation periods, except in the amygdala in which they were inhibited only at the later post-trauma intervals. Phenotypically, inhibition of neurogenesis was corroborated by impaired Y-maze behavioral responses. Sustained neuroinflammation appears to drive the development and maintenance of behavioral manifestations of PTSD, potentially via its inhibitory effect on neurogenesis and synaptic plasticity. By contrast, peripheral inflammation seems to be directly responsible for tissue damage underpinning somatic comorbid pathologies. Identification of overlapping, differentially regulated genes and pathways between blood and brain suggests that blood could be a useful and accessible brain surrogate specimen for clinical translation.
Collapse
Affiliation(s)
- S Muhie
- The Geneva Foundation, Frederick, MD, USA,Advanced Academics Programs, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - A Gautam
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA
| | | | - A Hoke
- The Geneva Foundation, Frederick, MD, USA
| | | | - R Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA
| | - M Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA,Integrative Systems Biology, US Army Center for Environmental Health Research, 568 Doughten Drive, Fort Detrick, Frederick, MD 21702-5010, USA. E-mail:
| |
Collapse
|
67
|
Kong F, Han F, Xu Y, Shi Y. Molecular Mechanisms of IRE1α-ASK1 Pathway Reactions to Unfolded Protein Response in DRN Neurons of Post-Traumatic Stress Disorder Rats. J Mol Neurosci 2017; 61:531-541. [PMID: 28210980 DOI: 10.1007/s12031-017-0895-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 12/12/2022]
Abstract
The goal of this study was to further elucidate the molecular mechanisms of post-traumatic stress disorder (PTSD) pathogenesis and to provide experimental evidence for new drug targets for effective PTSD treatment. Expression changes of IRE1α, ASK1, and other downstream molecules of the IRE1α-ASK1 endoplasmic reticulum stress (ERS) signaling pathway were investigated. JNK, P38, CHOP, Bcl-2, and Bax were analyzed at both protein and mRNA levels of dorsal raphe nucleus (DRN) neurons of PTSD rats. The rat PTSD model was established via the single-prolonged stress (SPS) method. Animals were randomly divided into five groups: a normal control group, a 1-day SPS group, a 4-days SPS group, a 7-day SPS group, and a 14-day SPS group. Spatial memory and learning ability of rats were evaluated subsequent to SPS using the Morris water maze test. Changes of IRE1α expression in the control and SPS groups were detected via immunohistochemistry (IHC). Protein and mRNA expressions of IRE1α, ASK1, JNK, P38, CHOP, Bcl-2, and Bax in the control and SPS groups were detected via Western blot and RT-PCR, respectively. The Morris water maze test revealed significantly longer average escape latencies in all SPS groups compared to the control group. In the spatial probe test, the percentage of time spent in the target quadrant was significantly lower in the SPS groups compared to control. IHC revealed increased positive expression of IRE1α subsequent to SPS challenge, reaching maximal levels on days four and seven (P < 0.01), while significantly decreasing on day 14 (P < 0.01). Western blot and RT-PCR revealed that protein and mRNA expressions of IRE1α, ASK1, JNK, CHOP, and P38 were significantly increased compared to control, peaking on days one, four, and seven post-SPS before returning to previous levels. Compared to control, expressions of Bcl-2 and Bax presented an initial increasing tendency followed by a decrease. A peak of Bcl-2 expression appeared early on day one following SPS, then decreased to a steady level. Bax expression in the SPS groups remained constant during early stages after SPS (days one to three) compared to control; however, expression significantly increased on day four and maintained a high level. In summary, 1) SPS challenge significantly activated the IRE1α-ASK1-JNK and IRE1α-ASK1-P38 apoptosis-signaling pathways in DRN neurons of PTSD rats. This resulted in a cascade of downstream reactions and ultimately apoptosis of DRN neurons. 2) Increased expression of apoptosis-associated molecules Bcl-2 and Bax in DRN neurons following SPS challenge was revealed as a central mechanism, inducing apoptosis of DRN neurons in PTSD rats.
Collapse
Affiliation(s)
- Fanzhen Kong
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.,Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China
| | - Yanhao Xu
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, School of Basic Medicine, China Medical University, Shenyang, China.
| |
Collapse
|
68
|
Zhang B. Consequences of early adverse rearing experience(EARE) on development: insights from non-human primate studies. Zool Res 2017; 38:7-35. [PMID: 28271667 PMCID: PMC5368383 DOI: 10.13918/j.issn.2095-8137.2017.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022] Open
Abstract
Early rearing experiences are important in one's whole life, whereas early adverse rearing experience(EARE) is usually related to various physical and mental disorders in later life. Although there were many studies on human and animals, regarding the effect of EARE on brain development, neuroendocrine systems, as well as the consequential mental disorders and behavioral abnormalities, the underlying mechanisms remain unclear. Due to the close genetic relationship and similarity in social organizations with humans, non-human primate(NHP) studies were performed for over 60 years. Various EARE models were developed to disrupt the early normal interactions between infants and mothers or peers. Those studies provided important insights of EARE induced effects on the physiological and behavioral systems of NHPs across life span, such as social behaviors(including disturbance behavior, social deficiency, sexual behavior, etc), learning and memory ability, brain structural and functional developments(including influences on neurons and glia cells, neuroendocrine systems, e.g., hypothalamic-pituitary-adrenal(HPA) axis, etc). In this review, the effects of EARE and the underlying epigenetic mechanisms were comprehensively summarized and the possibility of rehabilitation was discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming Yunnan 650500, China; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500, China; National Institute of Health, Bethesda, Maryland, USA.
| |
Collapse
|
69
|
Kalivas BC, Kalivas PW. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 27069381 PMCID: PMC4826772 DOI: 10.31887/dcns.2016.18.1/pkalivas] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.
Collapse
Affiliation(s)
- Benjamin C Kalivas
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peter W Kalivas
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
70
|
Prediction of Possible Biomarkers and Novel Pathways Conferring Risk to Post-Traumatic Stress Disorder. PLoS One 2016; 11:e0168404. [PMID: 27997584 PMCID: PMC5172609 DOI: 10.1371/journal.pone.0168404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/29/2016] [Indexed: 02/02/2023] Open
Abstract
Post-traumatic stress disorder is one of the common mental ailments that is triggered by exposure to traumatic events. Till date, the molecular factors conferring risk to the development of PTSD is not well understood. In this study, we have conducted a meta-analysis followed by hierarchical clustering and functional enrichment, to uncover the potential molecular networks and critical genes which play an important role in PTSD. Two datasets of expression profiles from Peripheral Blood Mononuclear Cells from 62 control samples and 63 PTSD samples were included in our study. In PTSD samples of GSE860 dataset, we identified 26 genes informative when compared with Post-deploy PTSD condition and 58 genes informative when compared with Pre-deploy and Post-deploy PTSD of GSE63878 dataset. We conducted the meta-analysis using Fisher, roP, Stouffer, AW, SR, PR and RP methods in MetaDE package. Results from the rOP method of MetaDE package showed that among these genes, the following showed significant changes including, OR2B6, SOX21, MOBP, IL15, PTPRK, PPBPP2 and SEC14L5. Gene ontology analysis revealed enrichment of these significant PTSD-related genes for cell proliferation, DNA damage and repair (p-value ≤ 0.05). Furthermore, interaction network analysis was performed on these 7 significant genes. This analysis revealed highly connected functional interaction networks with two candidate genes, IL15 and SEC14L5 highly enriched in networks. Overall, from these results, we concluded that these genes can be recommended as some of the potential targets for PTSD.
Collapse
|
71
|
Back SE, McCauley JL, Korte KJ, Gros DF, Leavitt V, Gray KM, Hamner MB, DeSantis SM, Malcolm R, Brady KT, Kalivas PW. A Double-Blind, Randomized, Controlled Pilot Trial of N-Acetylcysteine in Veterans With Posttraumatic Stress Disorder and Substance Use Disorders. J Clin Psychiatry 2016; 77:e1439-e1446. [PMID: 27736051 PMCID: PMC5226873 DOI: 10.4088/jcp.15m10239] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/20/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The antioxidant N-acetylcysteine is being increasingly investigated as a therapeutic agent in the treatment of substance use disorders (SUDs). This study explored the efficacy of N-acetylcysteine in the treatment of posttraumatic stress disorder (PTSD), which frequently co-occurs with SUD and shares impaired prefrontal cortex regulation of basal ganglia circuitry, in particular at glutamate synapses in the nucleus accumbens. METHODS Veterans with PTSD and SUD per DSM-IV criteria (N = 35) were randomly assigned to receive a double-blind, 8-week course of N-acetylcysteine (2,400 mg/d) or placebo plus cognitive-behavioral therapy for SUD (between March 2013 and April 2014). Primary outcome measures included PTSD symptoms (Clinician-Administered PTSD Scale, PTSD Checklist-Military) and craving (Visual Analog Scale). Substance use and depression were also assessed. RESULTS Participants treated with N-acetylcysteine compared to placebo evidenced significant improvements in PTSD symptoms, craving, and depression (β values < -0.33; P values < .05). Substance use was low for both groups, and no significant between-group differences were observed. N-acetylcysteine was well tolerated, and retention was high. CONCLUSIONS This is the first randomized controlled trial to investigate N-acetylcysteine as a pharmacologic treatment for PTSD and SUD. Although preliminary, the findings provide initial support for the use of N-acetylcysteine in combination with psychotherapy among individuals with co-occurring PTSD and SUD. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02499029.
Collapse
Affiliation(s)
- Sudie E. Back
- Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Kristina J. Korte
- Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Daniel F. Gros
- Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Kevin M. Gray
- Medical University of South Carolina, Charleston, SC
| | - Mark B. Hamner
- Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | | - Robert Malcolm
- Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - Kathleen T. Brady
- Medical University of South Carolina, Charleston, SC,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | | |
Collapse
|
72
|
Bharadwaj RA, Jaffe AE, Chen Q, Deep-Soboslay A, Goldman AL, Mighdoll MI, Cotoia JA, Brandtjen AC, Shin J, Hyde TM, Mattay VS, Weinberger DR, Kleinman JE. Genetic risk mechanisms of posttraumatic stress disorder in the human brain. J Neurosci Res 2016; 96:21-30. [PMID: 27775175 DOI: 10.1002/jnr.23957] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022]
Abstract
Posttraumatic stress disorder (PTSD) follows exposure to a traumatic event in susceptible individuals. Recently, genome-wide association studies have identified a number of genetic sequence variants that are associated with the risk of developing PTSD. To follow up on identifying the molecular mechanisms of these risk variants, we performed genotype to RNA sequencing-derived quantitative expression (whole gene, exon, and exon junction levels) analysis in the dorsolateral prefrontal cortex (DLPFC) of normal postmortem human brains. We further investigated genotype-gene expression associations within the amygdala in a smaller independent RNA sequencing (Genotype-Tissue Expression [GTEx]) dataset. Our DLPFC analyses identified significant expression quantitative trait loci (eQTL) associations for a "candidate" PTSD risk SNP rs363276 and the expression of two genes: SLC18A2 and PDZD8, where the PTSD risk/minor allele T was associated with significantly lower levels of gene expression for both genes, in the DLPFC. These eQTL associations were independently confirmed in the amygdala from the GTEx database. Rs363276 "T" carriers also showed significantly increased activity in the amygdala during an emotional face-matching task in healthy volunteers. Taken together, our preliminary findings in normal human brains represent a tractable approach to identify mechanisms by which genetic variants potentially increase an individual's risk for developing PTSD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, Maryland.,Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, Maryland
| | | | | | | | - John A Cotoia
- Lieber Institute for Brain Development, Baltimore, Maryland
| | | | - JooHeon Shin
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, Maryland.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, Maryland.,Departments of Neurology and Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland.,Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Neuroscience and Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, Maryland.,Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
73
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
74
|
Martínez L, Prada E, Satler C, Tavares MCH, Tomaz C. Executive Dysfunctions: The Role in Attention Deficit Hyperactivity and Post-traumatic Stress Neuropsychiatric Disorders. Front Psychol 2016; 7:1230. [PMID: 27602003 PMCID: PMC4993788 DOI: 10.3389/fpsyg.2016.01230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Executive functions (EFs) is an umbrella term for various cognitive processes controlled by a complex neural activity, which allow the production of different types of behaviors seeking to achieve specific objectives, one of them being inhibitory control. There is a wide consensus that clinical and behavioral alterations associated with EF, such as inhibitory control, are present in various neuropsychiatric disorders. This paper reviews the research literature on the relationship between executive dysfunction, frontal-subcortical neural circuit changes, and the psychopathological processes associated with attention deficit hyperactivity disorder (ADHD) and post-traumatic stress disorder (PTSD). A revision on the role of frontal-subcortical neural circuits and their presumable abnormal functioning and the high frequency of neuropsychiatric symptoms could explain the difficulties with putting effector mechanisms into action, giving individuals the necessary tools to act efficiently in their environment. Although, neuronal substrate data about ADHD and PTSD has been reported in the literature, it is isolated. Therefore, this review highlights the overlapping of neural substrates in the symptomatology of ADHD and PTSD disorders concerning EFs, especially in the inhibitory component. Thus, the changes related to impaired EF that accompany disorders like ADHD and PTSD could be explained by disturbances that have a direct or indirect impact on the functioning of these loops. Initially, the theoretical model of EF according to current neuropsychology will be presented, focusing on the inhibitory component. In a second stage, this component will be analyzed for each of the disorders of interest, considering the clinical aspects, the etiology and the neurobiological basis. Additionally, commonalities between the two neuropsychiatric conditions will be taken into consideration from the perspectives of cognitive and emotional inhibition. Finally, the implications and future prospects for research and interventions in the area will be outlined, with the intention of contributing scientific reference information that encompasses the knowledge and understanding of executive dysfunction and its relationship with these treated disorders.
Collapse
Affiliation(s)
- Lía Martínez
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of Brasilia Brasilia, Brazil
| | - Edward Prada
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of BrasiliaBrasilia, Brazil; Faculty of Psychology, Social Sciences Department, Universidad Pontificia Bolivariana Seccional BucaramangaBucaramanga, Colombia
| | - Corina Satler
- Faculty of Ceilandia, University of Brasilia Brasilia, Brazil
| | - Maria C H Tavares
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of Brasilia Brasilia, Brazil
| | - Carlos Tomaz
- Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, University of BrasiliaBrasilia, Brazil; Neuroscience Research Program, University CEUMASão Luis, Brazil
| |
Collapse
|
75
|
Behavioral, emotional and neurobiological determinants of coronary heart disease risk in women. Neurosci Biobehav Rev 2016; 74:297-309. [PMID: 27496672 DOI: 10.1016/j.neubiorev.2016.04.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
Women have more of the stress-related behavioral profile that has been linked to cardiovascular disease than men. For example, women double the rates of stress-related mental disorders such as depression and posttraumatic stress disorder (PTSD) than men, and have higher rates of exposure to adversity early in life. This profile may increase women's long-term risk of cardiometabolic conditions linked to stress, especially coronary heart disease (CHD). In addition to having a higher prevalence of psychosocial stressors, women may be more vulnerable to the adverse effects of these stressors on CHD, perhaps through altered neurobiological physiology. Emerging data suggest that young women are disproportionally susceptible to the adverse effects of stress on the risk of cardiovascular disease, both in terms of initiating the disease as well as worsening the prognosis in women who have already exhibited symptoms of the disease. Women's potential vulnerability to psychosocial stress could also help explain their higher propensity toward abnormal coronary vasomotion and microvascular disease compared with men.
Collapse
|
76
|
Brooks SJ, Stein DJ. A systematic review of the neural bases of psychotherapy for anxiety and related disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2016. [PMID: 26487807 PMCID: PMC4610611 DOI: 10.31887/dcns.2015.17.3/sbrooks] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions.
Collapse
Affiliation(s)
- Samantha J Brooks
- UCT Department of Psychiatry and Mental Health, Grotte Schuur Hospital, Observatory, Cape Town, South Africa
| | - Dan J Stein
- UCT Department of Psychiatry and Mental Health, Grotte Schuur Hospital, Observatory, Cape Town, South Africa; MRC Unit on Anxiety & Stress Disorders, Cape Town, South Africa
| |
Collapse
|
77
|
Rodríguez-Sierra OE, Goswami S, Turesson HK, Pare D. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety. Transl Psychiatry 2016; 6:e857. [PMID: 27434491 PMCID: PMC5545714 DOI: 10.1038/tp.2016.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022] Open
Abstract
A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed.
Collapse
Affiliation(s)
- O E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - S Goswami
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - D Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| |
Collapse
|
78
|
Wang X, Xie H, Cotton AS, Duval ER, Tamburrino MB, Brickman KR, Elhai JD, Ho SS, McLean SA, Ferguson EJ, Liberzon I. Preliminary Study of Acute Changes in Emotion Processing in Trauma Survivors with PTSD Symptoms. PLoS One 2016; 11:e0159065. [PMID: 27415431 PMCID: PMC4944986 DOI: 10.1371/journal.pone.0159065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence suggests traumatic experience can rapidly alter brain activation associated with emotion processing. However, little is known about acute changes in emotion neurocircuits that underlie PTSD symptom development. To examine acute alterations in emotion circuit activation and structure that may be linked to PTSD symptoms, thirty-eight subjects performed a task of appraisal of emotional faces as their brains were functionally and structurally studied with MRI at both two weeks and three months after motor vehicle collision (MVC). As determined by symptoms reported in the PTSD Checklist at three months, sixteen survivors developed probable PTSD, whereas the remaining 22 did not meet criteria for PTSD diagnosis (non-PTSD). The probable PTSD group had greater activation than the non-PTSD group in dorsal and ventral medial prefrontal cortex (dmPFC and vmPFC) while appraising fearful faces within two weeks after MVC and in left insular cortex (IC) three months after MVC. dmPFC activation at two weeks significantly positively correlated with PTSD symptom severity at two weeks (R = 0.462, P = 0.006) and three months (R = 0.418, p = 0.012). Changes over time in dmPFC activation and in PTSD symptom severity were also significantly positively correlated in the probable PTSD group (R = 0.641, P = 0.018). A significant time by group interaction was found for volume changes in left superior frontal gyrus (SFG, F = 6.048, p = 0.019) that partially overlapped dmPFC active region. Between two weeks and three months, left SFG volume decreased in probable PTSD survivors. These findings identify alterations in frontal cortical activity and structure during the early post-trauma period that appear to be associated with development of PTSD symptoms.
Collapse
Affiliation(s)
- Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, Ohio, United States of America
| | - Hong Xie
- Department of Neurosciences, University of Toledo, Toledo, Ohio, United States of America
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, Ohio, United States of America
| | - Elizabeth R Duval
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marijo B Tamburrino
- Department of Psychiatry, University of Toledo, Toledo, Ohio, United States of America
| | - Kristopher R Brickman
- Department of Emergency Medicine, University of Toledo, Toledo, Ohio, United States of America
| | - Jon D Elhai
- Department of Psychology, University of Toledo, Toledo, Ohio, United States of America
| | - S Shaun Ho
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samuel A McLean
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric J Ferguson
- Department of Trauma service, ProMedica Toledo Hospital, Toledo, Ohio, United States of America
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
79
|
Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats. Neuroscience 2016; 330:79-89. [PMID: 27241944 DOI: 10.1016/j.neuroscience.2016.05.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females.
Collapse
|
80
|
Cheung JSC, Chan JNM, Lau BWM, Ngai SPC. Purposeful Activity in Psychiatric Rehabilitation: Is Neurogenesis a Key Player? Hong Kong J Occup Ther 2016; 27:42-47. [PMID: 30186060 PMCID: PMC6091993 DOI: 10.1016/j.hkjot.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Adult neurogenesis, defined as the generation of new neurons in adulthood, has
been a fascinating discovery in neuroscience, as the continuously replenishing
neuronal population provides a new perspective to understand neuroplasticity.
Besides maintaining normal physiological function, neurogenesis also plays a key
role in pathophysiology and symptomatology for psychiatric conditions. In the
past decades, extensive effort has been spent on the understanding of the
functional significance of neurogenesis in psychiatric conditions, mechanisms of
pharmacological treatment, and discovery of novel drug candidates for different
conditions. In a clinical situation, however, long-term rehabilitation
treatment, in which occupational therapy is the key discipline, is a valuable,
economical, and commonly used treatment alternative to psychotropic medications.
Surprisingly, comparatively few studies have investigated the biological and
neurogenic effects of different psychiatric rehabilitative treatments. To
address the possible linkage between psychiatric rehabilitation and
neurogenesis, this review discusses the role of neurogenesis in schizophrenia,
major depression, and anxiety disorders. The review also discusses the potential
neurogenic effect of currently used psychiatric rehabilitation treatments. With
a better understanding of the biological effect of psychiatric rehabilitation
methods and future translational studies, it is hoped that the therapeutic
effect of psychiatric rehabilitation methods could be explained with a novel
perspective. Furthermore, this knowledge will benefit future formulation of
treatment methods, especially purposeful activities in occupational therapy, for
the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Joyce Siu-Chong Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Jackie Ngai-Man Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
81
|
Abstract
Pathological neural activity could be treated by directing specific plasticity to renormalize circuits and restore function. Rehabilitative therapies aim to promote adaptive circuit changes after neurological disease or injury, but insufficient or maladaptive plasticity often prevents a full recovery. The development of adjunctive strategies that broadly support plasticity to facilitate the benefits of rehabilitative interventions has the potential to improve treatment of a wide range of neurological disorders. Recently, stimulation of the vagus nerve in conjunction with rehabilitation has emerged as one such potential targeted plasticity therapy. Vagus nerve stimulation (VNS) drives activation of neuromodulatory nuclei that are associated with plasticity, including the cholinergic basal forebrain and the noradrenergic locus coeruleus. Repeatedly pairing brief bursts of VNS sensory or motor events drives robust, event-specific plasticity in neural circuits. Animal models of chronic tinnitus, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, and post-traumatic stress disorder benefit from delivery of VNS paired with successful trials during rehabilitative training. Moreover, mounting evidence from pilot clinical trials provides an initial indication that VNS-based targeted plasticity therapies may be effective in patients with neurological diseases and injuries. Here, I provide a discussion of the current uses and potential future applications of VNS-based targeted plasticity therapies in animal models and patients, and outline challenges for clinical implementation.
Collapse
Affiliation(s)
- Seth A Hays
- Texas Biomedical Device Center, Richardson, TX, USA.
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
- School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
82
|
Kalivas BC, Kalivas PW. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking. DIALOGUES IN CLINICAL NEUROSCIENCE 2016; 18:65-76. [PMID: 27069381 PMCID: PMC4826772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.
Collapse
Affiliation(s)
- Benjamin C Kalivas
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peter W Kalivas
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
83
|
Jahromi M, Razavi S, Amirpour N, Khosravizadeh Z. Paroxetine Can Enhance Neurogenesis during Neurogenic Differentiation of Human Adipose-derived Stem Cells. Avicenna J Med Biotechnol 2016; 8:152-158. [PMID: 27920882 PMCID: PMC5124251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Some antidepressant drugs can promote neuronal cell proliferation in vitro as well as hippocampal neurogenesis in human and animal models. Furthermore, adipose tissue is an available source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human Adipose-Derived Stem Cells (hAD-SCs) may be a suitable source for regenerative medical applications. Since there is no evidence for the effect of Paroxetine as the most commonly prescribed antidepressant drug for neurogenic potential of hADSCs, an attempt was made to determine the effect of Paroxetine on proliferation and neural differentiation of hADSCs. METHODS ADSCs were isolated from human abdominal fat. These cells differentiated to neuron-like cells and were treated with Paroxetine. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and immunofluorescence technique were used for assessment of cell proliferation and neurogenic differentiation potential of induced cells, respectively. RESULTS MTT assay analysis showed that Paroxetine significantly increased the proliferation rate of induced hADSCs (p<0.05), while immunofluorescent staining indicated that Paroxetine treatment during neurogenic differentiation could enhance the mean percentage of Nestin and MAP2 (Microtubule-associated protein-2) positive cells but the mean percentage of GFAP (Glial acidic fibrillary protein) positive cells significantly decreased relative to control group (p<0.05). CONCLUSION Our results provide evidence that Paroxetine can promote proliferation and differentiation rate during neurogenic differentiation of hADSCs. Moreover, Paroxetine can reduce gliogenesis of induced hADSCs during neurogenic differentiation.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Shahnaz Razavi, Ph.D., Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Tel: +98 311 7922455, Fax: +98 311 792 2517, E-mail:
| | - Nushin Amirpour
- Department of Anatomical Sciences, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Khosravizadeh
- Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Drury SS, Sánchez MM, Gonzalez A. When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving. Horm Behav 2016; 77:182-92. [PMID: 26506032 PMCID: PMC4802164 DOI: 10.1016/j.yhbeh.2015.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022]
Abstract
This article is part of a Special Issue "Parental Care".Across mammalian species, mothers shape socio-emotional development and serve as essential external regulators of infant physiology, brain development, behavior patterns, and emotional regulation. Caregiving quality, consistency and predictability shape the infant's underlying neurobiological processes. Although the requirements for "optimal" caregiving differ across species, the negative long-term consequences of the absence of needed caregiving (e.g. neglect) or the presence of harmful/aversive caregiving (e.g. physical abuse), are translatable across species. Recognizing the significant potential of cross species comparisons in terms of defining underlying mechanisms, effective translation requires consideration of the evolutionary, ecological, and fundamental biological and developmental differences between and among species. This review provides both an overview of several success stories of cross-species translations in relation to negative caregiving and a template for future studies seeking to most effectively define the underlying biological processes and advance research dedicated to mitigating the lasting negative health consequences of child maltreatment.
Collapse
Affiliation(s)
- Stacy S Drury
- Tulane University School of Medicine, Department of Psychiatry and Behavioral Sciences, 1430 Tulane Ave, #8055, New Orleans, LA 70112, United States.
| | - Mar M Sánchez
- Department of Psychiatry & Behavioral Science, School of Medicine, Emory University, Atlanta, GA 20322, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA 20329, United States
| | - Andrea Gonzalez
- Offord Centre for Child Studies, McMaster University, Department of Psychiatry and Behavioural Neurosciences, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
85
|
Echiverri-Cohen AM, Zoellner LA, Ho W, Husain J. An analysis of inhibitory functioning in individuals with chronic posttraumatic stress disorder. J Anxiety Disord 2016; 37:94-103. [PMID: 26745516 PMCID: PMC4724420 DOI: 10.1016/j.janxdis.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 11/29/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
Cognitive abnormalities in posttraumatic stress disorder (PTSD) may be a function of underlying inhibitory deficits. Prepulse inhibition (PPI) and attentional blink (AB) are paradigms thought to assess inhibition. Using a sample of 28 individuals with PTSD compared to 20 trauma-exposed and 19 healthy individuals, PPI was examined using white noise that was preceded by a tone, and AB was examined using a presentation of letters in a stream of numbers. Relative to the control group, the PTSD and trauma-exposed groups did not follow the u-shaped pattern in AB, suggesting trauma-exposure and subsequent PTSD are associated with similar impairment in attention. Individuals with PTSD showed reduced PPI compared to trauma-exposed and healthy individuals, suggesting individuals with PTSD exhibit faulty automatic processing. For individuals with PTSD, PTSD severity was associated with a decline in PPI. These findings suggest a general faulty inhibitory mechanism associated with trauma exposure and PTSD.
Collapse
Affiliation(s)
- Aileen M. Echiverri-Cohen
- Department of Psychology, University of Washington, Seattle, Washington, USA,Correspondence concerning this article should be addressed to Aileen M. Echiverri-Cohen Harbor-UCLA Medical Center 1000 W. Carson St. Torrance, CA 90502. Phone: (310) 222-1633,
| | - Lori A. Zoellner
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - William Ho
- Department of Psychology, University of Washington, Seattle, Washington, USA.
| | - Jawad Husain
- Department of Psychology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
86
|
Thomas SA. Neuromodulatory signaling in hippocampus-dependent memory retrieval. Hippocampus 2015; 25:415-31. [PMID: 25475876 DOI: 10.1002/hipo.22394] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Considerable advances have been made toward understanding the molecular signaling events that underlie memory acquisition and consolidation. In contrast, less is known about memory retrieval, despite its necessity for utilizing learned information. This review focuses on neuromodulatory and intracellular signaling events that underlie memory retrieval mediated by the hippocampus, for which the most information is currently available. Among neuromodulators, adrenergic signaling is required for the retrieval of various types of hippocampus-dependent memory. Although they contribute to acquisition and/or consolidation, cholinergic and dopaminergic signaling are generally not required for retrieval. Interestingly, while not required for retrieval, serotonergic and opioid signaling may actually constrain memory retrieval. Roles for histamine and non-opioid neuropeptides are currently unclear but possible. A critical effector of adrenergic signaling in retrieval is reduction of the slow afterhyperpolarization mediated by β1 receptors, cyclic AMP, protein kinase A, Epac, and possibly ERK. In contrast, stress and glucocorticoids impair retrieval by decreasing cyclic AMP, mediated in part by the activation of β2 -adrenergic receptors. Clinically, alterations in neuromodulatory signaling and in memory retrieval occur in Alzheimer's disease, Down syndrome, depression, and post-traumatic stress disorder, and recent evidence has begun to link changes in neuromodulatory signaling with effects on memory retrieval.
Collapse
Affiliation(s)
- Steven A Thomas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
87
|
Saur L, Baptista PPA, Bagatini PB, Neves LT, de Oliveira RM, Vaz SP, Ferreira K, Machado SA, Mestriner RG, Xavier LL. Experimental Post-traumatic Stress Disorder Decreases Astrocyte Density and Changes Astrocytic Polarity in the CA1 Hippocampus of Male Rats. Neurochem Res 2015; 41:892-904. [DOI: 10.1007/s11064-015-1770-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022]
|
88
|
Kuhn M, Scharfenort R, Schümann D, Schiele MA, Münsterkötter AL, Deckert J, Domschke K, Haaker J, Kalisch R, Pauli P, Reif A, Romanos M, Zwanzger P, Lonsdorf TB. Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament. Soc Cogn Affect Neurosci 2015; 11:537-47. [PMID: 26568620 PMCID: PMC4814783 DOI: 10.1093/scan/nsv137] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022] Open
Abstract
Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences.
Collapse
Affiliation(s)
- Manuel Kuhn
- Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Scharfenort
- Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Schümann
- Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry, Psychosomatics, and Psychotherapy and Department of Psychology I, Biological Psychology, Clinical Psychology und Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Anna L Münsterkötter
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics, and Psychotherapy and
| | | | - Jan Haaker
- Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany, Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Raffael Kalisch
- Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany, Neuroimaging Center (NIC), Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Germany
| | - Paul Pauli
- Department of Psychology I, Biological Psychology, Clinical Psychology und Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- University Hospital Johann Wolfgang Goethe-University, Department of Psychiatry, Psychosomatics and Psychotherapy, Frankfurt, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Clinic of Wuerzburg, Wuerzburg, Germany
| | - Peter Zwanzger
- Department of Psychiatry and Psychotherapy, University Hospital Münster, Germany, Department of Psychiatry, Ludwig Maximilians University Munich, Germany, and kbo Inn Salzach Hospital Wasserburg, Germany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Hospital Hamburg-Eppendorf, Hamburg, Germany,
| |
Collapse
|
89
|
Reuveni I, Bonne O, Giesser R, Shragai T, Lazarovits G, Isserles M, Schreiber S, Bick AS, Levin N. Anatomical and functional connectivity in the default mode network of post-traumatic stress disorder patients after civilian and military-related trauma. Hum Brain Mapp 2015; 37:589-99. [PMID: 26536845 DOI: 10.1002/hbm.23051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 11/05/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is characterized by unwanted intrusive thoughts and hyperarousal at rest. As these core symptoms reflect disturbance in resting-state mechanisms, we investigated the functional and anatomical involvement of the default mode network (DMN) in this disorder. The relation between symptomatology and trauma characteristics was considered. Twenty PTSD patients and 20 matched trauma-exposed controls that were exposed to a similar traumatic event were recruited for this study. In each group, 10 patients were exposed to military trauma, and 10 to civilian trauma. PTSD, anxiety, and depression symptom severity were assessed. DMN maps were identified in resting-state scans using independent component analysis. Regions of interest (medial prefrontal, precuneus, and bilateral inferior parietal) were defined and average z-scores were extracted for use in the statistical analysis. The medial prefrontal and the precuneus regions were used for cingulum tractography whose integrity was measured and compared between groups. Similar functional and anatomical connectivity patterns were identified in the DMN of PTSD patients and trauma-exposed controls. In the PTSD group, functional and anatomical connectivity parameters were strongly correlated with clinical measures, and there was evidence of coupling between the anatomical and functional properties. Type of trauma and time from trauma were found to modulate connectivity patterns. To conclude, anatomical and functional connectivity patterns are related to PTSD symptoms and trauma characteristics influence connectivity beyond clinical symptoms. Hum Brain Mapp 37:589-599, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inbal Reuveni
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Omer Bonne
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ruti Giesser
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tamir Shragai
- Neurology Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilad Lazarovits
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Moshe Isserles
- Psychiatry Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Shaul Schreiber
- Psychiatry Department Sourasky Medical Center, Tel-Aviv, Israel
| | - Atira S Bick
- Neurology Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- Neurology Departments, the Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
90
|
Zhou J, Luo Y, Zhang JT, Li MX, Wang CM, Guan XL, Wu PF, Hu ZL, Jin Y, Ni L, Wang F, Chen JG. Propranolol decreases retention of fear memory by modulating the stability of surface glutamate receptor GluA1 subunits in the lateral amygdala. Br J Pharmacol 2015; 172:5068-82. [PMID: 26228348 DOI: 10.1111/bph.13272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Posttraumatic stress disorder (PTSD) is a mental disorder with enhanced retention of fear memory and has profound impact on quality of life for millions of people worldwide. The β-adrenoceptor antagonist propranolol has been used in preclinical and clinical studies for the treatment of PTSD, but the mechanisms underlying its potential efficacy on fear memory retention remain to be elucidated. EXPERIMENTAL APPROACH We investigated the action of propranolol on the retention of conditioned fear memory, the surface expression of glutamate receptor GluA1 subunits of AMPA receptors and synaptic adaptation in the lateral amygdala (LA) of rats. KEY RESULTS Propranolol attenuated reactivation-induced strengthening of fear retention while reducing enhanced surface expression of GluA1 subunits and restoring the impaired long-term depression in LA. These effects of propranolol were mediated by antagonizing reactivation-induced enhancement of adrenergic signalling, which activates PKA and calcium/calmodulin-dependent protein kinase II and then regulates the trafficking of AMPA receptors via phosphorylation of GluA1 subunits at the C-terminus. Both i.p. injection and intra-amygdala infusion of propranolol attenuated reactivation-induced enhancement of fear retention. CONCLUSIONS AND IMPLICATIONS Reactivation strengthens fear retention by increasing the level of noradrenaline and promotes the surface expression of GluA1 subunits and the excitatory synaptic transmission in LA. These findings uncover one mechanism underlying the efficiency of propranolol on retention of fear memories and suggest that β-adrenoceptor antagonists, which act centrally, may be more suitable for the treatment of PTSD.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Ting Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Xing Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can-Ming Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Lei Guan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
91
|
Michopoulos V, Norrholm SD, Jovanovic T. Diagnostic Biomarkers for Posttraumatic Stress Disorder: Promising Horizons from Translational Neuroscience Research. Biol Psychiatry 2015; 78:344-53. [PMID: 25727177 PMCID: PMC4520791 DOI: 10.1016/j.biopsych.2015.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently reclassified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition, the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers, with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta; Yerkes National Primate Research Center, Atlanta
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta; Atlanta Veterans Affairs Medical Center, Mental Health Service Line, Decatur, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta.
| |
Collapse
|
92
|
Cascardi M, Armstrong D, Chung L, Paré D. Pupil Response to Threat in Trauma-Exposed Individuals With or Without PTSD. J Trauma Stress 2015; 28. [PMID: 26215078 PMCID: PMC4743760 DOI: 10.1002/jts.22022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An infrequently studied and potentially promising physiological marker for posttraumatic stress disorder (PTSD) is pupil response. This study tested the hypothesis that pupil responses to threat would be significantly larger in trauma-exposed individuals with PTSD compared to those without PTSD. Eye-tracking technology was used to evaluate pupil response to threatening and neutral images. Recruited for participation were 40 trauma-exposed individuals; 40.0% (n = 16) met diagnostic criteria for PTSD. Individuals with PTSD showed significantly more pupil dilation to threat-relevant stimuli compared to the neutral elements (Cohen's d = 0.76), and to trauma-exposed controls (Cohen's d = 0.75). Pupil dilation significantly accounted for 12% of variability in PTSD after time elapsed since most recent trauma, cumulative violence exposure, and trait anxiety were statistically adjusted. The final logistic regression model was associated with 85% of variability in PTSD status and correctly classified 93.8% of individuals with PTSD and 95.8% of those without. Pupil reactivity showed promise as a physiological marker for PTSD.
Collapse
Affiliation(s)
- Michele Cascardi
- Child Advocacy and Policy, Montclair State University, Montclair NJCenter for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ
| | - Davine Armstrong
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ
| | - Leeyup Chung
- Department of Neurobiology, Duke University, Durham, NC
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ
| |
Collapse
|
93
|
de Kleine RA, Smits JAJ, Hendriks GJ, Becker ES, van Minnen A. Extinction learning as a moderator of d-cycloserine efficacy for enhancing exposure therapy in posttraumatic stress disorder. J Anxiety Disord 2015; 34:63-7. [PMID: 26121495 DOI: 10.1016/j.janxdis.2015.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022]
Abstract
Augmentation of exposure therapy with d-cycloserine (DCS) has proven efficacious across anxiety disorders, although results in PTSD have been mixed. Work in animals and anxiety-disordered patients suggest that the potentiating effects of DCS are dependent on the level of extinction learning during extinction training and exposure treatment, respectively. The aim of the current study was to replicate and extend previous work by examining the association between the degree of extinction learning and DCS efficacy in our randomized clinical trial on DCS (50 mg) versus placebo enhancement of exposure therapy in a chronic mixed-trauma PTSD sample (N=67; de Kleine, Hendriks, Kusters, Broekman, & van Minnen, 2012). The decline in subjective units of distress ratings collected during and across the exposure sessions were evaluated as indices of extinction learning. First, we examined whether extinction learning during an exposure session moderated DCS effects on self-reported PTSD symptoms at the next session. Second, we examined whether averaged extinction learning over the course of treatment interacted with group assignment to predict change over time and post treatment outcome. We did not find evidence that DCS effects were moderated by the degree of extinction learning, although, extinction learning was related to outcome regardless of group assignment. In PTSD, not one extinction-learning index has been consistently linked to DCS enhanced exposure treatment outcome. More (experimental) work needs to been done to unravel the complex interplay between extinction learning and DCS enhancement, especially in PTSD patients.
Collapse
Affiliation(s)
- Rianne A de Kleine
- Center for Anxiety Disorders Overwaal, Institution for Integrated Mental Health Care Pro Persona, Nijmegen, The Netherlands; Radboud University, Behavioural Science Institute, NijCare, Nijmegen, the Netherlands.
| | - Jasper A J Smits
- The University of Texas at Austin, Department of Psychology and Institute for Mental Health Research, Austin, TX, United States
| | - Gert-Jan Hendriks
- Center for Anxiety Disorders Overwaal, Institution for Integrated Mental Health Care Pro Persona, Nijmegen, The Netherlands; Radboud University, Behavioural Science Institute, NijCare, Nijmegen, the Netherlands; Radboud University Medical Centre, Department of Psychiatry, Nijmegen, The Netherlands
| | - Eni S Becker
- Radboud University, Behavioural Science Institute, NijCare, Nijmegen, the Netherlands
| | - Agnes van Minnen
- Center for Anxiety Disorders Overwaal, Institution for Integrated Mental Health Care Pro Persona, Nijmegen, The Netherlands; Radboud University, Behavioural Science Institute, NijCare, Nijmegen, the Netherlands
| |
Collapse
|
94
|
Bijleveld HA. Post-traumatic Stress Disorder and Stuttering: A Diagnostic Challenge in a Case Study. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.sbspro.2015.03.242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
95
|
Pace-Schott EF, Germain A, Milad MR. Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. BIOLOGY OF MOOD & ANXIETY DISORDERS 2015; 5:3. [PMID: 26034578 PMCID: PMC4450835 DOI: 10.1186/s13587-015-0018-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/12/2015] [Indexed: 01/04/2023]
Abstract
Post-traumatic stress disorder (PTSD) is accompanied by disturbed sleep and an impaired ability to learn and remember extinction of conditioned fear. Following a traumatic event, the full spectrum of PTSD symptoms typically requires several months to develop. During this time, sleep disturbances such as insomnia, nightmares, and fragmented rapid eye movement sleep predict later development of PTSD symptoms. Only a minority of individuals exposed to trauma go on to develop PTSD. We hypothesize that sleep disturbance resulting from an acute trauma, or predating the traumatic experience, may contribute to the etiology of PTSD. Because symptoms can worsen over time, we suggest that continued sleep disturbances can also maintain and exacerbate PTSD. Sleep disturbance may result in failure of extinction memory to persist and generalize, and we suggest that this constitutes one, non-exclusive mechanism by which poor sleep contributes to the development and perpetuation of PTSD. Also reviewed are neuroendocrine systems that show abnormalities in PTSD, and in which stress responses and sleep disturbance potentially produce synergistic effects that interfere with extinction learning and memory. Preliminary evidence that insomnia alone can disrupt sleep-dependent emotional processes including consolidation of extinction memory is also discussed. We suggest that optimizing sleep quality following trauma, and even strategically timing sleep to strengthen extinction memories therapeutically instantiated during exposure therapy, may allow sleep itself to be recruited in the treatment of PTSD and other trauma and stress-related disorders.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- />Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital—East, CNY 149 13th Street Room 2624, Charlestown, MA 02129 USA
| | - Anne Germain
- />Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Mohammed R. Milad
- />Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital—East, CNY 149 13th Street Room 2624, Charlestown, MA 02129 USA
| |
Collapse
|
96
|
Phitayakorn R, Minehart RD, Pian-Smith MCM, Hemingway MW, Petrusa ER. Practicality of using galvanic skin response to measure intraoperative physiologic autonomic activation in operating room team members. Surgery 2015; 158:1415-20. [PMID: 26032820 DOI: 10.1016/j.surg.2015.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Physiologic and psychological stress are commonly experienced by operating room (OR) personnel, yet there is little research about the stress levels in OR teams and their impact on performance. Previously published procedures to measure physiologic activation are invasive and impractical for the OR. The purpose of this study was to determine the practicality of a new watch-sized device to measure galvanic skin response (GSR) in OR team members during high-fidelity surgical simulations. METHODS Interprofessional OR teams wore sensors on the wrist (all) and ankle (surgeons and scrub nurses/technicians) during the orientation, case, and debriefing phases for 17 simulations of a surgical airway case. Data were compared across all simulation phases, collectively and for each professional group. RESULTS Forty anesthesiology residents, 35 surgery residents, 27 OR nurses, 12 surgical technicians, and 7 CRNAs participated. Collectively, mean wrist GSR levels significantly increased from orientation phase to the case (0.40-0.62 μS; P < .001) and remained elevated even after the simulation was over (0.40-0.67 μS; P < .001). Surgery residents were the only group that demonstrated continued increases in wrist GSR levels throughout the entire simulation (change in GSR = 0.21 to 0.32 to 0.11 μS; P < .01). Large intraindividual differences (≤ 200 times) were found in both wrist and ankle GSR. There was no correlation between wrist and ankle data. CONCLUSION Continuous GSR monitoring of all professionals during OR simulations is feasible, but would be difficult to implement in an actual OR environment. Large variation in individual levels of physiologic activation suggests complementary qualitative research is needed to better understand how people respond to stressful OR situations.
Collapse
Affiliation(s)
- Roy Phitayakorn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Massachusetts General Hospital Learning Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - R D Minehart
- Massachusetts General Hospital Learning Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - M C M Pian-Smith
- Massachusetts General Hospital Learning Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Anesthesiology, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - M W Hemingway
- Massachusetts General Hospital Learning Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Perioperative Services, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - E R Petrusa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Massachusetts General Hospital Learning Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
97
|
Gerritsen L, Kalpouzos G, Westman E, Simmons A, Wahlund LO, Bäckman L, Fratiglioni L, Wang HX. The influence of negative life events on hippocampal and amygdala volumes in old age: a life-course perspective. Psychol Med 2015; 45:1219-1228. [PMID: 25273347 DOI: 10.1017/s0033291714002293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Psychosocial stress has been related to changes in the nervous system, with both adaptive and maladaptive consequences. The aim of this study was to examine the relationship of negative events experienced throughout the entire lifespan and hippocampal and amygdala volumes in older adults. METHOD In 466 non-demented old adults (age range 60-96 years, 58% female), hippocampal and amygdala volumes were segmented using Freesurfer. Negative life events and the age at which these events occurred were assessed by means of a structured questionnaire. Using generalized linear models, hippocampal and amygdala volumes were estimated with life events as independent variables. The statistical analyses were adjusted for age, gender, intracranial volume, lifestyle factors, cardiovascular risk factors, depressive symptoms, and cognitive functioning. RESULTS Total number of negative life events and of late-life events, but not of early-life, early-adulthood, or middle-adulthood events, was related to larger amygdala volume. There were interactions of early-life events with age and gender. Participants who reported two or more early-life events had significantly smaller amygdala and hippocampal volumes with increasing age. Furthermore, smaller hippocampal volume was found in men who reported two or more early-life events, but not in women. CONCLUSIONS These results suggest that the effect of negative life events on the brain depends on the time when the events occurred, with the strongest effects observed during the critical time periods of early and late life.
Collapse
Affiliation(s)
- L Gerritsen
- Department of Medical Epidemiology and Biostatistics,Karolinska Institutet,Stockholm,Sweden
| | - G Kalpouzos
- Ageing Research Center (ARC),Karolinska Institutet and Stockholm University,Stockholm,Sweden
| | - E Westman
- Division of Clinical Geriatrics,Department of Neurobiology, Care Sciences and Society,Karolinska Institutet,Stockholm,Sweden
| | - A Simmons
- Department of Neuroimaging,Institute of Psychiatry, King's College London,London,UK
| | - L O Wahlund
- Division of Clinical Geriatrics,Department of Neurobiology, Care Sciences and Society,Karolinska Institutet,Stockholm,Sweden
| | - L Bäckman
- Ageing Research Center (ARC),Karolinska Institutet and Stockholm University,Stockholm,Sweden
| | - L Fratiglioni
- Ageing Research Center (ARC),Karolinska Institutet and Stockholm University,Stockholm,Sweden
| | - H X Wang
- Ageing Research Center (ARC),Karolinska Institutet and Stockholm University,Stockholm,Sweden
| |
Collapse
|
98
|
Abstract
New neurons continue to be generated in the dentate gyrus throughout life, providing this region of the hippocampus with exceptional structural plasticity, but the function of this ongoing neurogenesis is unknown. Inhibition of adult neurogenesis produces some behavioral impairments that suggest a role for new neurons in learning and memory; however, other behavioral changes appear inconsistent with this function. A review of studies investigating the function of the hippocampus going back several decades reveals many ideas that seem to converge on a critical role for the hippocampus in stress response and emotion. These potential hippocampal functions provide new avenues for investigating the behavioral functions of adult neurogenesis. And, conversely, studies in animals lacking adult neurogenesis, which are likely to have more limited and more specific impairments than are seen with lesions, may provide valuable new insights into the function of the hippocampus. A complete understanding of the function of the hippocampus must explain its role in emotion and the relationship between its emotional and memory functions.
Collapse
Affiliation(s)
- Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
99
|
Motzkin JC, Koenigs MR. Post-traumatic stress disorder and traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:633-648. [PMID: 25701911 DOI: 10.1016/b978-0-444-63521-1.00039-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Disentangling the effects of "organic" neurologic damage and psychological distress after a traumatic brain injury poses a significant challenge to researchers and clinicians. Establishing a link between traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) has been particularly contentious, reflecting difficulties in establishing a unique diagnosis for conditions with overlapping and sometimes contradictory symptom profiles. However, each disorder is linked to a variety of adverse health outcomes, underscoring the need to better understand how neurologic and psychiatric risk factors interact following trauma. Here, we present data showing that individuals with a TBI are more likely to develop PTSD, and that individuals with PTSD are more likely to develop persistent cognitive sequelae related to TBI. Further, we describe neurobiological models of PTSD, highlighting how patterns of neurologic damage typical in TBI may promote or protect against the development of PTSD in brain-injured populations. These data highlight the unique course of PTSD following a TBI and have important diagnostic, prognostic, and treatment implications for individuals with a dual diagnosis.
Collapse
Affiliation(s)
- Julian C Motzkin
- Neuroscience Training Program, University of Wisconsin - Madison, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin - Madison, Madison, WI, USA
| | - Michael R Koenigs
- Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
100
|
Scott JC, Matt GE, Wrocklage KM, Crnich C, Jordan J, Southwick SM, Krystal JH, Schweinsburg BC. A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychol Bull 2015. [PMID: 25365762 DOI: 10.1037/a00389039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with regional alterations in brain structure and function that are hypothesized to contribute to symptoms and cognitive deficits associated with the disorder. We present here the first systematic meta-analysis of neurocognitive outcomes associated with PTSD to examine a broad range of cognitive domains and describe the profile of cognitive deficits, as well as modifying clinical factors and study characteristics. This report is based on data from 60 studies totaling 4,108 participants, including 1,779 with PTSD, 1,446 trauma-exposed comparison participants, and 895 healthy comparison participants without trauma exposure. Effect-size estimates were calculated using a mixed-effects meta-analysis for 9 cognitive domains: attention/working memory, executive functions, verbal learning, verbal memory, visual learning, visual memory, language, speed of information processing, and visuospatial abilities. Analyses revealed significant neurocognitive effects associated with PTSD, although these ranged widely in magnitude, with the largest effect sizes in verbal learning (d = -.62), speed of information processing (d = -.59), attention/working memory (d = -.50), and verbal memory (d =-.46). Effect-size estimates were significantly larger in treatment-seeking than community samples and in studies that did not exclude participants with attention-deficit/hyperactivity disorder, and effect sizes were affected by between-group IQ discrepancies and the gender composition of the PTSD groups. Our findings indicate that consideration of neuropsychological functioning in attention, verbal memory, and speed of information processing may have important implications for the effective clinical management of persons with PTSD. Results are further discussed in the context of cognitive models of PTSD and the limitations of this literature.
Collapse
Affiliation(s)
- J Cobb Scott
- VISN4 Mental Illness Research, Education, and Clinical Center, Philadelphia VA Medical Center
| | - Georg E Matt
- Department of Psychology, San Diego State University
| | | | | | - Jessica Jordan
- National Center for PTSD, VA Connecticut Healthcare System
| | | | - John H Krystal
- National Center for PTSD, VA Connecticut Healthcare System
| | | |
Collapse
|