51
|
Wang Y, Li Y, Qiao J, Li N, Qiao S. AMPK α1 mediates the protective effect of adiponectin against insulin resistance in INS-1 pancreatic β cells. Cell Biochem Funct 2019; 37:625-632. [PMID: 31693217 DOI: 10.1002/cbf.3440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022]
Abstract
The fat-derived protein adiponectin is known to reverse the effects of insulin resistance and to lower blood glucose levels. The AMP-activated protein kinase (AMPK) signalling pathway plays a central role in metabolism and energy homeostasis. Here, to investigate the role of AMPK in the protective effect of adiponectin against insulin resistance, we established the model of high-glucose (HG)- and high-lipid (HL)-induced insulin resistance in INS-1 pancreatic β cells. We found that 25mM of glucose and 0.4mM of palmitic acid treatment significantly increased cell apoptosis and impaired insulin secretion in INS-1 cells. However, recombinant human adiponectin dramatically reduced HG- and/or HL-induced cell apoptosis and greatly improved insulin secretion. Interestingly, adiponectin treatment also activated AMPK signalling pathway by increasing the phosphorylation of Thr172 in the AMPK α subunit; 10μM of compound C, a potent AMPK inhibitor, blocked the protective effects of adiponectin against HG/HL-induced insulin resistance. Furthermore, knockout experiments by CRISPR/Cas9 technology showed that AMPK α1, but not AMPK α2, is involved in the protective effects of adiponectin. Taken together, adiponectin reversed the effects of insulin resistance via AMPK α1, which provides a novel insight into the protective mechanism of adiponectin and may be used as a new strategy for the treatment of type 2 diabetes. SIGNIFICANCE OF THE STUDY: Adiponectin can reverse the effects of insulin resistance and lower blood glucose levels. Here, adiponectin reduced HG/HL-induced cell apoptosis and greatly improved insulin secretion. These effects were blocked by AMPK inhibitor, compound C. Specifically, we found that AMPK α1, but not AMPK α2, mediates the protective effects of adiponectin, which provides a novel insight into the protective mechanism of adiponectin against insulin resistance.
Collapse
Affiliation(s)
- Yan Wang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Li
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Qiao
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Na Li
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shun Qiao
- Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
52
|
Demir İ, Yildirim Akan O, Guler A, Bozkaya G, Aslanipour B, Calan M. Relation of Decreased Circulating Sortilin Levels With Unfavorable Metabolic Profiles in Subjects With Newly Diagnosed Type 2 Diabetes Mellitus. Am J Med Sci 2019; 359:8-16. [PMID: 31902442 DOI: 10.1016/j.amjms.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sortilin, a pluripotent peptide hormone, plays a role in glucose and lipid metabolism. A link between sortilin and insulin sensitivity has been implicated. However, the clinical implications of this link remain elusive. Our aims were to investigate whether sortilin levels were altered in subjects with newly diagnosed type 2 diabetes mellitus (nT2DM) compared with subjects with normal glucose tolerance (NGT) and to determine whether a link exist between sortilin levels and metabolic parameters. MATERIALS AND METHODS A total of 150 subjects including 75 nT2DM patients and 75 subjects with NGT who were matched in age, body mass index, and sex were enrolled into this case-control study. The circulating levels of sortilin were measured using enzyme-linked immunosorbent assay. A 2-hour 75-g oral glucose tolerance test was used for diagnosis of T2DM. Metabolic parameters of enrolled subjects were also determined. RESULTS The circulating levels of sortilin were found to be significantly lower in subjects with nT2DM than in controls (138.44 ± 38.39 vs. 184.93 ± 49.67 pg/mL, P < 0.001). Sortilin levels showed a negative correlation with insulin resistance and unfavorable lipid profiles, while they were positively correlated with high-density lipoprotein cholesterol in subjects with nT2DM. Linear regression analysis showed an independent and inverse link between sortilin and insulin resistance and unfavorable lipid profiles. Moreover, logistic regression analysis revealed that the subjects with the lowest sortilin levels had an increased risk of nT2DM compared with those subjects with the highest sortilin levels. CONCLUSIONS Decreased circulating levels of sortilin were associated with unfavorable metabolic profiles in subjects with nT2DM.
Collapse
Affiliation(s)
- İsmail Demir
- Division of Endocrinology and Metabolism, Department of Internal Medicine
| | | | | | - Giray Bozkaya
- Department of Clinical Biochemistry, Izmir Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Behnaz Aslanipour
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Tukey
| | - Mehmet Calan
- Division of Endocrinology and Metabolism, Department of Internal Medicine.
| |
Collapse
|
53
|
A review of the putative causal mechanisms associated with lower macular pigment in diabetes mellitus. Nutr Res Rev 2019; 32:247-264. [PMID: 31409441 DOI: 10.1017/s095442241900012x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macular pigment (MP) confers potent antioxidant and anti-inflammatory effects at the macula, and may therefore protect retinal tissue from the oxidative stress and inflammation associated with ocular disease and ageing. There is a body of evidence implicating oxidative damage and inflammation as underlying pathological processes in diabetic retinopathy. MP has therefore become a focus of research in diabetes, with recent evidence suggesting that individuals with diabetes, particularly type 2 diabetes, have lower MP relative to healthy controls. The present review explores the currently available evidence to illuminate the metabolic perturbations that may possibly be involved in MP's depletion. Metabolic co-morbidities commonly associated with type 2 diabetes, such as overweight/obesity, dyslipidaemia, hyperglycaemia and insulin resistance, may have related and independent relationships with MP. Increased adiposity and dyslipidaemia may adversely affect MP by compromising the availability, transport and assimilation of these dietary carotenoids in the retina. Furthermore, carotenoid intake may be compromised by the dietary deficiencies characteristic of type 2 diabetes, thereby further compromising redox homeostasis. Candidate causal mechanisms to explain the lower MP levels reported in diabetes include increased oxidative stress, inflammation, hyperglycaemia, insulin resistance, overweight/obesity and dyslipidaemia; factors that may negatively affect redox status, and the availability, transport and stabilisation of carotenoids in the retina. Further study in diabetic populations is warranted to fully elucidate these relationships.
Collapse
|
54
|
Ji T, Su SL, Zhu Y, Guo JM, Qian DW, Tang YP, Duan JA. The mechanism of mulberry leaves against renal tubular interstitial fibrosis through ERK1/2 signaling pathway was predicted by network pharmacology and validated in human tubular epithelial cells. Phytother Res 2019; 33:2044-2055. [PMID: 31209937 DOI: 10.1002/ptr.6390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/18/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Mulberry leaf was reported that it has antidiabetic activity, although the mechanisms underlying the function have not been fully elucidated. In the present study, the results of network pharmacology suggested that mulberry leaves could regulate key biological process in development of diabetes, and the process implicates multiple signaling pathways, such as JAK-STAT, MAPK, VEGF, PPAR, and Wnt. Then, the research in vitro indicated that mulberry leaves remarkably ameliorated high glucose-induced epithelial to mesenchymal transition, which was characterized with significant reduction of intracellular reactive oxygen species (ROS) levels as well as downregulation of NADPH oxidase subunits NOX1, NOX2, and NOX4, and it was found to be connected with the ERK1/2 signaling pathway in human tubular epithelial cells (HK-2). Moreover, the results of bioinformatics and the dual luciferase report showed that ZEB1 might be a target gene of miR-302a; decreased miR-302a and increased ZEB1 expressions could significantly promote epithelial to mesenchymal transition. However, mulberry leaves could reverse these modulations. Our results demonstrated that network pharmacology could provide a guidance role for traditional Chinese medicine research, and mulberry leaves could be of benefit in preventing high glucose-induced EMT in HK-2 cells, which proved that it was related to the upregulation of miR-302a by targeting ZEB1 and the inhibition of NADPH oxidase/ROS/ERK1/2 pathway.
Collapse
Affiliation(s)
- Tao Ji
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of traditional Chinese medicine, Zhejiang pharmaceutical college, Ningbo, 310053, China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
55
|
Arunagiri A, Haataja L, Pottekat A, Pamenan F, Kim S, Zeltser LM, Paton AW, Paton JC, Tsai B, Itkin-Ansari P, Kaufman RJ, Liu M, Arvan P. Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife 2019; 8:44532. [PMID: 31184302 PMCID: PMC6559786 DOI: 10.7554/elife.44532] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Biosynthesis of insulin – critical to metabolic homeostasis – begins with folding of the proinsulin precursor, including formation of three evolutionarily conserved intramolecular disulfide bonds. Remarkably, normal pancreatic islets contain a subset of proinsulin molecules bearing at least one free cysteine thiol. In human (or rodent) islets with a perturbed endoplasmic reticulum folding environment, non-native proinsulin enters intermolecular disulfide-linked complexes. In genetically obese mice with otherwise wild-type islets, disulfide-linked complexes of proinsulin are more abundant, and leptin receptor-deficient mice, the further increase of such complexes tracks with the onset of islet insulin deficiency and diabetes. Proinsulin-Cys(B19) and Cys(A20) are necessary and sufficient for the formation of proinsulin disulfide-linked complexes; indeed, proinsulin Cys(B19)-Cys(B19) covalent homodimers resist reductive dissociation, highlighting a structural basis for aberrant proinsulin complex formation. We conclude that increased proinsulin misfolding via disulfide-linked complexes is an early event associated with prediabetes that worsens with ß-cell dysfunction in type two diabetes. Our body fine-tunes the amount of sugar in our blood thanks to specialized ‘beta cells’ in the pancreas, which can release a hormone called insulin. To produce insulin, the beta cells first need to build an early version of the molecule – known as proinsulin – inside a cellular compartment called the endoplasmic reticulum. This process involves the formation of internal staples that keep the molecule of proinsulin folded correctly. Individuals developing type 2 diabetes have spikes of sugar in their blood, and so their bodies often respond by trying to make large amounts of insulin. After a while, the beta cells can fail to keep up, which brings on the full-blown disease. However, scientists have discovered that early in type 2 diabetes, the endoplasmic reticulum of beta cells can already show signs of stress; yet, the exact causes of this early damage are still unknown. To investigate this, Arunagiri et al. looked into whether proinsulin folds correctly during the earliest stages of type 2 diabetes. Biochemical experiments showed that even healthy beta cells contained some misfolded proinsulin molecules, where the molecular staples that should fold proinsulin internally were instead abnormally linking proinsulin molecules together. Further work revealed that the misfolded proinsulin was accumulating inside the endoplasmic reticulum. Finally, obese mice that were in the earliest stages of type 2 diabetes had the highest levels of abnormal proinsulin in their beta cells. Overall, the work by Arunagiri et al. suggests that large amounts of proinsulin molecules stapling themselves to each other in the endoplasmic reticulum of beta cells could be an early hallmark of the disease, and could make it get worse. A separate study by Jang et al. also shows that a protein that limits the misfolding of proinsulin is key to maintain successful insulin production in animals eating a Western-style, high fat diet. Hundreds of millions of people around the world have type 2 diabetes, and this number is rising quickly. Detecting and then fixing early problems associated with the condition may help to stop the disease in its track.
Collapse
Affiliation(s)
- Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Anita Pottekat
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Fawnnie Pamenan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| | - Soohyun Kim
- Department of Biomedical Science and Technology, Konkuk University, Gwangjin-gu, Republic of Korea
| | - Lori M Zeltser
- Department of Pathology and Cell Biology, Naomi Berrie Diabetes Center, Columbia University, New York, United States
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States.,Department of Endocrinology and Metabolism, Tianjin Medical University, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
56
|
Gundala NKV, Das UN. Arachidonic acid-rich ARASCO oil has anti-inflammatory and antidiabetic actions against streptozotocin + high fat diet induced diabetes mellitus in Wistar rats. Nutrition 2019; 66:203-218. [PMID: 31310962 DOI: 10.1016/j.nut.2019.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of arachidonic acid (AA)-rich ARASCO oil on high-fat diet (HFD) + streptozotocin (STZ)-induced diabetes mellitus in male Wistar rats and its possible mechanisms of action. METHODS Male Wistar rats with HFD + STZ-induced diabetes were employed in the present study. ARASCO oil was administered orally for the first 7 d consecutively, followed by once weekly throughout the study (14 wk). At various time points, blood glucose and body weight and oral glucose tolerance tests were measured. At the end of the study, animals were sacrificed to collect plasma and various organs and stored at -80°C. Plasma insulin, tumor necrosis factor-α, interleukin-6, and lipoxin A4 were measured. Expression of the following genes was determined: nuclear factor-κΒ (NF-κB), cyclooxygenase-2 (COX-2), 12-lipoxygenase (12-LOX) in pancreas and lipocalin 2 (LPCLN2) in adipose tissue. Various antioxidants were measured in the plasma and other tissues. Area under the curve and insulin sensitivity index were assessed by computing homeostatic model of assessment for insulin resistance, quantitative insulin check index, Matsuda, and Belfiore indices. RESULTS ARASCO oil treatment decreased hyperglycemia, restored insulin sensitivity, suppressed inflammation, enhanced plasma lipoxin A4 levels, and reversed altered antioxidant status to near normal in animals with HFD + STZ-induced diabetes. CONCLUSION These results suggest that ARASCO, a rich source of AA, can prevent HFD + STZ-induced diabetes in Wistar rats owing to its anti-inflammatory action. It remains to be seen whether ARASCO oil is useful in preventing or postponing the development of type 2 diabetes mellitus in humans.
Collapse
Affiliation(s)
- Naveen K V Gundala
- BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, Gayatri Vidya Parishad Hospital, Visakhapatnam, India
| | - Undurti N Das
- BioScience Research Centre, GVP College of Engineering Campus and Department of Medicine, Gayatri Vidya Parishad Hospital, Visakhapatnam, India; UND Life Sciences, Battle Ground, Washington, USA.
| |
Collapse
|
57
|
Gong Y, Liu J, Xue Y, Zhuang Z, Qian S, Zhou W, Li X, Qian J, Ding G, Sun Z. Non-monotonic dose-response effects of arsenic on glucose metabolism. Toxicol Appl Pharmacol 2019; 377:114605. [PMID: 31170414 DOI: 10.1016/j.taap.2019.114605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a widespread environmental toxin. In addition to being a human carcinogen, its effect on diabetes has started to gain recognition recently. Insulin is the key hormone regulating systemic glucose metabolism. The in vivo effect of iAs on insulin sensitivity has not been directly addressed. OBJECTIVES Here we use mouse models to dissect the dose-dependent effects of iAs on glucose metabolism in vivo. METHODS We performed hyperinsulinemic-euglycemic clamp, the gold standard analysis of systemic insulin sensitivity. We also performed dynamic metabolic testings and RNA-seq analysis. RESULTS We found that a low-dose exposure (0.25 ppm iAs in drinking water) caused glucose intolerance in adult male C57BL/6 mice, likely by disrupting glucose-induced insulin secretion without affecting peripheral insulin sensitivity. However, a higher-dose exposure (2.5 ppm iAs) had diminished effects on glucose tolerance despite disrupted pancreatic insulin secretion. Insulin Clamp analysis showed that 2.5 ppm iAs actually enhanced systemic insulin sensitivity by simultaneously enhancing insulin-stimulated glucose uptake in skeletal muscles and improved insulin-mediated suppression of endogenous glucose production. RNA-seq analysis of skeletal muscles revealed that 2.5 ppm iAs regulated expression of many genes involved in the metabolism of fatty acids, pyruvate, and amino acids. CONCLUSION These findings suggest that iAs has opposite glycemic effects on distinct metabolic tissues at different dose thresholds. Such non-monotonic dose-response effects of iAs on glucose tolerance shed light on the complex interactions between iAs and the systemic glucose metabolism, which could potentially help reconcile some of the conflicting results in human epidemiological studies.
Collapse
Affiliation(s)
- Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Jidong Liu
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yanfeng Xue
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zhong Zhuang
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sichong Qian
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Wenjun Zhou
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Xin Li
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Justin Qian
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America
| | - Guolian Ding
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America; The International Peace Maternity and Child Health Hospital, Institute of Embryo-Fetal Original Adult Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zheng Sun
- Department of Medicine-Endocrinology, Baylor College of Medicine, Houston, TX, United States of America; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America.
| |
Collapse
|
58
|
Serum retinol-binding protein 4 is associated with insulin resistance in patients with early and untreated rheumatoid arthritis. Joint Bone Spine 2019; 86:335-341. [DOI: 10.1016/j.jbspin.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/01/2018] [Indexed: 01/07/2023]
|
59
|
Böni-Schnetzler M, Meier DT. Islet inflammation in type 2 diabetes. Semin Immunopathol 2019; 41:501-513. [PMID: 30989320 PMCID: PMC6592966 DOI: 10.1007/s00281-019-00745-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Metabolic diseases including type 2 diabetes are associated with meta-inflammation. β-Cell failure is a major component of the pathogenesis of type 2 diabetes. It is now well established that increased numbers of innate immune cells, cytokines, and chemokines have detrimental effects on islets in these chronic conditions. Recently, evidence emerged which points to initially adaptive and restorative functions of inflammatory factors and immune cells in metabolism. In the following review, we provide an overview on the features of islet inflammation in diabetes and models of prediabetes. We separately emphasize what is known on islet inflammation in humans and focus on in vivo animal models and how they are used to elucidate mechanistic aspects of islet inflammation. Further, we discuss the recently emerging physiologic signaling role of cytokines during adaptation and normal function of islet cells.
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland. .,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Daniel T Meier
- Endocrinology, Diabetes and Metabolism, University Hospital of Basel, 4031, Basel, Switzerland.,Department of Biomedicine, University Hospital and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| |
Collapse
|
60
|
Wang Y, Xue J, Li Y, Zhou X, Qiao S, Han D. Telmisartan protects against high glucose/high lipid‐induced apoptosis and insulin secretion by reducing the oxidative and ER stress. Cell Biochem Funct 2019; 37:161-168. [PMID: 30907023 DOI: 10.1002/cbf.3383] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yan Wang
- Department of EndocrinologyThe First Hospital of Shanxi Medical University Taiyuan Shan Xi China
| | - Jingjing Xue
- Department of EndocrinologyThe First Hospital of Shanxi Medical University Taiyuan Shan Xi China
| | - Yan Li
- Department of EndocrinologyThe First Hospital of Shanxi Medical University Taiyuan Shan Xi China
| | - Xin Zhou
- Department of PathophysiologyShanxi Medical University Taiyuan Shan Xi China
| | - Shun Qiao
- Department of EndocrinologyThe First Hospital of Shanxi Medical University Taiyuan Shan Xi China
| | - Dewu Han
- Department of PathophysiologyShanxi Medical University Taiyuan Shan Xi China
| |
Collapse
|
61
|
Qiao Z, Han J, Feng H, Zheng H, Wu J, Gao C, Yang M, You C, Liu Z, Wu Z. Fermentation Products of Paenibacillus bovis sp. nov. BD3526 Alleviates the Symptoms of Type 2 Diabetes Mellitus in GK Rats. Front Microbiol 2019; 9:3292. [PMID: 30687277 PMCID: PMC6333654 DOI: 10.3389/fmicb.2018.03292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/18/2018] [Indexed: 01/04/2023] Open
Abstract
Gut microbiota is closely related to type 2 diabetes mellitus (T2DM). The gut microbiota of patients with T2DM is significantly different from that of healthy subjects in terms of bacterial composition and diversity. Here, we used the fermentation products of Paenibacillus bovis sp. nov. BD3526 to study the disease progression of T2DM in Goto-kakisaki (GK) rats. We found that the symptoms in GK rats fed the fermentation products of BD3526 were significantly improved. The 16S rRNA sequencing showed that the fermentation products of BD3526 had strong effects on the gut microbiota by increasing the content of Akkermansia. In addition, the interaction of the genus in the gut of the BD3526 group also significantly changed. Additional cytokine detection revealed that the fermentation products of BD3526 can reduce the inflammatory factors in the intestinal mucus of GK rats and thereby inhibit the inflammatory response and ameliorate the symptoms of T2DM.
Collapse
Affiliation(s)
- Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huafeng Feng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, Shanghai Institute of Planned Parenthood Research, IRD, Fudan University, Shanghai, China
| | - Jiang Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Caixia Gao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Meng Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| |
Collapse
|
62
|
Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:243-258. [DOI: 10.1007/s00210-018-1583-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
|
63
|
A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. Int J Biol Macromol 2018; 123:26-34. [PMID: 30389528 DOI: 10.1016/j.ijbiomac.2018.10.206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Abstract
Three homoisoflavonoids and one dimethoxychalcone from Portulaca oleracea L. were isolated using bioassay-guided fractionation and HPLC. Among the compounds 1-4, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (compound 3) had the most effect on glucose uptake in the adipocytes. We investigated how (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone contributed to increase glucose uptake in 3T3-L1 adipocytes. Levels of the glucose transporters GLUT-4, as well as glucose uptake, and key proteins of the insulin pathway, namely PI3K/AKT and AMPK pathway are analyzed using glucose uptake assay and western blot analysis. Our results show that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone significantly increased glucose uptake by stimulating translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. High levels of expression of GLUT4 in the plasma membrane resulted from IRS-1 phosphorylation, PI3K activation, Akt phosphorylation and phosphorylation of AMPK, resulting in increased glucose uptake by the cells. The increase in glucose uptake due to (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone was significantly inhibited by the PI3K inhibitor and the AMPK inhibitor in 3T3-L1 adipocytes. These findings suggest that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone may increase glucose uptake by stimulating GLUT4 translocation to the plasma membrane via activating the PI3K/Akt and AMPK pathways in 3T3-L1 adipocytes.
Collapse
|
64
|
Rakotoarivelo V, Variya B, Ilangumaran S, Langlois MF, Ramanathan S. Inflammation in human adipose tissues-Shades of gray, rather than white and brown. Cytokine Growth Factor Rev 2018; 44:28-37. [PMID: 30301598 DOI: 10.1016/j.cytogfr.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Chronic inflammation in adipose tissues has been associated with obesity and metabolic syndrome over the years. Various studies using animal models have contributed to our knowledge on the pro- and anti- inflammatory mediators that regulate obesity. Analyses of cytokine profiles in humans have not revealed a clear scenario. Likewise, treatments targeting inflammation to control obesity and insulin resistance has not yielded promising results. In this review we summarize the data available in human obesity and discuss the possible reasons that could explain the difficulties in treating obesity and insulin resistance by targeting pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Marie-France Langlois
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada.
| |
Collapse
|
65
|
Analysis of new therapeutic strategies for diabetes mellitus based on traditional Chinese medicine “xiaoke” formulae. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
66
|
Yang R, Wang L, Xie J, Li X, Liu S, Qiu S, Hu Y, Shen X. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A. Int J Mol Med 2018; 42:2329-2342. [PMID: 30226559 PMCID: PMC6192715 DOI: 10.3892/ijmm.2018.3836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
The present study investigated the effects of cajanonic acid A (CAA), extracted from the leaves of Cajanus cajan (L.) Millsp with a purity of 98.22%, on the regulatory mechanisms of glucose and lipid metabolism. HepG2 cells transfected with a protein-tyrosine phosphatase 1B (PTP1B) overexpression plasmid were established. The cells, induced with insulin resistance by dexamethasone (Dex) treatment, together with type 2 diabetes mellitus (T2DM) model rats and ob/ob mice, were used in the present study. The effects of CAA treatment on the differentiation of 3T3-L1 adipocytes were determined using Oil Red O. The expression levels of insulin signaling factors were detected via reverse transcription-quantitative polymerase chain reaction and western blot analyses. The results revealed that the overexpression of PTP1B contributed to insulin resistance, which was reversed by CAA treatment via inhibiting the activity of PTP1B and by regulating the expression of associated insulin signaling factors. The treatment of cell lines with Dex led to increased expression of PTP1B but decreased glucose consumption, and decreased tyrosine phosphorylation of insulin receptor, insulin receptor substrate 1, and phosphoinositide 3-kinase. Treatment with CAA not only reduced the fasting blood glucose levels and protected organs from damage, but also reduced the serum fasting levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the T2DM rats. CAA treatment also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes. Furthermore, CAA treatment restored the transduction of insulin signaling by regulating the expression of PTP1B and associated insulin signaling factors. Treatment with CAA also reduced the problems associated with hyperglycemia and hyperlipidemia. In conclusion, CAA may be used to cure T2DM via restoring insulin resistance and preventing obesity.
Collapse
Affiliation(s)
- Ruiyi Yang
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Lu Wang
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jie Xie
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiang Li
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shan Liu
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, P.R. China
| | - Yingjie Hu
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoling Shen
- Laboratory of Chinese Herbal Drug Discovery, Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
67
|
Barlow J, Solomon TPJ, Affourtit C. Pro-inflammatory cytokines attenuate glucose-stimulated insulin secretion from INS-1E insulinoma cells by restricting mitochondrial pyruvate oxidation capacity - Novel mechanistic insight from real-time analysis of oxidative phosphorylation. PLoS One 2018; 13:e0199505. [PMID: 29953508 PMCID: PMC6023166 DOI: 10.1371/journal.pone.0199505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/10/2018] [Indexed: 11/30/2022] Open
Abstract
Pro-inflammatory cytokines cause pancreatic beta cell failure during the development of type 2 diabetes. This beta cell failure associates with mitochondrial dysfunction, but the precise effects of cytokines on mitochondrial respiration remain unclear. To test the hypothesis that pro-inflammatory cytokines impair glucose-stimulated insulin secretion (GSIS) by inhibiting oxidative ATP synthesis, we probed insulin release and real-time mitochondrial respiration in rat INS-1E insulinoma cells that were exposed to a combination of 2 ng/mL interleukin-1-beta and 50 ng/mL interferon-gamma. We show that 24-h exposure to these cytokines dampens both glucose- and pyruvate-stimulated insulin secretion (P < 0.0001 and P < 0.05, respectively), but does not affect KCl-induced insulin release. Mirroring secretory defects, glucose- and pyruvate-stimulated mitochondrial respiration are lowered after cytokine exposure (P < 0.01). Further analysis confirms that cytokine-induced mitochondrial respiratory defects occur irrespective of whether fuel oxidation is coupled to, or uncoupled from, ATP synthesis. These observations demonstrate that pro-inflammatory cytokines attenuate GSIS by restricting mitochondrial pyruvate oxidation capacity. Interleukin-1-beta and interferon-gamma also increase mitochondrial superoxide levels (P < 0.05), which may reinforce the inhibition of pyruvate oxidation, and cause a modest (20%) but significant (P < 0.01) loss of INS-1E cells. Cytokine-induced INS-1E cell failure is insensitive to palmitoleate and linoleate, which is at odds with the cytoprotection offered by unsaturated fatty acids against harm caused by nutrient excess. Our data disclose a mitochondrial mechanism for cytokine-impaired GSIS in INS-1E cells, and suggest that inflammatory and nutrient-related beta cell failure emerge, at least partly, through distinct paths.
Collapse
Affiliation(s)
- Jonathan Barlow
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas P. J. Solomon
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Charles Affourtit
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
68
|
Park JE, Lee JS, Lee HA, Han JS. Portulaca oleraceaL. Extract Enhances Glucose Uptake by Stimulating GLUT4 Translocation to the Plasma Membrane in 3T3-L1 Adipocytes. J Med Food 2018; 21:462-468. [DOI: 10.1089/jmf.2017.4098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Ji Soo Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Hyun Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| |
Collapse
|
69
|
Somvanshi RK, Jhajj A, Heer M, Kumar U. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:359-373. [DOI: 10.1016/j.bbadis.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
|
70
|
Silvestre MP, Goode JP, Vlaskovsky P, McMahon C, Tay A, Poppitt SD. The role of glucagon in weight loss-mediated metabolic improvement: a systematic review and meta-analysis. Obes Rev 2018; 19:233-253. [PMID: 29144030 DOI: 10.1111/obr.12631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
Aims This meta-analysis aimed to investigate the role of glucagon suppression in regulating glucose homeostasis following diet or bariatric surgery. Methods A comprehensive search of intervention and observational studies was conducted in Medline, Scopus, Web of Science, PubMed and Embase. Random effects model meta-analysis was performed. Primary outcomes were (i) body weight change, (ii) fasting glucagon, (iii) fasting glucose and (iv) fasting insulin concentrations. Results Twenty articles reporting data from 29 interventions were eligible for analysis. Bariatric surgery caused greater weight loss than diet (bariatric -29.7 kg [CI:-36.8, -22.6]; diet -5.8 kg [CI: -8.4, -3.3]; P < 0.00001), an effect that remained significant after adjusting for study duration (P < 0.05). Mean fasting glucagon decreased in parallel with weight loss (-11.8 ng/L [CI: -15.9, -7.8]; P < 0.00001) with no difference between bariatric and diet intervention. Both fasting glucose, and insulin decreased following weight loss (both P < 0.00001; glucose -1.7 mmol/L [CI: -2.0, -1.3]; insulin -50.6 pmol/L [CI: -66.5, -34.7] with greater decrease in fasting insulin between bariatric versus diet (P = 0.01). Conclusions Synergistic suppression of fasting glucagon and insulin resistance may act together to restore normoglycaemia following weight loss. Whether suppression of plasma glucagon may contribute to increased hunger after weight loss and gradual weight regain is not yet known.
Collapse
Affiliation(s)
- M P Silvestre
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J P Goode
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - P Vlaskovsky
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - C McMahon
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - A Tay
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - S D Poppitt
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
71
|
Nagy C, Einwallner E. Study of In Vivo Glucose Metabolism in High-fat Diet-fed Mice Using Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). J Vis Exp 2018. [PMID: 29364280 DOI: 10.3791/56672] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity represents the most important single risk factor in the pathogenesis of type 2 diabetes, a disease which is characterized by a resistance to insulin-stimulated glucose uptake and a gross decompensation of systemic glucose metabolism. Despite considerable progress in the understanding of glucose metabolism, the molecular mechanisms of its regulation in health and disease remain under-investigated, while novel approaches to prevent and treat diabetes are urgently needed. Diet derived glucose stimulates the pancreatic secretion of insulin, which serves as the principal regulator of cellular anabolic processes during the fed-state and thus balances blood glucose levels to maintain systemic energy status. Chronic overfeeding triggers meta-inflammation, which leads to alterations in peripheral insulin receptor-associated signaling and thus reduces the sensitivity to insulin-mediated glucose disposal. These events ultimately result in elevated fasting glucose and insulin levels as well as a reduction in glucose tolerance, which in turn serve as important indicators of insulin resistance. Here, we present a protocol for the generation and metabolic characterization of high-fat diet (HFD)-fed mice as a frequently used model of diet-induced insulin resistance. We illustrate in detail the oral glucose tolerance test (OGTT), which monitors the peripheral disposal of an orally administered glucose load and insulin secretion over time. Additionally, we present a protocol for the insulin tolerance test (ITT) to monitor whole-body insulin action. Together, these methods and their downstream applications represent powerful tools to characterize the general metabolic phenotype of mice as well as to specifically assess alterations in glucose metabolism. They may be especially useful in the broad research field of insulin resistance, diabetes and obesity to provide a better understanding of pathogenesis as well as to test the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Csörsz Nagy
- Department of Laboratory Medicine, Medical University of Vienna
| | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna;
| |
Collapse
|
72
|
Seo JA, Kang MC, Ciaraldi TP, Kim SS, Park KS, Choe C, Hwang WM, Lim DM, Farr O, Mantzoros C, Henry RR, Kim YB. Circulating ApoJ is closely associated with insulin resistance in human subjects. Metabolism 2018; 78:155-166. [PMID: 28986164 PMCID: PMC5765540 DOI: 10.1016/j.metabol.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Insulin resistance is a major risk factor for type 2 diabetes. ApolipoproteinJ (ApoJ) has been implicated in altered pathophysiologic states including cardiovascular and Alzheimer's disease. However, the function of ApoJ in regulation of glucose homeostasis remains unclear. This study sought to determine whether serum ApoJ levels are associated with insulin resistance in human subjects and if they change after interventions that improve insulin sensitivity. METHODS Serum ApoJ levels and insulin resistance status were assessed in nondiabetic (ND) and type 2 diabetic (T2D) subjects. The impacts of rosiglitazone or metformin therapy on serum ApoJ levels and glucose disposal rate (GDR) during a hyperinsulinemic/euglycemic clamp were evaluated in a separate cohort of T2D subjects. Total ApoJ protein or that associated with the HDL and LDL fractions was measured by immunoblotting or ELISA. RESULTS Fasting serum ApoJ levels were greatly elevated in T2D subjects (ND vs T2D; 100±8.3 vs. 150.6±8.5AU, P<0.0001). Circulating ApoJ levels strongly correlated with fasting glucose, fasting insulin, HOMA-IR, and BMI. ApoJ levels were significantly and independently associated with HOMA-IR, even after adjustment for age, sex, and BMI. Rosiglitazone treatment in T2D subjects resulted in a reduction in serum ApoJ levels (before vs. after treatment; 100±13.9 vs. 77±15.2AU, P=0.015), whereas metformin had no effect on ApoJ levels. The change in ApoJ levels during treatment was inversely associated with the change in GDR. Interestingly, ApoJ content in the LDL fraction was inversely associated with HOMA-IR. CONCLUSION Serum ApoJ levels are closely correlated with the magnitude of insulin resistance regardless of obesity, and decrease along with improvement of insulin resistance in response only to rosiglitazone in type 2 diabetes.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Charles Choe
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Won Min Hwang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Dong Mee Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Olivia Farr
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. RECENT FINDINGS Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed.
Collapse
Affiliation(s)
- Laura C Torchen
- Division of Endocrinology, Ann & Robert H Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Box 54, Chicago, IL, 60611, USA.
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
74
|
Bilgir O, Gökçen B, Bilgir F, Guler A, Calan M, Yuksel A, Aslanıpour B, Akşit M, Bozkaya G. Relationship Between Serum Macrophage Migration Inhibitory Factor Level and Insulin Resistance, High-Sensitivity C-Reactive Protein and Visceral Fat Mass in Prediabetes. Am J Med Sci 2017; 355:37-43. [PMID: 29289260 DOI: 10.1016/j.amjms.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Growing evidence suggest that macrophage migration inhibitory factor (MIF) plays a vital role in glucose metabolism. We aimed to ascertain whether MIF levels are altered in subjects with prediabetes and also to determine the relationship between MIF and metabolic parameters as well as visceral fat mass. MATERIAL AND METHODS This cross-sectional study included 40 subjects with prediabetes and 40 age-, body mass index (BMI)- and sex-matched subjects with normal glucose tolerance. Circulating MIF levels were measured using enzyme-linked immunosorbent assay. Metabolic parameters of recruited subjects were evaluated. Visceral fat mass was measured using bioelectrical impedance method. RESULTS Circulating MIF levels were found to be elevated in subjects with prediabetes compared to controls (26.46 ± 16.98 versus 17.44 ± 11.80 ng/mL, P = 0.007). MIF positively correlated with BMI, visceral fat mass and indirect indices of homeostasis model assessment of insulin resistance. In linear regression model, an independent association was found between MIF levels and metabolic parameters, including BMI, visceral fat mass and homeostasis model assessment of insulin resistance. Multivariate logistic regression analyses revealed that the odds ratio for prediabetes was higher in subjects in the highest quartile of MIF compared to those in the lowest quartile, after adjusting for potential confounders. CONCLUSIONS Increased MIF levels are associated with the elevation of prediabetic risk.
Collapse
Affiliation(s)
- Oktay Bilgir
- Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey.
| | - Belma Gökçen
- Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey
| | - Ferda Bilgir
- Department of Internal Medicine, Katip Celebi University Medical School, Izmir, Turkey
| | - Aslı Guler
- Department of Family Physician, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey
| | - Mehmet Calan
- Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey
| | - Arif Yuksel
- Department of Internal Medicine, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey
| | - Behnaz Aslanıpour
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Murat Akşit
- Department of Biochemistry, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey
| | - Giray Bozkaya
- Department of Biochemistry, Izmir Bozyaka Training and Research Hospital, Bozyaka, Izmir, Turkey
| |
Collapse
|
75
|
He XF, Wei JJ, Shou SY, Fang JQ, Jiang YL. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion. J Zhejiang Univ Sci B 2017; 18:239-248. [PMID: 28271659 DOI: 10.1631/jzus.b1600247] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). METHODS Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4-L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. RESULTS Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4-L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4-L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4-L6 DRGs. CONCLUSIONS These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition.
Collapse
Affiliation(s)
- Xiao-Fen He
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun-Jun Wei
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sheng-Yun Shou
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jian-Qiao Fang
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yong-Liang Jiang
- Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
76
|
Qian HF, Li Y, Wang L. Vaccinium bracteatum Thunb. Leaves' polysaccharide alleviates hepatic gluconeogenesis via the downregulation of miR-137. Biomed Pharmacother 2017; 95:1397-1403. [PMID: 28946187 DOI: 10.1016/j.biopha.2017.09.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022] Open
Abstract
Vaccinium bracteatum Thunb.(VBT) is a traditional Chinese herb that recorded has an effect of hypoglycemic. We previous discovered a dose-dependent anti-diabetic function of VBT. leaves' polysaccharide (VBTLP), but little is known about its underlying molecular mechanism. Therefore, we hypothesized that VBTLP would decrease hepatic gluconeogenesis to improve glucose metabolism in mice. To test this hypothesis, glucose tolerance test was performed to evaluate the effect of VBTLP on mice hepatic gluconeogenesis. Western blot and RT-PCR were performed to measure both in vivo and in vitro gene regulation under VBTLP treatment. Online bioinformatic analysis was performed to discover a target candidate, miR-137 of LKB1 and AMPK under VBTLP treatment, and the luciferase assay was conducted to validate it. Here we found that VBT. leaves' polysaccharide (VBTLP) decreased hepatic gluconeogenesis via activation of LKB1/AMPK axis in vivo and in vitro. Mechanistic studies reveal that miR-137 regulates hepatic glucose homeostasis by directly targeting AMPK and LKB1. Furthermore, we shown that VBTLP decreased hepatic miR-137 level, which might contribute to activation of LKB1/AMPK and downregulation of gluconeogenesis. Taken together, our study shown that the mechanisms might involve in VBTLP hypoglycemic effect, alleviates hepatic gluconeogenesis via the downregulation of miR-137. Our findings provide guidance in developing novel, safe and effective therapies for T2DM.
Collapse
Affiliation(s)
- Hai-Feng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
77
|
Moriishi K. The potential of signal peptide peptidase as a therapeutic target for hepatitis C. Expert Opin Ther Targets 2017; 21:827-836. [DOI: 10.1080/14728222.2017.1369959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kohji Moriishi
- Department of Microbiology, Graduate School of Medical Science, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
78
|
Zhang D, Li N, Xi Y, Zhao Y, Wang T. Diabetes mellitus and risk of ovarian cancer. A systematic review and meta-analysis of 15 cohort studies. Diabetes Res Clin Pract 2017; 130:43-52. [PMID: 28554142 DOI: 10.1016/j.diabres.2017.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/01/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
AIM Diabetes mellitus (DM) is hypothesized to be associated with an increased risk of ovarian cancer (OC), but current evidences are inconsistent. We aimed to further study this association. METHODS PubMed, EMBASE, Web of Science, and Scopus were searched for eligible articles. After descriptive summary of the data, a random-effects model was applied in quantitative synthesis. Subgroup analysis was performed by study locales and settings, and sensitivity analysis was conducted based on restrictive selection criteria. Funnel plots and the Egger's test were used to assess publication bias. Statistical heterogeneity in meta-analysis was assessed by the P value derived from the Cochrane Q statistic and I-squared value. RESULTS Fourteen articles involving data of 15 cohort studies were included for our research. Overall, 17 risk ratios (RRs) were synthesized and yielded a pooled RR of 1.32 (95%CI: 1.14-1.52, PCochrane<0.001, I2=79.8%). Thirteen RRs were synthesized for type 2DM, and the pooled RR was 1.24 (95%CI: 1.06-1.44, PCochrane<0.001, I2=81.8%). Four RRs were synthesized for type 1DM, and the result was significant (RR: 1.83, 95%CI: 1.21-2.78, PCochrane=0.080, I2=55.7%). Results of sensitivity analysis suggested the robustness of a positive association between DM and OC risk, and subgroup analysis demonstrated that the association between DM and OC was much more substantial among Asia population. No publication bias was identified in meta-analysis. CONCLUSION Our study suggests there is a moderate relative increase in the risk of OC among DM patients. Future studies should investigate the effect of duration of DM and anti-diabetes intervention to OC risk.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA.
| | - Nan Li
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Yuzhi Xi
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Yuan Zhao
- Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tengteng Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| |
Collapse
|
79
|
Collier JJ, Sparer TE, Karlstad MD, Burke SJ. Pancreatic islet inflammation: an emerging role for chemokines. J Mol Endocrinol 2017; 59:R33-R46. [PMID: 28420714 PMCID: PMC5505180 DOI: 10.1530/jme-17-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Both type 1 and type 2 diabetes exhibit features of inflammation associated with alterations in pancreatic islet function and mass. These immunological disruptions, if unresolved, contribute to the overall pathogenesis of disease onset. This review presents the emerging role of pancreatic islet chemokine production as a critical factor regulating immune cell entry into pancreatic tissue as well as an important facilitator of changes in tissue resident leukocyte activity. Signaling through two specific chemokine receptors (i.e., CXCR2 and CXCR3) is presented to illustrate key points regarding ligand-mediated regulation of innate and adaptive immune cell responses. The prospective roles of chemokine ligands and their corresponding chemokine receptors to influence the onset and progression of autoimmune- and obesity-associated forms of diabetes are discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Chemokines/genetics
- Chemokines/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammation
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Leukocytes/immunology
- Leukocytes/pathology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Signal Transduction
Collapse
Affiliation(s)
- J Jason Collier
- Laboratory of Islet Biology and InflammationPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Tim E Sparer
- Department of MicrobiologyUniversity of Tennessee, Knoxville, Knoxville, Tennessee, USA
| | - Michael D Karlstad
- Department of SurgeryGraduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, USA
| | - Susan J Burke
- Laboratory of ImmunogeneticsPennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
80
|
Lerat H, Imache MR, Polyte J, Gaudin A, Mercey M, Donati F, Baudesson C, Higgs MR, Picard A, Magnan C, Foufelle F, Pawlotsky JM. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem 2017; 292:12860-12873. [PMID: 28559285 DOI: 10.1074/jbc.m117.785030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
Collapse
Affiliation(s)
- Hervé Lerat
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France.
| | - Mohamed Rabah Imache
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Jacqueline Polyte
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Aurore Gaudin
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Marion Mercey
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Flora Donati
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Camille Baudesson
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Martin R Higgs
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Alexandre Picard
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Fabienne Foufelle
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jean-Michel Pawlotsky
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France; National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, AP-HP, 94010 Créteil, France
| |
Collapse
|
81
|
Dose-dependent effect of Bisphenol-A on insulin signaling molecules in cardiac muscle of adult male rat. Chem Biol Interact 2017; 266:10-16. [DOI: 10.1016/j.cbi.2017.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 01/16/2023]
|
82
|
Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice. PLoS One 2017; 12:e0169809. [PMID: 28072841 PMCID: PMC5224995 DOI: 10.1371/journal.pone.0169809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Mrittika Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | | | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Sahid Hussain
- Department of Chemical Sciences, Tezpur University, Assam, India
| | | | | | - Abul Usmani
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Bhola S Pradhan
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | | | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial (IPGME&R−SSKM) Hospital, Kolkata, West Bengal, India
| | | | - Mihir K. Chaudhuri
- Department of Chemical Sciences, Tezpur University, Assam, India
- * E-mail: (SB); (MKC)
| | - Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
- * E-mail: (SB); (MKC)
| |
Collapse
|
83
|
Burke SJ, Batdorf HM, Burk DH, Noland RC, Eder AE, Boulos MS, Karlstad MD, Collier JJ. db/ db Mice Exhibit Features of Human Type 2 Diabetes That Are Not Present in Weight-Matched C57BL/6J Mice Fed a Western Diet. J Diabetes Res 2017; 2017:8503754. [PMID: 29038790 PMCID: PMC5606106 DOI: 10.1155/2017/8503754] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
To understand features of human obesity and type 2 diabetes mellitus (T2D) that can be recapitulated in the mouse, we compared C57BL/6J mice fed a Western-style diet (WD) to weight-matched genetically obese leptin receptor-deficient mice (db/db). All mice were monitored for changes in body composition, glycemia, and total body mass. To objectively compare diet-induced and genetic models of obesity, tissue analyses were conducted using mice with similar body mass. We found that adipose tissue inflammation was present in both models of obesity. In addition, distinct alterations in metabolic flexibility were evident between WD-fed mice and db/db mice. Circulating insulin levels are elevated in each model of obesity, while glucagon was increased only in the db/db mice. Although both WD-fed and db/db mice exhibited adaptive increases in islet size, the db/db mice also displayed augmented islet expression of the dedifferentiation marker Aldh1a3 and reduced nuclear presence of the transcription factor Nkx6.1. Based on the collective results put forth herein, we conclude that db/db mice capture key features of human T2D that do not occur in WD-fed C57BL/6J mice of comparable body mass.
Collapse
Affiliation(s)
- Susan J. Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Heidi M. Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - David H. Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Robert C. Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Adrianna E. Eder
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920, USA
| | - Matthew S. Boulos
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920, USA
| | - Michael D. Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
84
|
King BC, Blom AM. Non-traditional roles of complement in type 2 diabetes: Metabolism, insulin secretion and homeostasis. Mol Immunol 2016; 84:34-42. [PMID: 28012560 DOI: 10.1016/j.molimm.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022]
Abstract
Type 2 Diabetes (T2D) is a disease of increasing importance and represents a growing burden on global healthcare and human health. In T2D, loss of effectiveness of insulin signaling in peripheral tissues cannot be compensated for by adequate insulin secretion, leading to hyperglycemia and resultant complications. In recent years, inflammation has been identified as a central component of T2D, both in inducing peripheral insulin resistance as well as in the pancreatic islet, where it contributes to loss of insulin secretion and death of insulin-secreting beta cells. In this review we will focus on non-traditional roles of complement proteins which have been identified in T2D-associated inflammation, beta cell secretory function, and in maintaining homeostasis of the pancreatic islet. Improved understanding of both traditional and novel roles of complement proteins in T2D may lead to new therapeutic approaches for this global disease.
Collapse
Affiliation(s)
- Ben C King
- Lund University, Department of Translation Medicine, Division of Medical Protein Chemistry, Skåne University Hospital, Malmö, Sweden.
| | - Anna M Blom
- Lund University, Department of Translation Medicine, Division of Medical Protein Chemistry, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
85
|
Voluntary Running Improves In Vivo Insulin Resistance in High-Salt Diet–Fed Rats. Exp Biol Med (Maywood) 2016; 232:1330-7. [DOI: 10.3181/0704-rm-107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well known that exercise training, including voluntary running (VR), improves insulin resistance. However, the effect of VR on insulin resistance induced by high salt intake is unclear. The aim of this study was to determine whether VR would improve the glucose utilization in normal male Sprague-Dawley rats fed a high-salt diet (HSD) on 2-week early prevention and 1-week midway intervention protocols. In vivo glucose utilization was measured by euglycemic clamp technique. Further analyses of the possible changes in insulin signaling occurring in skeletal muscle were performed by Western blot and reverse transcription polymerase chain reaction (RT-PCR). The glucose infusion rates (GIRs) after 2 weeks of HSD feeding were decreased (HSD vs. control: 21.5 ± 0.8 vs. 27 ± 0.5 mg/kg body wt/min; P < 0.05), and improved by 2 weeks VR to 30.5 ± 1.5 mg/kg body wt/min. Additionally, the GIRs after 3 weeks of HSD feeding were decreased (HSD vs. control: 20.0 ± 0.3 vs. 26.5 ± 0.6 mg/kg body wt/min; P < 0.05), and they also improved by the third week of VR (28.5 ± 0.7 mg/ kg body wt/min vs. sedentary; P < 0.01). There were no differences in skeletal muscle for the total mass of insulin receptor-beta (IR-β), IR substrate-1 (IRS-1), Akt, and glucose transporter 4 (GLUT4) in any of the groups of 2 weeks of HSD loading control and VR. VR did not regulate the enhanced tyrosine phosphorylation of IR-β and IRS-1 by 2 weeks of HSD feeding. However, the enhanced serine phosphorylation of Akt and the tyrosine phosphorylation of GLUT4 were significantly inhibited by the early VR. HSD also impaired GLUT4 content in the plasma membrane and mRNA expression, but the decreases were improved by 2 weeks of VR. These results suggest that early voluntary exercise would prevent the development of insulin resistance induced by an HSD due in part by enhancing the impaired GLUT4 translocation and mRNA expression in skeletal muscle.
Collapse
|
86
|
Dietary Phytochemicals: Natural Swords Combating Inflammation and Oxidation-Mediated Degenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5137431. [PMID: 27721914 PMCID: PMC5046019 DOI: 10.1155/2016/5137431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/08/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023]
Abstract
Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.
Collapse
|
87
|
Abstract
Carbohydrate, lipid, and protein metabolism are largely controlled by the interplay of various hormones, which includes those secreted by the pancreatic islets of Langerhans. While typically representing only 1% to 2% of the total pancreatic mass, the islets have a remarkable ability to adapt to disparate situations demanding a change in hormone release, such as peripheral insulin resistance. There are many different routes to the onset of insulin resistance, including obesity, lipodystrophy, glucocorticoid excess, and the chronic usage of atypical antipsychotic drugs. All of these situations are coupled to an increase in pancreatic islet size, often with a corresponding increase in insulin production. These adaptive responses within the islets are ultimately intended to maintain glycemic control and to promote macronutrient homeostasis during times of stress. Herein, we review the consequences of specific metabolic trauma that lead to insulin resistance and the corresponding adaptive alterations within the pancreatic islets.
Collapse
Affiliation(s)
- Susan J. Burke
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Michael D. Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, TN 37920
| |
Collapse
|
88
|
Wirngo FE, Lambert MN, Jeppesen PB. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes. Rev Diabet Stud 2016; 13:113-131. [PMID: 28012278 DOI: 10.1900/rds.2016.13.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D.
Collapse
Affiliation(s)
- Fonyuy E Wirngo
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 C, Denmark
| | - Max N Lambert
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 C, Denmark
| | - Per B Jeppesen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 C, Denmark
| |
Collapse
|
89
|
Liu J, Wang L, Wang W, Li Y, Jia X, Zhai S, Shi J, Dang S. Application of network construction to estimate functional changes to insulin receptor substrates 1 and 2 in Huh7 cells following infection with the hepatitis C virus. Mol Med Rep 2016; 14:2379-88. [PMID: 27432476 PMCID: PMC4991679 DOI: 10.3892/mmr.2016.5527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/03/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is closely associated with insulin resistance (IS), acting primarily by interfering with insulin signaling pathways, increasing cytokine-mediated (tumor necrosis factor α, interleukin 6) inflammatory responses and enhancing oxidative stress. In the insulin signaling pathways, the insulin receptor substrate (IRS) is one of the key regulatory factors. The present study constructed gene regulatory sub-networks specific for IRS1 and IRS2 in Huh7 cells and HCV-infected Huh7 (HCV-Huh7) cells using linear programming and a decomposition algorithm, and investigated the possible mechanisms underlying the function of IRS1/2 in HCV-induced IS in Huh7 cells. All data were obtained from GSE20948 of the Gene Expression Omnibus database from the National Center for Biotechnology Information. Genes which were significantly differentially expressed between Huh7 and HCV-Huh7 cells were analyzed using the significance analysis of microarray algorithm. The top 50 genes, including IRS1/2, were used as target genes to determine the gene regulatory networks and next the sub-networks of IRS1 and IRS2 in HCV-Huh7 and Huh7 cells using Gene Regulatory Network Inference Tool, an algorithm based on linear programming and the decomposition process. The IRS1/2 sub-networks were divided into upstream/downstream groups and activation/suppression clusters, and were further analyzed using Molecule Annotation System 3.0 and Database for Annotation, Visualization, and Integrated Discovery software, two online platforms for enrichment and clustering analysis and visualization. The results indicated that in Huh7 cells, the downstream network of IRS2 is more complex than that of IRS1, indicating that the insulin metabolism in Huh7 cells may be primarily mediated by IRS2. In HCV-Huh7 cells, the downstream pathway of IRS2 is blocked, suggesting that this may be the underlying mechanism in HCV infection that leads to insulin resistance. The present findings add a further dimension to the understanding of the pathological mechanisms of HCV infection-associated insulin resistance, and provide novel concepts for insulin resistance and glucose metabolism research.
Collapse
Affiliation(s)
- Jingkun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Linbang Wang
- The First Clinical Department, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yaping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoli Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Song Zhai
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shuangsuo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
90
|
Kolic J, Manning Fox JE, Chepurny OG, Spigelman AF, Ferdaoussi M, Schwede F, Holz GG, MacDonald PE. PI3 kinases p110α and PI3K-C2β negatively regulate cAMP via PDE3/8 to control insulin secretion in mouse and human islets. Mol Metab 2016; 5:459-471. [PMID: 27408772 PMCID: PMC4921792 DOI: 10.1016/j.molmet.2016.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/26/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Phosphatidylinositol-3-OH kinase (PI3K) signalling in the endocrine pancreas contributes to glycaemic control. However, the mechanism by which PI3K modulates insulin secretion from the pancreatic beta cell is poorly understood. Thus, our objective was two-fold; to determine the signalling pathway by which acute PI3K inhibition enhances glucose-stimulated insulin secretion (GSIS) and to examine the role of this pathway in islets from type-2 diabetic (T2D) donors. METHODS Isolated islets from mice and non-diabetic or T2D human donors, or INS 832/13 cells, were treated with inhibitors of PI3K and/or phosphodiesterases (PDEs). The expression of PI3K-C2β was knocked down using siRNA. We measured insulin release, single-cell exocytosis, intracellular Ca(2+) responses ([Ca(2+)]i) and Ca(2+) channel currents, intracellular cAMP concentrations ([cAMP]i), and activation of cAMP-dependent protein kinase A (PKA) and protein kinase B (PKB/AKT). RESULTS The non-specific PI3K inhibitor wortmannin amplifies GSIS, raises [cAMP]i and activates PKA, but is without effect in T2D islets. Direct inhibition of specific PDE isoforms demonstrates a role for PDE3 (in humans and mice) and PDE8 (in mice) downstream of PI3K, and restores glucose-responsiveness of T2D islets. We implicate a role for the Class II PI3K catalytic isoform PI3K-C2β in this effect by limiting beta cell exocytosis. CONCLUSIONS PI3K limits GSIS via PDE3 in human islets. While inhibition of p110α or PIK-C2β signalling per se, may promote nutrient-stimulated insulin release, we now suggest that this signalling pathway is perturbed in islets from T2D donors.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada.
| | - Jocelyn E Manning Fox
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Aliya F Spigelman
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| | - Frank Schwede
- BIOLOG Life Science Institute, 28199 Bremen, Germany
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Patrick E MacDonald
- Department of Pharmacology, and the Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
91
|
Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 2016; 39:833-46. [PMID: 27208380 PMCID: PMC4839172 DOI: 10.2337/dc15-2251] [Citation(s) in RCA: 618] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/06/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To conduct a systematic review of cross-sectional and prospective human studies evaluating metabolite markers identified using high-throughput metabolomics techniques on prediabetes and type 2 diabetes. RESEARCH DESIGN AND METHODS We searched MEDLINE and EMBASE databases through August 2015. We conducted a qualitative review of cross-sectional and prospective studies. Additionally, meta-analyses of metabolite markers, with data estimates from at least three prospective studies, and type 2 diabetes risk were conducted, and multivariable-adjusted relative risks of type 2 diabetes were calculated per study-specific SD difference in a given metabolite. RESULTS We identified 27 cross-sectional and 19 prospective publications reporting associations of metabolites and prediabetes and/or type 2 diabetes. Carbohydrate (glucose and fructose), lipid (phospholipids, sphingomyelins, and triglycerides), and amino acid (branched-chain amino acids, aromatic amino acids, glycine, and glutamine) metabolites were higher in individuals with type 2 diabetes compared with control subjects. Prospective studies provided evidence that blood concentrations of several metabolites, including hexoses, branched-chain amino acids, aromatic amino acids, phospholipids, and triglycerides, were associated with the incidence of prediabetes and type 2 diabetes. We meta-analyzed results from eight prospective studies that reported risk estimates for metabolites and type 2 diabetes, including 8,000 individuals of whom 1,940 had type 2 diabetes. We found 36% higher risk of type 2 diabetes per study-specific SD difference for isoleucine (pooled relative risk 1.36 [1.24-1.48]; I(2) = 9.5%), 36% for leucine (1.36 [1.17-1.58]; I(2) = 37.4%), 35% for valine (1.35 [1.19-1.53]; I(2) = 45.8%), 36% for tyrosine (1.36 [1.19-1.55]; I(2) = 51.6%), and 26% for phenylalanine (1.26 [1.10-1.44]; I(2) = 56%). Glycine and glutamine were inversely associated with type 2 diabetes risk (0.89 [0.81-0.96] and 0.85 [0.82-0.89], respectively; both I(2) = 0.0%). CONCLUSIONS In studies using high-throughput metabolomics, several blood amino acids appear to be consistently associated with the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Institute for Health Research, Rovira i Virgili University, Reus, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Adela Hruby
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Estefanía Toledo
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain Department of Preventive Medicine and Public Health, University of Navarra, Health Research Institute of Navarra, Pamplona, Spain
| | | | - Miguel A Martínez-González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain Department of Preventive Medicine and Public Health, University of Navarra, Health Research Institute of Navarra, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Pere Virgili Institute for Health Research, Rovira i Virgili University, Reus, Spain CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
92
|
Dynamic Modeling and Analysis of the Cross-Talk between Insulin/AKT and MAPK/ERK Signaling Pathways. PLoS One 2016; 11:e0149684. [PMID: 26930065 PMCID: PMC4773096 DOI: 10.1371/journal.pone.0149684] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Feedback loops play a key role in the regulation of the complex interactions in signal transduction networks. By studying the network of interactions among the biomolecules present in signaling pathways at the systems level, it is possible to understand how the biological functions are regulated and how the diseases emerge from their deregulations. This paper identifies the key feedback loops involved in the cross-talk among the insulin-AKT and MAPK/ERK signaling pathways. We developed a mathematical model that can be used to study the steady-state and dynamic behavior of the interactions among these two important signaling pathways. Modeling analysis and simulation case studies identify the key interaction parameters and the feedback loops that determine the normal and disease phenotypes.
Collapse
|
93
|
Celli GB, Kalt W, Brooks MSL. Gastroretentive systems - a proposed strategy to modulate anthocyanin release and absorption for the management of diabetes. Drug Deliv 2016; 23:1892-901. [PMID: 26873039 DOI: 10.3109/10717544.2016.1143058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several reports have indicated a positive correlation between the consumption of anthocyanins (ACN) and biomarkers relating to the improvement of type 2 diabetes (T2D). However, the results from in vitro studies often do not translate into clinical evidence. Potential causes of these discrepancies are experimental conditions that lack physiological relevancy; extensive degradation of these compounds in vivo due to changes in pH and metabolism; and a short residence time in the absorption window in relation to the absorption rate. Here, gastroretentive systems (GRS) are proposed as a strategy to overcome the limitations in ACN delivery and to reduce the existing bench-to-subject gap. This review summarizes recent literature on the use of ACN for the management and control of T2D, followed by GRS platforms to promote a sustained release of ACN for increased health benefits.
Collapse
Affiliation(s)
- Giovana Bonat Celli
- a Department of Process Engineering and Applied Science , Dalhousie University , Halifax , NS , Canada and
| | - Wilhelmina Kalt
- b Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada , Kentville , NS , Canada
| | - Marianne Su-Ling Brooks
- a Department of Process Engineering and Applied Science , Dalhousie University , Halifax , NS , Canada and
| |
Collapse
|
94
|
β-Cell Insulin Secretion Requires the Ubiquitin Ligase COP1. Cell 2015; 163:1457-67. [PMID: 26627735 DOI: 10.1016/j.cell.2015.10.076] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022]
Abstract
A variety of signals finely tune insulin secretion by pancreatic β cells to prevent both hyper-and hypoglycemic states. Here, we show that post-translational regulation of the transcription factors ETV1, ETV4, and ETV5 by the ubiquitin ligase COP1 (also called RFWD2) in β cells is critical for insulin secretion. Mice lacking COP1 in β cells developed diabetes due to insulin granule docking defects that were fully rescued by genetic deletion of Etv1, Etv4, and Etv5. Genes regulated by ETV1, ETV4, or ETV5 in the absence of mouse COP1 were enriched in human diabetes-associated genes, suggesting that they also influence human β-cell pathophysiology. In normal β cells, ETV4 was stabilized upon membrane depolarization and limited insulin secretion under hyperglycemic conditions. Collectively, our data reveal that ETVs negatively regulate insulin secretion for the maintenance of normoglycemia.
Collapse
|
95
|
Saponarin activates AMPK in a calcium-dependent manner and suppresses gluconeogenesis and increases glucose uptake via phosphorylation of CRTC2 and HDAC5. Bioorg Med Chem Lett 2015; 25:5237-42. [DOI: 10.1016/j.bmcl.2015.09.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/19/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022]
|
96
|
Cuadros DF, Miller FD, Nagelkerke N, Abu-Raddad LJ. Association between HCV infection and diabetes type 2 in Egypt: is it time to split up? Ann Epidemiol 2015; 25:918-23. [PMID: 26499381 DOI: 10.1016/j.annepidem.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE There is a conflicting evidence about the association between hepatitis C virus (HCV) infection and diabetes mellitus. The objective of this study was to assess this association in Egypt, the country with the highest HCV prevalence in the world. METHODS The source of data was from the Egypt Demographic and Health Survey conducted in 2008. Using multivariable logistic regression analyses to account for known confounders, the association was investigated at two levels']: (1) HCV exposure (HCV antibody status) and diabetes mellitus and (2) diabetes mellitus and chronic HCV infection (HCV RNA status) among HCV-exposed individuals. RESULTS We found no evidence for an association between HCV antibody status and diabetes (adjusted odds ratio [OR] = 0.87; 95% confidence interval [CI], 0.63-1.19). However, among HCV-exposed individuals, we found an evidence for an association between diabetes and active HCV infection (adjusted OR = 2.44, 95% CI, 1.30-4.57). CONCLUSIONS Although it does not appear that HCV exposure and diabetes are linked, there might be an association between diabetes and chronic HCV infection. The HCV-diabetes relationship may be more complex than previously anticipated. Therefore, a call for an "amicable divorce" to the HCV-diabetes relationship could be premature.
Collapse
Affiliation(s)
- Diego F Cuadros
- Infectious Disease Epidemiology Group, Weill Cornell Medical College-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar; Department of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, NY.
| | - F DeWolfe Miller
- Department of Tropical Medicine and Medical Microbiology and Pharmacology, University of Hawaii, Honolulu
| | - Nico Nagelkerke
- Department of Public Health, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medical College-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar; Department of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, NY; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
97
|
Zhou Y, Sun P, Wang T, Chen K, Zhu W, Wang H. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0132411. [PMID: 26147439 PMCID: PMC4492560 DOI: 10.1371/journal.pone.0132411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/12/2015] [Indexed: 01/12/2023] Open
Abstract
Lipotoxicity plays an important role in pancreatic β-cell failure during the development of type 2 diabetes. Prolonged exposure of β-cells to elevated free fatty acids level could cause deterioration of β-cell function and induce cell apoptosis. Therefore, inhibition of fatty acids-induced β-cell dysfunction and apoptosis might provide benefit for the therapy of type 2 diabetes. The present study examined whether regulation of fatty acids-triggered calcium influx could protect pancreatic β-cells from lipotoxicity. Two small molecule compounds, L-type calcium channel blocker nifedipine and potassium channel activator diazoxide were used to inhibit palmitic acid-induced calcium influx. And whether the compounds could reduce palmitic acid-induced β-cell failure and the underlying mechanism were also investigated. It was found that both nifedipine and diazoxide protected MIN6 pancreatic β-cells and primary cultured murine islets from palmitic acid-induced apoptosis. Meanwhile, the impaired insulin secretion was also recovered to varying degrees by these two compounds. Our results verified that nifedipine and diazoxide could reduce palmitic acid-induced endoplasmic reticulum stress to generate protective effects on pancreatic β-cells. More importantly, it suggested that regulation of calcium influx by small molecule compounds might provide benefits for the prevention and therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Yuren Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Peng Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kaixian Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Heyao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- * E-mail:
| |
Collapse
|
98
|
Caravaggio F, Hahn M, Nakajima S, Gerretsen P, Remington G, Graff-Guerrero A. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia. Med Hypotheses 2015; 85:391-6. [PMID: 26118462 DOI: 10.1016/j.mehy.2015.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 12/23/2022]
Abstract
Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin is reduced in the brains of persons with schizophrenia.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Margaret Hahn
- Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada; Institute of Medical Science, University of Toronto, 2374 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
99
|
Matsumoto Y, Ishii M, Hayashi Y, Miyazaki S, Sugita T, Sumiya E, Sekimizu K. Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Sci Rep 2015; 5:10722. [PMID: 26024298 PMCID: PMC4448660 DOI: 10.1038/srep10722] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022] Open
Abstract
We previously reported that sugar levels in the silkworm hemolymph, i.e., blood, increase immediately (within 1 h) after intake of a high-glucose diet, and that the administration of human insulin decreases elevated hemolymph sugar levels in silkworms. In this hyperglycemic silkworm model, however, administration of pioglitazone or metformin, drugs used clinically for the treatment of type II diabetes, have no effect. Therefore, here we established a silkworm model of type II diabetes for the evaluation of anti-diabetic drugs such as pioglitazone and metformin. Silkworms fed a high-glucose diet over a long time-period (18 h) exhibited a hyperlipidemic phenotype. In these hyperlipidemic silkworms, phosphorylation of JNK, a stress-responsive protein kinase, was enhanced in the fat body, an organ that functionally resembles the mammalian liver and adipose tissue. Fat bodies isolated from hyperlipidemic silkworms exhibited decreased sensitivity to human insulin. The hyperlipidemic silkworms have impaired glucose tolerance, characterized by high fasting hemolymph sugar levels and higher hemolymph sugar levels in a glucose tolerance test. Administration of pioglitazone or metformin improved the glucose tolerance of the hyperlipidemic silkworms. These findings suggest that the hyperlipidemic silkworms are useful for evaluating the hypoglycemic activities of candidate drugs against type II diabetes.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Masaki Ishii
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Yohei Hayashi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Shinya Miyazaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Takuya Sugita
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Eriko Sumiya
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| |
Collapse
|
100
|
Transcriptional regulation of chemokine genes: a link to pancreatic islet inflammation? Biomolecules 2015; 5:1020-34. [PMID: 26018641 PMCID: PMC4496708 DOI: 10.3390/biom5021020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Enhanced expression of chemotactic cytokines (aka chemokines) within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.
Collapse
|