51
|
Guedes S, Bricout H, Langevin E, Tong S, Bertrand-Gerentes I. Epidemiology of invasive meningococcal disease and sequelae in the United Kingdom during the period 2008 to 2017 - a secondary database analysis. BMC Public Health 2022; 22:521. [PMID: 35296287 PMCID: PMC8928586 DOI: 10.1186/s12889-022-12933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/04/2022] [Indexed: 11/14/2022] Open
Abstract
Background Invasive meningococcal disease (IMD) causes high fatality in untreated patients alongside long-term sequelae in 20% survivors. For a comprehensive assessment of epidemiology, an analysis of these sequelae is required. This study aims to investigate the epidemiology of disease between 2008 and 2017 including a description of the sequelae, through the analysis of data collected from the UK Clinical Practice Research Datalink (CPRD) linked with data from the Hospital Episode Statistics (HES), and Office for National Statistics (ONS) mortality registry data. Methods This was a 10-year retrospective observational cohort study designed to describe the incidence, case-fatality rate (CFR) and occurrence of sequelae due to meningococcal disease, in the UK between 2007 and 2017 using data from the UK CPRD-HES-ONS. Cases were identified and matched on age, gender, date of diagnosis of IMD and followed-up-time with a control group without IMD. Demographics, clinical characteristics, mortality, and IMD-related sequelae were examined for IMD cases and compared with matched controls for a more comprehensive assessment. Results The study analysed 640 IMD patients with majority of the cases diagnosed (76.9%) in a hospital setting. Age-group analysis showed a decrease in the incidence rate of IMD in patients aged <1 year (30.4 – 7.5%) and an increase in those >50 years (10.4 – 27.8%). CFR was slightly higher among females, toddlers, and adults >50 years. No significant change in CFR was observed over study period. Case-control study showed a higher number of IMD sequelae among cases compared to age- and gender-matched controls, especially in those ≥ 50 years. Conclusion The study showed that, despite a relatively low incidence rate, IMD is responsible for a high CFR, namely in older age groups and by a high number of IMD sequelae. The study showed that leveraging data from existing databases can be used to complement surveillance data in truly assessing the epidemiology of IMD. Despite the availability of routine vaccination programs, IMD still poses a significant burden in the healthcare system of the UK. Optimization of vaccination programs may be required to reduce the disease burden. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-12933-3.
Collapse
Affiliation(s)
- Sandra Guedes
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France
| | - Hélène Bricout
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France
| | - Edith Langevin
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France
| | | | | |
Collapse
|
52
|
Honskus M, Okonji Z, Musilek M, Krizova P. Whole genome sequencing of Neisseria meningitidis Y isolates collected in the Czech Republic in 1993-2018. PLoS One 2022; 17:e0265066. [PMID: 35271677 PMCID: PMC8912901 DOI: 10.1371/journal.pone.0265066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction The study presents the analysis of whole genome sequencing (WGS) data for Neisseria meningitidis serogroup Y isolates collected in the Czech Republic and their comparison to other countries. The aim of the study was to determine whether there are lineages of N. meningitidis serogroup Y in the Czech Republic genetically related to foreign ones that have been causing an increase of the morbidity and the mortality of invasive meningococcal disease (IMD) world-wide recently. Material and methods The WGS data of 43 Czech N. meningitidis Y isolates, 35 from IMD and 8 from healthy carriers were analysed. Due to the potential of meningococcal B vaccines to induce protection against non-B serogroups, the coverage of Czech isolates of N. meningitidis Y by these vaccines was studied. The WGS data of Czech, European and non-European isolates of N. meningitidis serogroup Y were compared. Results WGS assigned 36 isolates of N. meningitidis Y to five clonal complexes: cc23, cc92, cc167, cc103, and cc174, while seven isolates remained unassigned to any clonal complexes (ccUA). Eighteen invasive isolates belonged to clonal complex cc23, which was detected throughout the studied years. The occurrence of cc23 was recorded in all age groups of IMD patients, with the highest found in those aged 15–19 years. On the phylogenetic network isolates of cc23 form a separate lineage, distinct from all other isolates of N. meningitidis Y. The remaining isolates were assigned to other clonal complexes and have very low relatedness to cc23 isolates and to each other. The comparison with foreign WGS data showed that within the main genetic lineages, which are defined by clonal complexes, Czech isolates of N. meningitidis Y, similar to European ones, mostly cluster together and form geographical sublineages. Conclusions WGS analysis showed the population of Czech N. meningitidis Y isolates as relatively heterogeneous, containing a large number of genetic lineages. The Czech isolates of N. meningitidis Y follow the trend observed for European isolates. Our result was one of the bases for updating the recommended vaccination strategy in the Czech Republic.
Collapse
Affiliation(s)
- Michal Honskus
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Okonji
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Pavla Krizova
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
53
|
BACTERIAL MENINGITIS PRESENTING WITH A NORMAL CEREBROSPINAL FLUID LEUKOCYTE COUNT. J Infect 2022; 84:615-620. [PMID: 35245581 DOI: 10.1016/j.jinf.2022.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We describe clinical characteristics and outcome of adults with bacterial meningitis presenting with a normal CSF leukocyte count. METHODS We studied community-acquired bacterial meningitis with a normal CSF leukocyte count (≤ 5 per mm3) in adults from a prospective nationwide cohort study. RESULTS From 2006 through 2020, 39 of 2,357 (2%) episodes presented with a normal CSF leukocyte count. Immunocompromising conditions were present in 19 of 39 patients (49%), compared to 690 of 2303 (30%) in patients with elevated leukocytes (P=0.02). The triad of fever, neck stiffness, and altered consciousness was present in 6 of 34 patients (18%). CSF protein was abnormal in 25 of 37 patients (68%). We identified 3 clinical subgroups: those with severe pneumococcal meningitis (20 patients [51%]), with mainly sepsis (8 [21%]), and a miscellaneous group (11 [28%]). All patients with severe pneumococcal meningitis presented with high CSF protein levels and 18 of 19 (95%) had bacteria in the CSF Gram stain. Outcome was unfavorable in 23 of 39 (59%) patients and 12 (31%) died. CONCLUSION Patients with bacterial meningitis may present with normal CSF leukocyte counts. In these patients, CSF protein levels and Gram staining are important diagnostic parameters.
Collapse
|
54
|
Ghosh S, Nandi S, Basu T. Nano-Antibacterials Using Medicinal Plant Components: An Overview. Front Microbiol 2022; 12:768739. [PMID: 35273578 PMCID: PMC8902597 DOI: 10.3389/fmicb.2021.768739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Gradual emergence of new bacterial strains, resistant to one or more antibiotics, necessitates development of new antibacterials to prevent us from newly evolved disease-causing, drug-resistant, pathogenic bacteria. Different inorganic and organic compounds have been synthesized as antibacterials, but with the problem of toxicity. Other alternatives of using green products, i.e., the medicinal plant extracts with biocompatible and potent antibacterial characteristics, also had limitation because of their low aqueous solubility and therefore less bioavailability. Use of nanotechnological strategy appears to be a savior, where phytochemicals are nanonized through encapsulation or entrapment within inorganic or organic hydrophilic capping agents. Nanonization of such products not only makes them water soluble but also helps to attain high surface to volume ratio and therefore high reaction area of the nanonized products with better therapeutic potential, over that of the equivalent amount of raw bulk products. Medicinal plant extracts, whose prime components are flavonoids, alkaloids, terpenoids, polyphenolic compounds, and essential oils, are in one hand nanonized (capped and stabilized) by polymers, lipids, or clay materials for developing nanodrugs; on the other hand, high antioxidant activity of those plant extracts is also used to reduce various metal salts to produce metallic nanoparticles. In this review, five medicinal plants, viz., tulsi (Ocimum sanctum), turmeric (Curcuma longa), aloe vera (Aloe vera), oregano (Oregano vulgare), and eucalyptus (Eucalyptus globulus), with promising antibacterial potential and the nanoformulations associated with the plants' crude extracts and their respective major components (eugenol, curcumin, anthraquinone, carvacrol, eucalyptus oil) have been discussed with respect to their antibacterial potency.
Collapse
Affiliation(s)
| | | | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
55
|
Abbas AM, Rashed ME, El-Gebaly E, AbdelAllah NH, Gaber Y. Comparative evaluation of the humoral immune interaction when BCG and conjugated meningococcal vaccines combined or co-administrated in mice. Comp Immunol Microbiol Infect Dis 2022; 84:101778. [DOI: 10.1016/j.cimid.2022.101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
|
56
|
Argante L, Abbing-Karahagopian V, Vadivelu K, Rappuoli R, Medini D. A re-assessment of 4CMenB vaccine effectiveness against serogroup B invasive meningococcal disease in England based on an incidence model. BMC Infect Dis 2021; 21:1244. [PMID: 34895161 PMCID: PMC8666080 DOI: 10.1186/s12879-021-06906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The four-component serogroup B meningococcal 4CMenB vaccine (Bexsero, GSK) has been routinely given to all infants in the United Kingdom at 2, 4 and 12 months of age since September 2015. After 3 years, Public Health England (PHE) reported a 75% [95% confidence interval 64%; 81%] reduction in the incidence of serogroup B invasive meningococcal disease (IMD) in age groups eligible to be fully vaccinated. In contrast, vaccine effectiveness (VE) evaluated in the same immunization program applying the screening method was not statistically significant. We re-analyzed the data using an incidence model. METHODS Aggregate data-stratified by age, year and doses received-were provided by PHE: serogroup B IMD case counts for the entire population of England (years 2011-2018) and 4CMenB vaccine uptake in infants. We combined uptake with national population estimates to obtain counts of vaccinated and unvaccinated person-time by age and time. We re-estimated VE comparing incidence rates in vaccinated and non-vaccinated subjects using a Bayesian Poisson model for case counts with person-time data as an offset. The model was adjusted for age, time and number of doses received. RESULTS The incidence model showed that cases decreased until 2013-2014, followed by an increasing trend that continued in the non-vaccinated population during the immunization program. VE in fully vaccinated subjects (three doses) was 80.1% [95% Bayesian credible interval (BCI): 70.3%; 86.7%]. After a single dose, VE was 33.5% [12.4%; 49.7%]95%BCI and after two doses, 78.7% [71.5%; 84.5%]95%BCI. We estimated that vaccination averted 312 cases [252; 368]95%BCI between 2015 and 2018. VE was in line with the previously reported incidence reduction. CONCLUSIONS Our estimates of VE had higher precision than previous estimates based on the screening method, which were statistically not significant, and in line with the 75% incidence reduction previously reported by PHE. When disease incidence is low and vaccine uptake is high, the screening method applied to cases exclusively from the population eligible for vaccination may not be precise enough and may produce misleading point-estimates. Precise and accurate VE estimates are fundamental to inform public health decision making. VE assessment can be enhanced using models that leverage data on subjects not eligible for vaccination.
Collapse
|
57
|
Van CP, Nguyen TT, Bui ST, Nguyen TV, Tran HTT, Pham DT, Trieu LP, Nguyen MD. Invasive Meningococcal Disease Remains a Health Threat in Vietnam People's Army. Infect Drug Resist 2021; 14:5261-5269. [PMID: 34916810 PMCID: PMC8667609 DOI: 10.2147/idr.s339110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Despite strict surveillance, Neisseria meningitidis still causes life-threatening invasive meningococcal disease (IMD). The study aimed to describe the prevalence, clinical and subclinical features, and treatment outcomes of IMD among young soldiers of the Vietnam People's Army. METHODS A prospective, population-based surveillance study was conducted in all Vietnamese military hospitals from January 2014 to June 2021. The presence of Neisseria meningitidis was confirmed by PCR or culture from blood or/and CSF. Epidemiological indices (incidence, serogroups, and distribution of cases by length of service), medical history, clinical and sub-clinical features, and treatment outcomes were documented and analyzed. RESULTS There were 69 IMD cases (91% serogroup B) documented, mainly in conscripts (91%). The highest annual incidence was 3.33/100,000 soldiers per year. Of these cases, 44% were meningitis (n=30), 19% septicemia (n=13), and 38% meningococcemia (n=26). The most common clinical symptoms were neck stiffness (61 cases, 88%), petechial rash (51%), and shock (20 cases, 29%). Laboratory findings showed leukocytosis in 96% of IMD cases, PCT >0.05 (ng/mL) in 100%, elevated leukocyte count (>1,000/mm3) in 71%, and high protein >1 g/L in 70%. The overall mortality rate was 9%. Two cases were found to be resistant to ceftriaxone. Prognostic factors of severity included petechial rash (OR = 9.82, p < 0.001), septicemia (OR = 5.83, p < 0.001), meningococcemia (OR = 6.22, p < 0.001), low platelet count, prolonged prothrombin time; high PCT (AUC = 0.84, p < 0.001), and increased creatinine (AUC = 0.86, p < 0.001). CONCLUSION IMD remains a health threat in the armed forces in Vietnam, especially among new recruits. To the best of our knowledge, this is the first study in Vietnam describing ceftriaxone resistance in Neisseria meningitidis and suggests the need to reconsider standard empiric therapy for IMD.
Collapse
Affiliation(s)
- Chung Pham Van
- Department of Foodborne Infectious Disease, Institute of Clinical Infectious Disease, 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, 108 Military Central Hospital, Hanoi, Vietnam
| | - The Trong Nguyen
- Vietnamese-German Center of Excellence in Medical Research, 108 Military Central Hospital, Hanoi, Vietnam
- Department of Airborne Infectious Disease and Intensive Care Unit, Institute of Clinical Infectious Disease, 108 Military Central Hospital, Hanoi, Vietnam
| | - Sy Tien Bui
- Vietnamese-German Center of Excellence in Medical Research, 108 Military Central Hospital, Hanoi, Vietnam
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Trong Van Nguyen
- Vietnamese-German Center of Excellence in Medical Research, 108 Military Central Hospital, Hanoi, Vietnam
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Huyen Thi Thanh Tran
- Vietnamese-German Center of Excellence in Medical Research, 108 Military Central Hospital, Hanoi, Vietnam
- Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Dong Trac Pham
- Military Medical Department, Ministry of National Defense, Hanoi, Vietnam
| | - Long Phi Trieu
- Department of Microbiology, Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Manh Dang Nguyen
- Department of Foodborne Infectious Disease, Institute of Clinical Infectious Disease, 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, 108 Military Central Hospital, Hanoi, Vietnam
| |
Collapse
|
58
|
McMillan M, Marshall HS, Richmond P. 4CMenB vaccine and its role in preventing transmission and inducing herd immunity. Expert Rev Vaccines 2021; 21:103-114. [PMID: 34747302 DOI: 10.1080/14760584.2022.2003708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION : Vaccination is the most effective method of protecting people from invasive meningococcal disease (IMD). Of all the capsular groups, B is the most common cause of invasive meningococcal disease in many parts of the world. Despite this, adolescent meningococcal B vaccine programs have not been implemented globally, partly due to the lack of evidence for herd immunity afforded by meningococcal B vaccines. AREAS COVERED This review aims to synthesise the available evidence on recombinant 4CMenB vaccines' ability to reduce pharyngeal carriage and therefore provide indirect (herd) immunity against IMD. EXPERT OPINION There is some evidence that the 4CMenB vaccine may induce cross-protection against non-B carriage of meningococci. However, the overall body of evidence does not support a clinically significant reduction in carriage of disease-associated or group B meningococci following 4CMenB vaccination. No additional cost-benefit from herd immunity effects should be included when modelling the cost-effectiveness of 4CMenB vaccine programs against group B IMD. 4CMenB immunisation programs should focus on direct (individual) protection for groups at greatest risk of meningococcal disease. Future meningococcal B and combination vaccines being developed should consider the impact of the vaccine on carriage as part of their clinical evaluation.
Collapse
Affiliation(s)
- Mark McMillan
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network, Adelaide, South Australia, Australia.,Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter Richmond
- Division of Paediatrics, School of Medicine, University of Western Australia, Department of General Paediatrics and Immunology, Perth Children's Hospital.,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kid's Institute, Perth, Western Australia
| |
Collapse
|
59
|
Knapper F. The changing face of meningococcal infection. CLINICAL INFECTION IN PRACTICE 2021; 12:100083. [PMID: 34751256 PMCID: PMC8565481 DOI: 10.1016/j.clinpr.2021.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Menigococcal infection is caused by Neisseria meningitidis, a Gram negative diplococci. Invasive meningococcal disease (IMD) is caused by 6 capsular groups. The spectrum of infection is broad, with meningitis and meningococcal sepsis associated with a case fatality of between 4 and 20%. The main burden of disease is felt in the under 1's and this is where vaccination has been focused. Vaccination against MenC begun in 1999, with vaccines against Men ACWY and MenB added to the schedule in 2015. Over the last 1o years rates of IMD in the UK have fallen by over 50%. The impact of COVID-19 on cases has also been felt, with early data suggesting a significant drop in cases during the first wave in 2020. Despite the success of vaccination we need to remain vigilant. Clonal expansion of hypervirulent strains has been seen in epidemics and we have a significant proportion of the population who remain unvaccinated.
Collapse
|
60
|
A case of invasive meningococcal disease presenting as myopericarditis. CLINICAL INFECTION IN PRACTICE 2021. [DOI: 10.1016/j.clinpr.2021.100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
61
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
62
|
Patel T, Quow K, Cardones AR. Management of Infectious Emergencies for the Inpatient Dermatologist. CURRENT DERMATOLOGY REPORTS 2021; 10:232-242. [PMID: 34642610 PMCID: PMC8493951 DOI: 10.1007/s13671-021-00334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Purpose of Review There are various dermatologic emergencies stemming from bacterial, viral, and fungal etiologies that can present in the inpatient setting. This review summarizes the pathogenesis and diagnosis of infections with cutaneous involvement and highlights new therapies. Recent Findings Clindamycin inhibits toxin formation and can be used as an adjunct therapy for the staphylococcal scalded syndrome. Isavuconazole therapy for mucormycosis infection is a less toxic alternative to amphotericin B. Summary Diagnosis of these infections is primarily guided by high clinical suspicion and early recognition can prevent dangerous sequelae. Treatment mainstays have been well-established, but there are adjunctive therapies that may potentially benefit the patient.
Collapse
Affiliation(s)
- Tulsi Patel
- Duke University School of Medicine, Durham, NC 27710 USA
| | - Krystina Quow
- Department of Dermatology, Duke University, Durham, NC 27710 USA
| | - Adela R Cardones
- Department of Dermatology, Duke University, Durham, NC 27710 USA
- Durham VA Medical Center, Durham, NC 27705 USA
- Durham, USA
| |
Collapse
|
63
|
Chen S, Rudra B, Gupta RS. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst Appl Microbiol 2021; 44:126251. [PMID: 34600238 DOI: 10.1016/j.syapm.2021.126251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The order Neisseriales contains 37 genera harboring 122 species with validly published names, which are placed into two families, Neisseriaceae and Chromobacteriaceae. Genome sequences are now available for 35 of the 37 Neisseriales genera for reliably determining their evolutionary relationships and taxonomy. We report here comprehensive phylogenomic and comparative analyses on protein sequences from 110 Neisseriales genomes plus 3 Chitinimonas genomes using multiple approaches. In a phylogenomic tree based on 596 core proteins, Neisseriales species formed 5 strongly supported clades. In addition to the clades for Neisseriaceae and Chromobacteriaceae families, three novel species clades designated as the "Chitinibacteraceae", "Aquaspirillaceae", and "Leeiaceae" were observed. The genus Chitinimonas grouped reliably with members of the "Chitinibacteraceae" clade. The major clades within the order Neisseriales can also be distinguished based on average amino acid identity analysis. In parallel, our comparative genomic studies have identified 30 conserved signature indels (CSIs) that are specific for members of the order Neisseriales or its five main clades. One of these CSIs is uniquely shared by all Neisseriales, whereas 8, 4, 9, 3 and 5 CSIs are distinctive characteristics of the Neisseriaceae, Chromobacteriaceae, "Chitinibacteraceae", "Aquaspirillaceae" and "Leeiaceae" clades, respectively. Based on the strong phylogenetic and molecular evidence presented here, we are proposing that the three newly identified clades should be recognized as novel families (Chitinibacteraceae fam. nov., Aquaspirillaceae fam. nov. and Leeiaceae fam. nov.) within the order Neisseriales. In addition, we are also emending descriptions of the families Neisseriaceae and Chromobacteriaceae regarding their constituent genera and other distinguishing characteristics.
Collapse
Affiliation(s)
- Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
64
|
Ohm M, Hahné SJM, van der Ende A, Sanders EAM, Berbers GAM, Ruijs WLM, van Sorge NM, de Melker HE, Knol MJ. Vaccine impact and effectiveness of meningococcal serogroup ACWY conjugate vaccine implementation in the Netherlands: a nationwide surveillance study. Clin Infect Dis 2021; 74:2173-2180. [PMID: 34525199 PMCID: PMC9258937 DOI: 10.1093/cid/ciab791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background In response to the recent serogroup W invasive meningococcal disease (IMD-W) epidemic in the Netherlands, meningococcal serogroup C (MenC) conjugate vaccination for children aged 14 months was replaced with a MenACWY conjugate vaccination, and a mass campaign targeting individuals aged 14–18 years was executed. We investigated the impact of MenACWY vaccination implementation in 2018–2020 on incidence rates and estimated vaccine effectiveness (VE). Methods We extracted IMD cases diagnosed between July 2014 and December 2020 from the national surveillance system. We calculated age group–specific incidence rate ratios by comparing incidence rates before (July 2017–March 2018) and after (July 2019–March 2020) MenACWY vaccination implementation. We estimated VE in vaccine-eligible cases using the screening method. Results Overall, the IMD-W incidence rate declined by 61% (95% confidence interval [CI], 40 to 74). It declined by 82% (95% CI, 18 to 96) in the vaccine-eligible age group (individuals aged 15–36 months and 14–18 years) and by 57% (95% CI, 34 to 72) in vaccine-noneligible age groups. VE was 92% (95% CI, –20 to 99.5) in vaccine-eligible toddlers (aged 15–36 months). No IMD-W cases were reported in vaccine-eligible teenagers after the campaign. Conclusions The MenACWY vaccination program was effective in preventing IMD-W in the target population. The IMD-W incidence reduction in vaccine-noneligible age groups may be caused by indirect effects of the vaccination program. However, disentangling natural fluctuation from vaccine effect was not possible. Our findings encourage the use of toddler and teenager MenACWY vaccination in national immunization programs.
Collapse
Affiliation(s)
- Milou Ohm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Susan J M Hahné
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology and Infection Prevention and Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, location Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wilhelmina L M Ruijs
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention and Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, location Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hester E de Melker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam J Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
65
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
66
|
Huston J, Galicia K, Egelund EF. MenQuadfi (MenACWY-TT): A New Vaccine for Meningococcal Serogroups ACWY. Ann Pharmacother 2021; 56:727-735. [PMID: 34459258 DOI: 10.1177/10600280211039873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE This article reviews data encompassing the pharmacology, efficacy, and safety of MenACWY-TT (MenQuadfi), a conjugate vaccine to prevent meningococcal disease from serogroups A, C, W, Y. DATA SOURCES A literature review was conducted in PubMed, MEDLINE, and ClinicalTrials.gov from inception up to July 2021, using the search terms MenQuadfi, meningococcal ACWY vaccine, MCV4, and menacwy. Articles from reference lists were included to identify potential relevant literature. STUDY SELECTION AND DATA EXTRACTION Data were limited to randomized phase II and III clinical studies published in the English language, evaluating the efficacy and safety of MenACWY-TT. Animal studies and studies not utilizing MenACWY-TT were excluded. DATA SYNTHESIS One phase II and 4 phase III randomized clinical studies, enrolling approximately 7700 participants, aged 2 years to 97 years old found that MenACWY-TT was noninferior when compared to established MenACWY vaccines, as measured by surrogate immunogenicity end points. In studies evaluating primary dose vaccination, conducted in those aged 2 to 97 years of age, the difference in seroresponse rates, reported by the lower bound of the 95% CI, was (A) 1.1% to 14.8%, (C) 21% to 42.2%, (Y) 7.7% to 24.6%, and (W) 8.9% to 22.5%. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Despite the low incidence of meningococcal disease in the United States, meningococcal disease causes significant morbidity and mortality if not prevented. CONCLUSION MenACWY-TT is noninferior to currently approved quadrivalent meningococcal vaccines and shows similar immunogenicity and safety as both an initial vaccine for prevention as well as a booster dose.
Collapse
Affiliation(s)
| | | | - Eric F Egelund
- University of Florida, Jacksonville, FL, USA.,Infectious Disease Pharmacokinetics Laboratory, Gainesville, FL, USA
| |
Collapse
|
67
|
Stefanizzi P, Bianchi FP, Spinelli G, Amoruso F, Ancona D, Stella P, Tafuri S. Postmarketing surveillance of adverse events following meningococcal B vaccination: data from Apulia Region, 2014-19. Hum Vaccin Immunother 2021; 18:1-6. [PMID: 34435938 PMCID: PMC8920168 DOI: 10.1080/21645515.2021.1963171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Since the multicomponent meningococcal B vaccine introduction, the Apulian Regional Health Authority implemented postmarketing surveillance program, as provided by Italian laws. From National Pharmacovigilance Network, we selected 4CMenB AEFIs reported in Apulia from 01 January 2014 to 31 December 2019, while the number of 4 cMen B doses administered per year was obtained from the regional immunization database (GIAVA). For each subject who experienced an adverse event following meningococcal B vaccine (AEFIs), a predefined form was filled in. A total of 214 AEFIs (26.5 × 100.000 doses) were reported after any dose of MenB-4 c vaccination of which 58/214 (27.1%) were classified as serious (7.2 × 100,000 doses), 145/214 (67.8%) as not serious (180 × 100,000 doses), and 11/214 (5.1%) as undefined (1.3 × 100,000 doses). The average age of subjects who experimented and AEFI was 30 months. The majority of serious AEFIs were reported in 2- to 11-month-old children (44/57; 77.2%). A total of 31/58 (3.8 × 100,000 doses; 53.4%) serious AEFIs were reported as having a ‘consistent causal association’ with vaccination. Of these, fever/hyperpyrexia was reported in 21/31 (2.6 × 100,000 doses; 67.7%); hypotonic-hyporesponsive episode was reported in 7/31 (0.9 × 100,000 doses [add %-age]) and was the most frequent adverse event with neurological symptoms. A total of 13/31 (41.9%) serious AEFIs classified as ‘consistent causal association’ were reported after the first dose of 4cMenB, of these 5/13 (38.5%) children did not complete the vaccination schedule. Our data seemed to confirm, in a large population, the a good safety profile of the universal mass vaccination with 4CMENB.
Collapse
Affiliation(s)
- Pasquale Stefanizzi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Francesco Paolo Bianchi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Giuseppe Spinelli
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Fabio Amoruso
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Domenica Ancona
- Apulian Regional Health Department, Regional Center for Pharmacovigilance Activities, Bari, Italy
| | - Paolo Stella
- Apulian Regional Health Department, Regional Center for Pharmacovigilance Activities, Bari, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
68
|
Sharaf NG, Shahgholi M, Kim E, Lai JY, VanderVelde DG, Lee AT, Rees DC. Characterization of the ABC methionine transporter from Neisseria meningitidis reveals that lipidated MetQ is required for interaction. eLife 2021; 10:69742. [PMID: 34409939 PMCID: PMC8416018 DOI: 10.7554/elife.69742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
NmMetQ is a substrate-binding protein (SBP) from Neisseria meningitidis that has been identified as a surface-exposed candidate antigen for meningococcal vaccines. However, this location for NmMetQ challenges the prevailing view that SBPs in Gram-negative bacteria are localized to the periplasmic space to promote interaction with their cognate ABC transporter embedded in the bacterial inner membrane. To elucidate the roles of NmMetQ, we characterized NmMetQ with and without its cognate ABC transporter (NmMetNI). Here, we show that NmMetQ is a lipoprotein (lipo-NmMetQ) that binds multiple methionine analogs and stimulates the ATPase activity of NmMetNI. Using single-particle electron cryo-microscopy, we determined the structures of NmMetNI in the presence and absence of lipo-NmMetQ. Based on our data, we propose that NmMetQ tethers to membranes via a lipid anchor and has dual function and localization, playing a role in NmMetNI-mediated transport at the inner membrane and moonlighting on the bacterial surface.
Collapse
Affiliation(s)
- Naima G Sharaf
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Mona Shahgholi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Esther Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Jeffrey Y Lai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - David G VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Allen T Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
69
|
Incidence of Vaccine-Preventable Childhood Diseases in the European Union and in the European Free Trade Association Countries. Vaccines (Basel) 2021; 9:vaccines9070796. [PMID: 34358212 PMCID: PMC8310256 DOI: 10.3390/vaccines9070796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/26/2023] Open
Abstract
Introduction: Despite the widespread availability of vaccines, the incidence of vaccine-preventable childhood diseases (VPCD) started to grow in recent years. The aim of the study was to compare the annual incidence of selected VPCDs in the EU (European Union) and EFTA (European Free Trade Association) countries in the period of the last 5 years (2014–2019 or other intervals, depending on data availability), and the country-specific vaccine schedules. Methods: VPCD incidence rates in Europe were based on “The Surveillance Atlas of Infectious Diseases” by the ECDC (European Centre for Disease Prevention and Control); vaccination schedules were based on ECDC reports. Results: The obligation to vaccinate was not universal, and it generally only applied to two preparations: the MMR (measles, mumps, rubella) vaccine and the one against polio. During the study, the situation associated with mumps did not change or improve in individual countries; the median incidence amounted to 30 cases. The median incidence associated with rubella amounted to 1 case, but in a few countries, it grew very rapidly, i.e., in Germany, Italy, and Romania; in Poland, the incidence was clearly decreasing, from 5923 to 1532 cases. The most dynamic situation concerned measles. The total median was 2.4 cases per 100,000 population; the only one country with falling incidence was Germany. The diseases associated with Streptococcus pneumoniae and Neisseria meningitidis remained at a stable level in all analyzed countries. Conclusion: Vaccine schedules differ among the countries, so does the epidemiological situation of selected diseases. Morbidity on measles was the most disturbing phenomenon: the incidence rate increased in almost 40% of all countries, regardless of the obligation to vaccinate. The increasing incidence of VPCD may be due to anti-vaccine movements, the activity of which is often caused by mistrust and spreading misinformation. In order to better prevent the increase in morbidity, standardization of vaccine schedules and documentation should be considered in the EU countries.
Collapse
|
70
|
MacAlasdair N, Pesonen M, Brynildsrud O, Eldholm V, Kristiansen PA, Corander J, Caugant DA, Bentley SD. The effect of recombination on the evolution of a population of Neisseria meningitidis. Genome Res 2021; 31:1258-1268. [PMID: 34108268 PMCID: PMC8256868 DOI: 10.1101/gr.264465.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/22/2021] [Indexed: 12/02/2022]
Abstract
Neisseria meningitidis (the meningococcus) is a major human pathogen with a history of high invasive disease burden, particularly in sub-Saharan Africa. Our current understanding of the evolution of meningococcal genomes is limited by the rarity of large-scale genomic population studies and lack of in-depth investigation of the genomic events associated with routine pathogen transmission. Here, we fill this knowledge gap by a detailed analysis of 2839 meningococcal genomes obtained through a carriage study of over 50,000 samples collected systematically in Burkina Faso, West Africa, before, during, and after the serogroup A vaccine rollout, 2009-2012. Our findings indicate that the meningococcal genome is highly dynamic, with highly recombinant loci and frequent gene sharing across deeply separated lineages in a structured population. Furthermore, our findings illustrate how population structure can correlate with genome flexibility, as some lineages in Burkina Faso are orders of magnitude more recombinant than others. We also examine the effect of selection on the population, in particular how it is correlated with recombination. We find that recombination principally acts to prevent the accumulation of deleterious mutations, although we do also find an example of recombination acting to speed the adaptation of a gene. In general, we show the importance of recombination in the evolution of a geographically expansive population with deep population structure in a short timescale. This has important consequences for our ability to both foresee the outcomes of vaccination programs and, using surveillance data, predict when lineages of the meningococcus are likely to become a public health concern.
Collapse
Affiliation(s)
- Neil MacAlasdair
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Maiju Pesonen
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Oslo University Hospital Research Support Services, Blindern, 0317 Oslo, Norway
| | - Ola Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, 0454 Oslo, Norway
| | - Vegard Eldholm
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Paul A Kristiansen
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
- University of Oslo, Department of Biostatistics, Blindern, 0317 Oslo, Norway
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, 0213 Oslo, Norway
- Department of Community Medicine, Faculty of Medicine, University of Oslo, Blindern, 0316 Oslo, Norway
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
71
|
Marousis K, Asmanidis V, Liapis K. Diagnosis from the blood film. Emerg Med J 2021; 38:72-84. [PMID: 33372043 DOI: 10.1136/emermed-2020-209536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Konstantinos Marousis
- Department of Internal Medicine, Peripheral General Hospital Athens Giorgos Gennimatas, Athens, Greece
| | - Vasileios Asmanidis
- Department of Internal Medicine, Peripheral General Hospital Athens Giorgos Gennimatas, Athens, Greece
| | - Konstantinos Liapis
- Clinical Haematology, Peripheral General Hospital Athens Giorgos Gennimatas, Athens, Greece
| |
Collapse
|
72
|
de Oliveira Costa J, Gianacas C, Beard F, Gonzalez-Chica D, Chidwick K, Osman R, MacIntyre CR, Havard A. Cumulative annual coverage of meningococcal B vaccination in Australian general practice for three at-risk groups, 2014 to 2019. Hum Vaccin Immunother 2021; 17:3692-3701. [PMID: 34047673 DOI: 10.1080/21645515.2021.1923349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neisseria meningitidis serogroup B (MenB) is the most common cause of meningococcal disease in adolescents and young adults. In Australia, MenB vaccination has been available through private prescription since 2014 and has been recommended for at-risk groups including adolescents, young adults who smoke and people medically at risk. For each of these at-risk groups, we estimated cumulative annual coverage of MenB vaccination between 2014 and 2019. We also evaluated factors associated with vaccination coverage in 2019. Our analyses used electronic health records in the national MedicineInsight database for people regularly attending general practices. Cumulative vaccination coverage increased among the at-risk groups between 2014 and 2019: from 0.09% to 1.65% for adolescents, from 0.01% to 0.15% for young adults who smoke, and from 0.35% to 12.09% for people medically at risk. However, vaccination coverage in 2019 remained very low across these groups. Data sparsity prevented the evaluation of factors associated with vaccination coverage for smokers. We observed variation in the relative risk of being vaccinated by age, sex, socioeconomic and clinical factors for adolescents and people medically at risk. Still, the absolute magnitude of coverage was low across all subgroups examined, and indicates a need for strategies to increase vaccination uptake among at-risk groups irrespective of patient and practice characteristics. Our study provides baseline data for monitoring menB vaccination uptake among recommended groups in light of limited national data, especially for medically at-risk groups.
Collapse
Affiliation(s)
- Juliana de Oliveira Costa
- NPS MedicineWise, Sydney, Australia.,Medicines Policy Research Unit, Centre for Big Data Research in Health, UNSW Sydney, Sydney, Australia
| | | | - Frank Beard
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead, Sydney, Australia.,School of Public Health, University of Sydney, Sydney, Australia
| | - David Gonzalez-Chica
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, UNSW Sydney, Sydney, Australia
| | - Alys Havard
- NPS MedicineWise, Sydney, Australia.,Medicines Policy Research Unit, Centre for Big Data Research in Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
73
|
Zewde NT, Hsu RV, Morikis D, Palermo G. Systems Biology Modeling of the Complement System Under Immune Susceptible Pathogens. FRONTIERS IN PHYSICS 2021; 9:603704. [PMID: 35145963 PMCID: PMC8827490 DOI: 10.3389/fphy.2021.603704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The complement system is assembled from a network of proteins that function to bring about the first line of defense of the body against invading pathogens. However, complement deficiencies or invasive pathogens can hijack complement to subsequently increase susceptibility of the body to infections. Moreover, invasive pathogens are increasingly becoming resistant to the currently available therapies. Hence, it is important to gain insights into the highly dynamic interaction between complement and invading microbes in the frontlines of immunity. Here, we developed a mathematical model of the complement system composed of 670 ordinary differential equations with 328 kinetic parameters, which describes all three complement pathways (alternative, classical, and lectin) and includes description of mannose-binding lectin, collectins, ficolins, factor H-related proteins, immunoglobulin M, and pentraxins. Additionally, we incorporate two pathogens: (type 1) complement susceptible pathogen and (type 2) Neisseria meningitidis located in either nasopharynx or bloodstream. In both cases, we generate time profiles of the pathogen surface occupied by complement components and the membrane attack complex (MAC). Our model shows both pathogen types in bloodstream are saturated by complement proteins, whereas MACs occupy <<1.0% of the pathogen surface. Conversely, the MAC production in nasopharynx occupies about 1.5-10% of the total N. meningitidis surface, thus making nasal MAC levels at least about eight orders of magnitude higher. Altogether, we predict complement-imbalance, favoring overactivation, is associated with nasopharynx homeostasis. Conversely, orientating toward complement-balance may cause disruption to the nasopharynx homeostasis. Thus, for sporadic meningococcal disease, our model predicts rising nasal levels of complement regulators as early infection biomarkers.
Collapse
Affiliation(s)
- Nehemiah T. Zewde
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Rohaine V. Hsu
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Correspondence: Giulia Palermo, , Dimitrios Morikis,
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- Correspondence: Giulia Palermo, , Dimitrios Morikis,
| |
Collapse
|
74
|
Atypical presentation of Neisseria meningitidis serogroup W disease is associated with the introduction of the 2013 strain. Epidemiol Infect 2021; 149:e126. [PMID: 33910672 PMCID: PMC8161285 DOI: 10.1017/s0950268821001035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since 2015, the incidence of invasive meningococcal disease (IMD) caused by serogroup W (MenW) has increased in Sweden, due to the introduction of the 2013 strain belonging to clonal complex 11. The aim of this study was to describe the clinical presentation of MenW infections, in particular the 2013 strain, including genetic associations. Medical records of confirmed MenW IMD cases in Sweden during the years 1995–2019 (n = 113) were retrospectively reviewed and the clinical data analysed according to strain. Of all MenW patients, bacteraemia without the focus of infection was seen in 44%, bacteraemic pneumonia in 26%, meningitis in 13% and epiglottitis in 8%, gastrointestinal symptoms in 48% and 4% presented with petechiae. Phylogenetic analysis was used for possible links between genetic relationship and clinical picture. The 2013 strain infections, particularly in one cluster, were associated with more severe disease compared with other MenW infections. The patients with 2013 strain infections (n = 68) were older (52 years vs. 25 years for other strains), presented more often with diarrhoea as an atypical presentation (P = 0.045) and were more frequently admitted for intensive care (P = 0.032). There is a risk that the atypical clinical presentation of MenW infections, with predominantly gastrointestinal or respiratory symptoms rather than neck stiffness or petechiae, may lead to delay in life-saving treatment.
Collapse
|
75
|
Artificial Intelligence in Differential Diagnostics of Meningitis: A Nationwide Study. Diagnostics (Basel) 2021; 11:diagnostics11040602. [PMID: 33800653 PMCID: PMC8065596 DOI: 10.3390/diagnostics11040602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Differential diagnosis between bacterial and viral meningitis is crucial. In our study, to differentiate bacterial vs. viral meningitis, three machine learning (ML) algorithms (multiple logistic regression (MLR), random forest (RF), and naïve-Bayes (NB)) were applied for the two age groups (0-14 and >14 years) of patients with meningitis by both conventional (culture) and molecular (PCR) methods. Cerebrospinal fluid (CSF) neutrophils, CSF lymphocytes, neutrophil-to-lymphocyte ratio (NLR), blood albumin, blood C-reactive protein (CRP), glucose, blood soluble urokinase-type plasminogen activator receptor (suPAR), and CSF lymphocytes-to-blood CRP ratio (LCR) were used as predictors for the ML algorithms. The performance of the ML algorithms was evaluated through a cross-validation procedure, and optimal predictions of the type of meningitis were above 95% for viral and 78% for bacterial meningitis. Overall, MLR and RF yielded the best performance when using CSF neutrophils, CSF lymphocytes, NLR, albumin, glucose, gender, and CRP. Also, our results reconfirm the high diagnostic accuracy of NLR in the differential diagnosis between bacterial and viral meningitis.
Collapse
|
76
|
Romero-Cordero S, Kirwan R, Noguera-Julian A, Cardellach F, Fortuny C, Morén C. A Mitocentric View of the Main Bacterial and Parasitic Infectious Diseases in the Pediatric Population. Int J Mol Sci 2021; 22:3272. [PMID: 33806981 PMCID: PMC8004694 DOI: 10.3390/ijms22063272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases occur worldwide with great frequency in both adults and children. Both infections and their treatments trigger mitochondrial interactions at multiple levels: (i) incorporation of damaged or mutated proteins to the complexes of the electron transport chain, (ii) mitochondrial genome (depletion, deletions, and point mutations) and mitochondrial dynamics (fusion and fission), (iii) membrane potential, (iv) apoptotic regulation, (v) generation of reactive oxygen species, among others. Such alterations may result in serious adverse clinical events with great impact on children's quality of life, even resulting in death. As such, bacterial agents are frequently associated with loss of mitochondrial membrane potential and cytochrome c release, ultimately leading to mitochondrial apoptosis by activation of caspases-3 and -9. Using Rayyan QCRI software for systematic reviews, we explore the association between mitochondrial alterations and pediatric infections including (i) bacterial: M. tuberculosis, E. cloacae, P. mirabilis, E. coli, S. enterica, S. aureus, S. pneumoniae, N. meningitidis and (ii) parasitic: P. falciparum. We analyze how these pediatric infections and their treatments may lead to mitochondrial deterioration in this especially vulnerable population, with the intention of improving both the understanding of these diseases and their management in clinical practice.
Collapse
Affiliation(s)
- Sonia Romero-Cordero
- Faculty of Medicine, Pompeu Fabra University and Universitat Autònoma de Barcelona, 08002 Barcelona, Spain;
| | - Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L2 2QP, UK
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (A.N.-J.); (C.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Red de Investigación Translacional en Infectología Pediátrica (RITIP), 28029 Madrid, Spain
| | - Francesc Cardellach
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (ISCIII), 28029 Madrid, Spain
- Internal Medicine Department-Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain
| | - Clàudia Fortuny
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d’Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (A.N.-J.); (C.F.)
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Red de Investigación Translacional en Infectología Pediátrica (RITIP), 28029 Madrid, Spain
| | - Constanza Morén
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain;
- Muscle Research and Mitochondrial Function Laboratory, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (ISCIII), 28029 Madrid, Spain
- Internal Medicine Department-Hospital Clínic of Barcelona (HCB), 08036 Barcelona, Spain
| |
Collapse
|
77
|
Bizri AR, Althaqafi A, Kaabi N, Obeidat N, Al Akoury N, Haridy H. The Burden of Invasive Vaccine-Preventable Diseases in Adults in the Middle East and North Africa (MENA) Region. Infect Dis Ther 2021; 10:663-685. [PMID: 33751422 PMCID: PMC7983355 DOI: 10.1007/s40121-021-00420-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022] Open
Abstract
Implementing vaccination programmes at the national level is key to managing vaccine-preventable diseases (VPDs) in the overall population. Although paediatric immunization programmes have significantly reduced the burden of VPD, disease burden in adults still poses a substantial challenge, particularly in low- and middle-income countries such as those within the Middle East and North Africa (MENA) region. Invasive bacterial diseases (IBDs) are an important public health concern within this region, although vaccines are available to prevent the three most common causative organisms associated with IBD: Neisseria meningitidis (NM), Streptococcus pneumoniae (SP), and Haemophilus influenzae (HI). For this review, three separate PubMed searches were used to identify English-language publications describing the epidemiology of NM, SP, and HI in adults within the MENA region. Of the 161 total publications retrieved among all 3 literature searches, 39 were included in this review (NM: 8 publications; SP: 27 publications; HI: 4 publications). Publications describing epidemiology in paediatric or overall populations were excluded. Overall, these studies generally observed a high burden of IBD among adults in this region. Although NM, SP, and HI are communicable diseases in several countries, the surveillance systems in the MENA region are largely inadequate, resulting in poor responses to outbreaks and hindering improvement in outcomes of communicable diseases. Improving IBD surveillance would provide necessary estimates of disease burden, resulting in better vaccination strategies and improved outcomes. In conclusion, the present review provides a summary of the available information on the epidemiology of vaccine-preventable IBD in adults within the MENA region and highlights the need for increased disease surveillance and preventive strategies in these countries.
Collapse
Affiliation(s)
| | - Abdulhakeem Althaqafi
- Department of Medicine, Ministry of National Guard-Health Affairs, Jeddah, Saudi Arabia.
- King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia.
| | - Nawal Kaabi
- Abu Dhabi Health Services Company, Abu Dhabi, United Arab Emirates
| | | | | | | |
Collapse
|
78
|
Artenstein AW. A half-century of meningococcal vaccines. Vaccine 2021; 39:2475-2478. [PMID: 33752953 DOI: 10.1016/j.vaccine.2021.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
The first safe and effective vaccine for the prevention of invasive meningococcal disease was created fifty years ago. The vaccine employed a novel platform, polysaccharide capsular antigen, based on the discovery that anticapsular antibody conferred protective immunity in humans. As with most new paradigms in vaccinology, it derived from important basic research from other scientific disciplines over the preceding years. The success of the first monovalent polysaccharide vaccine in nearly eliminating invasive meningococcal disease in military settings led to accelerated advances in polysaccharide vaccine development against other serogroups of meningococcus and other encapsulated pathogens. As gaps in vaccine efficacy arose over the past half-century, new vaccine technologies and approaches were developed to address the challenges. Several of these, including conjugate vaccines and "reverse vaccinology" led to other novel, successful vaccines that have had a significant, favorable global impact on invasive meningococcal disease. The history of meningococcal vaccine discovery may provide insights into the future of vaccine efforts against other infectious threats.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Baystate Health, United States; University of Massachusetts Medical School-Baystate, United States.
| |
Collapse
|
79
|
Genome-wide methylome analysis of two strains belonging to the hypervirulent Neisseria meningitidis serogroup W ST-11 clonal complex. Sci Rep 2021; 11:6239. [PMID: 33737546 PMCID: PMC7973814 DOI: 10.1038/s41598-021-85266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
A rising incidence of meningococcal serogroup W disease has been evident in many countries worldwide. Serogroup W isolates belonging to the sequence type (ST)-11 clonal complex have been associated with atypical symptoms and increased case fatality rates. The continued expansion of this clonal complex in the later part of the 2010s has been largely due to a shift from the so-called original UK strain to the 2013 strain. Here we used single-molecule real-time (SMRT) sequencing to determine the methylomes of the two major serogroup W strains belonging to ST-11 clonal complex. Five methylated motifs were identified in this study, and three of the motifs, namely 5'-GATC-3', 5'-GAAGG-3', 5'-GCGCGC-3', were found in all 13 isolates investigated. The results showed no strain-specific motifs or difference in active restriction modification systems between the two strains. Two phase variable methylases were identified and the enrichment or depletion of the methylation motifs generated by these methylases varied between the two strains. Results from this work give further insight into the low diversity of methylomes in highly related strains and encourage further research to decipher the role of regions with under- or overrepresented methylation motifs.
Collapse
|
80
|
Tzeng YL, Stephens DS. A Narrative Review of the W, X, Y, E, and NG of Meningococcal Disease: Emerging Capsular Groups, Pathotypes, and Global Control. Microorganisms 2021; 9:microorganisms9030519. [PMID: 33802567 PMCID: PMC7999845 DOI: 10.3390/microorganisms9030519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis, carried in the human nasopharynx asymptomatically by ~10% of the population, remains a leading cause of meningitis and rapidly fatal sepsis, usually in otherwise healthy individuals. The epidemiology of invasive meningococcal disease (IMD) varies substantially by geography and over time and is now influenced by meningococcal vaccines and in 2020–2021 by COVID-19 pandemic containment measures. While 12 capsular groups, defined by capsular polysaccharide structures, can be expressed by N. meningitidis, groups A, B, and C historically caused most IMD. However, the use of mono-, bi-, and quadrivalent-polysaccharide-conjugate vaccines, the introduction of protein-based vaccines for group B, natural disease fluctuations, new drugs (e.g., eculizumab) that increase meningococcal susceptibility, changing transmission dynamics and meningococcal evolution are impacting the incidence of the capsular groups causing IMD. While the ability to spread and cause illness vary considerably, capsular groups W, X, and Y now cause significant IMD. In addition, group E and nongroupable meningococci have appeared as a cause of invasive disease, and a nongroupable N. meningitidis pathotype of the hypervirulent clonal complex 11 is causing sexually transmitted urethritis cases and outbreaks. Carriage and IMD of the previously “minor” N. meningitidis are reviewed and the need for polyvalent meningococcal vaccines emphasized.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +404-727-8357
| |
Collapse
|
81
|
McEntire CRS, Song KW, McInnis RP, Rhee JY, Young M, Williams E, Wibecan LL, Nolan N, Nagy AM, Gluckstein J, Mukerji SS, Mateen FJ. Neurologic Manifestations of the World Health Organization's List of Pandemic and Epidemic Diseases. Front Neurol 2021; 12:634827. [PMID: 33692745 PMCID: PMC7937722 DOI: 10.3389/fneur.2021.634827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
The World Health Organization (WHO) monitors the spread of diseases globally and maintains a list of diseases with epidemic or pandemic potential. Currently listed diseases include Chikungunya, cholera, Crimean-Congo hemorrhagic fever, Ebola virus disease, Hendra virus infection, influenza, Lassa fever, Marburg virus disease, Neisseria meningitis, MERS-CoV, monkeypox, Nipah virus infection, novel coronavirus (COVID-19), plague, Rift Valley fever, SARS, smallpox, tularemia, yellow fever, and Zika virus disease. The associated pathogens are increasingly important on the global stage. The majority of these diseases have neurological manifestations. Those with less frequent neurological manifestations may also have important consequences. This is highlighted now in particular through the ongoing COVID-19 pandemic and reinforces that pathogens with the potential to spread rapidly and widely, in spite of concerted global efforts, may affect the nervous system. We searched the scientific literature, dating from 1934 to August 2020, to compile data on the cause, epidemiology, clinical presentation, neuroimaging features, and treatment of each of the diseases of epidemic or pandemic potential as viewed through a neurologist's lens. We included articles with an abstract or full text in English in this topical and scoping review. Diseases with epidemic and pandemic potential can be spread directly from human to human, animal to human, via mosquitoes or other insects, or via environmental contamination. Manifestations include central neurologic conditions (meningitis, encephalitis, intraparenchymal hemorrhage, seizures), peripheral and cranial nerve syndromes (sensory neuropathy, sensorineural hearing loss, ophthalmoplegia), post-infectious syndromes (acute inflammatory polyneuropathy), and congenital syndromes (fetal microcephaly), among others. Some diseases have not been well-characterized from a neurological standpoint, but all have at least scattered case reports of neurological features. Some of the diseases have curative treatments available while in other cases, supportive care remains the only management option. Regardless of the pathogen, prompt, and aggressive measures to control the spread of these agents are the most important factors in lowering the overall morbidity and mortality they can cause.
Collapse
Affiliation(s)
- Caleb R. S. McEntire
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Kun-Wei Song
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Robert P. McInnis
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - John Y. Rhee
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Michael Young
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Erika Williams
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Leah L. Wibecan
- Massachusetts General Hospital (MGH)-Brigham Pediatric Neurology Residency Program, Boston, MA, United States
| | - Neal Nolan
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Amanda M. Nagy
- Massachusetts General Hospital (MGH)-Brigham Pediatric Neurology Residency Program, Boston, MA, United States
| | - Jeffrey Gluckstein
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Shibani S. Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Farrah J. Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
82
|
Tzanakaki G, Xirogianni A, Tsitsika A, Clark SA, Kesanopoulos K, Bratcher HB, Papandreou A, Rodrigues CMC, Maiden MCJ, Borrow R, Tsolia M. Estimated strain coverage of serogroup B meningococcal vaccines: A retrospective study for disease and carrier strains in Greece (2010-2017). Vaccine 2021; 39:1621-1630. [PMID: 33597116 DOI: 10.1016/j.vaccine.2021.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Invasive meningococcal disease (IMD) is associated with high case fatality rates and long-term sequelae among survivors. Meningococci belonging to six serogroups (A, B, C, W, X, and Y) cause nearly all IMD worldwide, with serogroup B meningococci (MenB) the predominant cause in many European countries, including Greece (~80% of all IMD). In the absence of protein-conjugate polysaccharide MenB vaccines, two protein-based vaccines are available to prevent MenB IMD in Greece: 4CMenB (Bexsero™, GlaxoSmithKline), available since 2014; and MenB-FHbp, (Trumenba™, Pfizer), since 2018. This study investigated the potential coverage of MenB vaccines in Greece using 107 MenB specimens, collected from 2010 to 2017 (66 IMD isolates and 41 clinical samples identified solely by non-culture PCR), alongside 6 MenB isolates from a carriage study conducted during 2017-2018. All isolates were characterized by multilocus sequence typing (MLST), PorA, and FetA antigen typing. Whole Genome Sequencing (WGS) was performed on 66 isolates to define the sequences of vaccine components factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria adhesin A (NadA). The expression of fHbp was investigated with flow cytometric meningococcal antigen surface expression (MEASURE) assay. The fHbp gene was present in-frame in all isolates tested by WGS and in 41 MenB clinical samples. All three variant families of fHbp peptides were present, with subfamily B peptides (variant 1) occurring in 69.2% and subfamily A in 30.8% of the samples respectively. Sixty three of 66 (95.5%) MenB isolates expressed sufficient fHbp to be susceptible to bactericidal killing by MenB-fHbp induced antibodies, highlighting its potential to protect against most IMD in Greece.
Collapse
Affiliation(s)
- G Tzanakaki
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece.
| | - A Xirogianni
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - A Tsitsika
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| | - S A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - K Kesanopoulos
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - H B Bratcher
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - A Papandreou
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - C M C Rodrigues
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - M C J Maiden
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - R Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - M Tsolia
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| |
Collapse
|
83
|
Fonseca Y, Tshimanga T, Ray S, Malhotra H, Pongo J, Bodi Mabiala J, Gushu MB, Phiri T, Chikaonda BM, Ambitapio Musungufu D, Uchama M, O'Brien NF. Transcranial Doppler Ultrasonographic Evaluation of Cerebrovascular Abnormalities in Children With Acute Bacterial Meningitis. Front Neurol 2021; 11:558857. [PMID: 33643174 PMCID: PMC7907511 DOI: 10.3389/fneur.2020.558857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction: Bacterial meningitis (BM) is a global public health concern that results in significant morbidity and mortality. Cerebral arterial narrowing contributes to stroke in BM and may be amenable to intervention. However, it is difficult to diagnose in resource-limited settings where the disease is common. Methods: This was a prospective observational study from September 2015 to December 2019 in sub-Saharan Africa. Children 1 month-18 years of age with neutrophilic pleocytosis or a bacterial pathogen identified in the cerebrospinal fluid were enrolled. Transcranial Doppler ultrasound (TCD) of the middle cerebral arteries was performed daily with the aim to identify flow abnormalities consistent with vascular narrowing. Results: Forty-seven patients were analyzed. The majority had Streptococcus pneumoniae (36%) or Neisseria meningitides (36%) meningitis. Admission TCD was normal in 10 (21%). High flow with a normal pulsatility index (PI) was seen in 20 (43%) and high flow with a low PI was identified in 7 (15%). Ten (21%) had low flow. All children with a normal TCD had a good outcome. Patients with a high-risk TCD flow pattern (high flow/low PI or low flow) were more likely to have a poor outcome (82 vs. 38%, p = 0.001). Conclusions: Abnormal TCD flow patterns were common in children with BM and identified those at high risk of poor neurological outcome.
Collapse
Affiliation(s)
- Yudy Fonseca
- Division of Critical Care Medicine, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Taty Tshimanga
- Department of Pediatrics, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Stephen Ray
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Paediatric Registrar & Wellcome Trust Clinical Fellow, Blantyre, Malawi
| | - Helen Malhotra
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Jean Pongo
- Department of Medicine, Universite des Sciences et des Technologie de Lodja (USTL), Lodja, Democratic Republic of Congo
| | - Joseph Bodi Mabiala
- Department of Pediatrics, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Montfort Bernard Gushu
- Department of Pediatrics, Queen Elizabeth Central Hospital, Blantyre Malaria Project, Blantyre, Malawi
| | - Tusekile Phiri
- Department of Pediatrics, Queen Elizabeth Central Hospital, Blantyre Malaria Project, Blantyre, Malawi
| | - Bertha Mekiseni Chikaonda
- Department of Pediatrics, Queen Elizabeth Central Hospital, Blantyre Malaria Project, Blantyre, Malawi
| | | | - Mananu Uchama
- L'Hopital Generale de Reference de Nyankunde, Nyankunde, Democratic Republic of Congo
| | - Nicole Fortier O'Brien
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
84
|
MacLennan JM, Rodrigues CMC, Bratcher HB, Lekshmi A, Finn A, Oliver J, Wootton M, Ray S, Cameron C, Smith A, Heath PT, Bartolf A, Nolan T, Hughes S, Varghese A, Snape MD, Sewell R, Cunningham R, Stolton A, Kay C, Palmer K, Baxter D, Suggitt D, Zipitis CS, Pemberton N, Jolley KA, Bray JE, Harrison OB, Ladhani SN, Pollard AJ, Borrow R, Gray SJ, Trotter C, Maiden MCJ. Meningococcal carriage in periods of high and low invasive meningococcal disease incidence in the UK: comparison of UKMenCar1-4 cross-sectional survey results. THE LANCET. INFECTIOUS DISEASES 2021; 21:677-687. [PMID: 33482143 PMCID: PMC8064914 DOI: 10.1016/s1473-3099(20)30842-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
Background The incidence of invasive meningococcal disease in the UK decreased by approximately four times from 1999 to 2014, with reductions in serogroup C and serogroup B disease. Lower serogroup C invasive meningococcal disease incidence was attributable to implementation of the meningococcal serogroup C conjugate vaccine in 1999, through direct and indirect protection, but no vaccine was implemented against serogroup B disease. UK Meningococcal Carriage surveys 1–3 (UKMenCar1–3), conducted in 1999, 2000, and 2001, were essential for understanding the impact of vaccination. To investigate the decline in invasive meningococcal disease incidence, we did a large oropharyngeal carriage survey in 2014–15, immediately before the changes to meningococcal vaccines in the UK national immunisation schedule. Methods UKMenCar4 was a cross-sectional survey in adolescents aged 15–19 years who were enrolled from schools and colleges geographically local to one of 11 UK sampling centres between Sept 1, 2014, and March 30, 2015. Participants provided an oropharyngeal swab sample and completed a questionnaire on risk factors for carriage, including social behaviours. Samples were cultured for putative Neisseria spp, which were characterised with serogrouping and whole-genome sequencing. Data from this study were compared with the results from the UKMenCar1–3 surveys (1999–2001). Findings From the 19 641 participants (11 332 female, 8242 male, 67 not stated) in UKMenCar4 with culturable swabs and completed risk-factor questionnaires, 1420 meningococci were isolated, with a carriage prevalence of 7·23% (95% CI 6·88–7·60). Carriage prevalence was substantially lower in UKMenCar4 than in the previous surveys: carriage prevalence was 16·6% (95% CI 15·89–17·22; 2306/13 901) in UKMenCar1 (1999), 17·6% (17·05–18·22; 2873/16 295) in UKMenCar2 (2000), and 18·7% (18·12–19·27; 3283/17 569) in UKMenCar3 (2001). Carriage prevalence was lower for all serogroups in UKMenCar4 than in UKMenCar1–3, except for serogroup Y, which was unchanged. The prevalence of carriage-promoting social behaviours decreased from 1999 to 2014–15, with individuals reporting regular cigarette smoking decreasing from 2932 (21·5%) of 13 650 to 2202 (11·2%) of 19 641, kissing in the past week from 6127 (44·8%) of 13 679 to 7320 (37·3%) of 19 641, and attendance at pubs and nightclubs in the past week from 8436 (62·1%) of 13 594 to 7662 (39·0%) of 19 641 (all p<0·0001). Interpretation We show that meningococcal carriage prevalence in adolescents sampled nationally during a low incidence period (2014–15) was less than half of that in an equivalent population during a high incidence period (1999–2001). Disease and carriage caused by serogroup C was well controlled by ongoing vaccination. The prevalence of behaviours associated with carriage declined, suggesting that public health policies aimed at influencing behaviour might have further reduced disease. Funding Wellcome Trust, UK Department of Health, and National Institute for Health Research.
Collapse
Affiliation(s)
- Jenny M MacLennan
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Charlene M C Rodrigues
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Holly B Bratcher
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Aiswarya Lekshmi
- Meningococcal Reference Unit, Public Health England, Manchester Public Health Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jenny Oliver
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Mandy Wootton
- Division of Public Health Wales, Temple of Peace and Health, Cardiff, UK
| | - Samantha Ray
- Division of Public Health Wales, Temple of Peace and Health, Cardiff, UK
| | - Claire Cameron
- NHS National Services Scotland, Health Protection Scotland, Glasgow, UK
| | - Andrew Smith
- Glasgow Dental School, University of Glasgow, UK; Scottish Microbiology Reference Laboratory, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Paul T Heath
- St George's Vaccine Institute, Institute of Infection & Immunity, St George's University of London, London, UK
| | - Angela Bartolf
- St George's Vaccine Institute, Institute of Infection & Immunity, St George's University of London, London, UK
| | - Tracey Nolan
- Research and Development Department, Maidstone and Tunbridge Wells NHS Trust, Maidstone, Kent, UK
| | - Stephen Hughes
- Central Manchester University Hospitals, NHS Foundation Trust, Manchester, UK
| | - Anu Varghese
- Central Manchester University Hospitals, NHS Foundation Trust, Manchester, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Richard Sewell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Richard Cunningham
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Alison Stolton
- Microbiology Department, University Hospitals Plymouth NHS Trust, UK
| | - Carole Kay
- Lancashire and South Cumbria NHS Foundation Trust, Preston, Lancashire, UK
| | - Karen Palmer
- Lancashire and South Cumbria NHS Foundation Trust, Preston, Lancashire, UK
| | - David Baxter
- Stockport NHS Foundation Trust, Stepping Hill Hospital, Stockport, UK
| | - Debbie Suggitt
- Stockport NHS Foundation Trust, Stepping Hill Hospital, Stockport, UK
| | - Christos S Zipitis
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Department of Paediatrics, Wrightington Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | - Nicola Pemberton
- Clinical Trials Department, Wrightington Wigan and Leigh NHS Foundation Trust, Wigan, UK
| | - Keith A Jolley
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - James E Bray
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Odile B Harrison
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Shamez N Ladhani
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK; Immunisation and Countermeasures Division, Public Health England, London, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Raymond Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Public Health Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Stephen J Gray
- Meningococcal Reference Unit, Public Health England, Manchester Public Health Laboratory, Manchester Royal Infirmary, Manchester, UK
| | - Caroline Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
| |
Collapse
|
85
|
Sundaram ME, Wolfson J, Osterholm M, Sow S, Ansah PO, Diallo A, Cusick SE. Meningococcal vaccines and protein-energy undernutrition in children in the African meningitis belt. Vaccine 2020; 38:8351-8356. [PMID: 33223309 PMCID: PMC7751252 DOI: 10.1016/j.vaccine.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vaccines to prevent meningococcal meningitis in the African meningitis belt include PsACWY, a polysaccharide-only vaccine; and PsA-TT, a polysaccharide-protein conjugate vaccine. Protein-energy undernutrition, a condition where children do not receive enough macro- or micronutrients, is related to increased risk of infectious diseases and poor immune function. Reduced immune function could affect vaccine immunogenicity. We investigated connections between protein-energy undernutrition and vaccine immunogenicity and antibody waning to PsACWY and PsA-TT in children in the African meningitis belt. METHODS This is a secondary analysis of data collected as part of four clinical trials testing the safety and efficacy of PsA-TT in children in Mali, Ghana, and Senegal. We identified whether anthropometric growth indices (low height-for-age, weight-for-height, or weight-for-age Z-score categories) were related to reduced vaccine-elicited antibody (measured with rabbit complement) from pre- to 1 month post-vaccination, in linear regression models. We also identified whether these growth indices were related to increased waning for vaccine-elicited antibody over time, in linear regression models. RESULTS A total of 697 children were included in our analysis, of which 350 (50.2%) were female; the mean (SD) age was 1.0 (1.1) years, and 578 (83.0%) received PsA-TT. In linear regression models, no consistent statistical relationship was seen between pre-vaccination anthropometric Z-score categories and vaccine immunogenicity, or decline in antibody over time, for either vaccine, although children with low weight-for-height had a greater decline in antibody from 1 to 6 months post-vaccination. CONCLUSIONS Our analysis did not find protein-energy undernutrition to be associated with immunogenicity or waning of PsACWY- or PsA-TT-elicited antibody in children living in the African meningitis belt. Future studies should consider measuring antibody titers at additional time points post-vaccination, and for longer periods of time, to determine if the rate of antibody waning over a period of several years is associated with protein-energy undernutrition.
Collapse
Affiliation(s)
| | - Julian Wolfson
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael Osterholm
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Samba Sow
- Centre pour Développement des Vaccins, Ministère de la Santé, Bamako, Mali
| | | | - Aldiouma Diallo
- UMR257, VITROME, Institut de Recherche pour le Développement, Senegal
| | - Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
86
|
Juscamayta-López E, Valdivia F, Morales S, Donaires LF, Fiestas-Solórzano V, Oré M, Pachas P, León-Janampa N, Gavilán R. Emergence of ciprofloxacin-resistant Neisseria meningitidis B from asymptomatic carriers during an outbreak in Peru, 2017. J Med Microbiol 2020; 70. [PMID: 33196407 DOI: 10.1099/jmm.0.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asymptomatic carriers are a likely source of transmission of Neisseria meningitidis to close contacts who are placed at a higher risk for invasive meningococcal disease (IMD). Although N. meningitidis ciprofloxacin-resistance is rare, there have been an increase in the reports of resistant isolates mainly in patients diagnosed with IMD, and little is known about the N. meningitidis ciprofloxacin-resistance in the carrier populations. We performed a pharyngeal carriage study during a 2017 military setting outbreak in Peru, caused by a ciprofloxacin-resistant N. meningitidis B. The isolates analysed came from two hospitalized cases and six asymptomatic carriers. Whole-genome sequence-based analysis was performed and showed that strains carrying the Thr91Ile mutation, in the gene encoding for subunit A of DNA gyrase (gyrA), were responsible for the fluoroquinolone resistance (MICs ≥0.256 µg ml-1) and were closely related to highly virulent strains from France, Norway and the UK. Phylogenetic analysis of the gyrA gene revealed that likely these Peruvian isolates acquired resistance through horizontal gene transfer from Neisseria lactamica. Our study provides evidence for the emergence and propagation of ciprofloxacin-resistant N. meningitidis B from asymptomatic carriers, and recommends the introduction of serogroup B vaccines for high-risk populations.
Collapse
Affiliation(s)
| | - Faviola Valdivia
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Sara Morales
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | | | | | - Marianela Oré
- Epidemiología, Comando de Salud del Ejército, Lima, Peru
| | - Paul Pachas
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Nancy León-Janampa
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Ronnie Gavilán
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| |
Collapse
|
87
|
Kremer PHC, Lees JA, Ferwerda B, van de Ende A, Brouwer MC, Bentley SD, van de Beek D. Genetic Variation in Neisseria meningitidis Does Not Influence Disease Severity in Meningococcal Meningitis. Front Med (Lausanne) 2020; 7:594769. [PMID: 33262994 PMCID: PMC7686797 DOI: 10.3389/fmed.2020.594769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis causes sepsis and meningitis in humans. It has been suggested that pathogen genetic variation determines variance in disease severity. Here we report results of a genome-wide association study of 486 N. meningitidis genomes from meningococcal meningitis patients and their association with disease severity. Of 369 meningococcal meningitis patients for whom clinical data was available, 44 (12%) had unfavorable outcome and 24 (7%) died. To increase power, thrombocyte count was used as proxy marker for disease severity. Bacterial genetic variants were called as k-mers, SNPs, insertions and deletions and clusters of orthologous genes (COGs). Population-level meningococcal genetic variation did not explain variance in disease severity (unfavorable outcome or thrombocyte count) in this cohort (h2 = 0.0%; 95% confidence interval: 0.0–0.9). Genetic variants in the bacterial uppS gene represented the top signal associated with thrombocyte count (p-value = 9.96e-07) but this did not reach statistical significance. We did not find an association between previously published variants in lpxL1, fHbp, and tps genes and unfavorable outcome or thrombocyte count. A power analysis based on simulated phenotypes based on real genetic data from 880 N. meningitidis genomes showed that we would be able to detect a continuous phenotype with h2 > = 0.5 with the population size available in this study. This rules out a major contribution of pathogen genetic variation to disease severity in meningococcal meningitis, and shows that much larger sample sizes are required to find specific low-effect genetic variants modulating disease outcome in meningococcal meningitis.
Collapse
Affiliation(s)
- Philip H C Kremer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - John A Lees
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom.,Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arie van de Ende
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,The Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam, Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
88
|
O’Connor D, Pinto MV, Sheerin D, Tomic A, Drury RE, Channon‐Wells S, Galal U, Dold C, Robinson H, Kerridge S, Plested E, Hughes H, Stockdale L, Sadarangani M, Snape MD, Rollier CS, Levin M, Pollard AJ. Gene expression profiling reveals insights into infant immunological and febrile responses to group B meningococcal vaccine. Mol Syst Biol 2020; 16:e9888. [PMID: 33210468 PMCID: PMC7674973 DOI: 10.15252/msb.20209888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is a major cause of meningitis and septicaemia. A MenB vaccine (4CMenB) was licensed by the European Medicines Agency in January 2013. Here we describe the blood transcriptome and proteome following infant immunisations with or without concomitant 4CMenB, to gain insight into the molecular mechanisms underlying post-vaccination reactogenicity and immunogenicity. Infants were randomised to receive control immunisations (PCV13 and DTaP-IPV-Hib) with or without 4CMenB at 2 and 4 months of age. Blood gene expression and plasma proteins were measured prior to, then 4 h, 24 h, 3 days or 7 days post-vaccination. 4CMenB vaccination was associated with increased expression of ENTPD7 and increased concentrations of 4 plasma proteins: CRP, G-CSF, IL-1RA and IL-6. Post-vaccination fever was associated with increased expression of SELL, involved in neutrophil recruitment. A murine model dissecting the vaccine components found the concomitant regimen to be associated with increased gene perturbation compared with 4CMenB vaccine alone with enhancement of pathways such as interleukin-3, -5 and GM-CSF signalling. Finally, we present transcriptomic profiles predictive of immunological and febrile responses following 4CMenB vaccine.
Collapse
Affiliation(s)
- Daniel O’Connor
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Marta Valente Pinto
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Dylan Sheerin
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Adriana Tomic
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
- Institute of Immunity, Transplantation and InfectionStanford University School of MedicineStanfordCAUSA
| | - Ruth E Drury
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Samuel Channon‐Wells
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Ushma Galal
- Nuffield Department of Primary Health CareClinical Trials UnitUniversity of OxfordOxfordUK
| | - Christina Dold
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Hannah Robinson
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Simon Kerridge
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Emma Plested
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Harri Hughes
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Lisa Stockdale
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Matthew D Snape
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Christine S Rollier
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Michael Levin
- Division of Infectious DiseasesDepartment of MedicineImperial College LondonLondonUK
| | - Andrew J Pollard
- Department of PaediatricsUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
89
|
Quantitation of novel pentavalent meningococcal polysaccharide conjugate vaccine (Men A-TT, Men C-CRM, Men Y-CRM, Men W-CRM, Men X-TT) using sandwich ELISA. Vaccine 2020; 38:7815-7824. [DOI: 10.1016/j.vaccine.2020.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/05/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
|
90
|
Different Long-Term Duration of Seroprotection against Neisseria meningitidis in Adolescents and Middle-Aged Adults after a Single Meningococcal ACWY Conjugate Vaccination in The Netherlands. Vaccines (Basel) 2020; 8:vaccines8040624. [PMID: 33113834 PMCID: PMC7712102 DOI: 10.3390/vaccines8040624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
Neisseria meningitidis is often asymptomatically carried in the nasopharynx but may cause invasive meningococcal disease, leading to morbidity and mortality. Meningococcal conjugate vaccinations induce functional protective antibodies against capsular antigens, but seroprotection wanes over time. We measured functional antibody titers five years after administration of a single dose of the meningococcal ACWY-polysaccharide-specific tetanus toxoid-conjugated (MenACWY-TT) vaccine in adolescents and middle-aged adults in the Netherlands, using the serum bactericidal antibody with baby rabbit complement (rSBA) assay. Protection was defined as rSBA titer ≥8. The meningococcal ACWY-specific serum IgG concentrations were measured with a multiplex immunoassay. Duration of protection was estimated by a bi-exponential decay model. Sufficient protection for MenC, MenW, and MenY was achieved in 94–96% of the adolescents five years postvaccination, but, in middle-aged adults, only in 32% for MenC, 65% for MenW and 71% for MenY. Median duration of protection for MenCWY was 4, 14, and 21 years, respectively, in middle-aged adults, while, in adolescents, it was 32, 98, and 33 years. Our findings suggest that adolescents, primed in early childhood with MenC conjugate vaccination, remain sufficiently protected after a single dose of MenACWY-TT vaccine. Middle-aged adults without priming vaccination show fast waning of antibodies, particularly MenC, for which protection is lost after four years.
Collapse
|
91
|
A meta-analytic evaluation of sex differences in meningococcal disease incidence rates in 10 countries. Epidemiol Infect 2020; 148:e246. [PMID: 33004098 PMCID: PMC7592104 DOI: 10.1017/s0950268820002356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The magnitude and consistency of the sex differences in meningococcal disease incidence rates (IR) have not been systematically examined in different age groups, countries and time periods. We obtained national data on meningococcal disease IR by sex, age group and time period, from 10 countries. We used meta-analytic methods to combine the male to female incidence rate ratios (IRRs) by country and year for each age group. Meta-regression analysis was used to assess the contribution of age, country and time period to the variation in the IRRs. The pooled male to female IRRs (with 95% CI) for ages 0–1, 1–4, 5–9, 10–14 and 15–44, were 1.25 (1.19–1.32), 1.24 (1.20–1.29), 1.13 (1.07–1.20), 1.21 (1.13–1.29) and 1.15 (1.10–1.21), respectively. In the age groups 45−64 and over 65, the IR were lower in males with IRRs of 0.83 (0.78–0.88) and 0.64 (0.60–0.69), respectively. Sensitivity analysis and meta-regression confirmed that the results were robust. The excess meningococcal IR in young males and the higher rates in females at older ages were consistent in all countries, except the Czech Republic. While behavioural factors could explain some of the sex differences in the older age groups, the excess rates in very young males suggest that genetic and hormonal differences could be important.
Collapse
|
92
|
Steurer LM, Hetzmannseder M, Willinger B, Starzengruber P, Mikula C, Kormann-Klement A, Weber M, Berger A, Grill A. Pharyngeal carriage rates of Neisseria meningitidis in health care professionals at a tertiary university pediatric hospital. Eur J Clin Microbiol Infect Dis 2020; 39:1703-1709. [PMID: 32333221 PMCID: PMC7427699 DOI: 10.1007/s10096-020-03894-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
Pharyngeal carriage is the reservoir for Neisseria meningitidis in the population and the first step in disease transmission. Especially in young infants and adolescents, N. meningitidis can cause serious invasive infection with high fatality rates and high rates of long-term sequelae among survivors. The aim of this study was to determine N. meningitidis colonization rates in asymptomatic health care professionals at a tertiary university pediatric hospital and to identify risk factors for carriage. This cross-sectional meningococcal carriage survey was conducted between April and October 2018 at the Medical University of Vienna. Individuals working as nurses, pediatricians, or medical students were enrolled. Oropharyngeal swabs were directly plated onto selective agar plates and conventional culture was used for bacterial identification. Meningococcal isolates were further characterized using whole-genome sequencing. A total of 437 oropharyngeal specimens were collected. Overall, meningococcal carriage prevalence was 1.14% (5/437), with 0.7% (3/437) for capsular genotype B, and 0.5% (2/437) for capsular genotype W. Mean age of carriers was significantly lower than of non-carriers (24.2 vs. 35.8; p = 0.004). The highest carriage rate of 4.4% (4/91) was found in the age group 18–25. Carriage was negatively associated with age and timespan working in pediatrics. This is the first study evaluating the prevalence of Neisseria meningitidis carriage in health care professionals working in Pediatrics and Adolescent Medicine. Carriage was in general lower than expected for all age groups, implicating a low risk of meningococcal transmission via this population.
Collapse
Affiliation(s)
- Lisa-Maria Steurer
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria.
| | - Mathias Hetzmannseder
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Peter Starzengruber
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Claudia Mikula
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Andrea Kormann-Klement
- Institute for Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Michael Weber
- Section for Medical Statistics, CeMSIIS, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Agnes Grill
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care Medicine and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
93
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
94
|
Ma KC, Mortimer TD, Hicks AL, Wheeler NE, Sánchez-Busó L, Golparian D, Taiaroa G, Rubin DHF, Wang Y, Williamson DA, Unemo M, Harris SR, Grad YH. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat Commun 2020; 11:4126. [PMID: 32807804 PMCID: PMC7431566 DOI: 10.1038/s41467-020-17980-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/24/2020] [Indexed: 01/01/2023] Open
Abstract
Neisseria gonorrhoeae is an urgent public health threat due to rapidly increasing incidence and antibiotic resistance. In contrast with the trend of increasing resistance, clinical isolates that have reverted to susceptibility regularly appear, prompting questions about which pressures compete with antibiotics to shape gonococcal evolution. Here, we used genome-wide association to identify loss-of-function (LOF) mutations in the efflux pump mtrCDE operon as a mechanism of increased antibiotic susceptibility and demonstrate that these mutations are overrepresented in cervical relative to urethral isolates. This enrichment holds true for LOF mutations in another efflux pump, farAB, and in urogenitally-adapted versus typical N. meningitidis, providing evidence for a model in which expression of these pumps in the female urogenital tract incurs a fitness cost for pathogenic Neisseria. Overall, our findings highlight the impact of integrating microbial population genomics with host metadata and demonstrate how host environmental pressures can lead to increased antibiotic susceptibility.
Collapse
Affiliation(s)
- Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Allison L Hicks
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole E Wheeler
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Leonor Sánchez-Busó
- Centre for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Daniel Golparian
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - George Taiaroa
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi Wang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Swedish Reference Laboratory for STIs, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Simon R Harris
- Microbiotica Ltd, Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
95
|
Affiliation(s)
- Rebecca C Brady
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 6014, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
96
|
Seib KL, Srikhanta YN, Atack JM, Jennings MP. Epigenetic Regulation of Virulence and Immunoevasion by Phase-Variable Restriction-Modification Systems in Bacterial Pathogens. Annu Rev Microbiol 2020; 74:655-671. [PMID: 32689914 DOI: 10.1146/annurev-micro-090817-062346] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia; ,
| |
Collapse
|
97
|
Noteman TW, Ha TT, Tsarfati EM. Neisseria meningitidis serogroup C causing primary polyarthritis in an octogenarian. BMJ Case Rep 2020; 13:13/6/e233378. [PMID: 32532902 DOI: 10.1136/bcr-2019-233378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A man in his 80s presented to the hospital with a 36-hour history of fever, myalgia, bilateral shoulder and right knee pain. Joint fluid aspirates from his shoulders and right knee isolated Gram-negative diplococci. After failing to grow on standard and selective media, Neisseria meningitidis was identified by 16s PCR and subsequently typed as serogroup C. He had no clinical features of meningitis or meningococcaemia. Blood cultures were negative and an EDTA blood sample was negative for meningococcal ctrA gene. Urine PCR was negative for Neisseria gonorrhoeae He was treated successfully with two arthroscopic joint washouts of his right knee, aspirates of both shoulders, 40 days of intravenous ceftriaxone and intensive physiotherapy as both an inpatient and outpatient. In the literature, we have not found any previously documented cases of serogroup C meningococcus causing polyarticular primary septic arthritis in this age group or guidance on duration of antibiotic treatment. Literature on the impact of rehabilitation to baseline function was also found to be lacking. Although rare, primary meningococcal arthritis (PMA) should be considered as a differential diagnosis in cases of acute polyarticular septic arthritis. Polyarticular PMA in older adults may require prolonged rehabilitation before one might expect to return to premorbid function.
Collapse
|
98
|
The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition. Nat Commun 2020; 11:2823. [PMID: 32499480 PMCID: PMC7272453 DOI: 10.1038/s41467-020-16650-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.
Collapse
|
99
|
Kirstein J, Pina M, Pan J, Jordanov E, Dhingra MS. Immunogenicity and safety of a quadrivalent meningococcal tetanus toxoid-conjugate vaccine (MenACYW-TT) in adults 56 years of age and older: a Phase II randomized study. Hum Vaccin Immunother 2020; 16:1299-1305. [PMID: 32233961 PMCID: PMC7482642 DOI: 10.1080/21645515.2020.1733868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022] Open
Abstract
MenACYW-TT is an investigational quadrivalent meningococcal conjugate vaccine intended for the prevention of invasive meningococcal disease (IMD) caused by serogroups A, C, W, and Y in individuals aged 6 weeks and above. This Phase II, randomized, open-label, multicenter, exploratory study assessed the safety and immunogenicity of MenACYW-TT compared with a quadrivalent meningococcal polysaccharide vaccine (MPSV4) in 301 healthy adults aged ≥56 y in the US (NCT01732627). Participants were randomized 2:1 to receive MenACYW-TT or MPSV4. Serum bactericidal assays using human (hSBA) or baby rabbit (rSBA) complement were used to measure functional antibodies against meningococcal serogroups A, C, W, and Y at baseline and 30 d post-vaccination. Safety data were collected up to 30 d post-vaccination. Proportions of study participants with hSBA titers ≥1:8 against serogroups A, C, W, and Y were increased at Day 30 compared with baseline in both vaccine groups. The proportions of participants with hSBA titers ≥1:8 after MenACYW-TT vaccination were comparable to those after MPSV4 vaccination for serogroups A and C (A: 93.8% vs. 85.1%; C: 74.9% vs. 62.8%) and distinctly higher than after MPSV4 for serogroups W and Y (W: 79.5% vs. 60.6%; Y: 80.5% vs. 59.6%). Proportions of participants with rSBA titers ≥1:8 were comparable between vaccine groups for all four serogroups. The reactogenicity profiles of both vaccines were similar. Most unsolicited adverse events (AEs) were of Grade 1 or Grade 2 intensity, and no serious AEs were reported. The MenACYW-TT conjugate vaccine was well tolerated and immunogenic in adults aged ≥56 y.
Collapse
Affiliation(s)
| | - Miriam Pina
- Clinical Development, Sanofi Pasteur, Swiftwater, PA, USA
| | - Judy Pan
- Clinical Development, Sanofi Pasteur, Swiftwater, PA, USA
| | | | | |
Collapse
|
100
|
Serra L, Presa J, Christensen H, Trotter C. Carriage of Neisseria Meningitidis in Low and Middle Income Countries of the Americas and Asia: A Review of the Literature. Infect Dis Ther 2020; 9:209-240. [PMID: 32242281 PMCID: PMC7237586 DOI: 10.1007/s40121-020-00291-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Meningococcal colonization, or carriage, can progress to invasive meningococcal disease, a serious public health concern, with rapid progression of disease and severe consequences if left untreated. Information on meningococcal carriage and epidemiology in low/middle income American and Asian countries remains sparse. These data are crucial to ensure that appropriate preventive strategies such as vaccination can be implemented in these regions. The goal of this study was to summarize the Neisseria meningitidis carriage literature in low and middle income countries of the Americas and Asia. METHODS Target countries were categorized as low and middle income according to the International Monetary Fund classification of low income/developing economies and middle income/emerging market economies, respectively. A PubMed search identified English-language publications that examined carriage in these countries. Studies reporting the epidemiology of N. meningitidis carriage or assessing risk factors for carriage were included. RESULTS Fourteen studies from the Americas [Brazil (n = 7), Chile (n = 3), and Colombia, Cuba, Mexico, and Paraguay (n = 1 each)] and nine from Asia [China (n = 2), India (n = 3), and Malaysia, Nepal, Philippines, and Thailand (n = 1 each)] were identified; an additional Cuban study from the authors' files was also included. Studies were not identified in many target countries, and substantial diversity was observed among study methodologies, populations, and time periods, thereby limiting comparison between studies. The carriage rate in the Americas ranged from 1.6% to 9.9% and from 1.4% to 14.2% in Asia. Consistent risk factors for carriage were not identified. CONCLUSIONS There is a lack of comprehensive and contemporary information on meningococcal carriage in low and medium income countries of the Americas and Asia. Future carriage studies should incorporate larger representative populations, a wider age range, and additional countries to improve our understanding of meningococcal epidemiology and disease control.
Collapse
Affiliation(s)
- Lidia Serra
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA.
| | - Jessica Presa
- Pfizer Vaccines, Medical and Scientific Affairs, Collegeville, PA, USA
| | - Hannah Christensen
- Bristol Medical School, Population Health Sciences, University of Bristol, Clifton, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|