51
|
Moreira-de-Sá A, Gonçalves FQ, Lopes JP, Silva HB, Tomé ÂR, Cunha RA, Canas PM. Motor Deficits Coupled to Cerebellar and Striatal Alterations in Ube3a m-/p+ Mice Modelling Angelman Syndrome Are Attenuated by Adenosine A 2A Receptor Blockade. Mol Neurobiol 2021; 58:2543-2557. [PMID: 33464534 DOI: 10.1007/s12035-020-02275-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder involving ataxia and motor dysfunction, resulting from the absence of the maternally inherited functional Ube3a protein in neurons. Since adenosine A2A receptor (A2AR) blockade relieves synaptic and motor impairments in Parkinson's or Machado-Joseph's diseases, we now tested if A2AR blockade was also effective in attenuating motor deficits in an AS (Ube3am-/p+) mouse model and if this involved correction of synaptic alterations in striatum and cerebellum. Chronic administration of the A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) promoted motor learning of AS mice in the accelerating-rotarod task and rescued the grip strength impairment of AS animals. These motor impairments were accompanied by synaptic alterations in cerebellum and striatum typified by upregulation of synaptophysin and vesicular GABA transporters (vGAT) in the cerebellum of AS mice along with a downregulation of vGAT, vesicular glutamate transporter 1 (vGLUT1) and the dopamine active transporter in AS striatum. Notably, A2AR blockade prevented the synaptic alterations found in AS mice cerebellum as well as the downregulation of striatal vGAT and vGLUT1. This provides the first indications that A2AR blockade may counteract the characteristic motor impairments and synaptic changes of AS, although more studies are needed to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
| | - João P Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
| | - Henrique B Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ângelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal.
| |
Collapse
|
52
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2021; 42:2109-2120. [PMID: 34057683 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
53
|
Dong Z, Huang B, Jiang C, Chen J, Lin H, Lian Q, Wu B. The Adenosine A2A Receptor Activation in Nucleus Accumbens Suppress Cue-Induced Reinstatement of Propofol Self-administration in Rats. Neurochem Res 2021; 46:1081-1091. [PMID: 33616808 PMCID: PMC8053194 DOI: 10.1007/s11064-021-03238-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
Propofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5-10.0 ng/site), MSX-3 (A2AR antagonist, 5.0-20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75-3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75-3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0-20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
54
|
Misganaw D. Heteromerization of dopaminergic receptors in the brain: Pharmacological implications. Pharmacol Res 2021; 170:105600. [PMID: 33836279 DOI: 10.1016/j.phrs.2021.105600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
Dopamine exerts its physiological effects through two subtypes of receptors, i.e. the receptors of the D1 family (D1R and D5R) and the D2 family (D2R, D3R, and D4R), which differ in their pattern of distribution, affinity, and signaling. The D1-like subfamily (D1R and D5R) are coupled to Gαs/olf proteins to activate adenylyl cyclase whereas the D2-like receptors are coupled to Gαi/o subunits and suppress the activity of adenylyl cyclase. Dopamine receptors are capable of forming homodimers, heterodimers, and higher-order oligomeric complexes, resulting in a change in the individual protomers' recognition, signaling, and pharmacology. Heteromerization has the potential to modify the canonical pharmacological features of individual monomeric units such as ligand affinity, activation, signaling, and cellular trafficking through allosteric interactions, reviving the field and introducing a new pharmacological target. Since heteromers are expressed and formed in a tissue-specific manner, they could provide the framework to design selective and effective drug candidates, such as brain-penetrant heterobivalent drugs and interfering peptides, with limited side effects. Therefore, heteromerization could be a promising area of pharmacology research, as it could contribute to the development of novel pharmacological interventions for dopamine dysregulated brain disorders such as addiction, schizophrenia, cognition, Parkinson's disease, and other motor-related disorders. This review is articulated based on the three criteria established by the International Union of Basic and Clinical Pharmacology for GPCR heterodimers (IUPHAR): evidence of co-localization and physical interactions in native or primary tissue, presence of a new physiological and functional property than the individual protomers, and loss of interaction and functional fingerprints upon heterodimer disruption.
Collapse
Affiliation(s)
- Desye Misganaw
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Medicine and Health Science, Wollo University, P.O. Box 1145, Dessie, Ethiopia.
| |
Collapse
|
55
|
Lorenzo Calvo J, Fei X, Domínguez R, Pareja-Galeano H. Caffeine and Cognitive Functions in Sports: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13030868. [PMID: 33800853 PMCID: PMC8000732 DOI: 10.3390/nu13030868] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cognitive functions are essential in any form of exercise. Recently, interest has mounted in addressing the relationship between caffeine intake and cognitive performance during sports practice. This review examines this relationship through a structured search of the databases Medline/PubMed and Web of Science for relevant articles published in English from August 1999 to March 2020. The study followed PRISMA guidelines. Inclusion criteria were defined according to the PICOS model. The identified records reported on randomized cross-over studies in which caffeine intake (as drinks, capsules, energy bars, or gum) was compared to an identical placebo situation. There were no filters on participants’ training level, gender, or age. For the systematic review, 13 studies examining the impacts of caffeine on objective measures of cognitive performance or self-reported cognitive performance were selected. Five of these studies were also subjected to meta-analysis. After pooling data in the meta-analysis, the significant impacts of caffeine only emerged on attention, accuracy, and speed. The results of the 13 studies, nevertheless, suggest that the intake of a low/moderate dose of caffeine before and/or during exercise can improve self-reported energy, mood, and cognitive functions, such as attention; it may also improve simple reaction time, choice reaction time, memory, or fatigue, however, this may depend on the research protocols.
Collapse
Affiliation(s)
- Jorge Lorenzo Calvo
- Sports Department, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Xueyin Fei
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
- Correspondence: ; Tel.: +86-153-6930-8755
| | - Raúl Domínguez
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil;
- Departamento de Motricidad Humana y Rendimiento Deporte, Universidad de Sevilla, 41013 Sevilla, Spain
| | | |
Collapse
|
56
|
Doyle MR, Sulima A, Rice KC, Collins GT. Interactions between reinforcement history and drug-primed reinstatement: Studies with MDPV and mixtures of MDPV and caffeine. Addict Biol 2021; 26:e12904. [PMID: 32237282 DOI: 10.1111/adb.12904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022]
Abstract
Many drugs of abuse are mixed with other psychoactive substances (e.g., caffeine) prior to their sale or use. Synthetic cathinones (e.g., 3,4-methylenedioxypyrovalerone [MDPV]) are commonly mixed with caffeine or other cathinones (e.g., 3,4-methylenedioxy-N-methylcathinone [methylone]), and these "bath salts" mixtures (e.g., MDPV + caffeine) can exhibit supra-additive interactions with regard to their reinforcing and discriminative stimulus properties. However, little is known about relapse-related effects of drug mixtures. In these studies, male Sprague-Dawley rats self-administered 0.032 mg/kg/inf MDPV or a mixture of MDPV + caffeine (0.029 + 0.66 mg/kg/inf, respectively) and then underwent multiple rounds of extinction and reinstatement testing to evaluate the influence of reinforcement history and drug-associated stimuli on the effectiveness of saline (drug-paired stimuli alone), MDPV (0.032-1.0 mg/kg), caffeine (1.0-32 mg/kg), and mixtures of MDPV:caffeine (in 3:1, 1:1, and 1:3 ratios, relative to each drug's ED50 ) to reinstate responding. Dose-addition analyses were used to determine the nature of the drug-drug interaction for each mixture. MDPV and caffeine dose-dependently reinstated responding and were equally effective, regardless of reinforcement history. Most fixed ratio mixtures of MDPV + caffeine exhibited supra-additive interactions, reinstating responding to levels greater than was observed with caffeine and/or MDPV alone. Drug-associated stimuli also played a key role in reinstating responding, especially for caffeine. Together, these results demonstrate that the composition of drug mixtures can impact relapse-related effects of drug mixtures, and "bath salts" mixtures (MDPV + caffeine) may be more effective at promoting relapse-related behaviors than the constituents alone. Further research is needed to determine how other polysubstance reinforcement histories can impact relapse-related behaviors.
Collapse
Affiliation(s)
- Michelle R. Doyle
- Department of Pharmacology The University of Texas Health Science Center at San Antonio San Antonio Texas USA
- Research Service South Texas Veterans Health Care System San Antonio Texas USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch NIDA and NIAAA Bethesda Maryland USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch NIDA and NIAAA Bethesda Maryland USA
| | - Gregory T. Collins
- Department of Pharmacology The University of Texas Health Science Center at San Antonio San Antonio Texas USA
- Research Service South Texas Veterans Health Care System San Antonio Texas USA
| |
Collapse
|
57
|
Jenner P, Mori A, Aradi SD, Hauser RA. Istradefylline - a first generation adenosine A 2A antagonist for the treatment of Parkinson's disease. Expert Rev Neurother 2021; 21:317-333. [PMID: 33507105 DOI: 10.1080/14737175.2021.1880896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction It is now accepted that Parkinson's disease (PD) is not simply due to dopaminergic dysfunction, and there is interest in developing non-dopaminergic approaches to disease management. Adenosine A2A receptor antagonists represent a new way forward in the symptomatic treatment of PD.Areas covered In this narrative review, we summarize the literature supporting the utility of adenosine A2A antagonists in PD with a specific focus on istradefylline, the most studied and only adenosine A2A antagonist currently in clinical use.Expert opinion: At this time, the use of istradefylline in the treatment of PD is limited to the management of motor fluctuations as supported by the results of randomized clinical trials and evaluation by Japanese and USA regulatory authorities. The relatively complicated clinical development of istradefylline was based on classically designed studies conducted in PD patients with motor fluctuations on an optimized regimen of levodopa plus adjunctive dopaminergic medications. In animal models, there is consensus that a more robust effect of istradefylline in improving motor function is produced when combined with low or threshold doses of levodopa rather than with high doses that produce maximal dopaminergic improvement. Exploration of istradefylline as a 'levodopa sparing' strategy in earlier PD would seem warranted.
Collapse
Affiliation(s)
- Peter Jenner
- Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akihisa Mori
- Medical Affairs Department, Kyowa Kirin Co Ltd, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Stephen D Aradi
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Robert A Hauser
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
58
|
Acute Effects of Caffeine Intake on Psychological Responses and High-Intensity Exercise Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020584. [PMID: 33445587 PMCID: PMC7827590 DOI: 10.3390/ijerph18020584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of caffeine supplementation on: (i) psychological responses of subjective vitality and mood; (ii) performance through a Wingate test; and (iii) rate of perceived exertion (RPE) reported after a Wingate test. METHODS Fifteen male participants (22.60 ± 2.16 years) ingested 6 mg·kg-1 of caffeine or placebo (sucrose) supplementation in two experimental sessions. After 60 min from supplement intake, participants fulfilled two questionnaires, which measured subjective vitality and mood state, respectively. Subsequently, participants' performance was assessed through a Wingate test, which was followed by measurements of RPE at general, muscular, or cardiovascular level. RESULTS Caffeine supplementation increased some components of mood, as assessed by profile of mood states (POMS) (tension and vigor dimensions) and subjective vitality profiles, which were followed by a greater maximum power, average power, and lower time needed to reach maximum power during the Wingate test. Moreover, lower RPE, both at muscular and general levels were reported by participants after the Wingate test. CONCLUSIONS These results suggest that caffeine supplementation exerts positive effects both in psychological and physical domains in trained subjects.
Collapse
|
59
|
Abstract
Restless legs syndrome (RLS) is a chronic sensorimotor disorder characterized by an urge to move the legs. This urge is often accompanied by pain or other uncomfortable and unpleasant sensations, it either occurs or worsens during rest, particularly in the evening and/or at night, and temporarily improves with activity. Affecting nearly 3% of the North American and European populations in its moderate-to-severe form, RLS has a considerable negative impact on the quality of life, and sleep and is associated with significant morbidity. Although new developments have deepened our understanding of the disorder, yet, the corresponding pathophysiologic features that underlie the sensorimotor presentation are still not fully understood. Usually, symptoms respond well to dopamine agonists (DA), anticonvulsants, or opiates, used either alone or in any combination, but still, a subset of patients remains refractory to medical therapy and serious side effects such as augmentation and impulse control disorder may occur in patients with RLS under DA. Convincing treatment alternative are lacking but recently patients' spontaneous reports of a remarkable and total remission of RLS symptoms following cannabis use has been reported. The antinociceptive effect of marijuana has been documented in many painful neurological conditions and the potential benefit of cannabis use in patients with refractory RLS should, therefore, be questioned by robust clinical trials. Here, we review basic knowledge of RLS and the putative mechanisms by which cannabis may exert its analgesic effects.
Collapse
|
60
|
Pinna A, Serra M, Marongiu J, Morelli M. Pharmacological interactions between adenosine A 2A receptor antagonists and different neurotransmitter systems. Parkinsonism Relat Disord 2020; 80 Suppl 1:S37-S44. [PMID: 33349579 DOI: 10.1016/j.parkreldis.2020.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
While Parkinson's disease (PD) is traditionally characterized by dopaminergic neuron degeneration, several neurotransmitters and neuromodulators besides dopamine are also involved in the onset and progression of the disease and its symptoms. The other principal neurotransmitters/neuromodulators known to control basal ganglia functions and, in particular, motor functions, are GABA, glutamate, serotonin (5-HT), noradrenaline, acetylcholine, adenosine and endocannabinoids. Among these, adenosine is the most relevant, acting through its adenosine A2A receptor. Work in experimental models of PD has established the effects of A2A receptor antagonists, including the alleviation of disrupted dopamine functions and improved efficacy of dopamine replacement therapy. Moreover, positive interactions between A2A receptor antagonists and both D2 and D1 receptor agonists have been described in vitro at the receptor-receptor level or in more complex in vivo models of PD, respectively. In addition, the interactions between A2A receptor antagonists and glutamate ionotropic GluN2B-containing N-Methyl-d-aspartic acid receptors, or metabotropic glutamate (mGlu) receptors, including both mGlu5 receptor inhibitors and mGlu4 receptor activators, have been reported in both in vitro and in vivo animal models of PD, as have positive interactions between A2A and endocannabinoid CB1 receptor antagonists. At the same time, a combination of A2A receptor antagonists and 5-HT1A-5-HT1B receptor agonists have been described to modulate the expression of dyskinesia induced by chronic dopamine replacement therapy.
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute - Cagliari, Cagliari, Italy.
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute - Cagliari, Cagliari, Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
61
|
Lopes CR, Lourenço VS, Tomé ÂR, Cunha RA, Canas PM. Use of knockout mice to explore CNS effects of adenosine. Biochem Pharmacol 2020; 187:114367. [PMID: 33333075 DOI: 10.1016/j.bcp.2020.114367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
The initial exploration using pharmacological tools of the role of adenosine receptors in the brain, concluded that adenosine released as such acted on A1R to inhibit excitability and glutamate release from principal neurons throughout the brain and that adenosine A2A receptors (A2AR) were striatal-'specific' receptors controlling dopamine D2R. This indicted A1R as potential controllers of neurodegeneration and A2AR of psychiatric conditions. Global knockout of these two receptors questioned the key role of A1R and instead identified extra-striatal A2AR as robust controllers of neurodegeneration. Furthermore, transgenic lines with altered metabolic sources of adenosine revealed a coupling of ATP-derived adenosine to activate A2AR and a role of A1R as a hurdle to initiate neurodegeneration. Additionally, cell-selective knockout of A2AR unveiled the different roles of A2AR in different cell types (neurons/astrocytes) in different portions of the striatal circuits (dorsal versus lateral) and in different brain areas (hippocampus/striatum). Finally, a new transgenic mouse line with deletion of all adenosine receptors seems to indicate a major allostatic rather than homeostatic role of adenosine and may allow isolating P2R-mediated responses to unravel their role in the brain, a goal close to heart of Geoffrey Burnstock, to whom we affectionately dedicate this review.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula M Canas
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
62
|
Glaser T, Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Bonfim Marques L, Ye Q, Ren WJ, Semyanov A, Illes P, Tang Y, Ulrich H. Purinergic Receptors in Basal Ganglia Diseases: Shared Molecular Mechanisms between Huntington's and Parkinson's Disease. Neurosci Bull 2020; 36:1299-1314. [PMID: 33026587 PMCID: PMC7674528 DOI: 10.1007/s12264-020-00582-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
Huntington's (HD) and Parkinson's diseases (PD) are neurodegenerative disorders caused by the death of GABAergic and dopaminergic neurons in the basal ganglia leading to hyperkinetic and hypokinetic symptoms, respectively. We review here the participation of purinergic receptors through intracellular Ca2+ signaling in these neurodegenerative diseases. The adenosine A2A receptor stimulates striatopallidal GABAergic neurons, resulting in inhibitory actions on GABAergic neurons of the globus pallidus. A2A and dopamine D2 receptors form functional heteromeric complexes inducing allosteric inhibition, and A2A receptor activation results in motor inhibition. Furthermore, the A2A receptor physically and functionally interacts with glutamate receptors, mainly with the mGlu5 receptor subtype. This interaction facilitates glutamate release, resulting in NMDA glutamate receptor activation and an increase of Ca2+ influx. P2X7 receptor activation also promotes glutamate release and neuronal damage. Thus, modulation of purinergic receptor activity, such as A2A and P2X7 receptors, and subsequent aberrant Ca2+ signaling, might present interesting therapeutic potential for HD and PD.
Collapse
Affiliation(s)
- Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Lucas Bonfim Marques
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Qing Ye
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
| | - Wen-Jing Ren
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
63
|
Nasrollahi-Shirazi S, Szöllösi D, Yang Q, Muratspahic E, El-Kasaby A, Sucic S, Stockner T, Nanoff C, Freissmuth M. Functional Impact of the G279S Substitution in the Adenosine A 1-Receptor (A 1R-G279S 7.44), a Mutation Associated with Parkinson's Disease. Mol Pharmacol 2020; 98:250-266. [PMID: 32817461 DOI: 10.1124/molpharm.120.000003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
In medium-size, spiny striatal neurons of the direct pathway, dopamine D1- and adenosine A1-receptors are coexpressed and are mutually antagonistic. Recently, a mutation in the gene encoding the A1-receptor (A1R), A1R-G279S7.44, was identified in an Iranian family: two affected offspring suffered from early-onset l-DOPA-responsive Parkinson's disease. The link between the mutation and the phenotype is unclear. Here, we explored the functional consequence of the G279S substitution on the activity of the A1-receptor after heterologous expression in HEK293 cells. The mutation did not affect surface expression and ligand binding but changed the susceptibility to heat denaturation: the thermodynamic stability of A1R-G279S7.44 was enhanced by about 2 and 8 K when compared with wild-type A1-receptor and A1R-Y288A7.53 (a folding-deficient variant used as a reference), respectively. In contrast, the kinetic stability was reduced, indicating a lower energy barrier for conformational transitions in A1R-G279S7.44 (73 ± 23 kJ/mol) than in wild-type A1R (135 ± 4 kJ/mol) or in A1R-Y288A7.53 (184 ± 24 kJ/mol). Consistent with this lower energy barrier, A1R-G279S7.44 was more effective in promoting guanine nucleotide exchange than wild-type A1R. We detected similar levels of complexes formed between D1-receptors and wild-type A1R or A1R-G279S7.44 by coimmunoprecipitation and bioluminescence resonance energy transfer. However, lower concentrations of agonist were required for half-maximum inhibition of dopamine-induced cAMP accumulation in cells coexpressing D1-receptor and A1R-G279S7.44 than in those coexpressing wild-type A1R. These observations predict enhanced inhibition of dopaminergic signaling by A1R-G279S7.44 in vivo, consistent with a pathogenic role in Parkinson's disease. SIGNIFICANCE STATEMENT: Parkinson's disease is caused by a loss of dopaminergic input from the substantia nigra to the caudate nucleus and the putamen. Activation of the adenosine A1-receptor antagonizes responses elicited by dopamine D1-receptor. We show that this activity is more pronounced in a mutant version of the A1-receptor (A1R-G279S7.44), which was identified in individuals suffering from early-onset Parkinson's disease.
Collapse
Affiliation(s)
- Shahrooz Nasrollahi-Shirazi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Daniel Szöllösi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Qiong Yang
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Nanoff
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
64
|
Ur Rehman N, Abbas M, Al-Rashida M, Tokhi A, Arshid MA, Khan MS, Ahmad I, Rauf K. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) Benzene Sulfonamide on Acquisition and Expression of Nicotine-Induced Behavioral Sensitization and Striatal Adenosine Levels. Drug Des Devel Ther 2020; 14:3777-3786. [PMID: 32982182 PMCID: PMC7505708 DOI: 10.2147/dddt.s270025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. Objective The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. Methods In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. Results Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. Conclusion The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Muhammad Sona Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Izhar Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| |
Collapse
|
65
|
Jia Y, Vadnie CA, Ho AM, Peyton L, Veldic M, Wininger K, Matveyenko A, Choi D. Type 1 equilibrative nucleoside transporter (ENT1) regulates sex-specific ethanol drinking during disruption of circadian rhythms. Addict Biol 2020; 25:e12801. [PMID: 31267611 DOI: 10.1111/adb.12801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disruptions in circadian rhythms are risk factors for excessive alcohol drinking. The ethanol-sensitive adenosine equilibrative nucleoside transporter type 1 (ENT1, slc29a1) regulates ethanol-related behaviors, sleep, and entrainment of circadian rhythms. However, the mechanism underlying the increased ethanol consumption in ENT1 knockout (KO) mice in constant light (LL) and whether there are sex differences in ethanol consumption in ENT1 mice are less studied. Here, we investigated the effects of loss of ENT1, LL, and sex on ethanol drinking using two-bottle choice. In addition, we monitored the locomotor activity rhythms. We found that LL increased ethanol drinking and reduced accumbal ENT1 expression and adenosine levels in male but not female mice, compared with control mice. Interestingly, only LL-exposed male, not female, ENT1 KO mice exhibited higher ethanol drinking and a longer circadian period with a higher amplitude compared with wild-type (WT) mice. Furthermore, viral-mediated rescue of ENT1 expression in the NAc of ENT1 KO mice reduced ethanol drinking, demonstrating a possible causal link between ENT1 expression and ethanol drinking in males. Together, our findings indicate that deficiency of ENT1 expression contributes to excessive ethanol drinking in a sex-dependent manner.
Collapse
Affiliation(s)
- Yun‐Fang Jia
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
| | | | - Ada Man‐Choi Ho
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
- Department of Psychiatry & PsychologyMayo Clinic Rochester MN USA
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
| | - Marin Veldic
- Department of Psychiatry & PsychologyMayo Clinic Rochester MN USA
| | | | - Aleksey Matveyenko
- Department of Physiology and Biomedical EngineeringMayo Graduate School Mayo Clinic Rochester MN USA
| | - Doo‐Sup Choi
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo Clinic Rochester MN USA
- Department of Psychiatry & PsychologyMayo Clinic Rochester MN USA
- Neuroscience ProgramMayo Clinic Rochester MN USA
| |
Collapse
|
66
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
67
|
Aleman M, Zhang R, Feng W, Qi L, Lopez JR, Crowe C, Dong Y, Cherednichenko G, Pessah IN. Dietary Caffeine Synergizes Adverse Peripheral and Central Responses to Anesthesia in Malignant Hyperthermia Susceptible Mice. Mol Pharmacol 2020; 98:351-363. [PMID: 32764093 DOI: 10.1124/mol.120.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Ryanodine receptor (RYR) mutations confer stress-triggered malignant hyperthermia (MH) susceptibility. Dietary caffeine (CAF) is the most commonly consumed psychoactive compound by humans. CAF-triggered Ca2+ release and its influences on skeletal muscle contractility are widely used as experimental tools to study RYR function/dysfunction and diagnose MH susceptibility. We hypothesize that dietary CAF achieving blood levels measured in human plasma exacerbates the penetrance of RYR1 MH susceptibility mutations triggered by gaseous anesthetic, affecting both central and peripheral adverse responses. Heterozygous R163C-RYR1 (HET) MH susceptible mice are used to investigate the influences of dietary CAF on both peripheral and central responses before and after induction of halothane (HAL) maintenance anesthesia under experimental conditions that maintain normal core body temperature. HET mice receiving CAF (plasma CAF 893 ng/ml) have significantly shorter times to respiratory arrest compared with wild type, without altering blood chemistry or displaying hyperthermia or muscle rigor. Intraperitoneal bolus dantrolene before HAL prolongs time to respiratory arrest. A pilot electrographic study using subcutaneous electrodes reveals that dietary CAF does not alter baseline electroencephalogram (EEG) total power, but significantly shortens delay to isoelectric EEG, which precedes respiratory and cardiac arrest. CAF ± HAL are studied on RYR1 single-channel currents and HET myotubes to define molecular mechanisms of gene-by-environment synergism. Strong pharmacological synergism between CAF and HAL is demonstrated in both single-channel and myotube preparations. Central and peripheral nervous systems mediate adverse responses to HAL in a HET model of MH susceptibility exposed to dietary CAF, a modifiable lifestyle factor that may mitigate risks of acute and chronic diseases associated with RYR1 mutations. SIGNIFICANCE STATEMENT: Dietary caffeine at a human-relevant dose synergizes adverse peripheral and central responses to anesthesia in malignant hyperthermia susceptible mice. Synergism of these drugs can be attributed to their actions at ryanodine receptors.
Collapse
Affiliation(s)
- Monica Aleman
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Lihong Qi
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Jose R Lopez
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Chelsea Crowe
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Genady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine (R.Z., W.F., J.R.L., Y.D., G.C., I.N.P.), Department of Medicine and Epidemiology, The William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine (M.A., C.C.), and Department of Public Health Sciences, School of Medicine, School of Medicine (L.Q.), University of California, Davis, California
| |
Collapse
|
68
|
Li CY, Gupta A, Gáborik Z, Kis E, Prasad B. Organic Anion Transporting Polypeptide–Mediated Hepatic Uptake of Glucuronide Metabolites of Androgens. Mol Pharmacol 2020; 98:234-242. [DOI: 10.1124/mol.120.119891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
|
69
|
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci 2020; 14:636. [PMID: 32655359 PMCID: PMC7324687 DOI: 10.3389/fnins.2020.00636] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD) is a common feature of schizophrenia, and is associated with symptom severity and patient quality of life. It is commonly manifested as disturbances to the sleep/wake cycle, with sleep abnormalities occurring in up to 80% of patients, making it one of the most common symptoms of this disorder. Severe circadian misalignment has also been reported, including non-24 h periods and phase advances and delays. In parallel, there are alterations to physiological circadian parameters such as body temperature and rhythmic hormone production. At the molecular level, alterations in the rhythmic expression of core clock genes indicate a dysfunctional circadian clock. Furthermore, genetic association studies have demonstrated that mutations in several clock genes are associated with a higher risk of schizophrenia. Collectively, the evidence strongly suggests that sleep and circadian disruption is not only a symptom of schizophrenia but also plays an important causal role in this disorder. The alterations in dopamine signaling that occur in schizophrenia are likely to be central to this role. Dopamine is well-documented to be involved in the regulation of the sleep/wake cycle, in which it acts to promote wakefulness, such that elevated dopamine levels can disturb sleep. There is also evidence for the influence of dopamine on the circadian clock, such as through entrainment of the master clock in the suprachiasmatic nuclei (SCN), and dopamine signaling itself is under circadian control. Therefore dopamine is closely linked with sleep and the circadian system; it appears that they have a complex, bidirectional relationship in the pathogenesis of schizophrenia, such that disturbances to one exacerbate abnormalities in the other. This review will provide an overview of the evidence for a role of SCRD in schizophrenia, and examine the interplay of this with altered dopamine signaling. We will assess the evidence to suggest common underlying mechanisms in the regulation of sleep/circadian rhythms and the pathophysiology of schizophrenia. Improvements in sleep are associated with improvements in symptoms, along with quality of life measures such as cognitive ability and employability. Therefore the circadian system holds valuable potential as a new therapeutic target for this disorder.
Collapse
Affiliation(s)
- Anna Ashton
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
70
|
Ramos AC, de Mattos Hungria F, Camerini BA, Suiama MA, Calzavara MB. Potential beneficial effects of caffeine administration in the neonatal period of an animal model of schizophrenia. Behav Brain Res 2020; 391:112674. [PMID: 32417274 DOI: 10.1016/j.bbr.2020.112674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Obstetric complications, like maternal hypertension and neonatal hypoxia, disrupt brain development, leading to psychiatry disorders later in life, like schizophrenia. The exact mechanisms behind this risk are not yet well known. Spontaneously hypertensive rats (SHR) are a well-established model to study neurodevelopment of schizophrenia since they exhibit behavioral alterations mimicking schizophrenia that can be improved with antipsychotic drugs. SHR mothers are hypertensive, and the SHR offspring develop in preeclampsia-like conditions. Hypoxic conditions increase levels of adenosine, which play an important role in brain development. The enhanced levels of adenosine at birth could be related to the future development of schizophrenia. To investigate this hypothesis adenosine levels of brain neonatal Wistar rats and SHR were quantified. After that, caffeine, an antagonist of adenosinergic system, was administrated on PND (postnatal day) 7 (neurodevelopmental age similar to a human at delivery) and rats were observed at adolescent and adult ages. We also investigated the acute effects of caffeine at adolescent and adult ages. SHR control adolescent and adult groups presented behavioral deficits like hyperlocomotion, deficit in social interaction (SI), and contextual fear conditioning (CFC). In SHR, neonatal caffeine treatment on PND 7 normalized hyperlocomotion, improved SI, and CFC observed at adolescent period and adult ages, showing a beneficial effect on schizophrenia-like behaviors. Wistar rats neonatally treated with caffeine exhibited hyperlocomotion, deficit in SI and CFC when observed at adolescent and adult ages. Acutely caffeine treatment administrated at adolescent and adult ages increased locomotion and decreased SI time of Wistar rats and impair CFC in adult Wistars. No effects were observed in SHR. In conclusion, caffeine can be suggested as a useful drug to prevent behavioral deficits observed in this animal model of prenatal hypoxia-induced schizophrenia profile when specifically administered on PND 7.
Collapse
Affiliation(s)
- Aline Camargo Ramos
- Department of Psychiatry, Universidade Federal De São Paulo, São Paulo, SP, Brazil
| | | | | | - Mayra Akimi Suiama
- Department of Pharmacology, Universidade Federal De São Paulo, São Paulo, SP, Brazil
| | - Mariana Bendlin Calzavara
- Department of Psychiatry, Universidade Federal De São Paulo, São Paulo, SP, Brazil; School of Medicine from Faculdade Israelita De Ciências Da Saúde Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
71
|
Chen JF, Cunha RA. The belated US FDA approval of the adenosine A 2A receptor antagonist istradefylline for treatment of Parkinson's disease. Purinergic Signal 2020; 16:167-174. [PMID: 32236790 DOI: 10.1007/s11302-020-09694-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/02/2020] [Indexed: 01/08/2023] Open
Abstract
After more than two decades of preclinical and clinical studies, on August 27, 2019, the US Food and Drug Administration (FDA) approved the adenosine A2A receptor antagonist Nourianz® (istradefylline) developed by Kyowa Hakko Kirin Inc., Japan, as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes. This milestone achievement is the culmination of the decade-long clinical studies of the effects of istradefylline in more than 4000 PD patients. Istradefylline is the first non-dopaminergic drug approved by FDA for PD in the last two decades. This approval also provides some important lessons to be remembered, namely, concerning disease-specific adenosine signaling and targeting subpopulation of PD patients. Importantly, this approval paves the way to foster entirely novel therapeutic opportunities for adenosine A2A receptor antagonists, such as neuroprotection or reversal of mood and cognitive deficits in PD and other neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China.
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
72
|
Machado DG, Lara MVS, Dobler PB, Almeida RF, Porciúncula LO. Caffeine prevents neurodegeneration and behavioral alterations in a mice model of agitated depression. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109776. [PMID: 31707092 DOI: 10.1016/j.pnpbp.2019.109776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/15/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.
Collapse
Affiliation(s)
- Daniele Guilhermano Machado
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| | - Marcus Vinicius Soares Lara
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Paula Bruna Dobler
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil
| | - Roberto Farina Almeida
- Universidade Federal de Ouro Preto, Centro de Pesquisa em Ciências Biológicas, Departamento de Ciências Biológicas, Ouro Preto, MG, Brazil
| | - Lisiane O Porciúncula
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Porto Alegre, RS 90035 003, Brazil.
| |
Collapse
|
73
|
Kesby JP, Chang A, Najera JA, Marcondes MCG, Semenova S. Brain Reward Function after Chronic and Binge Methamphetamine Regimens in Mice Expressing the HIV-1 TAT Protein. Curr HIV Res 2020; 17:126-133. [PMID: 31269883 DOI: 10.2174/1570162x17666190703165408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Methamphetamine abuse and human immunodeficiency virus (HIV) are common comorbidities. HIV-associated proteins, such as the regulatory protein TAT, may contribute to brain reward dysfunction, inducing an altered sensitivity to methamphetamine reward and/or withdrawal in this population. OBJECTIVE These studies examined the combined effects of TAT protein expression and, chronic and binge methamphetamine regimens on brain reward function. METHODS Transgenic mice with inducible brain expression of the TAT protein were exposed to either saline, a chronic, or a binge methamphetamine regimen. TAT expression was induced via doxycycline treatment during the last week of methamphetamine exposure. Brain reward function was assessed daily throughout the regimens, using the intracranial self-stimulation procedure, and after a subsequent acute methamphetamine challenge. RESULTS Both methamphetamine regimens induced withdrawal-related decreases in reward function. TAT expression substantially, but not significantly increased the withdrawal associated with exposure to the binge regimen compared to the chronic regimen, but did not alter the response to acute methamphetamine challenge. TAT expression also led to persistent changes in adenosine 2B receptor expression in the caudate putamen, regardless of methamphetamine exposure. These results suggest that TAT expression may differentially affect brain reward function, dependent on the pattern of methamphetamine exposure. CONCLUSION The subtle effects observed in these studies highlight that longer-term TAT expression, or its induction at earlier stages of methamphetamine exposure, may be more consequential at inducing behavioral and neurochemical effects.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States.,Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia.,UQ Centre for Clinical Research, The University of Queensland, Brisbane, Qld, Australia
| | - Ariel Chang
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Julia A Najera
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Maria Cecilia G Marcondes
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States.,San Diego Biomedical Research Institute, San Diego, CA 92121, United States
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
74
|
Exercise-Induced Adaptations to the Mouse Striatal Adenosine System. Neural Plast 2020; 2020:5859098. [PMID: 32399024 PMCID: PMC7204111 DOI: 10.1155/2020/5859098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Adenosine acts as a key regulator of striatum activity, in part, through the antagonistic modulation of dopamine activity. Exercise can increase adenosine activity in the brain, which may impair dopaminergic functions in the striatum. Therefore, long-term repeated bouts of exercise may subsequently generate plasticity in striatal adenosine systems in a manner that promotes dopaminergic activity. This study investigated the effects of long-term voluntary wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor protein expression in adult mouse dorsal and ventral striatum structures using immunohistochemistry. In addition, equilibrative nucleoside transporter 1 (ENT1) protein expression was examined after wheel running, as ENT1 regulates the bidirectional flux of adenosine between intra- and extracellular space. The results suggest that eight weeks of running wheel access spared age-related increases of A1R and A2AR protein concentrations across the dorsal and ventral striatal structures. Wheel running mildly reduced ENT1 protein levels in ventral striatum subregions. Moreover, wheel running mildly increased D2R protein density within striatal subregions in the dorsal medial striatum, nucleus accumbens core, and the nucleus accumbens shell. However, D1R protein expression in the striatum was unchanged by wheel running. These data suggest that exercise promotes adaptations to striatal adenosine systems. Exercise-reduced A1R and A2AR and exercise-increased D2R protein levels may contribute to improved dopaminergic signaling in the striatum. These findings may have implications for cognitive and behavioral processes, as well as motor and psychiatric diseases that involve the striatum.
Collapse
|
75
|
Köfalvi A, Moreno E, Cordomí A, Cai NS, Fernández-Dueñas V, Ferreira SG, Guixà-González R, Sánchez-Soto M, Yano H, Casadó-Anguera V, Cunha RA, Sebastião AM, Ciruela F, Pardo L, Casadó V, Ferré S. Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biol 2020; 18:9. [PMID: 31973708 PMCID: PMC6979073 DOI: 10.1186/s12915-020-0739-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background It has been hypothesized that heteromers of adenosine A2A receptors (A2AR) and cannabinoid CB1 receptors (CB1R) localized in glutamatergic nerve terminals mediate the integration of adenosine and endocannabinoid signaling involved in the modulation of striatal excitatory neurotransmission. Previous studies have demonstrated the existence of A2AR-CB1R heteromers in artificial cell systems. A dependence of A2AR signaling for the Gi protein-mediated CB1R signaling was described as one of its main biochemical characteristics. However, recent studies have questioned the localization of functionally significant A2AR-CB1R heteromers in striatal glutamatergic terminals. Results Using a peptide-interfering approach combined with biophysical and biochemical techniques in mammalian transfected cells and computational modeling, we could establish a tetrameric quaternary structure of the A2AR-CB1R heterotetramer. This quaternary structure was different to the also tetrameric structure of heteromers of A2AR with adenosine A1 receptors or dopamine D2 receptors, with different heteromeric or homomeric interfaces. The specific quaternary structure of the A2A-CB1R, which depended on intermolecular interactions involving the long C-terminus of the A2AR, determined a significant A2AR and Gs protein-mediated constitutive activation of adenylyl cyclase. Using heteromer-interfering peptides in experiments with striatal glutamatergic terminals, we could then demonstrate the presence of functionally significant A2AR-CB1R heteromers with the same biochemical characteristics of those studied in mammalian transfected cells. First, either an A2AR agonist or an A2AR antagonist allosterically counteracted Gi-mediated CB1R agonist-induced inhibition of depolarization-induced glutamate release. Second, co-application of both an A2AR agonist and an antagonist cancelled each other effects. Finally, a CB1R agonist inhibited glutamate release dependent on a constitutive activation of A2AR by a canonical Gs-Gi antagonistic interaction at the adenylyl cyclase level. Conclusions We demonstrate that the well-established cannabinoid-induced inhibition of striatal glutamate release can mostly be explained by a CB1R-mediated counteraction of the A2AR-mediated constitutive activation of adenylyl cyclase in the A2AR-CB1R heteromer.
Collapse
Affiliation(s)
- Attila Köfalvi
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Samira G Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ramón Guixà-González
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Marta Sánchez-Soto
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Hideaki Yano
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain. .,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, and Institute of Biomedicine, University of Barcelona, 08028, Barcelona, Spain.
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
76
|
Petković B, Kesić S, Pešić V. Critical View on the Usage of Ribavirin in Already Existing Psychostimulant-Use Disorder. Curr Pharm Des 2020; 26:466-484. [PMID: 31939725 PMCID: PMC8383468 DOI: 10.2174/1381612826666200115094642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
Substance-use disorder represents a frequently hidden non-communicable chronic disease. Patients with intravenous drug addiction are at high risk of direct exposure to a variety of viral infections and are considered to be the largest subpopulation infected with the hepatitis C virus. Ribavirin is a synthetic nucleoside analog that has been used as an integral component of hepatitis C therapy. However, ribavirin medication is quite often associated with pronounced psychiatric adverse effects. It is not well understood to what extent ribavirin per se contributes to changes in drug-related neurobehavioral disturbances, especially in the case of psychostimulant drugs, such as amphetamine. It is now well-known that repeated amphetamine usage produces psychosis in humans and behavioral sensitization in animals. On the other hand, ribavirin has an affinity for adenosine A1 receptors that antagonistically modulate the activity of dopamine D1 receptors, which play a critical role in the development of behavioral sensitization. This review will focus on the current knowledge of neurochemical/ neurobiological changes that exist in the psychostimulant drug-addicted brain itself and the antipsychotic-like efficiency of adenosine agonists. Particular attention will be paid to the potential side effects of ribavirin therapy, and the opportunities and challenges related to its application in already existing psychostimulant-use disorder.
Collapse
Affiliation(s)
- Branka Petković
- Address correspondence to this author at the Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana Blvd. 142, 11060, Belgrade, Serbia; Tel: +381-11-20-78-300; Fax: +381-11-27-61-433; E-mail:
| | | | | |
Collapse
|
77
|
Ferré S, Ciruela F, Casadó V, Pardo L. Oligomerization of G protein-coupled receptors: Still doubted? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:297-321. [DOI: 10.1016/bs.pmbts.2019.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
78
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Adenosine A 2A-dopamine D 2 receptor-receptor interaction in neurons and astrocytes: Evidence and perspectives. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:247-277. [PMID: 31952688 DOI: 10.1016/bs.pmbts.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The discovery of receptor-receptor interactions in the early 1980s, together with a more accurate focusing of allosteric mechanisms in proteins, expanded the knowledge on the G protein-coupled receptor (GPCR)-mediated signaling processes. GPCRs were seen to operate not only as monomers, but also as quaternary structures shaped by allosteric interactions. These integrative mechanisms can change the function of the GPCRs involved, leading to a sophisticated dynamic of the receptor assembly in terms of modulation of recognition and signaling. In this context, the heterodimeric complex formed by the adenosine A2A and the dopamine D2 receptors likely represents a prototypical example. The pharmacological evidence obtained, together with the tissue distribution of the A2A-D2 heteromeric complexes, suggested they could represent a target for new therapeutic strategies addressing significant disorders of the central nervous system. The research findings and the perspectives they offer from the therapeutic standpoint are the focus of the here presented discussion.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, Padova, Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
79
|
Alves ACDB, Bristot VJDO, Limana MD, Speck AE, Barros LSD, Solano AF, Aguiar AS. Role of Adenosine A 2A Receptors in the Central Fatigue of Neurodegenerative Diseases. J Caffeine Adenosine Res 2019. [DOI: 10.1089/caff.2019.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ana Cristina de Bem Alves
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | | | - Mirieli Denardi Limana
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Ana Elisa Speck
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Leonardo Soares de Barros
- LABOX—Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, UFSC—Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alexandre Francisco Solano
- LABOX—Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, UFSC—Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aderbal S. Aguiar
- Exercise Biology Lab, Department of Health Sciences, UFSC—Universidade Federal de Santa Catarina, Araranguá, Brazil
| |
Collapse
|
80
|
Yasuda RP. Adenosine STEPs on synaptic function: An Editorial for 'The activity of the STriatal-enriched protein tyrosine phosphatase in neuronal cells is modulated by adenosine A2A receptor on' page 284. J Neurochem 2019; 152:270-272. [PMID: 31724181 DOI: 10.1111/jnc.14901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
This is an Editorial Highlight of a manuscript by Mallozzi et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors detail the biochemical pathway that leads to synaptic depression by cocaine. This pathway requires the adenosine A2A receptor and STEP phosphatases. Activation of the adenosine A2A receptor leads to an increase in intracellular calcium, activation of STEP by dephosphorylation, inhibition of excitatory ionotropic glutamate receptors by dephosphorylation of phospho-tyrosine residues and subsequent internalization of the ionotropic glutamate receptors. This adenosine A2A receptor pathway could lead to potential drug targets for neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Robert P Yasuda
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
| |
Collapse
|
81
|
Li J, Hong X, Li G, Conti PS, Zhang X, Chen K. PET Imaging of Adenosine Receptors in Diseases. Curr Top Med Chem 2019; 19:1445-1463. [PMID: 31284861 DOI: 10.2174/1568026619666190708163407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 01/08/2023]
Abstract
Adenosine receptors (ARs) are a class of purinergic G-protein-coupled receptors (GPCRs). Extracellular adenosine is a pivotal regulation molecule that adjusts physiological function through the interaction with four ARs: A1R, A2AR, A2BR, and A3R. Alterations of ARs function and expression have been studied in neurological diseases (epilepsy, Alzheimer's disease, and Parkinson's disease), cardiovascular diseases, cancer, and inflammation and autoimmune diseases. A series of Positron Emission Tomography (PET) probes for imaging ARs have been developed. The PET imaging probes have provided valuable information for diagnosis and therapy of diseases related to alterations of ARs expression. This review presents a concise overview of various ARs-targeted radioligands for PET imaging in diseases. The most recent advances in PET imaging studies by using ARs-targeted probes are briefly summarized.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Guoquan Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| |
Collapse
|
82
|
Mahoney CR, Giles GE, Williams CS, Brunye TT, Taylor HA, Kanarek RB, Marriott BP, Lieberman HR. Relationships between use of dietary supplements, caffeine and sensation seeking among college students. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2019; 67:688-697. [PMID: 30388945 DOI: 10.1080/07448481.2018.1500475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/05/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Objective: Caffeine and dietary supplement (DS) use by college students is not well-documented. Given reported associations between energy drink consumption and sensation seeking, we used the Sensation Seeking Scale Form V (SSS-V) to assess relationships between sensation-seeking, caffeine, and DS use. Participants: Data from 1,248 college students from five US institutions were collected from 2009 to 2011. Methods: Linear regression was used to examine relationships between scores on the SSS-V and caffeine and DS use, demographic, and lifestyle characteristics. Results: Male sex, nonHispanic race-ethnicity, higher family income, tobacco use, consuming caffeinated beverages, more than 400 mg caffeine per day, and energy drinks with alcohol at least 50% of the time, were significantly associated with higher total SSS-V scores (P < 0.001). Those using protein DSs had higher total, disinhibition, and boredom susceptibility SSS-V scores (Ps < 0.001). Conclusions: Results demonstrate a positive correlation between sensation-seeking attitudes and habitual caffeine, energy drink, and DS consumption.
Collapse
Affiliation(s)
- Caroline R Mahoney
- Cognitive Science, Natick Soldier Research Development and Engineering Center (NSRDEC) , Natick , Massachusetts , USA
- Tufts University , Medford , Massachusetts , USA
| | - Grace E Giles
- Cognitive Science, Natick Soldier Research Development and Engineering Center (NSRDEC) , Natick , Massachusetts , USA
- Tufts University , Medford , Massachusetts , USA
| | | | - Tad T Brunye
- Cognitive Science, Natick Soldier Research Development and Engineering Center (NSRDEC) , Natick , Massachusetts , USA
- Tufts University , Medford , Massachusetts , USA
| | | | | | - Bernadette P Marriott
- Abt Associates, Inc. , Durham , North Carolina , USA
- Samueli Institute , Alexandria , Virginia , USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina , Charleston , South Carolina , USA
- Department of Psychiatry, Medical University of South Carolina , Charleston , South Carolina , USA
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine (USARIEM) , Natick , Massachusetts , USA
| |
Collapse
|
83
|
Cho BH, Choi SM, Kim BC. Gender-dependent effect of coffee consumption on tremor severity in de novo Parkinson's disease. BMC Neurol 2019; 19:194. [PMID: 31412802 PMCID: PMC6693140 DOI: 10.1186/s12883-019-1427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/08/2019] [Indexed: 11/14/2022] Open
Abstract
Background Coffee consumption represents a negative risk factor for Parkinson’s disease (PD) and seems to affect PD motor symptoms. We aimed to investigate the association between coffee consumption and motor symptoms in de novo PD patients. Methods In total, 284 patients with de novo PD were included in the current study. Motor and non-motor symptoms were evaluated using various scales. History of coffee consumption was obtained via a semi-structured interview. Results In total, 204 patients were categorized as coffee drinkers and 80 as non-coffee drinkers. Coffee drinkers were predominantly male and had early symptom onset; in addition, they were younger, reported more years in formal education, and had better motor and non-motor scores than did non-coffee drinkers. After adjustments, coffee drinkers had lower tremor scores than did non-coffee drinkers, and coffee consumption was related to tremors in a dose-dependent manner. These relationships were statistically significant in case of rest tremor but not in case of action tremor. The dose-dependent relationship between coffee consumption and tremor severity was significant only in men. Non-motor symptom scores were not significantly different between coffee drinkers and non-coffee drinkers. Conclusions Coffee consumption and tremor severity are inversely related in male patients with de novo PD.
Collapse
Affiliation(s)
- Bang-Hoon Cho
- Department of Neurology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea. .,National Research Center for Dementia, Gwangju, South Korea.
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea.,National Research Center for Dementia, Gwangju, South Korea
| |
Collapse
|
84
|
Lyu S, DeAndrade MP, Mueller S, Oksche A, Walters AS, Li Y. Hyperactivity, dopaminergic abnormalities, iron deficiency and anemia in an in vivo opioid receptors knockout mouse: Implications for the restless legs syndrome. Behav Brain Res 2019; 374:112123. [PMID: 31376441 DOI: 10.1016/j.bbr.2019.112123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Previous studies have uncovered a potential role of the opioid system in iron hemostasis and dopamine metabolism. Abnormalities in both of these systems have been noted in human RLS. Autopsy studies of human RLS have shown an endogenous opioid deficiency in the thalamus. Opioids, particularly prolonged-release oxycodone/naloxone, have been approved in Europe to be a second-line therapy for severe restless legs syndrome (RLS). To study the role of opioid receptors in the pathogenesis of RLS, we used a triple knockout (KO) mouse strain that lack mu, delta, and kappa opioid receptors and explored the behavioral and biochemical parameters relevant to RLS. The triple KO mice showed hyperactivity and a trend of increased probability of waking during the rest period (day) akin to that in human RLS (night). Surprisingly, triple KO mice also exhibit decreased serum iron concentration, evidence of anemia, a significant dysfunction in dopamine metabolism akin to that noted in human RLS, as well as an increased latency in response to thermal stimuli. To our knowledge, this is the first study to demonstrate that the endogenous opioid system may play a role in iron metabolism and subsequently in the pathogenesis of anemia. It is also the first study showing that opioid receptors are involved in the production of motor restlessness with a circadian predominance. Our findings support the role of endogenous opioids in the pathogenesis of RLS, and the triple KO mice can be used to understand the relationship between iron deficiency, anemia, dopaminergic dysfunction, and RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark P DeAndrade
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefan Mueller
- Mundipharma Research GmbH & Co. KG, Höhenstraße 10, Limburg, Germany
| | - Alexander Oksche
- Mundipharma Research Limited, Cambridge, UK; Rudolf-Buchheim-Institut für Pharmakologie, University of Giessen, Giessen, Germany
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
85
|
Indirect Medium Spiny Neurons in the Dorsomedial Striatum Regulate Ethanol-Containing Conditioned Reward Seeking. J Neurosci 2019; 39:7206-7217. [PMID: 31315945 DOI: 10.1523/jneurosci.0876-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 11/21/2022] Open
Abstract
Adenosine 2A receptor (A2AR)-containing indirect medium spiny neurons (iMSNs) in the dorsomedial striatum (DMS) contribute to reward-seeking behaviors. However, those roles for ethanol-seeking behaviors remain unknown. To investigate ethanol-seeking behaviors, we used an ethanol-containing reward (10% ethanol and 10% sucrose solution; 10E10S). Upon conditioning with 10E10S, mice that initially only preferred 10% sucrose, not 10E10S, showed a stronger preference for 10E10S. Then, we investigated whether the manipulation of the DMS-external globus pallidus (GPe) iMSNs circuit alters the ethanol-containing reward (10E10S) seeking behaviors using the combination of pharmacologic and optogenetic approaches. DMS A2AR activation dampened operant conditioning-induced ethanol-containing reward, whereas A2AR antagonist abolished the effects of the A2AR agonist and restored ethanol-containing reward-seeking. Moreover, pre-ethanol exposure potentiated the A2AR-dependent reward-seeking. Interestingly, mice exhibiting ethanol-containing reward-seeking showed the reduction of the DMS iMSNs activity, suggesting that disinhibiting iMSNs decreases reward-seeking behaviors. In addition, we found that A2AR activation reversed iMSNs neural activity in the DMS. Similarly, optogenetic stimulation of the DMS-GPe iMSNs reduced ethanol-containing reward-seeking, whereas optogenetic inhibition of the DMS-GPe iMSNs reversed this change. Together, our study demonstrates that DMS A2AR and iMSNs regulate ethanol-containing reward-seeking behaviors.SIGNIFICANCE STATEMENT Our findings highlight the mechanisms of how operant conditioning develops the preference of ethanol-containing conditioned reward. Mice exhibiting ethanol-containing reward-seeking showed a reduction of the indirect medium spiny neuronal activity in the dorsomedial striatum. Pharmacological activation of adenosine A2A receptor (A2AR) or optogenetic activation of indirect medium spiny neurons dampened operant conditioned ethanol-containing reward-seeking, whereas inhibiting this neuronal activity restored ethanol-containing reward-seeking. Furthermore, repeated intermittent ethanol exposure potentiated A2AR-dependent reward-seeking. Therefore, our finding suggests that A2AR-containing indirect medium spiny neuronal activation reduces ethanol-containing reward-seeking, which may provide a potential therapeutic target for alcohol use disorder.
Collapse
|
86
|
Cortés A, Casadó-Anguera V, Moreno E, Casadó V. The heterotetrameric structure of the adenosine A 1-dopamine D 1 receptor complex: Pharmacological implication for restless legs syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 84:37-78. [PMID: 31229177 DOI: 10.1016/bs.apha.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dopaminergic and purinergic signaling play a pivotal role in neurological diseases associated with motor symptoms, including Parkinson's disease (PD), multiple sclerosis, amyotrophic lateral sclerosis, Huntington disease, Restless Legs Syndrome (RLS), spinal cord injury (SCI), and ataxias. Extracellular dopamine and adenosine exert their functions interacting with specific dopamine (DR) or adenosine (AR) receptors, respectively, expressed on the surface of target cells. These receptors are members of the family A of G protein-coupled receptors (GPCRs), which is the largest protein superfamily in mammalian genomes. GPCRs are target of about 40% of all current marketed drugs, highlighting their importance in clinical medicine. The striatum receives the densest dopamine innervations and contains the highest density of dopamine receptors. The modulatory role of adenosine on dopaminergic transmission depends largely on the existence of antagonistic interactions mediated by specific subtypes of DRs and ARs, the so-called A2AR-D2R and A1R-D1R interactions. Due to the dopamine/adenosine antagonism in the CNS, it was proposed that ARs and DRs could form heteromers in the neuronal cell surface. Therefore, adenosine can affect dopaminergic signaling through receptor-receptor interactions and by modulations in their shared intracellular pathways in the striatum and spinal cord. In this work we describe the allosteric modulations between GPCR protomers, focusing in those of adenosine and dopamine within the A1R-D1R heteromeric complex, which is involved in RLS. We also propose that the knowledge about the intricate allosteric interactions within the A1R-D1R heterotetramer, may facilitate the treatment of motor alterations, not only when the dopamine pathway is hyperactivated (RLS, chorea, etc.) but also when motor function is decreased (SCI, aging, PD, etc.).
Collapse
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Verònica Casadó-Anguera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
87
|
A ketogenic diet diminishes behavioral responses to cocaine in young adult male and female rats. Neuropharmacology 2019; 149:27-34. [PMID: 30731137 DOI: 10.1016/j.neuropharm.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 01/12/2023]
Abstract
Ketogenic diets (KDs) are high fat, low carbohydrate formulations traditionally used to treat epilepsy; more recently, KDs have shown promise for a wide range of other neurological disorders. Drug addiction studies suggest that repeated exposure to drugs of abuse, including cocaine, results in a suite of neurobiological changes that includes neuroinflammation, decreased glucose metabolism, and disordered neurotransmission. Given that KDs positively regulate these factors, we addressed whether administration of a KD has potential as a novel therapy for drug addiction. In this study, male and female Sprague-Dawley rats were placed on a KD or a control diet (CD), beginning at five weeks of age and continuing through the end of behavioral testing. Three weeks after initiation of dietary treatments, rats received daily i.p. injections of cocaine (15 mg/kg) or saline vehicle for one week, were drug free for a subsequent week, and then all animals received a final challenge injection of 15 mg/kg cocaine. In the absence of cocaine injections, stereotyped locomotor responses were minimal and were unaffected by dietary treatment. In contrast, both males and females fed a KD exhibited decreased cocaine-induced stereotyped responses as compared to CD-fed rats. The sensitization of ambulatory responses was also disrupted in KD-fed rats. These results suggest that KDs directly impact dopamine-mediated behaviors, and hence may hold potential as a therapy for drug addiction.
Collapse
|
88
|
Morató X, Gonçalves FQ, Lopes JP, Jauregui O, Soler C, Fernández-Dueñas V, Cunha RA, Ciruela F. Chronic adenosine A 2A receptor blockade induces locomotor sensitization and potentiates striatal LTD IN GPR37-deficient mice. J Neurochem 2019; 148:796-809. [PMID: 30578680 DOI: 10.1111/jnc.14653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Adenosine A2A receptors (A2A R) play a key role in modulating dopamine-dependent locomotor activity, as heralded by the sensitization of locomotor activity upon chronic A2A R blockade, which is associated with elevated dopamine levels and altered corticostriatal synaptic plasticity. Since the orphan receptor GPR37 has been shown to modulate A2A R function in vivo, we aimed to test whether the A2A R-mediated sensitization of locomotor activity is GPR37-dependent and involves adaptations of synaptic plasticity. To this end, we administered a selective A2A R antagonist, SCH58261 (1 mg/kg, i.p.), daily for 14 days, and the locomotor sensitization, striatum-dependent cued learning, and corticostriatal synaptic plasticity (i.e., long-term depression) were compared in wild-type and GPR37-/- mice. Notably, GPR37 deletion promoted A2A R-associated locomotor sensitization but not striatum-dependent cued learning revealed upon chronic SCH58261 treatment of mice. Furthermore, chronic A2A R blockade potentiated striatal long-term depression in corticostriatal synapses of GPR37-/- but not of wild-type mice, thus correlating well with neurochemical alterations of the adenosinergic system. Overall, these results revealed the importance of GPR37 regulating A2A R-dependent locomotor sensitization and synaptic plasticity in the basal ganglia circuitry. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Xavier Morató
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Francisco Q Gonçalves
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João P Lopes
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Olga Jauregui
- Scientific and Technological Centers of University of Barcelona (CCiTUB), Barcelona, Spain
| | - Concepció Soler
- Unitat d'Immunologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
89
|
Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacol Rev 2019; 70:747-762. [PMID: 30209181 DOI: 10.1124/pr.117.015107] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effort-based decision making is studied using tasks that offer choices between high-effort options leading to more highly valued reinforcers versus low-effort/low-reward options. These tasks have been used to study the involvement of neural systems, including mesolimbic dopamine and related circuits, in effort-related aspects of motivation. Moreover, such tasks are useful as animal models of some of the motivational symptoms that are seen in people with depression, schizophrenia, Parkinson's disease, and other disorders. The present review will discuss the pharmacology of effort-related decision making and will focus on the use of these tasks for the development of drug treatments for motivational dysfunction. Research has identified pharmacological conditions that can alter effort-based choice and serve as models for depression-related symptoms (e.g., the vesicular monoamine transport-2 inhibitor tetrabenazine and proinflammatory cytokines). Furthermore, tests of effort-based choice have identified compounds that are particularly useful for stimulating high-effort work output and reversing the deficits induced by tetrabenazine and cytokines. These studies indicate that drugs that act by facilitating dopamine transmission, as well as adenosine A2A antagonists, are relatively effective at reversing effort-related impairments. Studies of effort-based choice may lead to the identification of drug targets that could be useful for treating motivational treatments that are resistant to commonly used antidepressants such as serotonin transport inhibitors.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Mercè Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Sarah Ferrigno
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| |
Collapse
|
90
|
Herden L, Weissert R. The Impact of Coffee and Caffeine on Multiple Sclerosis Compared to Other Neurodegenerative Diseases. Front Nutr 2018; 5:133. [PMID: 30622948 PMCID: PMC6308803 DOI: 10.3389/fnut.2018.00133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background: The literature concerning the effect of coffee and caffeine on Multiple Sclerosis (MS) with focus on fatigue is investigated in this review. Potentially clinically relevant effects were also assessed in studies concerning comparable neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Since the existing studies obtained very inconclusive results, we systematically reviewed these studies to summarize the evidence on the possible effects of coffee and caffeine on those disease entities. Previous studies suggested that coffee and caffeine intake is associated with a reduced risk of developing MS and other neurological diseases. Methods: The PubMed database was searched using the keywords “coffee” OR “caffeine” in combination with keywords for each of the different diseases. Besides the keyword search, we included studies by reference list search. Studies on the effects of coffee and caffeine on the single neurological diseases were included for this review. A total of 51 articles met our inclusion criteria. The reviewed articles assessed the impact of coffee and caffeine on the susceptibility for neurological diseases, as well as the effect of coffee and caffeine on disease progression and possible symptomatic effects like on performance enhancement. Results: Higher intake of coffee and caffeine was associated with a lower risk of developing PD. In some of the MS studies there, is evidence for a similar effect and experimental studies confirmed the positive impact. Interestingly in MS coffee and caffeine may have a stronger impact on disease course compared to effects on disease susceptibility. In ALS no such beneficial effect could be observed in the clinical and experimental studies. Conclusion: This literature assessment revealed that coffee and especially caffeine could have a preventative role in the development of several neurodegenerative diseases if provided in comparatively high doses. The systematic assessment indicates that coffee and caffeine intake must not be considered as a health risk. Additional clinical studies are needed to fully understand how far coffee and caffeine intake should be considered as a potential therapeutic approach for certain disease entities and conditions.
Collapse
Affiliation(s)
- Lena Herden
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
91
|
The Impact of Coffee and Its Selected Bioactive Compounds on the Development and Progression of Colorectal Cancer In Vivo and In Vitro. Molecules 2018; 23:molecules23123309. [PMID: 30551667 PMCID: PMC6321559 DOI: 10.3390/molecules23123309] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Coffee is one of the most popular beverages worldwide. Coffee contains bioactive compounds that affect the human body such as caffeine, caffeic acid, chlorogenic acids, trigonelline, diterpenes, and melanoidins. Some of them have demonstrated potential anticarcinogenic effects in animal models and in human cell cultures, and may play a protective role against colorectal cancer. Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the USA and other countries. Dietary patterns, as well as the consumption of beverages, may reduce the risk of CRC incidence. In this review, we focus on published epidemiological studies concerning the association of coffee consumption and the risk of development of colorectal cancer, and provide a description of selected biologically active compounds in coffee that have been investigated as potential cancer-combating compounds: Caffeine, caffeic acid (CA), chlorogenic acids (CGAs), and kahweol in relation to colorectal cancer progression in in vitro settings. We review the impact of these substances on proliferation, viability, invasiveness, and metastasis, as well as on susceptibility to chemo- and radiotherapy of colorectal cancer cell lines cultured in vitro.
Collapse
|
92
|
Ferré S, Díaz-Ríos M, Salamone JD, Prediger RD. New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders. J Caffeine Adenosine Res 2018; 8:121-131. [PMID: 30596206 PMCID: PMC6306650 DOI: 10.1089/caff.2018.0017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies on interactions between striatal adenosine and dopamine and one of its main targets, the adenosine A2A receptor–dopamine D2 receptor (A2AR–D2R) heteromer, have provided a better understanding of the mechanisms involved in the psychostimulant effects of caffeine and have brought forward new data on the mechanisms of operation of classical orthosteric ligands within G protein-coupled receptor heteromers. The striatal A2AR–D2R heteromer has a tetrameric structure and forms part of a signaling complex that includes a Gs and a Gi protein and the effector adenyl cyclase (subtype AC5). Another target of caffeine, the adenosine A1 receptor–dopamine D1 receptor (A1R–D1R) heteromer, seems to have a very similar structure. Initially suggested to be localized in the striatum, the A1R–D1R heteromer has now been identified in the spinal motoneuron and shown to mediate the spinally generated caffeine-induced locomotion. In this study, we review the recently discovered properties of A2AR–D2R and A1R–D1R heteromers. Our studies demonstrate that these complexes are a necessary condition to sustain the canonical antagonistic interaction between a Gs-coupled receptor (A2AR or D1R) and a Gi-coupled receptor (D2R or A1R) at the adenylyl cyclase level, which constitutes a new concept in the field of G protein-coupled receptor physiology and pharmacology. A2AR antagonists targeting the striatal A2AR–D2R heteromer are already being considered as therapeutic agents in Parkinson's disease. In this study, we review the preclinical evidence that indicates that caffeine and A2AR antagonists could be used to treat the motivational symptoms of depression and attention-deficit/hyperactivity disorder, while A1R antagonists selectively targeting the spinal A1R–D1R heteromer could be used in the recovery of spinal cord injury.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology, Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | - Rui Daniel Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
93
|
Poleszak E, Szopa A, Bogatko K, Wyska E, Wośko S, Świąder K, Doboszewska U, Wlaź A, Wróbel A, Wlaź P, Serefko A. Antidepressant-Like Activity of Typical Antidepressant Drugs in the Forced Swim Test and Tail Suspension Test in Mice Is Augmented by DMPX, an Adenosine A 2A Receptor Antagonist. Neurotox Res 2018; 35:344-352. [PMID: 30267268 PMCID: PMC6331646 DOI: 10.1007/s12640-018-9959-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023]
Abstract
Unsatisfactory therapeutic effects of currently used antidepressants force to search for new pharmacological treatment strategies. Recent research points to the relationship between depressive disorders and the adenosinergic system. Therefore, the main goal of our studies was to evaluate the effects of DMPX (3 mg/kg, i.p.), which possesses selectivity for adenosine A2A receptors versus A1 receptors, on the activity of imipramine (15 mg/kg, i.p.), escitalopram (2.5 mg/kg, i.p.), and reboxetine (2 mg/kg, i.p.) given in subtherapeutic doses. The studies carried out using the forced swim and tail suspension tests in mice showed that DMPX at a dose of 6 and 12 mg/kg exerts antidepressant-like effect and does not affect the locomotor activity. Co-administration of DMPX at a dose of 3 mg/kg with the studied antidepressant drugs caused the reduction of immobility time in both behavioral tests. The observed effect was not associated with an increase in the locomotor activity. To evaluate whether the observed effects were due to a pharmacokinetic/pharmacodynamic interaction, the levels of the antidepressants in blood and brain were measured using high-performance liquid chromatography. It can be assumed that the interaction between DMPX and imipramine was exclusively pharmacodynamic in nature, whereas an increased antidepressant activity of escitalopram and reboxetine was at least partly related to its pharmacokinetic interaction with DMPX.
Collapse
Affiliation(s)
- Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland.
| | - Aleksandra Szopa
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland.
| | - Karolina Bogatko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Collegium Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Sylwia Wośko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Katarzyna Świąder
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, PL 20-093, Lublin, Poland
| |
Collapse
|
94
|
Lam VM, Mielnik CA, Baimel C, Beerepoot P, Espinoza S, Sukhanov I, Horsfall W, Gainetdinov RR, Borgland SL, Ramsey AJ, Salahpour A. Behavioral Effects of a Potential Novel TAAR1 Antagonist. Front Pharmacol 2018; 9:953. [PMID: 30233365 PMCID: PMC6131539 DOI: 10.3389/fphar.2018.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown.
Collapse
Affiliation(s)
- Vincent M Lam
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Corey Baimel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Pieter Beerepoot
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ilya Sukhanov
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Pavlov First Saint Petersburg State Medical University, Valdman Institute of Pharmacology, Saint Petersburg, Russia
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
95
|
Osborne DM, Sandau US, Jones AT, Vander Velden JW, Weingarten AM, Etesami N, Huo Y, Shen HY, Boison D. Developmental role of adenosine kinase for the expression of sex-dependent neuropsychiatric behavior. Neuropharmacology 2018; 141:89-97. [PMID: 30145320 DOI: 10.1016/j.neuropharm.2018.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
Deficits in social memory, cognition, and aberrant responses to stimulants are common among persons affected by schizophrenia and other conditions with a presumed developmental etiology. We previously found that expression changes in the adenosine metabolizing enzyme adenosine kinase (ADK) in the adult brain are associated with deficits in various cognitive domains. To distinguish between developmental and adult functions of ADK, we used two transgenic mouse lines with widespread disruption of ADK expression in the adult brain, but differences in the onset of ADK deletion. Specifically, we compared Nestin-Cre+/-:ADK-floxfl/fl (ADKΔBrain) mice with global loss of ADK in the whole brain, beginning in mid-gestation and persisting for life, with Gfa2-Cre+/-:ADK-floxfl/fl (ADKΔAstro) mice that have normal ADK expression throughout development, but lose astrocyte-specific ADK-expression in young adulthood. Because ADK-expression in adulthood is generally confined to astrocytes, adult ADKΔAstro mice show a similar expression profile of ADK in key areas of the brain related to neuropsychiatric behavior, compared to adult ADKΔBrain mice. We sought to determine a neurodevelopmental role of ADK on the expression of psychiatric behaviors in adult male and female mice. Adult ADKΔBrain mice showed significant deficits in social memory in males, significant contextual learning impairments in both sexes, and a hyper-responsiveness to amphetamine in males. In contrast, ADKΔAstro mice showed normal social memory and contextual learning but hypo-responsiveness to amphetamine in males. Our results demonstrate a key developmental role of ADK in mediating behaviors in adulthood related to neuropsychiatric disease and support the greater prevalence of these disorders among males.
Collapse
Affiliation(s)
- D M Osborne
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA.
| | - U S Sandau
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A T Jones
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - J W Vander Velden
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A M Weingarten
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - N Etesami
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Y Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - H Y Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - D Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
96
|
Ferré S, García-Borreguero D, Allen RP, Earley CJ. New Insights into the Neurobiology of Restless Legs Syndrome. Neuroscientist 2018; 25:113-125. [PMID: 30047288 DOI: 10.1177/1073858418791763] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Restless legs syndrome (RLS) is a common sensorimotor disorder, whose basic components include a sensory experience, akathisia, and a sleep-related motor sign, periodic leg movements during sleep (PLMS), both associated with an enhancement of the individual's arousal state. The present review attempts to integrate the major clinical and experimental neurobiological findings into a heuristic pathogenetic model. The model also integrates the recent findings on RLS genetics indicating that RLS has aspects of a genetically moderated neurodevelopmental disorder involving mainly the cortico-striatal-thalamic-cortical circuits. Brain iron deficiency (BID) remains the key initial pathobiological factor and relates to alterations of iron acquisition by the brain, also moderated by genetic factors. Experimental evidence indicates that BID leads to a hyperdopaminergic and hyperglutamatergic states that determine the dysfunction of cortico-striatal-thalamic-cortical circuits in genetically vulnerable individuals. However, the enhanced arousal mechanisms critical to RLS are better explained by functional changes of the ascending arousal systems. Recent experimental and clinical studies suggest that a BID-induced hypoadenosinergic state provides the link for a putative unified pathophysiological mechanism for sensorimotor signs of RLS and the enhanced arousal state.
Collapse
Affiliation(s)
- Sergi Ferré
- 1 National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Richard P Allen
- 3 Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
97
|
Cruz-Monteagudo M, Borges F, Cordeiro MNDS, Helguera AM, Tejera E, Paz-Y-Mino C, Sanchez-Rodriguez A, Perera-Sardina Y, Perez-Castillo Y. Chemoinformatics Profiling of the Chromone Nucleus as a MAO-B/A2AAR Dual Binding Scaffold. Curr Neuropharmacol 2018; 15:1117-1135. [PMID: 28093976 PMCID: PMC5725544 DOI: 10.2174/1570159x15666170116145316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/14/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022] Open
Abstract
Background: In the context of the current drug discovery efforts to find disease modifying therapies for Parkinson´s disease (PD) the current single target strategy has proved inefficient. Consequently, the search for multi-potent agents is attracting more and more attention due to the multiple pathogenetic factors implicated in PD. Multiple evidences points to the dual inhibition of the monoamine oxidase B (MAO-B), as well as adenosine A2A receptor (A2AAR) blockade, as a promising approach to prevent the neurodegeneration involved in PD. Currently, only two chemical scaffolds has been proposed as potential dual MAO-B inhibitors/A2AAR antagonists (caffeine derivatives and benzothiazinones). Methods: In this study, we conduct a series of chemoinformatics analysis in order to evaluate and advance the potential of the chromone nucleus as a MAO-B/A2AAR dual binding scaffold. Results: The information provided by SAR data mining analysis based on network similarity graphs and molecular docking studies support the suitability of the chromone nucleus as a potential MAO-B/A2AAR dual binding scaffold. Additionally, a virtual screening tool based on a group fusion similarity search approach was developed for the prioritization of potential MAO-B/A2AAR dual binder candidates. Among several data fusion schemes evaluated, the MEAN-SIM and MIN-RANK GFSS approaches demonstrated to be efficient virtual screening tools. Then, a combinatorial library potentially enriched with MAO-B/A2AAR dual binding chromone derivatives was assembled and sorted by using the MIN-RANK and then the MEAN-SIM GFSS VS approaches. Conclusion: The information and tools provided in this work represent valuable decision making elements in the search of novel chromone derivatives with a favorable dual binding profile as MAO-B inhibitors and A2AAR antagonists with the potential to act as a disease-modifying therapeutic for Parkinson´s disease.
Collapse
Affiliation(s)
- Maykel Cruz-Monteagudo
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Porto 4169-007, Portugal.,Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Fernanda Borges
- CIQUP/Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Porto 4169-007, Portugal
| | - M Natalia D S Cordeiro
- REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Aliuska Morales Helguera
- Molecular Simulation and Drug Design Group, Centro de Bioactivos Quimicos (CBQ), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Cuba
| | - Eduardo Tejera
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Cesar Paz-Y-Mino
- Instituto de Investigaciones Biomedicas (IIB), Universidad de Las Americas, 170513 Quito, Ecuador
| | - Aminael Sanchez-Rodriguez
- Departamento de Ciencias Naturales, Universidad Tecnica Particular de Loja, Calle Paris S/N, EC1101608 Loja, Ecuador
| | - Yunier Perera-Sardina
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago de Chile, Chile
| | - Yunierkis Perez-Castillo
- Molecular Simulation and Drug Design Group, Centro de Bioactivos Quimicos (CBQ), Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Cuba.,Seccion Fisico Quimica y Matematicas, Departamento de Quimica, Universidad Tecnica Particular de Loja, San Cayetano Alto S/N, EC1101608 Loja, Ecuador
| |
Collapse
|
98
|
Simola N, Brudzynski SM. Rat 50-kHz ultrasonic vocalizations as a tool in studying neurochemical mechanisms that regulate positive emotional states. J Neurosci Methods 2018; 310:33-44. [PMID: 29959002 DOI: 10.1016/j.jneumeth.2018.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Adolescent and adult rats emit 50-kHz ultrasonic vocalizations (USVs) to communicate the appetitive arousal and the presence of positive emotional states to conspecifics. NEW METHOD Based on its communicative function, emission of 50-kHz USVs is increasingly being evaluated in preclinical studies of affective behavior, motivation and social behavior. RESULTS Emission of 50-kHz USVs is initiated by the activation of dopamine receptors in the shell subregion of the nucleus accumbens. However, several lines of evidence show that non-dopaminergic receptors may influence the numbers of 50-kHz USVs that are emitted, as well as the acoustic parameters of calls. COMPARISON WITH EXISTING METHODS Emission of 50-kHz USVs is a non-invasive method that may be used to study reward and motivation without the need for extensive training and complex animal manipulations. Moreover, emission of 50-kHz USVs can be used alone or combined with other well-standardized behavioral paradigms (e.g., conditioned place preference, self-administration). CONCLUSIONS This review summarizes the current evidence concerning molecular mechanisms that regulate the emission of 50-kHz USVs. Moreover, the review discusses the usefulness of 50-kHz USVs as an experimental tool to investigate how different neurotransmitter systems regulate the manifestations of positive emotional states, and also use of this tool in preclinical modeling of psychiatric diseases.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Biomedical Sciences, Neuropsychopharmacology Division, University of Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| | - Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON, L3 3A1 Canada
| |
Collapse
|
99
|
López-Cruz L, Salamone JD, Correa M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front Pharmacol 2018; 9:526. [PMID: 29910727 PMCID: PMC5992708 DOI: 10.3389/fphar.2018.00526] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
100
|
Blum D, Chern Y, Domenici MR, Buée L, Lin CY, Rea W, Ferré S, Popoli P. The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. J Caffeine Adenosine Res 2018; 8:43-58. [PMID: 30023989 PMCID: PMC6049521 DOI: 10.1089/caff.2018.0006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a mutation in the IT15 gene that encodes for the huntingtin protein. Mutated hungtingtin, although widely expressed in the brain, predominantly affects striato-pallidal neurons, particularly enriched with adenosine A2A receptors (A2AR), suggesting a possible involvement of adenosine and A2AR is the pathogenesis of HD. In fact, polymorphic variation in the ADORA2A gene influences the age at onset in HD, and A2AR dynamics is altered by mutated huntingtin. Basal levels of adenosine and adenosine receptors are involved in many processes critical for neuronal function and homeostasis, including modulation of synaptic activity and excitotoxicity, the control of neurotrophin levels and functions, and the regulation of protein degradation mechanisms. In the present review, we critically analyze the current literature involving the effect of altered adenosine tone and adenosine receptors in HD and discuss why therapeutics that modulate the adenosine system may represent a novel approach for the treatment of HD.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Maria Rosaria Domenici
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, LabEx DISTALZ, Lille, France
| | - Chien-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - William Rea
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|