51
|
Vitamin A deficiency induces structural and functional alterations in the molecular constituents of the rat hippocampus. Br J Nutr 2014; 113:45-55. [DOI: 10.1017/s0007114514003432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To date, no structural study has been carried out on the effects of vitamin A deficiency (VAD) on hippocampal macromolecules. Therefore, in the present study, the effect of dietary VAD on the structure, content and function of rat hippocampal molecules was investigated using Fourier transform IF spectroscopy. Male Wistar rats were randomly divided into three groups: an experimental group maintained on a vitamin A-deficient liquid diet (VAD,n7); a control group maintained on a vitamin A-supplemented liquid diet (CON,n9); a pure control group maintained on standard solid laboratory chow (PC,n7). The PC group was included in the study to ensure that the usage of liquid diet did not influence the outcomes of VAD. Both the CON and PC groups were successfully discriminated from the VAD group by principal component analysis and hierarchical cluster analysis. The spectral analysis indicated a significant decrease in the contents of saturated and unsaturated lipids, cholesteryl esters, TAG and nucleic acids in the VAD group when compared with the CON group (P≤ 0·05). In addition, a significant decrease in membrane fluidity and a significant increase in lipid order (e.g. acyl chain flexibility) were observed in the VAD group (P≤ 0·001). The results of the artificial neural network analysis revealed a significant decrease in the α-helix structure content and a significant increase in the turn and random coil structure contents, indicating protein denaturation, in the VAD group when compared with the CON and PC groups (P≤ 0·05). Dietary exclusion of vitamin A for 3 months apparently had an adverse impact on compositional, structural and dynamical parameters. These changes can be due to increased oxidative stress, confirming the antioxidant protection provided by vitamin A when used as a dietary supplement at low-to-moderate doses.
Collapse
|
52
|
Roeske TC, Scharff C, Olson CR, Nshdejan A, Mello CV. Long-distance retinoid signaling in the zebra finch brain. PLoS One 2014; 9:e111722. [PMID: 25393898 PMCID: PMC4230966 DOI: 10.1371/journal.pone.0111722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, is a powerful signaling molecule that regulates large-scale morphogenetic processes during vertebrate embryonic development, but is also involved post-natally in regulating neural plasticity and cognition. In songbirds, it plays an important role in the maturation of learned song. The distribution of the ATRA-synthesizing enzyme, zRalDH, and of ATRA receptors (RARs) have been described, but information on the distribution of other components of the retinoid signaling pathway is still lacking. To address this gap, we have determined the expression patterns of two obligatory RAR co-receptors, the retinoid X receptors (RXR) α and γ, and of the three ATRA-degrading cytochromes CYP26A1, CYP26B1, and CYP26C1. We have also studied the distribution of zRalDH protein using immunohistochemistry, and generated a refined map of ATRA localization, using a modified reporter cell assay to examine entire brain sections. Our results show that (1) ATRA is more broadly distributed in the brain than previously predicted by the spatially restricted distribution of zRalDH transcripts. This could be due to long-range transport of zRalDH enzyme between different nuclei of the song system: Experimental lesions of putative zRalDH peptide source regions diminish ATRA-induced transcription in target regions. (2) Four telencephalic song nuclei express different and specific subsets of retinoid-related receptors and could be targets of retinoid regulation; in the case of the lateral magnocellular nucleus of the anterior nidopallium (lMAN), receptor expression is dynamically regulated in a circadian and age-dependent manner. (3) High-order auditory areas exhibit a complex distribution of transcripts representing ATRA synthesizing and degrading enzymes and could also be a target of retinoid signaling. Together, our survey across multiple connected song nuclei and auditory brain regions underscores the prominent role of retinoid signaling in modulating the circuitry that underlies the acquisition and production of learned vocalizations.
Collapse
Affiliation(s)
- Tina C. Roeske
- Department of Psychology, Hunter College, City University of New York, New York, New York, United States of America
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - Christopher R. Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Arpik Nshdejan
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - Claudio V. Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
53
|
Login H, Butowt R, Bohm S. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1. Brain Struct Funct 2014; 220:2143-57. [PMID: 24797530 DOI: 10.1007/s00429-014-0783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.
Collapse
Affiliation(s)
- Hande Login
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
54
|
Abstract
Vitamin A is an essential nutrient with important roles in immunological responses and in brain development. Its main metabolite is retinoic acid (RA), which is responsible for the neuroimmunological functions related to vitamin A. In the brain, RA is known to have interactions with other nuclear receptor-mediated signalling pathways. RA is involved in plasticity, regeneration, cognition and behaviour. In the peripheral blood, RA plays a major role both in increasing tolerance and in decreasing inflammation, through balancing T-lymphocyte populations. It is likely that RA synthesis may be manipulated by complex cross-talk among cells during infection and inflammation. The role of vitamin A in multiple sclerosis (MS) could be dual: at the same time as it decreases inflammation and increases tolerance of autoimmunity, it may also help in brain protection. The present review discusses the beneficial effects that vitamin A might have for controlling MS, although it must be clearly stated that, at the present time, there is no clear indication for using vitamin A as a treatment for MS. However, the results from the present review should encourage clinical trials with vitamin supplementation as a potential treatment or as an add-on option. Vitamin A acts in synergy with vitamin D, and the immunological homeostasis ensured by these vitamins should not be unbalanced in favour of only one of them.
Collapse
|
55
|
Sodhi RK, Singh N. Retinoids as potential targets for Alzheimer's disease. Pharmacol Biochem Behav 2014; 120:117-23. [PMID: 24582848 DOI: 10.1016/j.pbb.2014.02.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Vitamin A and its derivatives, the retinoids, modulate several physiological and pathological processes through their interactions with nuclear retinoid receptor proteins termed as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). An increasing body of evidence signifies the existence of retinoid signaling in diverse brain areas including cortex, amygdala, hypothalamus, hippocampus, and striatum suggesting its involvement in adult brain functions. Defective retinoid signaling has been evidenced in the pathology of Alzheimer's disease. Reports demonstrate that vitamin A deprived mice exhibit serious defects in spatial learning and memory signifying its importance in the maintenance of memory functions. Retinoid signaling impacts the development of AD pathology through multiple pathways. Ligand activation of RAR and RXR in APP/PS1 transgenic mice ameliorated the symptoms of AD and reduced amyloid accumulation and tau hyperphosphorylation. Retinoids also reduce the production of pro-inflammatory cytokines and chemokines by astrocytes and the microglia. Studies also suggest that neuronal cell lines treated with retinoid agonists exhibit an up-regulation in the expression and activity of choline acetyltransferase (ChAT). Reports depict that retinoic acid isomers enhance, the expression of genes linked with cholesterol efflux e.g. apoe, abca-1 and abcg-1 proteins in astrocytes. Furthermore numerous studies also indicate antioxidant potential of retinoids. Through this review we concisely summarize the biology of retinoids, emphasizing on their probable neuroprotective mechanisms that will help to elucidate the pivotal role of these receptors in AD pathology.
Collapse
Affiliation(s)
- Rupinder K Sodhi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002 Punjab, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002 Punjab, India.
| |
Collapse
|
56
|
Bonhomme D, Pallet V, Dominguez G, Servant L, Henkous N, Lafenêtre P, Higueret P, Béracochéa D, Touyarot K. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci 2014; 6:6. [PMID: 24570662 PMCID: PMC3917121 DOI: 10.3389/fnagi.2014.00006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/10/2014] [Indexed: 12/13/2022] Open
Abstract
It is now established that vitamin A and its derivatives, retinoic acid (RA), are required for cognitive functions in adulthood. RA hyposignaling and hyperactivity of glucocorticoid (GC) pathway appear concomitantly during aging and would contribute to the deterioration of hippocampal synaptic plasticity and functions. Furthermore, recent data have evidenced counteracting effects of retinoids on GC signaling pathway. In the present study, we addressed the following issue: whether the stimulation of RA pathway could modulate intrahippocampal corticosterone (CORT) levels in middle-aged mice and thereby impact on hippocampal plasticity and cognitive functions. We firstly investigated the effects of vitamin A supplementation and RA treatment in middle-aged mice, on contextual serial discrimination task, a paradigm which allows the detection of early signs of age-related hippocampal-dependent memory dysfunction. We then measured intrahippocampal CORT concentrations by microdialysis before and after a novelty-induced stress. Our results show that both RA treatment and vitamin A supplementation improve “episodic-like” memory in middle-aged mice but RA treatment appears to be more efficient. Moreover, we show that the beneficial effect of RA on memory is associated to an increase in hippocampal PSD-95 expression. In addition, intrahippocampal CORT levels are reduced after novelty-induced stress in RA-treated animals. This effect cannot be related to a modulation of hippocampal 11β-HSD1 expression. Interestingly, RA treatment induces a modulation of RA receptors RARα and RARβ expression in middle-aged mice, a finding which has been correlated with the amplitude of intrahippocampal CORT levels after novelty-induced stress. Taken together, our results suggest that the preventive action of RA treatment on age-related memory deficits in middle-aged mice could be, at least in part, due to an inhibitory effect of retinoids on GC activity.
Collapse
Affiliation(s)
- Damien Bonhomme
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Gaelle Dominguez
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France ; INSERM, U-930, Université François Rabelais Tours, France
| | - Laure Servant
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Nadia Henkous
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France
| | - Pauline Lafenêtre
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Paul Higueret
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Daniel Béracochéa
- CNRS, Intititut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 Talence, France
| | - Katia Touyarot
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; Université de Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| |
Collapse
|
57
|
Bonhomme D, Minni AM, Alfos S, Roux P, Richard E, Higueret P, Moisan MP, Pallet V, Touyarot K. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front Behav Neurosci 2014; 8:20. [PMID: 24550796 PMCID: PMC3912436 DOI: 10.3389/fnbeh.2014.00020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs) occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1) activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.
Collapse
Affiliation(s)
- Damien Bonhomme
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Amandine M Minni
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Serge Alfos
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Pascale Roux
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Emmanuel Richard
- INSERM, Biothérapie des Maladies Génétiques et Cancer, U1035 Bordeaux, France
| | - Paul Higueret
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Marie-Pierre Moisan
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Katia Touyarot
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| |
Collapse
|
58
|
Navigatore-Fonzo LS, Delgado SM, Gimenez MS, Anzulovich AC. Daily rhythms of catalase and glutathione peroxidase expression and activity are endogenously driven in the hippocampus and are modified by a vitamin A-free diet. Nutr Neurosci 2014; 17:21-30. [PMID: 23485553 DOI: 10.1179/1476830513y.0000000062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Alterations in enzymatic antioxidant defense systems lead to a deficit of cognitive functions and altered hippocampal synaptic plasticity. The objectives of this study were to investigate endogenous rhythms of catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as CREB1 mRNA, in the rat hippocampus, and to evaluate to which extent the vitamin A deficiency could affect those temporal patterns. METHODS Rats from control and vitamin A-deficient (VAD) groups received a diet containing 4000 IU of vitamin A/kg diet, or the same diet devoid of vitamin A, respectively, during 3 months. Rats were maintained under 12-hour-dark conditions, during 10 days before the sacrifice. Circadian rhythms of CAT, GPx, RXRγ, and CREB1 mRNA levels were determined by reverse transcriptrase polymerase chain reaction in hippocampus samples isolated every 4 hours during a 24-hour period. CAT and GPx enzymatic activities were also determined by kinetic assays. Regulatory regions of clock and antioxidant enzymes genes were scanned for E-box, RXRE, and CRE sites. RESULTS E-box, RXRE, and CRE sites were found on regulatory regions of GPx and CAT genes, which display a circadian expression in the rat hippocampus. VAD phase shifted CAT, GPx, and RXRγ endogenous rhythms without affecting circadian expression of CREB1. DISCUSSION CAT and GPx expression and enzymatic activity are circadian in the rat hippocampus. The VAD affected the temporal patterns antioxidant genes expression, probably by altering circadian rhythms of its RXR receptors and clock factors; thus, it would impair the temporal orchestration of hippocampal daily cognitive performance.
Collapse
|
59
|
Estrada JA, Contreras I, Pliego-Rivero FB, Otero GA. Molecular mechanisms of cognitive impairment in iron deficiency: alterations in brain-derived neurotrophic factor and insulin-like growth factor expression and function in the central nervous system. Nutr Neurosci 2013; 17:193-206. [PMID: 24074845 DOI: 10.1179/1476830513y.0000000084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The present review examines the relationship between iron deficiency and central nervous system (CNS) development and cognitive impairment, focusing on the cellular and molecular mechanisms related to the expression and function of growth factors, particularly the insulin-like growth factors I and II (IGF-I/II) and brain-derived neurotrophic factor (BDNF), in the CNS. METHODS Nutritional deficiencies are important determinants in human cognitive impairment. Among these, iron deficiency has the highest prevalence worldwide. Although this ailment is known to induce psychomotor deficits during development, the precise molecular and cellular mechanisms underlying these alterations have not been properly elucidated. This review summarizes the available information on the effect of iron deficiency on the expression and function of growth factors in the CNS, with an emphasis on IGF-I/II and BDNF. RESULTS AND DISCUSSION Recent studies have shown that specific growth factors, such as IGF-I/II and BDNF, have an essential role in cognition, particularly in processes involving learning and memory, by the activation of intracellular-signaling pathways involved in cell proliferation, differentiation, and survival. It is known that nutritional deficiencies promote reductions in systemic and CNS concentrations of growth factors, and that altered expression of these molecules and their receptors in the CNS leads to psychomotor and developmental deficits. Iron deficiency may induce these deficits by decreasing the expression and function of IGF-I/II and BDNF in specific areas of the brain.
Collapse
|
60
|
A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS One 2013; 8:e72101. [PMID: 23977218 PMCID: PMC3747058 DOI: 10.1371/journal.pone.0072101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022] Open
Abstract
Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions.
Collapse
|
61
|
Spencer G, Rothwell C. Behavioural and network plasticity following conditioning of the aerial respiratory response of a pulmonate mollusc. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most molluscs perform respiration using gills, but the pulmonate molluscs have developed a primitive lung with which they perform pulmonary respiration. The flow of air into this lung occurs through an opening called the pneumostome, and pulmonate molluscs travel to the surface of the water to obtain oxygen from the surrounding atmosphere. The aerial respiratory behaviour of the pulmonate mollusc, the great pond snail (Lymnaea stagnalis (L., 1758)), has been well studied, and a three-neuron central pattern generator (CPG) controlling this rhythmic behaviour has been identified. The aerial respiratory behaviour of L. stagnalis can be operantly conditioned and plasticity within the CPG has been associated with the conditioned response. In this review, we describe both the aerial respiratory behaviour and the underlying neuronal network of this pulmonate mollusc, and then discuss both the behavioural and network plasticity that results from the conditioning of this behaviour.
Collapse
Affiliation(s)
- G.E. Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - C.M. Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
62
|
Swarup V, Srivastava AK, Padma MV, Moganty RR. Quantitative Profiling and Identification of Plasma Proteins of Spinocerebellar Ataxia Type 2 Patients. NEURODEGENER DIS 2013; 12:199-206. [DOI: 10.1159/000346585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
|
63
|
Buckley GJ, Murray-Kolb LE, Khatry SK, LeClerq SC, Wu L, West KP, Christian P. Cognitive and motor skills in school-aged children following maternal vitamin A supplementation during pregnancy in rural Nepal: a follow-up of a placebo-controlled, randomised cohort. BMJ Open 2013; 3:e002000. [PMID: 23667158 PMCID: PMC3651971 DOI: 10.1136/bmjopen-2012-002000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/22/2013] [Accepted: 04/03/2013] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE To determine the effects of maternal vitamin A supplementation from preconception through postpartum on cognitive and motor development of children at 10-13 years of age in rural Nepal. DESIGN Follow-up assessment of children born to women randomly assigned by a village to receive either supplemental vitamin A (7000 µg retinol equivalents) or placebo weekly during a continuous 3.5-year period from 1994-1997. The participants came from 12 wards, a subset of 270 wards in the original trial. Trained staff tested children for cognition by the Universal Nonverbal Intelligence Test (UNIT) and motor ability using four subtests from the Movement Assessment Battery for Children (MABC). Data on schooling, home environment and nutritional and socioeconomic status were also collected. SETTING Southern plains district of Sarlahi, Nepal. PARTICIPANTS 390 Nepalese children 10-13 years of age. MAIN OUTCOME MEASURES Raw scores on UNIT and square-root transformed scores on an abridged version of the MABC tests, expressed as cluster-summarised (mean±SD) values to account for the design of the original trial. RESULTS There were no differences in UNIT (79.61±5.99 vs 80.69±6.71) or MABC (2.64±0.07 vs 2.49±0.09) test scores in children whose mothers were exposed to vitamin A vs placebo (mean differences: -1.07, 95% CI -7.10 to 9.26, p=0.78; 0.15, 95% CI 0.43 to -0.08, p=0.15), respectively. More children in the placebo group had repeated a grade in school (28% of placebo vs 16.7% of vitamin A, p=0.01). CONCLUSIONS Preconceptional to postpartum maternal vitamin A supplementation, in an undernourished setting, does not improve cognition or motor development at ages 10-13 years.
Collapse
Affiliation(s)
- Gillian J Buckley
- Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Laura E Murray-Kolb
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Subarna K Khatry
- Nepal Nutrition Intervention Project, Sarlahi (NNIPS), Nepal Netra Jyoti Sangh, Tripureswor, Kathmandu, Nepal
| | - Steven C LeClerq
- Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Keith P West
- Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Parul Christian
- Center for Human Nutrition, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
64
|
Expression of retinoic acid receptors and retinoid X receptors in normal and vitamin A deficient adult rat brain. Ann Anat 2013; 195:111-21. [DOI: 10.1016/j.aanat.2012.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/11/2012] [Accepted: 06/29/2012] [Indexed: 01/01/2023]
|
65
|
Nakagomi M, Shudo K, Nakatani-Pawlak A. Synthetic retinoid Am80 results in improved exploratory and emotional behavior in the P8 substrain of senescence-accelerated mice. Pharmacol Biochem Behav 2013; 104:1-9. [DOI: 10.1016/j.pbb.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 01/06/2023]
|
66
|
Lima AAM, Kvalsund MP, Souza PPED, Figueiredo ÍL, Soares AM, Mota RMS, Lima NL, Pinkerton RC, Patrick PP, Guerrant RL, Oriá RB. Zinc, vitamin A, and glutamine supplementation in Brazilian shantytown children at risk for diarrhea results in sex-specific improvements in verbal learning. Clinics (Sao Paulo) 2013; 68:351-8. [PMID: 23644855 PMCID: PMC3611743 DOI: 10.6061/clinics/2013(03)oa11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To identify the impact of supplemental zinc, vitamin A, and glutamine, alone or in combination, on long-term cognitive outcomes among Brazilian shantytown children with low median height-for-age z-scores. METHODS A randomized, double-blind, placebo-controlled trial was conducted in children aged three months to nine years old from the urban shanty compound community of Fortaleza, Brazil. Demographic and anthropometric information was assessed. The random treatment groups available for cognitive testing (total of 167 children) were: (1) placebo, n = 25; (2) glutamine, n = 23; (3) zinc, n = 18; (4) vitamin A, n = 19; (5) glutamine+zinc, n = 20; (6) glutamine+vitamin A, n = 21; (7) zinc+vitamin A, n = 23; and (8) glutamine+zinc+vitamin A, n = 18. Neuropsychological tests were administered for the cognitive domains of non-verbal intelligence and abstraction, psychomotor speed, verbal memory and recall ability, and semantic and phonetic verbal fluency. Statistical analyses were performed using SPSS, version 16.0. ClinicalTrials.gov: NCT00133406. RESULTS Girls receiving a combination of glutamine, zinc, and vitamin A had higher mean age-adjusted verbal learning scores than girls receiving only placebo (9.5 versus 6.4, p = 0.007) and girls receiving zinc+vitamin A (9.5 versus 6.5, p = 0.006). Similar group differences were not found between male study children. CONCLUSIONS The findings suggest that combination therapy offers a sex-specific advantage on tests of verbal learning, similar to that seen among female patients following traumatic brain injury.
Collapse
Affiliation(s)
- Aldo A M Lima
- Department of Physiology and Pharmacology, Clinical Research Unit and Institute of Biomedicine/Center for Global Health, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Fragoso YD, Campos NS, Tenrreiro BF, Guillen FJ. Systematic review of the literature on vitamin A and memory. Dement Neuropsychol 2012; 6:219-222. [PMID: 29213801 PMCID: PMC5619333 DOI: 10.1590/s1980-57642012dn06040005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Over the last 30 years, a variety of studies reporting the effects of vitamin
A on memory have been published. Objective To perform a rigorous systematic review of the literature on vitamin A and
memory in order to organize evidence-based data on the subject. Methods Four authors carried out the systematic review in accordance with strict
guidelines. The terms "vitamin A" OR "retinol" OR "retinoic acid" AND
"memory" OR "cognition" OR "Alzheimer" were searched in virtually all
medical research databases. Results From 236 studies containing the key words, 44 were selected for this review,
numbering 10 reviews and 34 original articles. Most studies used animal
models for studying vitamin A and cognition. Birds, mice and rats were more
frequently employed whereas human studies accounted for only two reports on
brain tissue from autopsies and one on the role of isotretinoin in cognition
among individuals taking this medication to treat acne. Conclusion Vitamin A may be an important and viable complement in the treatment and
prevention of Alzheimer's disease. Clinical trials are imperative and, at
present, there is no evidence-based data to recommend vitamin A
supplementation for the prevention or treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yara Dadalti Fragoso
- Head of the Department of Neurology, Universidade Metropolitana de Santos, SP, Brazil
| | | | | | | |
Collapse
|
68
|
Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci 2012; 35:733-41. [PMID: 22959670 DOI: 10.1016/j.tins.2012.08.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
Abstract
In the central nervous system (CNS) the function of retinoic acid, the active metabolite of vitamin A, is best understood from its action in guiding embryonic development; as development comes to completion, retinoic acid signaling declines. However, it is increasingly recognized that this signaling mechanism does not disappear in the adult brain but becomes more regionally focused and takes on new roles. These functions are often tied to processes of neural plasticity whether in the hippocampus, through homeostatic neural plasticity, the olfactory bulb or the hypothalamus. The role of retinoic acid in the control of plastic processes has led to suggestions of its involvement in neural disorders, both degenerative and psychiatric. This review presents a snapshot of developments in these areas over recent years.
Collapse
Affiliation(s)
- Kirsty D Shearer
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | | | |
Collapse
|
69
|
Abstract
INTRODUCTION Over the last 8 years, emerging studies bridging the gap between nutrition and mental health have resolutely established that learning and memory abilities as well as mood can be influenced by diet. However, the mechanisms by which diet modulates mental health are still not well understood. Sources of data In this article, a review of the literature was conducted using PubMed to identify studies that provide functional implications of adult hippocampal neurogenesis (AHN) and its modulation by diet. AREAS OF AGREEMENT One of the brain structures associated with learning and memory as well as mood is the hippocampus. Importantly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. AREAS OF CONTROVERSY The exact roles of these newborn neurons in learning, memory formation and mood regulation remain elusive. GROWING POINTS Nevertheless, there has been accumulating evidence linking cognition and mood to neurogenesis occurring in the adult hippocampus. Therefore, modulation of AHN by diet emerges as a possible mechanism by which nutrition impacts on mental health. AREAS TIMELY FOR DEVELOPING RESEARCH This area of investigation is new and needs attention because a better understanding of the neurological mechanisms by which nutrition affect mental health may lead to novel dietary approaches for disease prevention, healthier ageing and discovery of new therapeutic targets for mental illnesses.
Collapse
|
70
|
Navigatore-Fonzo LS, Golini RL, Ponce IT, Delgado SM, Plateo-Pignatari MG, Gimenez MS, Anzulovich AC. Retinoic acid receptors move in time with the clock in the hippocampus. Effect of a vitamin-A-deficient diet. J Nutr Biochem 2012; 24:859-67. [PMID: 22902328 DOI: 10.1016/j.jnutbio.2012.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/27/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
An endogenous time-keeping mechanism controls circadian biological rhythms in mammals. Previously, we showed that vitamin A deficiency modifies clock BMAL1 and PER1 as well as BDNF and neurogranin daily rhythmicity in the rat hippocampus when animals are maintained under 12-h-light:12-h-dark conditions. Retinoic acid nuclear receptors, retinoic acid receptors (RARs) and retinoid X receptors (RXRs), have been detected in the same brain area. Our objectives were (a) to analyze whether RARα, RARβ and RXRβ exhibit a circadian variation in the rat hippocampus and (b) to investigate the effect of a vitamin-A-deficient diet on the circadian expression of BMAL1, PER1 and retinoic acid receptors (RARs and RXRβ) genes. Holtzman male rats from control and vitamin-A-deficient groups were maintained under 12-h-light:12-h-dark or 12-h-dark:12-h-dark conditions during the last week of treatment. RARα, RARβ, RXRβ, BMAL1 and PER1 transcript and protein levels were determined in hippocampus samples isolated every 4 h in a 24-h period. Regulatory regions of RARs and RXRβ genes were scanned for clock-responsive sites, while BMAL1 and PER1 promoters were analyzed for retinoic acid responsive elements and retinoid X responsive elements. E-box and retinoid-related orphan receptor responsive element sites were found on regulatory regions of retinoid receptors genes, which display an endogenously controlled circadian expression in the rat hippocampus. Those temporal profiles were modified when animals were fed with a vitamin-A-deficient diet. Similarly, the nutritional vitamin A deficiency phase shifted BMAL1 and abolished PER1 circadian expression at both mRNA and protein levels. Our data suggest that vitamin A deficiency may affect the circadian expression in the hippocampus by modifying the rhythmic profiles of retinoic acid receptors.
Collapse
Affiliation(s)
- Lorena S Navigatore-Fonzo
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL). Chacabuco y Pedernera, D5700HHW, San Luis, Argentina
| | | | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Jiang W, Yu Q, Gong M, Chen L, Wen EY, Bi Y, Zhang Y, Shi Y, Qu P, Liu YX, Wei XP, Chen J, Li TY. Vitamin A deficiency impairs postnatal cognitive function via inhibition of neuronal calcium excitability in hippocampus. J Neurochem 2012; 121:932-43. [PMID: 22352986 DOI: 10.1111/j.1471-4159.2012.07697.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Jiang
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Tiboldi A, Lentini A, Provenzano B, Tabolacci C, Höger H, Beninati S, Lubec G. Hippocampal polyamine levels and transglutaminase activity are paralleling spatial memory retrieval in the C57BL/6J mouse. Hippocampus 2012; 22:1068-74. [DOI: 10.1002/hipo.22016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2012] [Indexed: 11/07/2022]
|
74
|
Golini RS, Delgado SM, Navigatore Fonzo LS, Ponce IT, Lacoste MG, Anzulovich AC. Daily patterns of clock and cognition-related factors are modified in the hippocampus of vitamin A-deficient rats. Hippocampus 2012; 22:1720-32. [PMID: 22434687 DOI: 10.1002/hipo.22007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2011] [Indexed: 01/30/2023]
Abstract
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα, and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα, and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene, and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein, and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus, and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area.
Collapse
Affiliation(s)
- Rebeca S Golini
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis, Argentina
| | | | | | | | | | | |
Collapse
|
75
|
Nomoto M, Takeda Y, Uchida S, Mitsuda K, Enomoto H, Saito K, Choi T, Watabe AM, Kobayashi S, Masushige S, Manabe T, Kida S. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity. Mol Brain 2012; 5:8. [PMID: 22316320 PMCID: PMC3298701 DOI: 10.1186/1756-6606-5-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/08/2012] [Indexed: 01/23/2023] Open
Abstract
Background Retinoid signaling pathways mediated by retinoic acid receptor (RAR)/retinoid × receptor (RXR)-mediated transcription play critical roles in hippocampal synaptic plasticity. Furthermore, recent studies have shown that treatment with retinoic acid alleviates age-related deficits in hippocampal long-term potentiation (LTP) and memory performance and, furthermore, memory deficits in a transgenic mouse model of Alzheimer's disease. However, the roles of the RAR/RXR signaling pathway in learning and memory at the behavioral level have still not been well characterized in the adult brain. We here show essential roles for RAR/RXR in hippocampus-dependent learning and memory. In the current study, we generated transgenic mice in which the expression of dominant-negative RAR (dnRAR) could be induced in the mature brain using a tetracycline-dependent transcription factor and examined the effects of RAR/RXR loss. Results The expression of dnRAR in the forebrain down-regulated the expression of RARβ, a target gene of RAR/RXR, indicating that dnRAR mice exhibit dysfunction of the RAR/RXR signaling pathway. Similar with previous findings, dnRAR mice displayed impaired LTP and AMPA-mediated synaptic transmission in the hippocampus. More importantly, these mutant mice displayed impaired hippocampus-dependent social recognition and spatial memory. However, these deficits of LTP and memory performance were rescued by stronger conditioning stimulation and spaced training, respectively. Finally, we found that pharmacological blockade of RARα in the hippocampus impairs social recognition memory. Conclusions From these observations, we concluded that the RAR/RXR signaling pathway greatly contributes to learning and memory, and LTP in the hippocampus in the adult brain.
Collapse
Affiliation(s)
- Masanori Nomoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
The deposition of amyloid β-protein (Aβ) in the brain is an invariant feature of Alzheimer's disease (AD). Vitamin A, which has been traditionally considered an anti-oxidant compound, plays a role in maintaining higher function in the central nervous system. Plasma or cerebrospinal fluid concentrations of vitamin A and β-carotene have been reported to be lower in AD patients, and these vitamins have been clinically shown to slow the progression of dementia. Vitamin A (retinol, retinal and retinoic acid) and β-carotene have been shown in in vitro studies to inhibit the formation, extension and destabilizing effects of β-amyloid fibrils. Recently, the inhibition of the oligomerization of Aβ has been suggested as a possible therapeutic target for the treatment of AD. We have recently shown the inhibitory effects of vitamin A and β-carotene on the oligomerization of Aβ40 and Aβ42 in vitro. In previous in vivo studies, intraperitoneal injections of vitamin A decreased brain Aβ deposition and tau phosphorylation in transgenic mouse models of AD, attenuated neuronal degeneration, and improved spatial learning and memory. Thus, vitamin A and β-carotene could be key molecules for the prevention and therapy of AD.
Collapse
Affiliation(s)
- Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | | |
Collapse
|
77
|
Zhang M, Huang K, Zhang Z, Ji B, Zhu H, Zhou K, Li Y, Yang J, Sun L, Wei Z, He G, Gao L, He L, Wan C. Proteome alterations of cortex and hippocampus tissues in mice subjected to vitamin A depletion. J Nutr Biochem 2011; 22:1003-8. [DOI: 10.1016/j.jnutbio.2010.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 08/11/2010] [Accepted: 08/23/2010] [Indexed: 11/15/2022]
|
78
|
Monopoli MP, Raghnaill MN, Loscher JS, O'Sullivan NC, Pangalos MN, Ring RH, von Schack D, Dunn MJ, Regan CM, Pennington S, Murphy KJ. Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics 2011; 11:4189-201. [DOI: 10.1002/pmic.201100072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/21/2011] [Accepted: 08/04/2011] [Indexed: 11/06/2022]
|
79
|
|
80
|
Kitaoka K, Shimizu M, Shimizu N, Chikahisa S, Nakagomi M, Shudo K, Yoshizaki K, Séi H. Retinoic acid receptor antagonist LE540 attenuates wakefulness via the dopamine D1 receptor in mice. Brain Res 2011; 1423:10-6. [PMID: 22000589 DOI: 10.1016/j.brainres.2011.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 11/18/2022]
Abstract
Vitamin A is a common lipophilic vitamin, and its function is mainly mediated by the binding of its metabolite retinoic acid to retinoic acid receptors (RARs) and retinoid X receptors. Recently, it was reported that the expression of the RARb (an RAR subtype) gene determines the contribution of the delta oscillation in the sleep electroencephalogram (EEG) patterns in mice. We also reported that 4-week dietary deficiency of vitamin A (VAD) causes the attenuation of delta power in sleep and spontaneous activity in mice. However, our previous study could not clarify whether the attenuation of delta power by VAD is attributed to the suppression of RARs. To address this problem, we investigated whether the chronic administration of LE540 (30mg/kg/day), an antagonist of RARs, for 1 or 4weeks attenuated EEG delta power during sleep in mice. Consequently, 4-week LE540 administration induced a significant attenuation of wakefulness and delta power in non-rapid eye movement sleep. Western blot analysis revealed a significant decrease in the expression of dopamine D1 receptor (D1DR) in the striatum and tyrosine hydroxylase in the midbrain of mice that were administered LE540 for 4weeks. High-performance liquid chromatography analysis of striatal tissue revealed a significant decrease in the homovanillic acid/dopamine ratio. Meanwhile, dopamine levels did not change in these mice. Our results suggest that the 4-week antagonism of RARs induces the attenuation of delta power. However, the attenuation of delta power may be elicited indirectly by the decrease of wakefulness followed by the hypo-expression of dopamine receptors especially D1DR.
Collapse
Affiliation(s)
- Kazuyoshi Kitaoka
- Department of Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Hu Y, Chen Y, Moiseyev G, Takahashi Y, Mott R, Ma JX. Comparison of ocular pathologies in vitamin A-deficient mice and RPE65 gene knockout mice. Invest Ophthalmol Vis Sci 2011; 52:5507-14. [PMID: 21551411 DOI: 10.1167/iovs.10-7118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE RPE65 gene knockout (Rpe65⁻/⁻) mice showed abolished isomerohydrolase activity in the visual cycle and were considered a model for vitamin A deficiency in the retina. The purpose of this study was to compare the retinal phenotypes between vitamin A-deficient (VAD) mice and Rpe65⁻/⁻ mice under normal diet. METHODS The VAD mice were fed with a vitamin A-deprived diet after birth. The age-matched control mice and Rpe65⁻/⁻ mice were maintained under normal diet. The structure of photoreceptor outer segment was compared using electron microscopy. Photoreceptor-specific gene expression was determined using real-time RT-PCR. The isomerohydrolase and lecithin-retinol acyltransferase (LRAT) activities were measured using an in vitro enzymatic activity assay. Endogenous retinoid profiles were analyzed by HPLC in mouse eyecup homogenates. RESULTS Compared to wild-type mice under normal diet, scanning and transmission electron microscopy showed that the outer segments of photoreceptors were disorganized in VAD mice and were not disorganized in Rpe65⁻/⁻ mice, although they were shortened in the latter. VAD mice showed more prominent downregulation of middle wavelength cone opsin, whereas Rpe65⁻/⁻ mice displayed more suppressed expression of short wavelength cone opsin. In vitro enzymatic activity assay and Western blot analysis showed that vitamin A deprivation downregulated LRAT expression and activity in the eyecup, but Rpe65⁻/⁻ mice showed unchanged LRAT expression and activity. The depressed LRAT activity in VAD mice was partially rescued by the intraperitoneal injection of retinoic acid. CONCLUSIONS VAD and Rpe65⁻/⁻ mice are different in cone photoreceptor degeneration, photoreceptor-specific gene regulation, isomerohydrolase activity, endogenous retinoid profile, and LRAT activity.
Collapse
Affiliation(s)
- Yang Hu
- Department of Physiology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
82
|
Obulesu M, Dowlathabad MR, Bramhachari PV. Carotenoids and Alzheimer's disease: an insight into therapeutic role of retinoids in animal models. Neurochem Int 2011; 59:535-41. [PMID: 21672580 DOI: 10.1016/j.neuint.2011.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/16/2011] [Accepted: 04/20/2011] [Indexed: 01/09/2023]
Abstract
Carotenoids play a pivotal role in prevention of many degenerative diseases mediated by oxidative stress including neurodegenerative diseases like Alzheimer's Disease (AD). The involvement of retinoids in physiology, AD pathology and their therapeutic role in vitro and in vivo has been extensively studied. This review focuses on the role of carotenoids like retinoic acid (RA), all trans retinoic acid (ATRA), lycopene and β-carotene in prevention of AD symptoms primarily through inhibition of amyloid beta (Aβ) formation, deposition and fibril formation either by reducing the levels of p35 or inhibiting corresponding enzymes. The role of antioxidant micronutrients in prevention or delaying of AD symptoms has been included. This study emphasizes the dietary supplementation of carotenoids to combat AD and warrants further studies on animal models to unravel their mechanism of neuroprotection.
Collapse
Affiliation(s)
- M Obulesu
- Department of Biotechnology, Rayalaseema University, Kurnool, Andhra Pradesh, India.
| | | | | |
Collapse
|
83
|
Xu J, Wang H, Liang T, Cai X, Rao X, Huang Z, Sheng G. Retinoic acid promotes neural conversion of mouse embryonic stem cells in adherent monoculture. Mol Biol Rep 2011; 39:789-95. [PMID: 21611753 DOI: 10.1007/s11033-011-0800-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/29/2011] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) plays multiple roles in the nervous system, including induction of neural differentiation, axon outgrowth and neural patterning. Previously, RA for neural differentiation of embryonic stem (ES) cells always relies on embryoid bodies (EBs) formation. Here we report an in vitro adherent monoculture system to induce mouse ES cells into neural cells accompanied with RA. RA (1 μM) treatment, during initial 2 days of differentiation, can enhance the expression of neural markers, such as Nestin, Tuj1 and MAP2, and result in an earlier neural differentiation of ES cells. Furthermore, RA promotes a significant increase in neurite elongation of ES-derived neurons. Our study also implies that RA induced to express Wnt antagonist Dickkopf-1 (Dkk-1) for neural differentiation. However, the mechanisms of RA triggering neural induction remain to be determined. Our simple and efficient strategy is proposed to provide a basis for studying RA signaling pathways in neural differentiation in vitro.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Regenerative Biology, Laboratory of Stem Cell Therapy, Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | | | | | | | | | | |
Collapse
|
84
|
Wietrzych-Schindler M, Szyszka-Niagolov M, Ohta K, Endo Y, Pérez E, de Lera AR, Chambon P, Krezel W. Retinoid x receptor gamma is implicated in docosahexaenoic acid modulation of despair behaviors and working memory in mice. Biol Psychiatry 2011; 69:788-94. [PMID: 21334601 DOI: 10.1016/j.biopsych.2010.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 11/25/2010] [Accepted: 12/15/2010] [Indexed: 02/01/2023]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids, including docosahexaenoic acid (DHA), have antidepressant and promnemonic functions. The mechanisms of such activities are still elusive and may involve retinoid X receptors (RXRs), transcription factors known to bind DHA in vitro. METHODS Promnemonic and antidespair activities of acute DHA treatment were tested in BALBcByJ mice using spontaneous alternation and forced swim test, respectively. The involvement of retinoid receptors in such DHA activities was investigated using RXR and/or retinoic acid receptor (RAR) agonists to mimic DHA activities or a synthetic pan-RXR antagonist to block them. Involvement of RXR isotypes was analyzed using the same tasks and delayed nonmatch to place for working memory in RXRγ knockout mice. RESULTS Docosahexaenoic acid decreased despair behavior and improved working memory in BALBcByJ mice. Such effects were suppressed by co-treatment with BR1211, a pan-RXR antagonist, whereas a pan-RXR agonist, UVI2108, mimicked DHA activities. Retinoic acid (RA), a natural ligand of RXRs, also reduced despair behavior and improved working memory and such activities did not require activation of RARs, as RA effects were abolished by co-treatment with BR1211 and they were not reproduced by TTNPB, a pan-RAR agonist. The RXRγ knockout mice displayed increased despair and deficits in working memory, which were insensitive to DHA and pan-RXR agonist treatments, whereas DHA or UVI2108 reversed these deficits in RXRγ heterozygous mice. CONCLUSIONS Our data suggest that RXRs are a converging point in mediating DHA and RA modulations of despair behavior and working memory and that RXRγ is the predominant RXR isotype in these regulations.
Collapse
Affiliation(s)
- Marta Wietrzych-Schindler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centres National de Recherche Scientifique/Institut National de Santé et de Recherche Médicale/Université de Strasbourg/Collège de France, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Lovell PV, Olson CR, Mello CV. Singing under the influence: examining the effects of nutrition and addiction on a learned vocal behavior. Mol Neurobiol 2011; 44:175-84. [PMID: 21340665 DOI: 10.1007/s12035-011-8169-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/03/2011] [Indexed: 02/04/2023]
Abstract
The songbird model is widely established in a number of laboratories for the investigation of the neurobiology and development of vocal learning. While vocal learning is rare in the animal kingdom, it is a trait that songbirds share with humans. The neuroanatomical and physiological organization of the brain circuitry that controls learned vocalizations has been extensively characterized, particularly in zebra finches (Taeniopygia guttata). Recently, several powerful molecular and genomic tools have become available in this organism, making it an attractive choice for neurobiologists interested in the neural and genetic basis of a complex learned behavior. Here, we briefly review some of the main features of vocal learning and associated brain structures in zebra finches and comment on some examples that illustrate how themes related to nutrition and addiction can be explored using this model organism.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 Sam Jackson Park Rd L470, Portland, OR 97239, USA
| | | | | |
Collapse
|
86
|
Wang C, Kane MA, Napoli JL. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J Biol Chem 2010; 286:6542-53. [PMID: 21138835 DOI: 10.1074/jbc.m110.198382] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) stimulates neurogenesis, dendritic growth of hippocampal neurons, and higher cognitive functions, such as spatial learning and memory formation. Although astrocyte-derived atRA has been considered a key factor in neurogenesis, little direct evidence identifies hippocampus cell types and the enzymes that biosynthesize atRA. Here we show that primary rat astrocytes, but not neurons, biosynthesize atRA using multiple retinol dehydrogenases (Rdh) of the short chain dehydrogenase/reductase gene family and retinaldehyde dehydrogenases (Raldh). Astrocytes secrete atRA into their medium; neurons sequester atRA. The first step, conversion of retinol into retinal, is rate-limiting. Neurons and astrocytes both synthesize retinyl esters and reduce retinal into retinol. siRNA knockdown indicates that Rdh10, Rdh2 (mRdh1), and Raldh1, -2, and -3 contribute to atRA production. Knockdown of the Rdh Dhrs9 increased atRA synthesis ∼40% by increasing Raldh1 expression. Immunocytochemistry revealed cytosolic and nuclear expression of Raldh1 and cytosol and perinuclear expression of Raldh2. atRA autoregulated its concentrations by inducing retinyl ester synthesis via lecithin:retinol acyltransferase and stimulating its catabolism via inducing Cyp26B1. These data show that adult hippocampus astrocytes rely on multiple Rdh and Raldh to provide a paracrine source of atRA to neurons, and atRA regulates its own biosynthesis in astrocytes by directing flux of retinol. Observation of cross-talk between Dhrs9 and Raldh1 provides a novel mechanism of regulating atRA biosynthesis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
87
|
|
88
|
June HL, Tzeng Yang ARS, Bryant JL, Jones O, Royal W. Vitamin A deficiency and behavioral and motor deficits in the human immunodeficiency virus type 1 transgenic rat. J Neurovirol 2010; 15:380-9. [PMID: 19995129 DOI: 10.3109/13550280903350200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) transgenic (Tg) rat model incorporates a noninfectious viral genome that is under similar regulatory control mechanisms in vivo as those that exist with natural infection in humans. Vitamin A (VA) deficiency in humans has been associated with progressive systemic HIV disease and with impaired cognition in rodent models. The effects on of VA deficiency on the development of behavioral abnormalities with HIV infection have not been previously described. In these studies, wild-type (Wt) and Tg rats maintained on either a normal (VA+) or a VA-deficient (VA-) diet were examined for activity in an open field (horizontal activity, total distance, vertical activity, and rearing) and on rotarod testing. On both open field and rotarod testing, the Tg rats performed worse than the Wt rats, with the most severe deficits noted in the TgVA- animals. Analysis of the specific effects of the presence of the HIV transgene and the diet on the performance on the open field tests showed a dominant effect from the transgene on all of the tests, with an effect from the diet on only the number of rearings. On rotarod testing, effects form both the diet and the transgene were observed at lower speeds, at the highest speeds, and on the accelerating rotarod. These studies therefore demonstrate that behavioral and motor abnormalities can be detected in this model and are likely due to similar mechanisms by which humans infected with HIV might develop cognitive-motor impairment in association with VA deficiency.
Collapse
Affiliation(s)
- Harry L June
- Department of Neurology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
89
|
Kitaoka K, Sano A, Chikahisa S, Yoshizaki K, Séi H. Disturbance of rapid eye movement sleep in senescence-accelerated mouse prone/8 mice is improved by retinoic acid receptor agonist Am80 (tamibarotene). Neuroscience 2010; 167:573-82. [DOI: 10.1016/j.neuroscience.2010.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
|
90
|
Abstract
Retinoid acid, the bioactive metabolite of vitamin A, is a potent signaling molecule in the brains of growing and adult animals, regulates numerous gene products, and modulates neurogenesis, neuronal survival and synaptic plasticity. Vitamin A deficiency (VAD) is a global health problem, yet our knowledge of its effects on behavior and learning is still emerging. Here we review studies that have implicated retinoids in learning and memory deficits of post-embryonic and adult rodent and songbird models. Dietary vitamin A supplementation improves learning and memory in VAD rodents and can ameliorate cognitive declines associated with normal aging. Songbird studies examine the effects of retinoid signaling on vocal/auditory learning and are uniquely suited to study the behavioral effects of VAD because the neural circuitry of the song system is discrete and well understood. Similar to human speech acquisition, avian vocal learning proceeds in well-defined stages of template acquisition, rendition and maturation. Local blockade of retinoic acid production in the brain or excess dietary retinoic acid results in the failure of song maturation, yet does not affect prior song acquisition. Together these results yield significant insights into the role of vitamin A in maintaining neuronal plasticity and cognitive function in adulthood.
Collapse
Affiliation(s)
- Christopher R Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
91
|
Micronutrient-responsive cerebral dysfunction other than Wernicke's encephalopathy after malabsorptive surgery. Surg Obes Relat Dis 2010; 6:171-80. [DOI: 10.1016/j.soard.2009.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/04/2009] [Accepted: 04/10/2009] [Indexed: 11/18/2022]
|
92
|
Lee HP, Casadesus G, Zhu X, Lee HG, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A. All-trans retinoic acid as a novel therapeutic strategy for Alzheimer's disease. Expert Rev Neurother 2010; 9:1615-21. [PMID: 19903021 DOI: 10.1586/ern.09.86] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid, an essential factor derived from vitamin A, has been shown to have a variety of functions including roles as an antioxidant and in cellular differentiation. Since oxidative stress and dedifferentiation of neurons appear to be common pathological elements of a number of neurodegenerative disorders, we speculated that retinoic acid may offer therapeutic promise. In this vein, recent compelling evidence indicates a role of retinoic acid in cognitive activities and anti-amyloidogenic properties. Here, we review the actions of retinoic acid that indicate that it may have therapeutic properties ideally served for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Fonzo LSN, Golini RS, Delgado SM, Ponce IT, Bonomi MR, Rezza IG, Gimenez MS, Anzulovich AC. Temporal patterns of lipoperoxidation and antioxidant enzymes are modified in the hippocampus of vitamin A-deficient rats. Hippocampus 2009; 19:869-80. [PMID: 19308957 DOI: 10.1002/hipo.20571] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Animals can adapt their behavior to predictable temporal fluctuations in the environment through both, memory-and-learning processes and an endogenous time-keeping mechanism. Hippocampus plays a key role in memory and learning and is especially susceptible to oxidative stress. In compensation, antioxidant enzymes activity, such as Catalase (CAT) and Glutathione peroxidase (GPx), has been detected in this brain region. Daily rhythms of antioxidant enzymes activity, as well as of glutathione and lipid peroxides levels, have been described in brain. Here, we investigate day/night variations in lipoperoxidation, CAT, and GPx expression and activity, as well as the temporal fluctuations of two key components of the endogenous clock, BMAL1 and PER1, in the rat hippocampus and evaluate to which extent vitamin A deficiency may affect their amplitude or phase. Holtzman male rats from control, vitamin A-deficient, and vitamin A-refed groups were sacrificed throughout a 24-h period. Daily levels of clock proteins, lipoperoxidation, CAT and GPx mRNA, protein, and activity, were determined in the rat hippocampus obtained every 4 or 5 h. Gene expression of RARalpha and RXRbeta was also quantified in the hippocampus of the three groups of rats. Our results show significant daily variations of BMAL1 and PER1 protein expression. Rhythmic lipoperoxidation, CAT, and GPx, expression and activity, were also observed in the rat hippocampus. Vitamin A deficiency reduced RXRbeta mRNA level, as well as the amplitude of BMAL1 and PER1 daily oscillation, phase-shifted the daily peak of lipoperoxidation, and had a differential effect on the oscillating CAT and GPx mRNA, protein, and activity. Learning how vitamin A deficiency affects the circadian gene expression in the hippocampus may have an impact on the neurobiology, nutritional and chronobiology fields, emphasizing for the first time the importance of nutritional factors, such as dietary micronutrients, in the regulation of circadian parameters in this brain memory-and-learning-related region.
Collapse
Affiliation(s)
- Lorena S Navigatore Fonzo
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Chacabuco y Pedernera, D5700HHW, San Luis, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Kane M, Chen N, Sparks S, Napoli J. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS. Biochem J 2009; 388:363-9. [PMID: 15628969 PMCID: PMC1186726 DOI: 10.1042/bj20041867] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report a sensitive LC (liquid chromatography)/MS/MS assay using selected reaction monitoring to quantify RA (retinoic acid), which is applicable to biological samples of limited size (10-20 mg of tissue wet weight), requires no sample derivatization, provides mass identification and resolves atRA (all-trans-RA) from its geometric isomers. The assay quantifies over a linear range of 20 fmol to 10 pmol, and has a 10 fmol limit of detection at a signal/noise ratio of 3. Coefficients of variation are: instrumental, 0.5-2.9%; intra-assay, 5.4+/-0.4%; inter-assay 8.9+/-1.0%. An internal standard (all-trans-4,4-dimethyl-RA) improves accuracy by confirming extraction efficiency and revealing handling-induced isomerization. Tissues of 2-4-month-old C57BL/6 male mice had atRA concentrations of 7-9.6 pmol/g and serum atRA of 1.9+/-0.6 pmol/ml (+/-S.E.M.). Tissue 13-cis-RA ranged from 2.9 to 4.2 pmol/g, and serum 13-cis-RA was 1.2+/-0.3 pmol/ml. CRBP (cellular retinol-binding protein)-null mouse liver had atRA approximately 30% lower than wild-type (P<0.05), but kidney, testis, brain and serum atRA were similar to wild-type. atRA in brain areas of 12-month-old female C57BL/6 mice were (+/-S.E.M.): whole brain, 5.4+/-0.4 pmol/g; cerebellum, 10.7+/-0.3 pmol/g; cortex, 2.6+/-0.4 pmol/g; hippocampus, 8.4+/-1.2 pmol/g; striatum, 15.3+/-4.7 pmol/g. These data provide the first analytically robust quantification of atRA in animal brain and in CRBP-null mice. Direct measurements of endogenous RA should have a substantial impact on investigating target tissues of RA, mechanisms of RA action, and the relationship between RA and chronic disease.
Collapse
Affiliation(s)
- Maureen A. Kane
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Na Chen
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Susan Sparks
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
| | - Joseph L. Napoli
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
95
|
Stangl D, Thuret S. Impact of diet on adult hippocampal neurogenesis. GENES AND NUTRITION 2009; 4:271-82. [PMID: 19685256 DOI: 10.1007/s12263-009-0134-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 01/09/2023]
Abstract
Research over the last 5 years has firmly established that learning and memory abilities, as well as mood, can be influenced by diet, although the mechanisms by which diet modulates mental health are not well understood. One of the brain structures associated with learning and memory, as well as mood, is the hippocampus. Interestingly, the hippocampus is one of the two structures in the adult brain where the formation of newborn neurons, or neurogenesis, persists. The level of neurogenesis in the adult hippocampus has been linked directly to cognition and mood. Therefore, modulation of adult hippocampal neurogenesis (AHN) by diet emerges as a possible mechanism by which nutrition impacts on mental health. In this study, we give an overview of the mechanisms and functional implications of AHN and summarize recent findings regarding the modulation of AHN by diet.
Collapse
Affiliation(s)
- Doris Stangl
- Centre for the Cellular Basis of Behaviour and MRC Centre for Neurodegeneration Research, The James Black Centre, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | | |
Collapse
|
96
|
Vitamin A supplementation at pharmacological doses induces nitrosative stress on the hypothalamus of adult Wistar rats. Chem Biol Interact 2009; 180:407-13. [DOI: 10.1016/j.cbi.2009.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 01/11/2023]
|
97
|
Arfaoui A, Nasri I, Boulbaroud S, Ouichou A, Mesfioui A. Effect of vitamin A deficiency on retinol and retinyl esters contents in rat brain. Pak J Biol Sci 2009; 12:939-948. [PMID: 19817120 DOI: 10.3923/pjbs.2009.939.948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the present study, the pattern of vitamin A (retinol and retinyl esters) contents in discrete brain areas was investigated in Wistar rats (both sexes of 10-12 weeks old) fed on vitamin A deficient diet. The animals were placed on standard laboratory diet for the control animals and a vitamin A deficient diet for the experimental animals for 20 weeks. At the end of this period, brain retinol and retinyl esters contents from control and vitamin A deficient diet animals were measured by HPLC. Retinol was the predominant form of retinoids in male rat brains (77 to 92% of total retinol) and retinyl esters were the predominant form in female brain rats (4 to 44% of total retinol). The abundant ester in both sexes was the retinyl linoleate. Olfactory bulb and the midbrain contained the highest quantities of retinol and retinyl esters in both sexes. On the other hand, the vitamin A deficient diet significantly decreased the retinoid contents in male brain, in olfactory bulb (-30.7%), hindbrain (-46.2%) and increased it in forebrain (84.3%) and midbrain (2.2%). Total retinol was decreased in olfactory bulb (-38.7%), forebrain (-44.5%) and midbrain (-30.7%) and increased in hindbrain (23.4%) of vitamin A deficient female rats. In conclusion, retinol and retinyl esters were the brain compounds heterogeneously distributed throughout the brain areas in both the sexes and were significantly affected by vitamin A deficiency status as well.
Collapse
Affiliation(s)
- Asma Arfaoui
- Unit of Nervous and Endocrine Physiology, Laboratory of Genetics and Neuroendocrine Physiology, Department of Biology, Faculty of Science-Kenitra, Ibn Tofail University, PB 133, 14000 Kenitra, Morocco
| | | | | | | | | |
Collapse
|
98
|
Shudo K, Fukasawa H, Nakagomi M, Yamagata N. Towards retinoid therapy for Alzheimer's disease. Curr Alzheimer Res 2009; 6:302-11. [PMID: 19519313 PMCID: PMC2765081 DOI: 10.2174/156720509788486581] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/05/2008] [Accepted: 11/12/2008] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease(AD) is associated with a variety of pathophysiological features, including amyloid plaques, inflammation, immunological changes, cell death and regeneration processes, altered neurotransmission, and age-related changes. Retinoic acid receptors (RARs) and retinoids are relevant to all of these. Here we review the pathology, pharmacology, and biochemistry of AD in relation to RARs and retinoids, and we suggest that retinoids are candidate drugs for treatment of AD.
Collapse
Affiliation(s)
- K Shudo
- Research Foundation ITSUU Laboratory, Tokyo, Japan.
| | | | | | | |
Collapse
|
99
|
Ghenimi N, Beauvieux MC, Biran M, Pallet V, Higueret P, Gallis JL. Vitamin A deficiency in rats induces anatomic and metabolic changes comparable with those of neurodegenerative disorders. J Nutr 2009; 139:696-702. [PMID: 19193816 DOI: 10.3945/jn.108.102988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Anatomic and metabolic changes in central nervous system induced by 14 wk of vitamin A deprivation (VAD) were monitored and quantified in rats. In vivo brain magnetic resonance imaging (4.7T) was performed at 5, 7, 9, 11, and 14 wk of each diet after weaning in the following: 1) VAD group; 2) control pair-fed group; and 3) control group that consumed the diet ad libitum (1.15 microg retinol/g diet). After 14 wk, high-resolution magic angle spinning proton NMR spectroscopy (11.7T) was performed on small samples of cortex, hippocampus, and striatum. Serum retinol concentrations remained stable and cerebral volume (CV) increased as a linear function of body weight in the ad libitum group (R(2) = 0.78; P = 0.047) and pair-fed controls (R(2) = 0.78; P = 0.046). In VAD rats, retinol decreased from the onset of deprivation (2.2 +/- 0.14 micromol/L) to reach 0.3 +/- 0.13 micromol/L at wk 5, followed by a stopping of body weight gain from wk 7. In VAD rats, the CV decreased from wk 5 and reached a value 11% lower than that of the control group (P < 0.001) at wk 14 and was correlated with retinol status (R(2) = 0.99; P = 0.002). The VAD hippocampal volume decreased beginning at wk 9 and was 22% lower than that of the control group at wk 14 (P < 0.001). Compared with the control, VAD led to lower N acetyl aspartate:creatine+phosphocreatine (Cr) in cortex (-36%), striatum (-22%), and hippocampus (-19%) and higher myoinositol:Cr in cortex (+127%) and striatum (+150%). VAD induced anatomic and metabolic changes comparable to those associated with neurodegenerative disorders. By wk 7 of deprivation, the slowing in cerebral growth that correlated with the retinol level could be considered as a predictive marker of brain disorders, confirmed by metabolic data from VAD rats after 14 wk.
Collapse
Affiliation(s)
- Nadirah Ghenimi
- Centre de Résonance Magnétique des Systèmes Biologiques, Unité Mixte de Recherche 5536 Centre National de Recherche Scientifique-Université Bordeaux 2, F-33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
100
|
Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. J Neurosci 2008; 28:11622-34. [PMID: 18987198 DOI: 10.1523/jneurosci.3153-08.2008] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to beta-amyloid (Abeta) accumulation and memory deficits in rodents. The aim of the present study was to evaluate the therapeutic effect of all-trans retinoic acid (ATRA), an active metabolite of vitamin A, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, a well established AD mouse model. Here we report a robust decrease in brain Abeta deposition and tau phosphorylation in the blinded study of APP/PS1 transgenic mice treated intraperitoneally for 8 weeks with ATRA (20 mg/kg, three times weekly, initiated when the mice were 5 months old). This was accompanied by a significant decrease in the APP phosphorylation and processing. The activity of cyclin-dependent kinase 5, a major kinase involved in both APP and tau phosphorylation, was markedly downregulated by ATRA treatment. The ATRA-treated APP/PS1 mice showed decreased activation of microglia and astrocytes, attenuated neuronal degeneration, and improved spatial learning and memory compared with the vehicle-treated APP/PS1 mice. These results support ATRA as an effective therapeutic agent for the prevention and treatment of AD.
Collapse
|