51
|
Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 2020; 11:4891. [PMID: 32994417 PMCID: PMC7524726 DOI: 10.1038/s41467-020-18642-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023] Open
Abstract
Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair. The contribution of satellite glia to peripheral nerve regeneration is unclear. Here, the authors show that satellite glia are transcriptionally distinct from Schwann cells, share similarities with astrocytes, and, upon injury, they contribute to axon regeneration via Fasn-PPARα signalling pathway.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sara Jones
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Clay F Semenkovich
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
52
|
Giessler KS, Samoilowa S, Soboll Hussey G, Kiupel M, Matiasek K, Sledge DG, Liesche F, Schlegel J, Fux R, Goehring LS. Viral Load and Cell Tropism During Early Latent Equid Herpesvirus 1 Infection Differ Over Time in Lymphoid and Neural Tissue Samples From Experimentally Infected Horses. Front Vet Sci 2020; 7:621. [PMID: 33102556 PMCID: PMC7499125 DOI: 10.3389/fvets.2020.00621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Upper respiratory tract infections with Equid Herpesvirus 1 (EHV-1) typically result in a peripheral blood mononuclear cell-associated viremia, which can lead to vasculopathy in the central nervous system. Primary EHV-1 infection also likely establishes latency in trigeminal ganglia (TG) via retrograde axonal transport and in respiratory tract-associated lymphatic tissue. However, latency establishment and reactivation are poorly understood. To characterize the pathogenesis of EHV-1 latency establishment and maintenance, two separate groups of yearling horses were experimentally infected intranasally with EHV-1, strain Ab4, and euthanized 30 days post infection (dpi), (n = 9) and 70 dpi (n = 6). During necropsy, TG, sympathetic trunk (ST), retropharyngeal and mesenteric lymph nodes (RLn, MesLn) and kidney samples were collected. Viral DNA was detected by quantitative PCR (qPCR) in TG, ST, RLn, and MesLn samples in horses 30 and 70 dpi. The number of positive TG, RLn and MesLn samples was reduced when comparing horses 30 and 70 dpi and the viral copy number in TG and RLn significantly declined from 30 to 70 dpi. EHV-1 late gene glycoprotein B reverse transcriptase PCR and IHC results for viral protein were consistently negative, thus lytic replication was excluded in the present study. Mild inflammation could be detected in all neural tissue samples and inflammatory infiltrates mainly consisted of CD3+ T-lymphocytes (T-cells), frequently localized in close proximity to neuronal cell bodies. To identify latently infected cell types, in situ hybridization (ISH, RNAScope®) detecting viral DNA was used on selected qPCR- positive neural tissue sections. In ganglia 30 dpi, EHV-1 ISH signal was located in the neurons of TG and ST, but also in non-neuronal support or interstitial cells surrounding the neuron. In contrast, distinct EHV-1 signal could only be observed in neurons of TG 70 dpi. Overall, detection of latent EHV-1 in abdominal tissue samples and non-neuronal cell localization suggests, that EHV-1 uses T-cells during viremia as alternative route toward latency locations in addition to retrograde neuronal transport. We therefore hypothesize that EHV-1 follows the same latency pathways as its close relative human pathogen Varicella Zoster Virus.
Collapse
Affiliation(s)
- Kim S Giessler
- Equine Hospital, Division of Medicine and Reproduction, Center for Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany.,Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Susanna Samoilowa
- Equine Hospital, Division of Medicine and Reproduction, Center for Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians University München, Munich, Germany
| | - Dodd G Sledge
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
| | - Friederike Liesche
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Robert Fux
- Veterinary Science Department, Institute of Infectious Diseases and Zoonoses, Ludwig-Maximilians University, Munich, Germany
| | - Lutz S Goehring
- Equine Hospital, Division of Medicine and Reproduction, Center for Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
53
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
54
|
Martinez N, Sánchez A, Diaz P, Broekhuizen R, Godoy J, Mondaca S, Catenaccio A, Macanas P, Nervi B, Calvo M, Court F. Metformin protects from oxaliplatin induced peripheral neuropathy in rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100048. [PMID: 32490289 PMCID: PMC7260677 DOI: 10.1016/j.ynpai.2020.100048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Oxaliplatin is a commonly used drug to treat cancer, extending the rate of disease-free survival by 20% in colorectal cancer. However, oxaliplatin induces a disabling form of neuropathy resulting in more than 60% of patients having to reduce or discontinue oxaliplatin, negatively impacting their chance of survival. Oxaliplatin-induced neuropathies are accompanied by degeneration of sensory fibers in the epidermis and hyperexcitability of sensory neurons. These morphological and functional changes have been associated with sensory symptoms such as dysesthesia, paresthesia and mechanical and cold allodynia. Various strategies have been proposed to prevent or treat oxaliplatin-induced neuropathies without success. The anti-diabetic drug metformin has been recently shown to exert neuroprotection in other chemotherapy-induced neuropathies, so here we aimed to test if metformin can prevent the development of oxaliplatin-induced neuropathy in a rat model of this condition. Animals treated with oxaliplatin developed significant intraepidermal fiber degeneration, a mild gliosis in the spinal cord, and mechanical and cold hyperalgesia. The concomitant use of metformin prevented degeneration of intraepidermal fibers, gliosis, and the altered sensitivity. Our evidence further supports metformin as a new approach to prevent oxaliplatin-induced neuropathy with a potential important clinical impact.
Collapse
Affiliation(s)
- N.W. Martinez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Sánchez
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P. Diaz
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - R. Broekhuizen
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J. Godoy
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S. Mondaca
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A. Catenaccio
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
| | - P. Macanas
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B. Nervi
- Department of Hematology and Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - M. Calvo
- Department of Physiology, Faculty of Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F.A. Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor de Chile, Santiago 8580745, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago 8580745, Chile
- Buck Institute for Research on Ageing, Novato, San Francisco, CA 94945, USA
| |
Collapse
|
55
|
Noor S, Sanchez JJ, Sun MS, Pervin Z, Sanchez JE, Havard MA, Epler LT, Nysus MV, Norenberg JP, Wagner CR, Davies S, Wagner JL, Savage DD, Jantzie LL, Mellios N, Milligan ED. The LFA-1 antagonist BIRT377 reverses neuropathic pain in prenatal alcohol-exposed female rats via actions on peripheral and central neuroimmune function in discrete pain-relevant tissue regions. Brain Behav Immun 2020; 87:339-358. [PMID: 31918004 PMCID: PMC7316595 DOI: 10.1016/j.bbi.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
Previous reports show that moderate prenatal alcohol exposure (PAE) poses a risk factor for developing neuropathic pain following adult-onset peripheral nerve injury in male rats. Recently, evidence suggests that immune-related mechanisms underlying neuropathic pain in females are different compared to males despite the fact that both sexes develop neuropathy of similar magnitude and duration following chronic constriction injury (CCI) of the sciatic nerve. Data suggest that the actions of peripheral T cells play a greater role in mediating neuropathy in females. The goal of the current study is to identify specificity of immune cell and cytokine changes between PAE and non-PAE neuropathic females by utilizing a well-characterized rodent model of sciatic nerve damage, in an effort to unmask unique signatures of immune-related factors underlying the risk of neuropathy from PAE. Cytokines typically associated with myeloid cell actions such as interleukin (IL)-1β, tumor necrosis factor (TNF), IL-6, IL-4 and IL-10 as well as the neutrophil chemoattractant CXCL1, are examined. In addition, transcription factors and cytokines associated with various differentiated T cell subtypes are examined (anti-inflammatory FOXP3, proinflammatory IL-17A, IL-21, ROR-γt, interferon (IFN)-γ and T-bet). Lymphocyte function associated antigen 1 (LFA-1) is an adhesion molecule expressed on peripheral immune cells including T cells, and regulates T cell activation and extravasation into inflamed tissue regions. A potential therapeutic approach was explored with the goal of controlling proinflammatory responses in neuroanatomical regions critical for CCI-induced allodynia by blocking LFA-1 actions using BIRT377. The data show profound development of hindpaw allodynia in adult non-PAE control females following standard CCI, but not following minor CCI, while minor CCI generated allodynia in PAE females. The data also show substantial increases in T cell-associated proinflammatory cytokine mRNA and proteins, along with evidence of augmented myeloid/glial activation (mRNA) and induction of myeloid/glial-related proinflammatory cytokines, CCL2, IL-1β and TNF in discrete regions along the pain pathway (damaged sciatic nerve, dorsal root ganglia; DRG, and spinal cord). Interestingly, the characteristic anti-inflammatory IL-10 protein response to nerve damage is blunted in neuropathic PAE females. Moreover, T cell profiles are predominantly proinflammatory in neuropathic Sac and PAE females, augmented levels of Th17-specific proinflammatory cytokines IL-17A and IL-21, as well as the Th1-specific factor, T-bet, are observed. Similarly, the expression of RORγt, a critical transcription factor for Th17 cells, is detected in the spinal cord of neuropathic females. Blocking peripheral LFA-1 actions with intravenous (i.v.) BIRT377 reverses allodynia in Sac and PAE rats, dampens myeloid (IL-1β, TNF, CXCL1)- and T cell-associated proinflammatory factors (IL-17A and RORγt) and spinal glial activation. Moreover, i.v. BIRT377 treatment reverses the blunted IL-10 response to CCI observed only in neuropathic PAE rats and elevates FOXP3 in pain-reversed Sac rats. Unexpectedly, intrathecal BIRT377 treatment is unable to alter allodynia in either Sac or PAE neuropathic females. Together, these data provide evidence that: 1) fully differentiated proinflammatory Th17 cells recruited at the sciatic nerve, DRGs and lumbar spinal cord may interact with the local environment to shape the immune responses underlying neuropathy in female rats, and, 2) PAE primes peripheral and spinal immune responses in adult females. PAE is a risk factor in females for developing peripheral neuropathy after minor nerve injury.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Joshua J. Sanchez
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, USA
| | - Melody S. Sun
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Zinia Pervin
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Jacob E. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Mara A. Havard
- Department of Anesthesiology and Critical Care, University of New Mexico, Albuquerque, NM, 8713,USA
| | - Lauren T. Epler
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, NM 87131-001, USA
| | - Monique V. Nysus
- Department of Radiopharmaceutical Sciences, College of Pharmacy, New Mexico Center for Isotopes in Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Jeffrey P. Norenberg
- Department of Radiopharmaceutical Sciences, College of Pharmacy, New Mexico Center for Isotopes in Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, College of Pharmacy, MN 55455, USA
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Jennifer L Wagner
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Daniel D. Savage
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| | - Lauren L. Jantzie
- Department of Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Nikolaos Mellios
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Erin. D. Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, 87131,USA
| |
Collapse
|
56
|
A transcriptional toolbox for exploring peripheral neuroimmune interactions. Pain 2020; 161:2089-2106. [DOI: 10.1097/j.pain.0000000000001914] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
|
57
|
Eckert WA, Wiener JJM, Cai H, Ameriks MK, Zhu J, Ngo K, Nguyen S, Fung-Leung WP, Thurmond RL, Grice C, Edwards JP, Chaplan SR, Karlsson L, Sun S. Selective inhibition of peripheral cathepsin S reverses tactile allodynia following peripheral nerve injury in mouse. Eur J Pharmacol 2020; 880:173171. [PMID: 32437743 DOI: 10.1016/j.ejphar.2020.173171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Cathepsin S (CatS) is a cysteine protease found in lysosomes of hematopoietic and microglial cells and in secreted form in the extracellular space. While CatS has been shown to contribute significantly to neuropathic pain, the precise mechanisms remain unclear. In this report, we describe JNJ-39641160, a novel non-covalent, potent, selective and orally-available CatS inhibitor that is peripherally restricted (non-CNS penetrant) and may represent an innovative class of immunosuppressive and analgesic compounds and tools useful toward investigating peripheral mechanisms of CatS in neuropathic pain. In C57BL/6 mice, JNJ-39641160 dose-dependently blocked the proteolysis of the invariant chain, and inhibited both T-cell activation and antibody production to a vaccine antigen. In the spared nerve injury (SNI) model of chronic neuropathic pain, in which T-cell activation has previously been demonstrated to be a prerequisite for the development of pain hypersensitivity, JNJ-39641160 fully reversed tactile allodynia in wild-type mice but was completely ineffective in the same model in CatS knockout mice (which exhibited a delayed onset in allodynia). By contrast, in the acute mild thermal injury (MTI) model, JNJ-39641160 only weakly attenuated allodynia at the highest dose tested. These findings support the hypothesis that blockade of peripheral CatS alone is sufficient to fully reverse allodynia following peripheral nerve injury and suggest that the mechanism of action likely involves interruption of T-cell activation and peripheral cytokine release. In addition, they provide important insights toward the development of selective CatS inhibitors for the treatment of neuropathic pain in humans.
Collapse
Affiliation(s)
- William A Eckert
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - John J M Wiener
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hui Cai
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael K Ameriks
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Jian Zhu
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Karen Ngo
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Steven Nguyen
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Wai-Ping Fung-Leung
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Robin L Thurmond
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Cheryl Grice
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - James P Edwards
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Sandra R Chaplan
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Lars Karlsson
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Siquan Sun
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, USA
| |
Collapse
|
58
|
Madden JF, Davis OC, Boyle KA, Iredale JA, Browne TJ, Callister RJ, Smith DW, Jobling P, Hughes DI, Graham BA. Functional and Molecular Analysis of Proprioceptive Sensory Neuron Excitability in Mice. Front Mol Neurosci 2020; 13:36. [PMID: 32477061 PMCID: PMC7232575 DOI: 10.3389/fnmol.2020.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Neurons located in dorsal root ganglia (DRG) are crucial for transmitting peripheral sensations such as proprioception, touch, temperature, and nociception to the spinal cord before propagating these signals to higher brain structures. To date, difficulty in identifying modality-specific DRG neurons has limited our ability to study specific populations in detail. As the calcium-binding protein parvalbumin (PV) is a neurochemical marker for proprioceptive DRG cells we used a transgenic mouse line expressing green fluorescent protein (GFP) in PV positive DRGs, to study the functional and molecular properties of putative proprioceptive neurons. Immunolabeled DRGs showed a 100% overlap between GFP positive (GFP+) and PV positive cells, confirming the PVeGFP mouse accurately labeled PV neurons. Targeted patch-clamp recording from isolated GFP+ and GFP negative (GFP−) neurons showed the passive membrane properties of the two groups were similar, however, their active properties differed markedly. All GFP+ neurons fired a single spike in response to sustained current injection and their action potentials (APs) had faster rise times, lower thresholds and shorter half widths. A hyperpolarization-activated current (Ih) was observed in all GFP+ neurons but was infrequently noted in the GFP− population (100% vs. 11%). For GFP+ neurons, Ih activation rates varied markedly, suggesting differences in the underlying hyperpolarization-activated cyclic nucleotide-gated channel (HCN) subunit expression responsible for the current kinetics. Furthermore, quantitative polymerase chain reaction (qPCR) showed the HCN subunits 2, 1, and 4 mRNA (in that order) was more abundant in GFP+ neurons, while HCN 3 was more highly expressed in GFP− neurons. Likewise, immunolabeling confirmed HCN 1, 2, and 4 protein expression in GFP+ neurons. In summary, certain functional properties of GFP+ and GFP− cells differ markedly, providing evidence for modality-specific signaling between the two groups. However, the GFP+ DRG population demonstrates considerable internal heterogeneity when hyperpolarization-activated cyclic nucleotide-gated channel (HCN channel) properties and subunit expression are considered. We propose this heterogeneity reflects the existence of different peripheral receptors such as tendon organs, muscle spindles or mechanoreceptors in the putative proprioceptive neuron population.
Collapse
Affiliation(s)
- Jessica F Madden
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Olivia C Davis
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacqueline A Iredale
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Douglas W Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
59
|
Pain-related behaviors associated with persistence of mechanical hyperalgesia after antigen-induced arthritis in rats. Pain 2020; 161:1571-1583. [DOI: 10.1097/j.pain.0000000000001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
60
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
61
|
Alam U, Sloan G, Tesfaye S. Treating Pain in Diabetic Neuropathy: Current and Developmental Drugs. Drugs 2020; 80:363-384. [DOI: 10.1007/s40265-020-01259-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
62
|
Granulocyte-Macrophage Colony Stimulating Factor As an Indirect Mediator of Nociceptor Activation and Pain. J Neurosci 2020; 40:2189-2199. [PMID: 32019828 DOI: 10.1523/jneurosci.2268-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The interaction between the immune system and the nervous system has been at the center of multiple research studies in recent years. Whereas the role played by cytokines as neuronal mediators is no longer contested, the mechanisms by which cytokines modulate pain processing remain to be elucidated. In this study, we have analyzed the involvement of granulocyte-macrophage colony stimulating factor (GM-CSF) in nociceptor activation in male and female mice. Previous studies have suggested GM-CSF might directly activate neurons. However, here we established the absence of a functional GM-CSF receptor in murine nociceptors, and suggest an indirect mechanism of action, via immune cells. We report that GM-CSF applied directly to magnetically purified nociceptors does not induce any transcriptional changes in nociceptive genes. In contrast, conditioned medium from GM-CSF-treated murine macrophages was able to drive nociceptor transcription. We also found that conditioned medium from nociceptors treated with the well established pain mediator, nerve growth factor, could also modify macrophage gene transcription, providing further evidence for a bidirectional crosstalk.SIGNIFICANCE STATEMENT The interaction of the immune system and the nervous system is known to play an important role in the development and maintenance of chronic pain disorders. Elucidating the mechanisms of these interactions is an important step toward understanding, and therefore treating, chronic pain disorders. This study provides evidence for a two-way crosstalk between macrophages and nociceptors in the peripheral nervous system, which may contribute to the sensitization of nociceptors by cytokines in pain development.
Collapse
|
63
|
Royds J, Conroy MJ, Dunne MR, McCrory C, Lysaght J. An investigation into the modulation of T cell phenotypes by amitriptyline and nortriptyline. Eur Neuropsychopharmacol 2020; 31:131-144. [PMID: 31882254 DOI: 10.1016/j.euroneuro.2019.12.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/21/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
Amitriptyline is prescribed for treating the symptoms of neuroinflammatory disorders including neuropathic pain and fibromyalgia. As amitriptyline has evidence of modulating the neuroimmune interface; the effects of amitriptyline treatment on T-cell phenotype and function were examined in vitro. Peripheral blood mononuclear cells(PBMCs) were isolated and treated with amitriptyline, nortriptyline and a combination of both drugs. Toxicity for T-cells was assessed by Annexin V/Propidium Iodide staining. Activation status and cytokine expression by T-cells post treatment was assessed by flow cytometry. The levels of secreted cytokines, chemokines and neurotrophins were measured by ELISA in the supernatants. There was no significant increase in T-cell death following 24 or 48 h compared to controls. There were significantly lower frequencies of CD8+ T-cells after treatment with amitriptyline, nortriptyline and a combination of both compared to a Vehicle Control(VC)(p<0.001). The frequencies of naive CD8+CD45RA+ cells were significantly lower after amitriptyline, nortriptyline and a combination of both (p<0001). The frequencies of CD27+CD4+(p<0.05) and CD27+CD8+(p<0.01) T-cells were also significantly lower following combination drug treatment. Significantly lower frequencies of IFN-γ-producing CD8+ T-cells were observed with all treatment combinations(p<0.05) and frequencies of IL-17-producing CD4+ and CD8+ T-cells were significantly lower following amitriptyline treatment (p<0.05). Frequencies of Natural Killer T-cells were significantly higher following treatment with nortriptyline (p<0.05). Significantly higher levels of IL-16 (p<0.001) and lower levels of TNF-β (p<0.05) were observed in supernatants. This data indicates that both amitriptyline and nortriptyline modulate the phenotype and function of T-cells and this may have clinical relevance in the pathologies of its off-label applications.
Collapse
Affiliation(s)
- Jonathan Royds
- Department of Pain Medicine, St James's Hospital, Dublin 8, Ireland.
| | - Melissa J Conroy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| | - Connail McCrory
- Department of Pain Medicine, St James's Hospital, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital and Trinity College Dublin, Dublin 8, Ireland
| |
Collapse
|
64
|
Fonseca MM, Davoli-Ferreira M, Santa-Cecília F, Guimarães RM, Oliveira FFB, Kusuda R, Ferreira DW, Alves-Filho JC, Cunha FQ, Cunha TM. IL-27 Counteracts Neuropathic Pain Development Through Induction of IL-10. Front Immunol 2020; 10:3059. [PMID: 32047492 PMCID: PMC6997342 DOI: 10.3389/fimmu.2019.03059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroimmune–glia interactions have been implicated in the development of neuropathic pain. Interleukin-27 (IL-27) is a cytokine that presents regulatory activity in inflammatory conditions of the central nervous system. Thus, we hypothesized that IL-27 would participate in the neuropathic pain process. Here, we found that neuropathic pain caused by peripheral nerve injury (spared nerve injury model; SNI), was enhanced in IL-27-deficient(−/−) mice, whereas nociceptive pain is similar to that of wild-type mice. SNI induced an increase in the expression of IL-27 and its receptor subunit (Wsx1) in the sensory ganglia and spinal cord. IL-27 receptor was expressed mainly in resident macrophage, microglia, and astrocytes of the sensory ganglia and spinal cord, respectively. Finally, we identify that the antinociceptive effect of IL-27 was not observed in IL-10−/− mice. These results provided evidence that IL-27 is a cytokine produced after peripheral nerve injury that counteracts neuropathic pain development through induction of the antinociceptive cytokine IL-10. In summary, our study unraveled the role of IL-27 as a regulatory cytokine that counteracts the development of neuropathic pain after peripheral nerve damage. In conclusion, they indicate that immunotherapies based on IL-27 could emerge as possible therapeutic approaches for the prevention of neuropathic pain development after peripheral nerve injury.
Collapse
Affiliation(s)
- Miriam M Fonseca
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Marcela Davoli-Ferreira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Flávia Santa-Cecília
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Rafaela M Guimarães
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Francisco F B Oliveira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - David W Ferreira
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
65
|
Ding YQ, Luo H, Qi JG. MHCII-restricted T helper cells: an emerging trigger for chronic tactile allodynia after nerve injuries. J Neuroinflammation 2020; 17:3. [PMID: 31900220 PMCID: PMC6942353 DOI: 10.1186/s12974-019-1684-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 02/08/2023] Open
Abstract
Nerve injury-induced chronic pain has been an urgent problem for both public health and clinical practice. While transition to chronic pain is not an inevitable consequence of nerve injuries, the susceptibility/resilience factors and mechanisms for chronic neuropathic pain after nerve injuries still remain unknown. Current preclinical and clinical studies, with certain notable limitations, have shown that major histocompatibility complex class II–restricted T helper (Th) cells is an important trigger for nerve injury-induced chronic tactile allodynia, one of the most prevalent and intractable clinical symptoms of neuropathic pain. Moreover, the precise pathogenic neuroimmune interfaces for Th cells remain controversial, not to mention the detailed pathogenic mechanisms. In this review, depending on the biology of Th cells in a neuroimmunological perspective, we summarize what is currently known about Th cells as a trigger for chronic tactile allodynia after nerve injuries, with a focus on identifying what inconsistencies are evident. Then, we discuss how an interdisciplinary perspective would improve the understanding of Th cells as a trigger for chronic tactile allodynia after nerve injuries. Finally, we hope that the expected new findings in the near future would translate into new therapeutic strategies via targeting Th cells in the context of precision medicine to either prevent or reverse chronic neuropathic tactile allodynia.
Collapse
Affiliation(s)
- You-Quan Ding
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Guo Qi
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No 17, Section 3, South Ren-min road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
66
|
Use of fluoroscopic-guided transsacral block for the treatment of iatrogenic post-injection sciatic neuropathy: Report of three cases. Turk J Phys Med Rehabil 2020; 65:406-410. [PMID: 31893279 DOI: 10.5606/tftrd.2019.3077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Post-injection sciatic neuropathy (PISN) from an inadvertent intramuscular injection in the gluteal region is a type of iatrogenic sciatic nerve injury. Patients with neuropathic pain following PISN frequently experience disability leading to restrictions in daily activities and pain, which may be resistant to conventional treatments and physiotherapy in some cases. To date, minimal invasive procedures for neuropathic pain have been performed with various medications at the site of lesion. Herein, we report three adult male cases with PISN-associated neu- ropathic pain who were resistant to conservative management and were treated with fluoroscopy-guided transsacral block.
Collapse
|
67
|
Vieira WF, de Magalhães SF, Farias FH, de Thomaz AA, Parada CA. Raman spectroscopy of dorsal root ganglia from streptozotocin-induced diabetic neuropathic rats submitted to photobiomodulation therapy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900135. [PMID: 31265175 DOI: 10.1002/jbio.201900135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, we used Raman spectroscopy as a new tool to investigate pathological conditions at the level of chemical bond alterations in biological tissues. Currently, there have been no reports on the spectroscopic alterations caused by diabetic neuropathy in the dorsal root ganglia (DRG). DRG are a target for the treatment of neuropathic pain, and the need for more effective therapies is increasing. Photobiomodulation therapy (PBMT) through infrared low-level laser irradiation (904 nm) has shown analgesic effects on the treatment of neuropathy. Thus, the aim of this study was to use Raman spectroscopy to characterize the spectral DRG identities of streptozotocin (STZ)-induced diabetic neuropathic (hyperalgesic) rats and to study the influence of PBMT over such spectra. Characteristic DRG peaks were identified at 2704, 2850, 2885, 2940, 3061 and 3160 cm-1 , whose assignments are CH2 /CH3 symmetric/asymmetric stretches, and C─H vibrations of lipids and proteins. DRG from hyperalgesic rats showed an increased normalized intensity of 2704, 2850, 2885 and 3160 cm-1 . These same peaks had their normalized intensity reduced after PBMT treatment, accompanied by an anti-hyperalgesic effect. Raman spectroscopy was able to diagnose spectral alterations in DRG of hyperalgesic rats and the PBMT reduced the intensity of hyperalgesia and the altered Raman spectra.
Collapse
Affiliation(s)
- Willians F Vieira
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Silviane F de Magalhães
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe H Farias
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - André A de Thomaz
- Department of Quantum Electronics, Institute of Physics Gleb Wataghin, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos A Parada
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
68
|
Hsu HC, Hsieh CL, Wu SY, Lin YW. Toll-like receptor 2 plays an essential role in electroacupuncture analgesia in a mouse model of inflammatory pain. Acupunct Med 2019; 37:356-364. [PMID: 31517506 DOI: 10.1136/acupmed-2017-011469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Inflammatory pain occurs when local tissue injury activates macrophages and neutrophils, hence increasing pro-inflammatory cytokine and chemokine levels. Toll-like receptor 2 (TLR2) antagonism reportedly suppresses neuropathic and inflammatory pain. AIMS In the present study, we investigated the effect of electroacupuncture (EA) on TLR2 and related signalling molecules in a complete Freund's adjuvant (CFA)-induced mouse model of inflammatory pain to determine whether EA can attenuate inflammatory pain via the TLR2 signalling pathway. METHODS EA significantly reduced mechanical and thermal hyperalgesia in the animal model. A similar effect was produced by TLR2 antagonism induced by CU-CPT22 injection. RESULTS TLR2 expression in the dorsal root ganglia, spinal cord and thalamus increased following induction of inflammation. Expression levels of downstream molecules such as pPI3K, pAkt and pmTOR also increased, as did those of MAPK subfamily members such as pERK, pp38 and pJNK. Transcription factors (pCREB and pNFκB) and nociceptive ion channels (Nav1.7 and Nav1.8) were also involved. CONCLUSION Increased expression of the above molecules was attenuated by both EA and TLR2 antagonism. Our results show that EA attenuates inflammatory pain via TLR2 signalling.
Collapse
Affiliation(s)
- Hsin-Cheng Hsu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-Yih Wu
- Department of Rehabilitation Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, Taiwan
| |
Collapse
|
69
|
Laumet G, Ma J, Robison AJ, Kumari S, Heijnen CJ, Kavelaars A. T Cells as an Emerging Target for Chronic Pain Therapy. Front Mol Neurosci 2019; 12:216. [PMID: 31572125 PMCID: PMC6749081 DOI: 10.3389/fnmol.2019.00216] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
The immune system is critically involved in the development and maintenance of chronic pain. However, T cells, one of the main regulators of the immune response, have only recently become a focus of investigations on chronic pain pathophysiology. Emerging clinical data suggest that patients with chronic pain have a different phenotypic profile of circulating T cells compared to controls. At the preclinical level, findings on the function of T cells are mixed and differ between nerve injury, chemotherapy, and inflammatory models of persistent pain. Depending on the type of injury, the subset of T cells and the sex of the animal, T cells may contribute to the onset and/or the resolution of pain, underlining T cells as a major player in the transition from acute to chronic pain. Specific T cell subsets release mediators such as cytokines and endogenous opioid peptides that can promote, suppress, or even resolve pain. Inhibiting the pain-promoting functions of T cells and/or enhancing the beneficial effects of pro-resolution T cells may offer new disease-modifying strategies for the treatment of chronic pain, a critical need in view of the current opioid crisis.
Collapse
Affiliation(s)
- Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States.,Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jiacheng Ma
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Susmita Kumari
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
70
|
Noor S, Sun MS, Vanderwall AG, Havard MA, Sanchez JE, Harris NW, Nysus MV, Norenberg JP, West HT, Wagner CR, Jantzie LL, Mellios N, Milligan ED. LFA-1 antagonist (BIRT377) similarly reverses peripheral neuropathic pain in male and female mice with underlying sex divergent peripheral immune proinflammatory phenotypes. ACTA ACUST UNITED AC 2019; 6. [PMID: 31763376 PMCID: PMC6873931 DOI: 10.20517/2347-8659.2019.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aim: The majority of preclinical studies investigating aberrant glial-neuroimmune actions underlying neuropathic pain have focused on male rodent models. Recently, studies have shown peripheral immune cells play a more prominent role than glial cells in mediating pathological pain in females. Here, we compared the onset and duration of allodynia in males and females, and the anti-allodynic action of a potentially novel therapeutic drug (BIRT377) that not only antagonizes the action of lymphocyte function-associated antigen-1 (LFA-1) to reduce cell migration in the periphery, but may also directly alter the cellular inflammatory bias. Methods: Male and female mice were subjected to peripheral nerve injury chronic constriction injury (CCI) applying two methods, using either 4–0 or 5–0 chromic gut suture material, to examine potential sex differences in the onset, magnitude and duration of allodynia. Hindpaw sensitivity before and after CCI and application of intravenous BIRT377 was assessed. Peripheral and spinal tissues were analyzed for protein (multiplex electrochemiluminescence technology) and mRNA expression (quantitative real-time PCR). The phenotype of peripheral T cells was determined using flow cytometry. Results: Sex differences in proinflammatory CCL2 and IL-1β and the anti-inflammatory IL-10 were observed from a set of cytokines analyzed. A profound proinflammatory T cell (Th17) response in the periphery and spinal cord was also observed in neuropathic females. BIRT377 reversed pain, reduced IL-1β and TNF, and increased IL-10 and transforming growth factor (TGF)-β1, also an anti-inflammatory cytokine, in both sexes. However, female-derived T cell cytokines are transcriptionally regulated by BIRT377, as demonstrated by reducing proinflammatory IL-17A production with concurrent increases in IL-10, TGF-β1 and the anti-inflammatory regulatory T cell-related factor, FOXP3. Conclusion: This study supports that divergent peripheral immune and neuroimmune responses during neuropathy exists between males and females. Moreover, the modulatory actions of BIRT377 on T cells during neuropathy are predominantly specific to females. These data highlight the necessity of including both sexes for studying drug efficacy and mechanisms of action in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Melody S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Arden G Vanderwall
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Anesthesiology and Critical Care, University of New Mexico, Albuquerque, NM 87131, USA
| | - Mara A Havard
- Department of Anesthesiology and Critical Care, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jacob E Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nathan W Harris
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Monique V Nysus
- Department of Radiopharmaceutical Sciences, College of Pharmacy, New Mexico Center for Isotopes in Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jeffrey P Norenberg
- Department of Radiopharmaceutical Sciences, College of Pharmacy, New Mexico Center for Isotopes in Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Harrison T West
- Department of Medicinal Chemistry, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, USA
| | - Carsten R Wagner
- Department of Medicinal Chemistry, University of Minnesota, College of Pharmacy, Minneapolis, MN 55455, USA
| | - Lauren L Jantzie
- Department of Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Nikolaos Mellios
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Erin D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
71
|
Saleem M, Deal B, Nehl E, Janjic JM, Pollock JA. Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation. Acta Neuropathol Commun 2019; 7:108. [PMID: 31277709 PMCID: PMC6612172 DOI: 10.1186/s40478-019-0762-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve, by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 h, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day-12 post-surgery), and when pain-like hypersensitivity returns (day-18 post-surgery). At day-12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day-12 and day-18. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day-18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)-the drug target-and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day-12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day-18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain-resulting in long-lasting pain relief--whilst revealing novel immune pathology at the injured nerve and associated DRG.
Collapse
Affiliation(s)
- Muzamil Saleem
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Brooke Deal
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Emily Nehl
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY USA
| | - Jelena M. Janjic
- Graduate School of Pharmacy, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - John A. Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| |
Collapse
|
72
|
Hore Z, Denk F. Neuroimmune interactions in chronic pain - An interdisciplinary perspective. Brain Behav Immun 2019; 79:56-62. [PMID: 31029795 DOI: 10.1016/j.bbi.2019.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that communication between the nervous and immune systems is involved in the development of chronic pain. At each level of the nervous system, immune cells have been reported to accompany and frequently mediate dysfunction of nociceptive circuitry; however the exact mechanisms are not fully understood. One way to speed up progress in this area is to increase interdisciplinary cross-talk. This review sets out to summarize what pain research has already learnt, or indeed might still learn, from examining peripheral and central nociceptive mechanisms using tools and perspectives from other fields like immunology, inflammation biology or the study of stress.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
73
|
Caroleo MC, Brizzi A, De Rosa M, Pandey A, Gallelli L, Badolato M, Carullo G, Cione E. Targeting Neuropathic Pain: Pathobiology, Current Treatment and Peptidomimetics as a New Therapeutic Opportunity. Curr Med Chem 2019; 27:1469-1500. [PMID: 31142248 DOI: 10.2174/0929867326666190530121133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a huge need for pharmaceutical agents for the treatment of chronic Neuropathic Pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by Substance P (SP) cleavage, has been extensively investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several Structure-Affinity Relationship (SAR) studies on SP1-7 and some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7-related amides that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Polo Scientifico San Miniato, Via A. Moro 2, 53100 Siena, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Ankur Pandey
- Department of Chemistry and Center of Advanced Studies in Chemistry, Punjab University, Chandigarh, India
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Mariateresa Badolato
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| |
Collapse
|
74
|
Cobos EJ, Nickerson CA, Gao F, Chandran V, Bravo-Caparrós I, González-Cano R, Riva P, Andrews NA, Latremoliere A, Seehus CR, Perazzoli G, Nieto FR, Joller N, Painter MW, Ma CHE, Omura T, Chesler EJ, Geschwind DH, Coppola G, Rangachari M, Woolf CJ, Costigan M. Mechanistic Differences in Neuropathic Pain Modalities Revealed by Correlating Behavior with Global Expression Profiling. Cell Rep 2019; 22:1301-1312. [PMID: 29386116 PMCID: PMC5908229 DOI: 10.1016/j.celrep.2018.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/23/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Chronic neuropathic pain is a major morbidity of neural injury, yet its mechanisms are incompletely understood. Hypersensitivity to previously non-noxious stimuli (allodynia) is a common symptom. Here, we demonstrate that the onset of cold hypersensitivity precedes tactile allodynia in a model of partial nerve injury, and this temporal divergence was associated with major differences in global gene expression in innervating dorsal root ganglia. Transcripts whose expression change correlates with the onset of cold allodynia were nociceptor related, whereas those correlating with tactile hypersensitivity were immune cell centric. Ablation of TrpV1 lineage nociceptors resulted in mice that did not acquire cold allodynia but developed normal tactile hypersensitivity, whereas depletion of macrophages or T cells reduced neuropathic tactile allodynia but not cold hypersensitivity. We conclude that neuropathic pain incorporates reactive processes of sensory neurons and immune cells, each leading to distinct forms of hypersensitivity, potentially allowing drug development targeted to each pain type.
Collapse
Affiliation(s)
- Enrique J Cobos
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Chelsea A Nickerson
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Fuying Gao
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vijayendran Chandran
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, School of Medicine, University of Florida, Gainesville, FL 32610-0296, USA
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain
| | - Rafael González-Cano
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla Riva
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Corey R Seehus
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gloria Perazzoli
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain; Department of Anatomy and Embryology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Francisco R Nieto
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine and Biomedical Research Center, University of Granada, 18071 Granada, Spain; Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Nicole Joller
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michio W Painter
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chi Him Eddie Ma
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Takao Omura
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Elissa J Chesler
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Rangachari
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Costigan
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Anesthesia, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
75
|
Saika F, Kiguchi N, Matsuzaki S, Kobayashi D, Kishioka S. Inflammatory Macrophages in the Sciatic Nerves Facilitate Neuropathic Pain Associated with Type 2 Diabetes Mellitus. J Pharmacol Exp Ther 2019; 368:535-544. [PMID: 30602591 DOI: 10.1124/jpet.118.252668] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the requirement for effective medication against neuropathic pain associated with type 2 diabetes mellitus (T2DM), mechanism-based pharmacotherapy has yet to be established. Given that long-lasting neuroinflammation, driven by inflammatory macrophages in the peripheral nerves, plays a pivotal role in intractable pain, it is important to determine whether inflammatory macrophages contribute to neuropathic pain associated with T2DM. To generate an experimental model of T2DM, C57BL/6J mice were fed a high-fat diet (HFD) ad libitum. Compared with control diet feeding, obesity and hyperglycemia were observed after HFD feeding, and the mechanical pain threshold evaluated using the von Frey test was found to be decreased, indicating the development of mechanical allodynia. The expression of mRNA markers for macrophages, inflammatory cytokines, and chemokines were significantly upregulated in the sciatic nerve (SCN) after HFD feeding. Perineural administration of saporin-conjugated anti-Mac1 antibody (Mac1-Sap) improved HFD-induced mechanical allodynia. Moreover, treatment of Mac1-Sap decreased the accumulation of F4/80+ macrophages and the upregulation of inflammatory mediators in the SCN after HFD feeding. Inoculation of lipopolysaccharide-activated peritoneal macrophages in tissue surrounding the SCN elicited mechanical allodynia. Furthermore, pharmacological inhibition of inflammatory macrophages by either perineural or systemic administration of TC-2559 [4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine difumarate], a α4β2 nicotinic acetylcholine receptor-selective agonist, relieved HFD-induced mechanical allodynia. Taken together, inflammatory macrophages that accumulate in the SCN mediate the pathophysiology of neuropathic pain associated with T2DM. Inhibitory agents for macrophage-driven neuroinflammation could be potential candidates for novel pharmacotherapy against intractable neuropathic pain.
Collapse
Affiliation(s)
- Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
76
|
Mortimer TL, Mabin T, Engelbrecht AM. Cannabinoids: the lows and the highs of chemotherapy-induced nausea and vomiting. Future Oncol 2019; 15:1035-1049. [PMID: 30720344 DOI: 10.2217/fon-2018-0530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite remaining one of the most widely abused drugs worldwide, Cannabis sativa exhibits remarkable medicinal properties. The phytocannabinoids, cannabidiol and Δ-9-tetrahydrocannabinol, reduce nausea and vomiting, particularly during chemotherapy. This is attributed to their ability to reduce the release of serotonin from enterochromaffin cells in the small intestine, which would otherwise orchestrate the vomiting reflex. Although there are many preclinical and clinical studies on the effects of Δ-9-tetrahydrocannabinol during nausea and vomiting, little is known about the role that cannabidiol plays in this scenario. Since cannabidiol does not induce psychotropic effects, in contrast to other cannabinoids, its use as an anti-emetic is of great interest. This review aims to summarize the available literature on cannabinoid use, with a specific focus on the nonpsychotropic drug cannabidiol, as well as the roles that cannabinoids play in preventing several other adverse side effects of chemotherapy including organ toxicity, pain and loss of appetite.
Collapse
Affiliation(s)
- Toni Leigh Mortimer
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Tom Mabin
- Department of Medicine, Division of Cardiology, University of Cape Town, Observatory, 7925, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
77
|
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2018; 173:102-121. [PMID: 30579784 DOI: 10.1016/j.pneurobio.2018.12.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Neuroinflammation has positive and negative effects. This review focuses on the roles of macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident and infiltrating macrophages are found. Macrophages enter these areas in response to expression of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, macrophages and other phagocytes are involved in clearance of axonal debris, which removes molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the conditioning lesion response, a process in which neurons increase their regeneration after a prior lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in different phenotypes depending on their environment. These phenotypes have different effects on axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to macrophage accumulation in the ganglia and to an increase in the growth potential of DRG neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. The molecular mechanisms that trigger macrophage action after trauma and in autoimmune disease are receiving increased attention and should lead to avenues to promote regeneration and protect axonal integrity.
Collapse
Affiliation(s)
- Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA.
| | - Franklin D Echevarria
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA
| |
Collapse
|
78
|
Tampin B, Vollert J, Schmid AB. Sensory profiles are comparable in patients with distal and proximal entrapment neuropathies, while the pain experience differs. Curr Med Res Opin 2018. [PMID: 29526115 DOI: 10.1080/03007995.2018.1451313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Distal and proximal entrapment neuropathies such as carpal tunnel syndrome (CTS) and cervical radiculopathy (CR) share similar etiologies. Experimental models suggest that, despite comparable etiology, pathomechanisms associated with injuries of the peripheral and central axon branches are distinct. This study therefore compared self-reported and elicited sensory profiles in patients with distal and proximal entrapment neuropathies. METHODS Patients with electrodiagnostically confirmed CTS (n = 103) and patients with CR (n = 23) were included in this study. A group of healthy participants served as controls (n = 39). Symptoms and sensory profiles were evaluated using quantitative sensory testing (QST) and a self-reported neuropathic pain questionnaire (painDETECT). RESULTS Both patient groups were characterized by a loss of function in thermal and mechanical detection in the main pain area and dermatome compared to healthy reference data (p < .001). There was no significant difference between patients with CTS and CR in pain and detection thresholds except for reduced vibration sense in the main pain area (p < .001) and reduced pressure pain sensitivity in the dermatome in patients with CR (p < .001). However, patients with CR reported higher pain intensities (p = .008), more severe pain attacks (p = .009) and evoked pain by light pressure (p = .002) compared to patients with CTS. CONCLUSION While QST profiles were similar between patients with CTS and CR, self-reported pain profiles differed and may suggest distinct underlying mechanisms in these patient cohorts.
Collapse
Affiliation(s)
- Brigitte Tampin
- a Department of Physiotherapy , Sir Charles Gairdner Hospital , Perth , Western Australia
- b Department of Neurosurgery , Sir Charles Gairdner Hospital , Perth , Western Australia
- c School of Physiotherapy and Exercise Science, Faculty of Health Sciences , Curtin University , Western Australia
- d Faculty of Business Management and Social Sciences , Hochschule Osnabrück, University of Applied Sciences , Osnabrück , Germany
| | - Jan Vollert
- e Department of Pain Medicine , BG University Hospital Bergmannsheil GmbH, Ruhr-University Bochum , Germany
- f Pain Research, Faculty of Medicine, Department of Surgery and Cancer , Imperial College London , UK
- g Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim , Heidelberg University , Germany
| | - Annina B Schmid
- h Nuffield Department of Clinical Neurosciences , Oxford University, Oxford , United Kingdom
| |
Collapse
|
79
|
Guha D, Shamji MF. The Dorsal Root Ganglion in the Pathogenesis of Chronic Neuropathic Pain. Neurosurgery 2018; 63 Suppl 1:118-126. [PMID: 27399376 DOI: 10.1227/neu.0000000000001255] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | - Mohammed F Shamji
- Department of Surgery and.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
80
|
Santa-Cecília FV, Ferreira DW, Guimaraes RM, Cecilio NT, Fonseca MM, Lopes AH, Davoli-Ferreira M, Kusuda R, Souza GR, Nachbur U, Alves-Filho JC, Teixeira MM, Zamboni DS, Cunha FQ, Cunha TM. The NOD2 signaling in peripheral macrophages contributes to neuropathic pain development. Pain 2018; 160:102-116. [DOI: 10.1097/j.pain.0000000000001383] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
81
|
Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, Lim J, Malik RA, Alam U. Diabetic Peripheral Neuropathy: Epidemiology, Diagnosis, and Pharmacotherapy. Clin Ther 2018; 40:828-849. [PMID: 29709457 DOI: 10.1016/j.clinthera.2018.04.001] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the commonest cause of neuropathy worldwide, and its prevalence increases with the duration of diabetes. It affects approximately half of patients with diabetes. DPN is symmetric and predominantly sensory, starting distally and gradually spreading proximally in a glove-and-stocking distribution. It causes substantial morbidity and is associated with increased mortality. The unrelenting nature of pain in this condition can negatively affect a patient's sleep, mood, and functionality and result in a poor quality of life. The purpose of this review was to critically review the current literature on the diagnosis and treatment of DPN, with a focus on the treatment of neuropathic pain in DPN. METHODS A comprehensive literature review was undertaken, incorporating article searches in electronic databases (EMBASE, PubMed, OVID) and reference lists of relevant articles with the authors' expertise in DPN. This review considers seminal and novel research in epidemiology; diagnosis, especially in relation to novel surrogate end points; and the treatment of neuropathic pain in DPN. We also consider potential new pharmacotherapies for painful DPN. FINDINGS DPN is often misdiagnosed and inadequately treated. Other than improving glycemic control, there is no licensed pathogenetic treatment for diabetic neuropathy. Management of painful DPN remains challenging due to difficulties in personalizing therapy and ascertaining the best dosing strategy, choice of initial pharmacotherapy, consideration of combination therapy, and deciding on defining treatment for poor analgesic responders. Duloxetine and pregabalin remain first-line therapy for neuropathic pain in DPN in all 5 of the major published guidelines by the American Association of Clinical Endocrinologists, American Academy of Neurology, European Federation of Neurological Societies, National Institute of Clinical Excellence (United Kingdom), and the American Diabetes Association, and their use has been approved by the US Food and Drug Administration. IMPLICATIONS Clinical recognition of DPN is imperative for allowing timely symptom management to reduce the morbidity associated with this condition.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Department of Endocrinology, Pennine Acute Hospitals NHS Trust, Greater Manchester, United Kingdom
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Rahul Yadav
- Department of Endocrinology, Warrington and Halton Hospitals NHS Foundation Trust, Warrington, United Kingdom
| | - Maryam Ferdousi
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom
| | - Mohit Kumar
- Department of Endocrinology, Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, United Kingdom
| | - Daniel J Cuthbertson
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Jonathan Lim
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Rayaz A Malik
- Institute of Cardiovascular Science, University of Manchester and the Manchester Royal Infirmary, Central Manchester Hospital Foundation Trust, Manchester, United Kingdom; Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Uazman Alam
- Diabetes and Endocrinology Research, Department of Eye and Vision Sciences and Pain Research Institute, Institute of Ageing and Chronic Disease, University of Liverpool and Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom; Department of Diabetes and Endocrinology, Royal Liverpool and Broadgreen University NHS Hospital Trust, Liverpool, United Kingdom; Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
82
|
Zhang P, Bi RY, Gan YH. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation 2018; 15:117. [PMID: 29678208 PMCID: PMC5910598 DOI: 10.1186/s12974-018-1154-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background The proinflammatory cytokine interleukin-1β (IL-1β) drives pain by inducing the expression of inflammatory mediators; however, its ability to regulate sodium channel 1.7 (Nav1.7), a key driver of temporomandibular joint (TMJ) hypernociception, remains unknown. IL-1β induces cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). We previously showed that PGE2 upregulated trigeminal ganglionic Nav1.7 expression. Satellite glial cells (SGCs) involve in inflammatory pain through glial cytokines. Therefore, we explored here in the trigeminal ganglion (TG) whether IL-1β upregulated Nav1.7 expression and whether the IL-1β located in the SGCs upregulated Nav1.7 expression in the neurons contributing to TMJ inflammatory hypernociception. Methods We treated rat TG explants with IL-1β with or without inhibitors, including NS398 for COX-2, PF-04418948 for EP2, and H89 and PKI-(6-22)-amide for protein kinase A (PKA), or with adenylate cyclase agonist forskolin, and used real-time PCR, Western blot, and immunohistofluorescence to determine the expressions or locations of Nav1.7, COX-2, cAMP response element-binding protein (CREB) phosphorylation, and IL-1β. We used chromatin immunoprecipitation to examine CREB binding to the Nav1.7 promoter. Finally, we microinjected IL-1β into the TGs or injected complete Freund’s adjuvant into TMJs with or without previous microinjection of fluorocitrate, an inhibitor of SGCs activation, into the TGs, and evaluated nociception and gene expressions. Differences between groups were examined by one-way analysis of variance (ANOVA) or independent samples t test. Results IL-1β upregulated Nav1.7 mRNA and protein expressions in the TG explants, whereas NS398, PF-04418948, H89, or PKI-(6-22)-amide could all block this upregulation, and forskolin could also upregulate Nav1.7 mRNA and protein expressions. IL-1β enhanced CREB binding to the Nav1.7 promoter. Microinjection of IL-1β into the TGs or TMJ inflammation both induced hypernociception of TMJ region and correspondingly upregulated COX-2, phospho-CREB, and Nav1.7 expressions in the TGs. Moreover, microinjection of fluorocitrate into the TGs completely blocked TMJ inflammation-induced activation of SGCs and the upregulation of IL-1β and COX-2 in the SGCs, and phospho-CREB and Nav1.7 in the neurons and alleviated inflammation-induced TMJ hypernociception. Conclusions Glial IL-1β upregulated neuronal Nav1.7 expression via the crosstalk between signaling pathways of the glial IL-1β/COX-2/PGE2 and the neuronal EP2/PKA/CREB/Nav1.7 in TG contributing to TMJ inflammatory hypernociception.
Collapse
Affiliation(s)
- Peng Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.,Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China
| | - Rui-Yun Bi
- The Third Dental Center, Peking University School and Hospital of Stomatology, 10 Huayuan Lu, Haidian District, Beijing, 100088, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China. .,Center for TMD & Orofacial Pain, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, China.
| |
Collapse
|
83
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation 2018; 15:96. [PMID: 29587798 PMCID: PMC5872578 DOI: 10.1186/s12974-018-1133-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Background Neuro–immune interaction underlies chronic neuroinflammation and aberrant sensory processing resulting in neuropathic pain. Despite the pathological significance of both neuroinflammation-driven peripheral sensitization and spinal sensitization, the functional relationship between these two distinct events has not been understood. Methods In this study, we determined whether inhibition of inflammatory macrophages by administration of α4β2 nicotinic acetylcholine receptor (nAChR) agonists improves neuropathic pain and affects microglial activation in the spinal dorsal horn (SDH) in mice following partial sciatic nerve ligation (PSL). Expression levels of neuroinflammatory molecules were evaluated by RT-qPCR and immunohistochemistry, and PSL-induced mechanical allodynia was defined by the von Frey test. Results Flow cytometry revealed that CD11b+ F4/80+ macrophages were accumulated in the injured sciatic nerve (SCN) after PSL. TC-2559, a full agonist for α4β2 nAChR, suppressed the upregulation of interleukin-1β (IL-1β) in the injured SCN after PSL and attenuated lipopolysaccharide-induced upregulation of IL-1β in cultured macrophages. Systemic (subcutaneous, s.c.) administration of TC-2559 during either the early (days 0–3) or middle/late (days 7–10) phase of PSL improved mechanical allodynia. Moreover, local (perineural, p.n.) administration of TC-2559 and sazetidine A, a partial agonist for α4β2 nAChR, during either the early or middle phase of PSL improved mechanical allodynia. However, p.n. administration of sazetidine A during the late (days 21–24) phase did not show the attenuating effect, whereas p.n. administration of TC-2559 during this phase relieved mechanical allodynia. Most importantly, p.n. administration of TC-2559 significantly suppressed morphological activation of Iba1+ microglia and decreased the upregulation of inflammatory microglia-dominant molecules, such as CD68, interferon regulatory factor 5, and IL-1β in the SDH after PSL. Conclusion These findings support the notion that pharmacological inhibition of inflammatory macrophages using an α4β2 nAChR agonist exhibit a wide therapeutic window on neuropathic pain after nerve injury, and it could be nominated as a novel pharmacotherapy to relieve intractable pain. Electronic supplementary material The online version of this article (10.1186/s12974-018-1133-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, 811-1 Kimiidera, Wakayama city, Wakayama, 641-0012, Japan
| |
Collapse
|
84
|
CD4+ αβ T cell infiltration into the leptomeninges of lumbar dorsal roots contributes to the transition from acute to chronic mechanical allodynia after adult rat tibial nerve injuries. J Neuroinflammation 2018; 15:81. [PMID: 29544518 PMCID: PMC5855984 DOI: 10.1186/s12974-018-1115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Background Antigen-specific and MHCII-restricted CD4+ αβ T cells have been shown or suggested to play an important role in the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. However, it is still largely unknown where these T cells infiltrate along the somatosensory pathways transmitting mechanical allodynia to initiate the development of chronic mechanical allodynia after nerve injuries. Therefore, the purpose of this study was to ascertain the definite neuroimmune interface for these T cells to initiate the development of chronic mechanical allodynia after peripheral nerve injuries. Methods First, we utilized both chromogenic and fluorescent immunohistochemistry (IHC) to map αβ T cells along the somatosensory pathways for the transmission of mechanical allodynia after modified spared nerve injuries (mSNIs), i.e., tibial nerve injuries, in adult male Sprague-Dawley rats. We further characterized the molecular identity of these αβ T cells selectively infiltrating into the leptomeninges of L4 dorsal roots (DRs). Second, we identified the specific origins in lumbar lymph nodes (LLNs) for CD4+ αβ T cells selectively present in the leptomeninges of L4 DRs by two experiments: (1) chromogenic IHC in these lymph nodes for CD4+ αβ T cell responses after mSNIs and (2) fluorescent IHC for temporal dynamics of CD4+ αβ T cell infiltration into the L4 DR leptomeninges after mSNIs in prior lymphadenectomized or sham-operated animals to LLNs. Finally, following mSNIs, we evaluated the effects of region-specific targeting of these T cells through prior lymphadenectomy to LLNs and chronic intrathecal application of the suppressive anti-αβTCR antibodies on the development of mechanical allodynia by von Frey hair test and spinal glial or neuronal activation by fluorescent IHC. Results Our results showed that during the sub-acute phase after mSNIs, αβ T cells selectively infiltrate into the leptomeninges of the lumbar DRs along the somatosensory pathways responsible for transmitting mechanical allodynia. Almost all these αβ T cells are CD4 positive. Moreover, the temporal dynamics of CD4+ αβ T cell infiltration into the lumbar DR leptomeninges are specifically determined by LLNs after mSNIs. Prior lymphadenectomy to LLNs specifically reduces the development of mSNI-induced chronic mechanical allodynia. More importantly, intrathecal application of the suppressive anti-αβTCR antibodies reduces the development of mSNI-induced chronic mechanical allodynia. In addition, prior lymphadenectomy to LLNs attenuates mSNI-induced spinal activation of glial cells and PKCγ+ excitatory interneurons. Conclusions The noteworthy results here provide the first evidence that CD4+ αβ T cells selectively infiltrate into the DR leptomeninges of the somatosensory pathways transmitting mechanical allodynia and contribute to the transition from acute to chronic mechanical allodynia after peripheral nerve injuries. Electronic supplementary material The online version of this article (10.1186/s12974-018-1115-7) contains supplementary material, which is available to authorized users.
Collapse
|
85
|
Ibrahim A, Aly M, Farrag W. Effect of intravenous lidocaine infusion on long-term postoperative pain after spinal fusion surgery. Medicine (Baltimore) 2018; 97:e0229. [PMID: 29595671 PMCID: PMC5895437 DOI: 10.1097/md.0000000000010229] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/05/2018] [Accepted: 03/01/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Intravenous lidocaine infusion is known to reduce postoperative pain for days or weeks beyond the infusion time, and plasma half-life in several types of surgical procedures. OBJECTIVES To evaluate the effect of intravenous (IV) lidocaine infusion on long term postoperative pain intensity for 3 months in patients undergoing spinal fusion surgery. STUDY DESIGN Prospective randomized, double-blinded study. SETTING Assiut University Hospital, Assiut, Egypt. METHODS Forty patients undergoing spinal fusion surgery were randomized into 2 equal groups (n = 20 in each). Patients in the lidocaine group received IV lidocaine at a dosage of 2.0 mg/kg slowly before induction of anesthesia, followed by lidocaine IV infusion at a rate of 3.0 mg/kg/h until the end of surgery. Patients in the control group received an equal volume of normal saline. The following data were assessed: pain by Visual Analog Score (VAS) at 1 hour, 6 hours, 12 hours, 24 hours, 48 hours, at discharge time, and at 1 month, 2 months, and 3 months post-operation, time to first request for additional analgesia, and total morphine consumption in 24 hours. RESULTS Lidocaine significantly reduced the postoperative pain score (VAS) for up to 3 months (P < .05), and significantly reduced morphine consumption (4.5 mg vs. 19.85 mg) in the 1st 24 hours postoperative. Lidocaine also significantly, prolonged (P < .05) the time to first request for additional analgesia (9.56 ± 2.06 hours vs 1.82 ± 0.91 hours). CONCLUSION Intra-operative lidocaine, when given intravenously as a bolus followed by an infusion, significantly decreased long term postoperative back pain intensity in patients undergoing spinal fusion surgery.
Collapse
|
86
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|
87
|
Eitner A, Hofmann GO, Schaible HG. Mechanisms of Osteoarthritic Pain. Studies in Humans and Experimental Models. Front Mol Neurosci 2017; 10:349. [PMID: 29163027 PMCID: PMC5675866 DOI: 10.3389/fnmol.2017.00349] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022] Open
Abstract
Pain due to osteoarthritis (OA) is one of the most frequent causes of chronic pain. However, the mechanisms of OA pain are poorly understood. This review addresses the mechanisms which are thought to be involved in OA pain, derived from studies on pain mechanisms in humans and in experimental models of OA. Three areas will be considered, namely local processes in the joint associated with OA pain, neuronal mechanisms involved in OA pain, and general factors which influence OA pain. Except the cartilage all structures of the joints are innervated by nociceptors. Although the hallmark of OA is the degradation of the cartilage, OA joints show multiple structural alterations of cartilage, bone and synovial tissue. In particular synovitis and bone marrow lesions have been proposed to determine OA pain whereas the contribution of the other pathologies to pain generation has been studied less. Concerning the peripheral neuronal mechanisms of OA pain, peripheral nociceptive sensitization was shown, and neuropathic mechanisms may be involved at some stages. Structural changes of joint innervation such as local loss and/or sprouting of nerve fibers were shown. In addition, central sensitization, reduction of descending inhibition, descending excitation and cortical atrophies were observed in OA. The combination of different neuronal mechanisms may define the particular pain phenotype in an OA patient. Among mediators involved in OA pain, nerve growth factor (NGF) is in the focus because antibodies against NGF significantly reduce OA pain. Several studies show that neutralization of interleukin-1β and TNF may reduce OA pain. Many patients with OA exhibit comorbidities such as obesity, low grade systemic inflammation and diabetes mellitus. These comorbidities can significantly influence the course of OA, and pain research just began to study the significance of such factors in pain generation. In addition, psychologic and socioeconomic factors may aggravate OA pain, and in some cases genetic factors influencing OA pain were found. Considering the local factors in the joint, the neuronal processes and the comorbidities, a better definition of OA pain phenotypes may become possible. Studies are under way in order to improve OA and OA pain monitoring.
Collapse
Affiliation(s)
- Annett Eitner
- Department of Physiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Gunther O Hofmann
- Department of Traumatology and Orthopedic Surgery, University Hospital Jena, Friedrich Schiller University, Jena, Germany.,Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Hans-Georg Schaible
- Department of Physiology, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
88
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int J Mol Sci 2017; 18:ijms18112296. [PMID: 29104252 PMCID: PMC5713266 DOI: 10.3390/ijms18112296] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1) macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| |
Collapse
|
89
|
Khan J, Hassun H, Zusman T, Korczeniewska O, Eliav E. Interleukin-8 levels in rat models of nerve damage and neuropathic pain. Neurosci Lett 2017; 657:106-112. [PMID: 28789985 DOI: 10.1016/j.neulet.2017.07.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/27/2017] [Indexed: 01/15/2023]
Abstract
Interleukin-8 (IL-8) is a pro-inflammatory cytokine that has been shown to play a role in inflammatory and autoimmune disorders. The objective of the present study was to assess the levels of IL-8 in rat serum, dorsal root ganglion (DRG) and the sciatic nerve following four different forms of sciatic nerve injury. The models used to induce the injury included partial sciatic ligation (PSL), chronic constriction injury (CCI), perineural inflammation (neuritis) and complete sciatic transection (CST). Mechanical and thermal hyperalgesia were detected by measuring withdrawal responses from a mechanical stimulus and withdrawal latency from thermal stimulation. Enzyme-linked immunosorbent assays (ELISA) was used to assess the IL-8 levels in the affected and contralateral sciatic nerves. Rats exposed to PSL and neuritis developed significant nociceptive response (mechanical and thermal hyperalgesia) in the affected side at three days post-surgery whereas the CCI group at eight days post-surgery. No mechanical or thermal hyperalgesia was observed in rats exposed to CST at either three or eight days postsurgery. Additionally, IL-8 levels were significantly increased in the injured sciatic nerve at 3 and 8days following PSL and neuritis as well as at 8days following CCI when compared to naïve animals. A significant up regulation of IL-8 levels was observed in the ipsilateral DRG at 3 and 8days following CST compared to naïve animals. The serum IL-8 levels remained unchanged in all models of nerve damage. The results of this study suggest that IL-8's role in the neuropathic pain etiology may be specific to nerve injury type.
Collapse
Affiliation(s)
- Junad Khan
- Eastman Institute for Oral Health, Rochester, NY, 14620, United States.
| | - Humza Hassun
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, United States
| | - Tali Zusman
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, United States
| | - Olga Korczeniewska
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, NJ, United States
| | - Eli Eliav
- Eastman Institute for Oral Health, University of Rochester, NY, United States
| |
Collapse
|
90
|
King KM, Myers AM, Soroka-Monzo AJ, Tuma RF, Tallarida RJ, Walker EA, Ward SJ. Single and combined effects of Δ 9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain. Br J Pharmacol 2017; 174:2832-2841. [PMID: 28548225 DOI: 10.1111/bph.13887] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE The non-psychoactive phytocannabinoid cannabidiol (CBD) can affect the pharmacological effects of Δ9 -tetrahydrocannabinol (THC). We tested the possible synergy between CBD and THC in decreasing mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain. We also tested the effects of CBD on oxaliplatin- and vincristine-induced mechanical sensitivity. EXPERIMENTAL APPROACH Paclitaxel-treated mice (8.0 mg·kg-1 i.p., days 1, 3, 5 and 7) were pretreated with CBD (0.625-20.0 mg·kg-1 i.p.), THC (0.625-20.0 mg·kg-1 i.p.) or CBD + THC (0.04 + 0.04-20.0 + 20.0 mg·kg-1 i.p.), and mechanical sensitivity was assessed on days 9, 14 and 21. Oxaliplatin-treated (6.0 mg·kg-1 i.p., day 1) or vincristine-treated mice (0.1 mg·kg-1 i.p. days 1-7) were pretreated with CBD (1.25-10.0 mg·kg-1 i.p.), THC (10.0 mg·kg-1 i.p.) or THC + CBD (0.16 mg·kg-1 THC + 0.16 mg·kg-1 CBD i.p.). KEY RESULTS Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity. CONCLUSIONS AND IMPLICATIONS CBD may be potent and effective at preventing the development of chemotherapy-induced peripheral neuropathy, and its clinical use may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of cannabis-based pharmacotherapies.
Collapse
Affiliation(s)
- Kirsten M King
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alyssa M Myers
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ariele J Soroka-Monzo
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ronald F Tuma
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ronald J Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ellen A Walker
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
91
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
92
|
Silva RL, Lopes AH, Guimarães RM, Cunha TM. CXCL1/CXCR2 signaling in pathological pain: Role in peripheral and central sensitization. Neurobiol Dis 2017; 105:109-116. [PMID: 28587921 DOI: 10.1016/j.nbd.2017.06.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/04/2023] Open
Abstract
Pathological pain conditions can be triggered after peripheral nerve injury and/or inflammation. It is associated with plasticity of nociceptive pathway in which pain is prolonged even after healing of the injured tissue. Generally combinations of analgesic drugs are not sufficient to achieve selective palliation from chronic pain, besides causing a greater number of side effects. In order to identify novel alternatives for more effective treatments, it is necessary to clarify the underlying mechanisms of pathological pain. It is well established that there are two main components in pathological pain development and maintenance: (i) primary sensory neuron sensitization (peripheral sensitization), and (ii) central sensitization. In both components cytokines and chemokines act as key mediators in pain modulation. CXCL1 is a chemokine that promote both nociceptor and central sensitization via its main receptor CXCR2, which is a promising target for novel analgesic drugs. Here, we reviewed and discussed the role of the CXCL1/CXCR2 signaling axis in pathological pain conditions triggered by either peripheral inflammation or nerve injury.
Collapse
Affiliation(s)
- Rangel L Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre H Lopes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela M Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Graduate Program in Basic and Applied Immunology, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
93
|
Li AL, Zhang JD, Xie W, Strong JA, Zhang JM. Inflammatory Changes in Paravertebral Sympathetic Ganglia in Two Rat Pain Models. Neurosci Bull 2017; 34:85-97. [PMID: 28534262 DOI: 10.1007/s12264-017-0142-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/24/2022] Open
Abstract
Injury to peripheral nerves can lead to neuropathic pain, along with well-studied effects on sensory neurons, including hyperexcitability, abnormal spontaneous activity, and neuroinflammation in the sensory ganglia. Neuropathic pain can be enhanced by sympathetic activity. Peripheral nerve injury may also damage sympathetic axons or expose them to an inflammatory environment. In this study, we examined the lumbar sympathetic ganglion responses to two rat pain models: ligation of the L5 spinal nerve, and local inflammation of the L5 dorsal root ganglion (DRG), which does not involve axotomy. Both models resulted in neuroinflammatory changes in the sympathetic ganglia, as indicated by macrophage responses, satellite glia activation, and increased numbers of T cells, along with very modest increases in sympathetic neuron excitability (but not spontaneous activity) measured in ex vivo recordings. The spinal nerve ligation model generally caused larger responses than DRG inflammation. Plasticity of the sympathetic system should be recognized in studies of sympathetic effects on pain.
Collapse
Affiliation(s)
- Ai-Ling Li
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.,Department of Psychological and Brain Science, Indiana University Bloomington, 702 N Walnut Grove Ave., Bloomington, IN, 47405, USA
| | - Jing-Dong Zhang
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
94
|
Abstract
Exercise is known to exert a systemic anti-inflammatory influence, but whether its effects are sufficient to protect against subsequent neuropathic pain is underinvestigated. We report that 6 weeks of voluntary wheel running terminating before chronic constriction injury (CCI) prevented the full development of allodynia for the ∼3-month duration of the injury. Neuroimmune signaling was assessed at 3 and 14 days after CCI. Prior exercise normalized ipsilateral dorsal spinal cord expression of neuroexcitatory interleukin (IL)-1β production and the attendant glutamate transporter GLT-1 decrease, as well as expression of the disinhibitory P2X4R-BDNF axis. The expression of the macrophage marker Iba1 and the chemokine CCL2 (MCP-1), and a neuronal injury marker (activating transcription factor 3), was attenuated by prior running in the ipsilateral lumbar dorsal root ganglia. Prior exercise suppressed macrophage infiltration and/or injury site proliferation, given decreased presence of macrophage markers Iba1, iNOS (M1), and Arg-1 (M2; expression was time dependent). Chronic constriction injury-driven increases in serum proinflammatory chemokines were suppressed by prior running, whereas IL-10 was increased. Peripheral blood mononuclear cells were also stimulated with lipopolysaccharide ex vivo, wherein CCI-induced increases in IL-1β, nitrite, and IL-10 were suppressed by prior exercise. Last, unrestricted voluntary wheel running, beginning either the day of, or 2 weeks after, CCI, progressively reversed neuropathic pain. This study is the first to investigate the behavioral and neuroimmune consequences of regular exercise terminating before nerve injury. This study suggests that chronic pain should be considered a component of "the diseasome of physical inactivity," and that an active lifestyle may prevent neuropathic pain.
Collapse
|
95
|
Kandil E, Melikman E, Adinoff B. Lidocaine Infusion: A Promising Therapeutic Approach for Chronic Pain. ACTA ACUST UNITED AC 2017; 8. [PMID: 28239510 PMCID: PMC5323245 DOI: 10.4172/2155-6148.1000697] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opioid abuse is a national epidemic in the United States, where it is estimated that a prescription drug overdose death occurs every 19 minutes. While opioids are highly effective in acute and subacute pain control, their use for treatment of chronic pain is controversial. Chronic opioids use is associated with tolerance, dependency, hyperalgesia. Although there are new strategies and practice guidelines to reduce opioid dependence and opioid prescription drug overdose, there has been little focus on development of opioid-sparing therapeutic approaches. Lidocaine infusion has been shown to be successful in controlling pain where other agents have failed. The opioid sparing properties of lidocaine infusion added to its analgesic and antihyperalgesic properties make lidocaine infusion a viable option for pain control in opioid dependent patients. In this review, we provide an overview of the opioid abuse epidemic, and we outline current evidence supporting the potential use of lidocaine infusion as an adjuvant therapeutic approach for management of chronic pain.
Collapse
Affiliation(s)
- Enas Kandil
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emily Melikman
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bryon Adinoff
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
96
|
Opioid Safety: We Are Not There Yet. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Hannaman MR, Fitts DA, Doss RM, Weinstein DE, Bryant JL. The refined biomimetic NeuroDigm GEL™ model of neuropathic pain in a mature rat. F1000Res 2016. [PMID: 28620451 PMCID: PMC5461904 DOI: 10.12688/f1000research.9544.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Many humans suffering with chronic neuropathic pain have no objective evidence of an etiological lesion or disease. Frequently their persistent pain occurs after the healing of a soft tissue injury. Based on clinical observations over time, our hypothesis was that after an injury in mammals the process of tissue repair could cause chronic neural pain. Our objectives were to create the delayed onset of neuropathic pain in rats with minimal nerve trauma using a physiologic hydrogel, and characterize the rats' responses to known analgesics and a targeted biologic. Methods: In mature male Sprague Dawley rats (age 9.5 months) a percutaneous implant of tissue-derived hydrogel was placed in the musculofascial tunnel of the distal tibial nerve. Subcutaneous morphine (3 mg/kg), celecoxib (10 mg/kg), gabapentin (25 mg/kg) and duloxetine (10 mg/kg) were each screened in the model three times each over 5 months after pain behaviors developed. Sham and control groups were used in all screenings. A pilot study followed in which recombinant human erythropoietin (200 units) was injected by the GEL™ neural procedure site. Results: The GEL group gradually developed mechanical hypersensitivity lasting months. Morphine, initially effective, had less analgesia over time. Celecoxib produced no analgesia, while gabapentin and duloxetine at low doses demonstrated profound analgesia at all times tested. The injected erythropoietin markedly decreased bilateral pain behavior that had been present for over 4 months, p ≤ 0.001. Histology of the GEL group tibial nerve revealed a site of focal neural remodeling, with neural regeneration, as found in nerve biopsies of patients with neuropathic pain. Conclusion: The refined NeuroDigm GEL™ model induces a neural response resulting in robust neuropathic pain behavior. The analgesic responses in this model reflect known responses of humans with neuropathic pain. The targeted recombinant human erythropoietin at the ectopic neural lesion appears to alleviate the persistent pain behavior in the GEL™ model rodents.
Collapse
Affiliation(s)
- Mary R Hannaman
- NeuroDigm Corporation, Colorado Springs, CO, 80906, USA.,Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Douglas A Fitts
- Office of Animal Welfare, University of Washington, Seattle, WA, 98195, USA
| | - Rose M Doss
- Department of Biology, University of Colorado, Colorado Springs, CO, 80918, USA
| | | | - Joseph L Bryant
- Animal Model Division, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
98
|
Hannaman MR, Fitts DA, Doss RM, Weinstein DE, Bryant JL. The refined biomimetic NeuroDigm GEL™ Model of neuropathic pain in the mature rat. F1000Res 2016; 5:2516. [DOI: 10.12688/f1000research.9544.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 01/10/2023] Open
Abstract
Background:Many humans suffering with chronic pain have no clinical evidence of a lesion or disease. They are managed with a morass of drugs and invasive procedures. Opiates usually become less effective over time. In many, their persistent pain occurs after the healing of a soft tissue injury. Current animal models of neuropathic pain typically create direct neural damage with open surgeries using ligatures, neurectomies, chemicals or other forms of deliberate trauma. However, we have observed clinically that after an injury in humans, the naturally occurring process of tissue repair can cause chronic neural pain.Methods:We demonstrate how the refined biomimetic NeuroDigm GEL™ Model, in the mature male rat, gradually induces neuropathic pain behavior with a nonsurgical percutaneous implant of tissue-derived hydrogel in the musculo-fascial tunnel of the distal tibial nerve. Morphine, Celecoxib, Gabapentin and Duloxetine were each screened in the model three times each over 5 months after pain behaviors developed. A pilot study followed in which recombinant human erythropoietin was applied to the GEL neural procedure site.Results:The GEL Model gradually developed neuropathic pain behavior lasting months. Morphine, initially effective, had less analgesia over time. Celecoxib produced no analgesia, while gabapentin and duloxetine at low doses had profound analgesia at all times tested. The injected erythropoietin markedly decreased bilateral pain behavior that had been present for over 4 months. Histology revealed a site of focal neural remodeling, with neural regeneration, as in human biopsies.Conclusion:The refined NeuroDigm GEL™ Model induces localized neural remodeling resulting in robust neuropathic pain behavior. The analgesics responses in this model reflect known responses of humans with neuropathic pain. The targeted recombinant human erythropoietin appears to heal the ectopic focal neural site, as demonstrated by the extinguishing of neuropathic pain behavior present for over 4 months.
Collapse
|
99
|
Zouikr I, Bartholomeusz MD, Hodgson DM. Early life programming of pain: focus on neuroimmune to endocrine communication. J Transl Med 2016; 14:123. [PMID: 27154463 PMCID: PMC4859995 DOI: 10.1186/s12967-016-0879-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/27/2016] [Indexed: 01/21/2023] Open
Abstract
Chronic pain constitutes a challenge for the scientific community and a significant economic and social cost for modern societies. Given the failure of current drugs to effectively treat chronic pain, which are based on suppressing aberrant neuronal excitability, we propose in this review an integrated approach that views pain not solely originating from neuronal activation but also the result of a complex interaction between the nervous, immune, and endocrine systems. Pain assessment must also extend beyond measures of behavioural responses to noxious stimuli to a more developmentally informed assessment given the significant plasticity of the nociceptive system during the neonatal period. Finally integrating the concept of perinatal programming into the pain management field is a necessary step to develop and target interventions to reduce the suffering associated with chronic pain. We present clinical and animal findings from our laboratory (and others) demonstrating the importance of the microbial and relational environment in programming pain responsiveness later in life via action on hypothalamo-pituitary adrenal (HPA) axis activity, peripheral and central immune system, spinal and supraspinal mechanisms, and the autonomic nervous system.
Collapse
Affiliation(s)
- I Zouikr
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia. .,Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN BSI East Building 4F 409, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - M D Bartholomeusz
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia
| | - D M Hodgson
- Laboratory of Neuroimmunology, School of Psychology, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
100
|
Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun 2016; 4:46. [PMID: 27142428 PMCID: PMC4855486 DOI: 10.1186/s40478-016-0288-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Dorsal root ganglia (DRG) are highly vulnerable to frataxin deficiency in Friedreich ataxia (FA), an autosomal recessive disease due to pathogenic homozygous guanine-adenine-adenine trinucleotide repeat expansions in intron 1 of the FXN gene (chromosome 9q21.11). An immunohistochemical and immunofluorescence study of DRG in 15 FA cases and 12 controls revealed that FA causes major primary changes in satellite cells and inflammatory destruction of neurons. A panel of antibodies was used to reveal the cytoplasm of satellite cells (glutamine synthetase, S100, metabotropic glutamate receptors 2/3, excitatory amino acid transporter 1, ATP-sensitive inward rectifier potassium channel 10, and cytosolic ferritin), gap junctions (connexin 43), basement membranes (laminin), mitochondria (ATP synthase subunit beta and frataxin), and monocytes (CD68 and IBA1). RESULTS Reaction product of the cytoplasmic markers and laminin confirmed proliferation of satellite cells and processes into multiple perineuronal layers and residual nodules. The formation of connexin 43-reactive gap junctions between satellite cells was strongly upregulated. Proliferating satellite cells in FA displayed many more frataxin- and ATP5B-reactive mitochondria than normal. Monocytes entered into the satellite cell layer, appeared to penetrate neuronal plasma membranes, and infiltrated residual nodules. Satellite cells and IBA1-reactive monocytes displayed upregulated ferritin biosynthesis, which was most likely due to leakage of iron from dying neurons. CONCLUSIONS We conclude that FA differentially affects the key cellular elements of DRG, and postulate that the disease causes loss of bidirectional trophic support between satellite cells and neurons.
Collapse
Affiliation(s)
- Arnulf H Koeppen
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA.
- Departments of Neurology and Pathology, Albany Medical College, Albany, NY, USA.
| | - R Liane Ramirez
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA
| | - Alyssa B Becker
- Research Service, Veterans Affairs Medical Center, Albany, NY, USA
| | - Joseph E Mazurkiewicz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| |
Collapse
|