51
|
Portincasa P, Baffy G. Metabolic dysfunction-associated steatotic liver disease: Evolution of the final terminology. Eur J Intern Med 2024; 124:35-39. [PMID: 38653634 DOI: 10.1016/j.ejim.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
The medical term nonalcoholic fatty liver disease (NAFLD) was coined in 1986 for a condition that has since become the most prevalent liver disorder worldwide. In the last 3 years, the global professional community launched 2 consecutive efforts to purge NAFLD from the medical dictionary and recommended new terms based on disease pathophysiology rather than distinction from similar conditions featuring liver steatosis. A consensus by renowned clinical scholars primarily residing in the Asian-Pacific region introduced metabolic dysfunction-associated fatty liver disease (MAFLD) as a new name to replace NAFLD in 2020. In 2023, a nomenclature and classification resulting in the term metabolic dysfunction-associated steatotic liver disease (MASLD) was developed by a large expert panel under the auspices of leading liver societies from Europe and Americas. These marked and rapid shifts in nomenclature have garnered the attention of many researchers and clinicians across the globe due to the multilevel impact of a frequent and potentially progressive chronic liver disease in both adult and pediatric populations. The proposed terminologies differ in several ways but they have more in common than differences. They both capture key features of liver disease associated with cardiometabolic risk factors and with significant impact on all-cause and liver-related mortality. The framework of MASLD has incorporated many innovative aspects of MAFLD and while several conceptual disparities remain a work in progress, global efforts should focus on new insights into disease pathogenesis, outcome trajectories, prevention, and treatment. Here, some of these challenges are discussed to facilitate this process.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, Bari 70124, Italy.
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA; Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
52
|
Fouad Y, Alboraie M, El-Shabrawi M, Zheng MH. Letter to the Editor: How F to S turned the premature to be mature? Hepatology 2024; 79:E157-E158. [PMID: 38150267 DOI: 10.1097/hep.0000000000000745] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Yasser Fouad
- Department of Endemic Medicine and Gastroenterology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
53
|
Fouad Y, Alboraie M, Gomaa A, Zheng MH, Lonardo A. Could controversies in the arena of fatty liver disease be a potential gate for the democratization of science. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The term “democratization of science” describes the process of more evenly allocating epistemic authority between scientists, members of dominant civilizations, and the academic community at large, or members of less dominant societies. This means that it includes initiatives aimed at democratizing the decision-making process by acknowledging the presence of diverse types of “wisdom of crowd” and so reducing the barriers between the various stakeholders. Our purpose is to separate influence from involvement that contributes to the breakdown of conventional closed-circuit authority structures and to prevent future abuses of power by academic institutions, scientific societies, and even individual opinion leaders. A conceptual framework for comprehending the idea of the democratization of science is presented in this perspective piece. Our considerations are pertinent to the politics of widespread academic engagement in scientific decision-making, even though they were spurred by the discussion surrounding the definitions of fatty liver disease.
Collapse
|
54
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
55
|
Gieseler RK, Baars T, Özçürümez MK, Canbay A. Liver Diseases: Science, Fiction and the Foreseeable Future. J Pers Med 2024; 14:492. [PMID: 38793074 PMCID: PMC11122384 DOI: 10.3390/jpm14050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
This Editorial precedes the Special Issue entitled "Novel Challenges and Therapeutic Options for Liver Diseases". Following a historical outline of the roots of hepatology, we provide a brief insight into our colleagues' contributions in this issue on the current developments in this discipline related to the prevention of liver diseases, the metabolic dysfunction-associated steatotic liver disease (or non-alcoholic fatty liver disease, respectively), liver cirrhosis, chronic viral hepatitides, acute-on-chronic liver failure, liver transplantation, the liver-microbiome axis and microbiome transplantation, and telemedicine. We further add some topics not covered by the contributions herein that will likely impact future hepatology. Clinically, these comprise the predictive potential of organokine crosstalk and treatment options for liver fibrosis. With regard to promising developments in basic research, some current findings on the genetic basis of metabolism-associated chronic liver diseases, chronobiology, metabolic zonation of the liver, aspects of the aging liver against the background of demography, and liver regeneration will be presented. We expect machine learning to thrive as an overarching topic throughout hepatology. The largest study to date on the early detection of liver damage-which has been kicked off on 1 March 2024-is highlighted, too.
Collapse
Affiliation(s)
- Robert K. Gieseler
- Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; (T.B.); (M.K.Ö.)
| | | | | | - Ali Canbay
- Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr University Bochum, 44892 Bochum, Germany; (T.B.); (M.K.Ö.)
| |
Collapse
|
56
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
57
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
58
|
Fouad Y, Ghazinyan H, Alboraie M, Al Khatry M, Desalegn H, Al-Ali F, El-Shabrawi MHF, Ocama P, Derbala M, Barakat S, Awuku YA, Ndububa DA, Sabbah M, Hamoudi W, Ng'wanasayi M, Elwakil R, Ally R, Al-Busafi SA, Hashim A, Esmat G, Shiha G. Joint position statement from the Middle East and North Africa and sub-Saharan Africa on continuing to endorse the MAFLD definition. J Hepatol 2024; 80:e194-e197. [PMID: 38342440 DOI: 10.1016/j.jhep.2024.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Affiliation(s)
- Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Hasmik Ghazinyan
- Gastroenterology and Hepatology Service, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, Egypt
| | - Maryam Al Khatry
- Department of Gastroenterology, Obaidulla Hospital, Ras Al Khaimah, Emirates Health Services, Ministry of Health, United Arab Emirates
| | - Hailemichael Desalegn
- Department of Internal Medicine, St Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Fuad Al-Ali
- Department of Gastroenterology, Royal Hayat Hospital, Faculty of Medicine, Kuwait University, Kuwait
| | - Mortada H F El-Shabrawi
- Paediatric Hepatology Unit, Department of Paediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ponsiano Ocama
- School of Medicine, Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moutaz Derbala
- Gastroenterology and Hepatology Department, Hamad Medical Corporation, Doha, Qatar
| | - Salma Barakat
- National Center for Gastrointestinal and Liver Diseases, Ibn Sina Hospital, Ministry of Health, Khartoum, Sudan
| | - Yaw Asante Awuku
- Department of Medicine and Therapeutics, School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Dennis Amajuoyi Ndububa
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Meriam Sabbah
- Department of Gastroenterology, Habib Thameur Hospital, Tunis, Tunisia
| | - Waseem Hamoudi
- Internal Medicine Department, Al-Bashir Hospital, Amman, Jordan
| | | | - Reda Elwakil
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Egypt
| | - Reidwan Ally
- Department of Gastroenterology, Univ of the Witwatersrand, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| | - Said A Al-Busafi
- Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Almoutaz Hashim
- Department of Internal Medicine, Jeddah University, Jeddah, Saudi Arabia
| | - Gamal Esmat
- Departement of Endemic Medicine and Hepatogastrenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gamal Shiha
- Egyptian Liver Research Institute and Hospital, Mansoura, Egypt; Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
59
|
Li Y, Dai C, Ruan Y, Yang H, Zeng H, Huang R, Wang J, Dai M, Hao J, Wang L, Li J, Yan X, Lu Z, Ji F. Metabolic dysfunction-associated fatty liver disease and nonalcoholic fatty liver disease from clinical to pathological characteristics: a multi-center cross-sectional study in real world. Postgrad Med J 2024; 100:319-326. [PMID: 38272486 DOI: 10.1093/postmj/qgae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The evaluation of patients with fatty liver as defined by metabolic dysfunction-associated fatty liver disease (MAFLD) in the real world remains poorly researched. This study aimed to analyse the clinical and histological features of patients with MAFLD and nonalcoholic fatty liver disease (NAFLD) and to characterize each metabolic subgroup of MAFLD. METHODS A total of 2563 patients with fatty liver confirmed by ultrasonography and/or magnetic resonance tomography and/or liver biopsy-proven from three hospitals in China were included in the study. Patients were divided into different groups according to diagnostic criteria for MAFLD and NAFLD, and MAFLD into different subgroups. RESULTS There were 2337 (91.2%) patients fitting the MAFLD criteria, and 2095 (81.7%) fitting the NAFLD criteria. Compared to patients with NAFLD, those with MAFLD were more likely to be male, had more metabolic traits, higher liver enzyme levels, and noninvasive fibrosis scores. Among the patients with liver biopsy, the extent of advanced fibrosis in cases with MAFLD was significantly higher than those with NAFLD, 31.8% versus 5.2% (P < .001); there was no significant difference in advanced fibrosis between obese cases and lean individuals in MAFLD (P > .05); MAFLD complicated with diabetes had significantly higher advanced fibrosis than those without diabetes (43.3% and 17.2%, respectively; P < .001). CONCLUSIONS Patients with MAFLD have a higher degree of liver fibrosis than NAFLD patients. In addition, diabetic patients should be screened for fatty liver and liver fibrosis degree.
Collapse
Affiliation(s)
- Yan Li
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Changyong Dai
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Department of Infectious Diseases, Huaian Hospital of Huaian City, Huaian, Jiangsu, 223200, China
| | - Yuhua Ruan
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Haiqing Yang
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Huang Zeng
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jialu Wang
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Mingjia Dai
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jungui Hao
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Liping Wang
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xuebing Yan
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhonghua Lu
- Department of Liver Disease, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu, 214011, China
| | - Fang Ji
- Department of Infection and Hepatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
60
|
Senavirathna T, Shafaei A, Lareu R, Balmer L. Unlocking the Therapeutic Potential of Ellagic Acid for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:485. [PMID: 38671932 PMCID: PMC11047720 DOI: 10.3390/antiox13040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is in epidemic proportions in many parts of the world, contributing to increasing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the long-term management of NAFLD/NASH, however, dietary interventions have been investigated for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has been made in understanding the pharmacological and biological activity of ellagic acid and its involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to summarise the currently available literature elucidating the therapeutic potential of ellagic acid and its microbial-derived metabolite urolithin in NAFLD/NASH.
Collapse
Affiliation(s)
- Tharani Senavirathna
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA 6027, Australia;
| | - Ricky Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| |
Collapse
|
61
|
Shea S, Lionis C, Kite C, Lagojda L, Uthman OA, Dallaway A, Atkinson L, Chaggar SS, Randeva HS, Kyrou I. Non-alcoholic fatty liver disease and coexisting depression, anxiety and/or stress in adults: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1357664. [PMID: 38689730 PMCID: PMC11058984 DOI: 10.3389/fendo.2024.1357664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, affecting 25-30% of the general population globally. The condition is even more prevalent in individuals with obesity and is frequently linked to the metabolic syndrome. Given the known associations between the metabolic syndrome and common mental health issues, it is likely that such a relationship also exists between NAFLD and mental health problems. However, studies in this field remain limited. Accordingly, the aim of this systematic review and meta-analysis was to explore the prevalence of one or more common mental health conditions (i.e., depression, anxiety, and/or stress) in adults with NAFLD. Methods PubMed, EBSCOhost, ProQuest, Ovid, Web of Science, and Scopus were searched in order to identify studies reporting the prevalence of depression, anxiety, and/or stress among adults with NAFLD. A random-effects model was utilized to calculate the pooled prevalence and confidence intervals for depression, anxiety and stress. Results In total, 31 studies were eligible for inclusion, involving 2,126,593 adults with NAFLD. Meta-analyses yielded a pooled prevalence of 26.3% (95% CI: 19.2 to 34) for depression, 37.2% (95% CI: 21.6 to 54.3%) for anxiety, and 51.4% (95% CI: 5.5 to 95.8%) for stress among adults with NAFLD. Conclusion The present findings suggest a high prevalence of mental health morbidity among adults with NAFLD. Given the related public health impact, this finding should prompt further research to investigate such associations and elucidate potential associations between NAFLD and mental health morbidity, exploring potential shared underlying pathophysiologic mechanisms. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021288934.
Collapse
Affiliation(s)
- Sue Shea
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Christos Lionis
- Laboratory of “Health and Science” School of Medicine, University of Crete, Heraklion, Greece
- Department of Health, Medicine and Caring Sciences, University of Linkoping, Linkoping, Sweden
- Department of Nursing, Frederick University, Nicosia, Cyprus
| | - Chris Kite
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
- Chester Medical School, University of Chester, Shrewsbury, United Kingdom
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, United Kingdom
| | - Lukasz Lagojda
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Clinical Evidence-Based Information Service (CEBIS), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Olalekan A. Uthman
- Division of Health Sciences, Warwick Centre for Global Health, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alexander Dallaway
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- School of Health and Society, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Lou Atkinson
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- iPrescribe Exercise Digital Ltd (EXI), London, United Kingdom
| | | | - Harpal S. Randeva
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, United Kingdom
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, United Kingdom
- Institute of Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- College of Health, Psychology and Social Care, University of Derby, Derby, United Kingdom
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
62
|
Lonardo A. Association of NAFLD/NASH, and MAFLD/MASLD with chronic kidney disease: an updated narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Chronic kidney disease (CKD) and nonalcoholic fatty liver disease (NAFLD), metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) account for substantial financial burden worldwide. These alarming features call for enhanced efforts to prevent and manage the development and progression of CKD. Accumulating evidence supporting a causal role of NAFLD/MAFLD/MASLD-in CKD opens new horizons to achieve this aim. Recent epidemiological studies and meta-analyses exploring the association of NAFLD/MAFLD/MASLD with CKD and the characteristics of NAFLD/MAFLD/MASLD associated with the odds of incident CKD are discussed. The involved pathomechanisms, including the common soil hypothesis, genetics, gut dysbiosis, and portal hypertension, are examined in detail. Finally, lifestyle changes (diet and physical exercise), direct manipulation of gut microbiota, and drug approaches involving statins, renin-angiotensin-aldosterone system inhibitors, GLP-1 Receptor Agonists, Sodium-glucose cotransporter-2, pemafibrate, and vonafexor are examined within the context of prevention and management of CKD among those with NAFLD/MAFLD/MASLD. The evolving NAFLD/MAFLD/MASLD nomenclature may generate confusion among practicing clinicians and investigators. However, comparative studies investigating the pros and contra of different nomenclatures may identify the most useful definitions among NAFLD/MAFLD/MASLD and strategies to identify, prevent, and halt the onset and progression of CKD.
Collapse
|
63
|
Chan WK, George J. Metabolic fatty liver syndromes: where do we stand in 2024? J Gastroenterol Hepatol 2024; 39:613-614. [PMID: 38357837 DOI: 10.1111/jgh.16507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
64
|
Mellemkjær A, Kjær MB, Haldrup D, Grønbæk H, Thomsen KL. Management of cardiovascular risk in patients with metabolic dysfunction-associated steatotic liver disease. Eur J Intern Med 2024; 122:28-34. [PMID: 38008609 DOI: 10.1016/j.ejim.2023.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The novel term Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is proposed to replace non-alcoholic fatty liver disease (NAFLD) to highlight the close association with the metabolic syndrome. MASLD encompasses patients with liver steatosis and at least one of five cardiometabolic risk factors which implies that these patients are at increased risk of cardiovascular disease (CVD). Indeed, the prevalence of CVD in MASLD patients is increased and CVD is recognized as the most common cause of death in MASLD patients. We here present an update on the pathophysiology of CVD in MASLD, discuss the risk factors, and suggest screening for CVD in patients with MASLD. Currently, there is no FDA-approved pharmacological treatment for MASLD, and no specific treatment recommended for CVD in patients with MASLD. Thus, the treatment strategy is based on weight loss and a reduction and treatment of CVD risk factors. We recommend screening of MASLD patients for CVD using the SCORE2 system with guidance to specific treatment algorithms. In all patients with CVD risk factors, lifestyle intervention to induce weight loss through diet and exercise is recommended. Especially a Mediterranean diet may improve hyperlipidemia and if further treatment is needed, statins should be used as first-line treatment. Further, anti-hypertensive drugs should be used to treat hypertension. With the epidemic of obesity and type 2 diabetes mellitus (T2DM) the risk of MASLD and CVD is expected to increase, and preventive measures, screening, and effective treatments are highly needed to reduce morbidity and mortality in MASLD patients.
Collapse
Affiliation(s)
- Anders Mellemkjær
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Breinholt Kjær
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David Haldrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Karen Louise Thomsen
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
65
|
De Cól JP, de Lima EP, Pompeu FM, Cressoni Araújo A, de Alvares Goulart R, Bechara MD, Laurindo LF, Méndez-Sánchez N, Barbalho SM. Underlying Mechanisms behind the Brain-Gut-Liver Axis and Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Int J Mol Sci 2024; 25:3694. [PMID: 38612504 PMCID: PMC11011299 DOI: 10.3390/ijms25073694] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) includes several metabolic dysfunctions caused by dysregulation in the brain-gut-liver axis and, consequently, increases cardiovascular risks and fatty liver dysfunction. In MAFLD, type 2 diabetes mellitus, obesity, and metabolic syndrome are frequently present; these conditions are related to liver lipogenesis and systemic inflammation. This study aimed to review the connection between the brain-gut-liver axis and MAFLD. The inflammatory process, cellular alterations in hepatocytes and stellate cells, hypercaloric diet, and sedentarism aggravate the prognosis of patients with MAFLD. Thus, to understand the modulation of the physiopathology of MAFLD, it is necessary to include the organokines involved in this process (adipokines, myokines, osteokines, and hepatokines) and their clinical relevance to project future perspectives of this condition and bring to light new possibilities in therapeutic approaches. Adipokines are responsible for the activation of distinct cellular signaling in different tissues, such as insulin and pro-inflammatory cytokines, which is important for balancing substances to avoid MAFLD and its progression. Myokines improve the quantity and quality of adipose tissues, contributing to avoiding the development of MAFLD. Finally, hepatokines are decisive in improving or not improving the progression of this disease through the regulation of pro-inflammatory and anti-inflammatory organokines.
Collapse
Affiliation(s)
- Júlia Pauli De Cól
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Fernanda Moris Pompeu
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-080, Brazil;
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo 17500-000, Brazil
| |
Collapse
|
66
|
Delpino MV, Quarleri J. Perilipin 2 inhibits replication of hepatitis B virus deoxyribonucleic acid by regulating autophagy under high-fat conditions. World J Virol 2024; 13:90384. [PMID: 38616854 PMCID: PMC11008407 DOI: 10.5501/wjv.v13.i1.90384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 03/11/2024] Open
Abstract
Hepatitis B virus (HBV) infection poses a global health concern without a definitive cure; however, antiviral medications can effectively suppress viral replication. This study delves into the intricate interplay between lipid metabolism and HBV replication, implicating molecular mechanisms such as the stearoyl coenzyme A desaturase 1 autophagy pathway, SAC1-like phosphatidylinositol phosphatase, and galectin-9 mediated selective autophagy of viral core proteins in regulating HBV replication. Within lipid droplets, perilipin 2 (PLIN2) emerges as a pivotal guardian, with its overexpression protecting against autophagy and downregulation stimulating triglyceride catabolism through the autophagy pathway. This editorial discusses the correlation between hepatic steatosis and HBV replication, emphasizing the role of PLIN2 in this process. The study underscores the multifaceted roles of lipid metabolism, autophagy, and perilipins in HBV replication, shedding light on potential therapeutic avenues.
Collapse
Affiliation(s)
- M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1121, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1121, Argentina
| |
Collapse
|
67
|
Zhu W, Hong Y, Tong Z, He X, Li Y, Wang H, Gao X, Song P, Zhang X, Wu X, Tan Z, Huang W, Liu Z, Bao Y, Ma J, Zheng N, Xie C, Ke X, Zhou W, Jia W, Li M, Zhong J, Sheng L, Li H. Activation of hepatic adenosine A1 receptor ameliorates MASH via inhibiting SREBPs maturation. Cell Rep Med 2024; 5:101477. [PMID: 38508143 PMCID: PMC10983109 DOI: 10.1016/j.xcrm.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/10/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
Metabolic (dysfunction)-associated steatohepatitis (MASH) is the advanced stage of metabolic (dysfunction)-associated fatty liver disease (MAFLD) lacking approved clinical drugs. Adenosine A1 receptor (A1R), belonging to the G-protein-coupled receptors (GPCRs) superfamily, is mainly distributed in the central nervous system and major peripheral organs with wide-ranging physiological functions; however, the exact role of hepatic A1R in MAFLD remains unclear. Here, we report that liver-specific depletion of A1R aggravates while overexpression attenuates diet-induced metabolic-associated fatty liver (MAFL)/MASH in mice. Mechanistically, activation of hepatic A1R promotes the competitive binding of sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) to sequestosome 1 (SQSTM1), rather than protein kinase A (PKA) leading to SCAP degradation in lysosomes. Reduced SCAP hinders SREBP1c/2 maturation and thus suppresses de novo lipogenesis and inflammation. Higher hepatic A1R expression is observed in patients with MAFL/MASH and high-fat diet (HFD)-fed mice, which is supposed to be a physiologically adaptive response because A1R agonists attenuate MAFL/MASH in an A1R-dependent manner. These results highlight that hepatic A1R is a potential target for MAFL/MASH therapy.
Collapse
Affiliation(s)
- Weize Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Hong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaowei Tong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaofang He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengtao Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xianshan Zhang
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Xiaochang Wu
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Zhenhua Tan
- Department of Hepatobiliary Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China
| | - Wenjin Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Bao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junli Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cen Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xisong Ke
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Mingxiao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jing Zhong
- Huzhou Key Laboratory of Precision Medicine Research and Translation for Infectious Diseases, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313000, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
68
|
Rafaqat S, Gluscevic S, Mercantepe F, Rafaqat S, Klisic A. Interleukins: Pathogenesis in Non-Alcoholic Fatty Liver Disease. Metabolites 2024; 14:153. [PMID: 38535313 PMCID: PMC10972081 DOI: 10.3390/metabo14030153] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/26/2024] Open
Abstract
Inflammatory cytokines have been implicated as crucial contributors to the onset and progression of non-alcoholic fatty liver disease (NAFLD). The exact mechanisms by which interleukins (ILs) contribute to NAFLD may vary, and ongoing research is aimed at understanding the specific roles of different ILs in the pathogenesis of this condition. In addition, variations in environmental factors and genetics in each individual can influence the onset and/or progression of NAFLD. The lack of clinical studies related to the potential therapeutic properties of IL-1 inhibitors currently does not allow us to conclude their validity as a therapeutic option, although preclinical studies show promising results. Further studies are needed to elucidate their beneficial properties in NAFLD treatment.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore 54600, Pakistan
| | - Sanja Gluscevic
- Clinical Center of Montenegro, Department for Neurology, 81000 Podgorica, Montenegro
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, 53010 Rize, Turkey
| | - Sana Rafaqat
- Department of Biotechnology (Human Genetics), Lahore College for Women University, Lahore 54600, Pakistan
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| |
Collapse
|
69
|
Lu F, Meng Y, Song X, Li X, Liu Z, Gu C, Zheng X, Jing Y, Cai W, Pinyopornpanish K, Mancuso A, Romeiro FG, Méndez-Sánchez N, Qi X. Artificial Intelligence in Liver Diseases: Recent Advances. Adv Ther 2024; 41:967-990. [PMID: 38286960 DOI: 10.1007/s12325-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.
Collapse
Affiliation(s)
- Feifei Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
| | - Yao Meng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaoting Song
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaotong Li
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Zhuang Liu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Chunru Gu
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Xiaojie Zheng
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China
- Postgraduate College, China Medical University, Shenyang, China
| | - Yi Jing
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Wei Cai
- Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang, China
| | - Kanokwan Pinyopornpanish
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Andrea Mancuso
- Medicina Interna 1, Azienda di Rilievo Nazionale Ad Alta Specializzazione Civico-Di Cristina-Benfratelli, Palermo, Italy.
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Xingshun Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.
- Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenyang, 110840, Liaoning Province, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Postgraduate College, China Medical University, Shenyang, China.
| |
Collapse
|
70
|
Muzurović E, Maćešić M, Kavarić S. Liver Fibrosis and Atherosclerosis, a Consequence of Metabolic Dysfunction-Do They Share a Similar Pathophysiological Background? Angiology 2024:33197241234076. [PMID: 38358750 DOI: 10.1177/00033197241234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Affiliation(s)
- Emir Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| | - Marija Maćešić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sreten Kavarić
- Department of Internal Medicine, Endocrinology Section, Clinical Centre of Montenegro, Podgorica, Montenegro
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
| |
Collapse
|
71
|
Sergi CM, Kehar M, Jimenez-Rivera C. Liver Biopsy Handling of Metabolic-Associated Fatty Liver Disease (MAFLD): the Children's Hospital of Eastern Ontario grossing protocol. Ther Adv Endocrinol Metab 2024; 15:20420188241227766. [PMID: 38322111 PMCID: PMC10846056 DOI: 10.1177/20420188241227766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024] Open
Abstract
Metabolic-(non-alcoholic) associated fatty liver disease (MAFLD/NAFLD) has increasingly become a worldwide epidemic. It has been suggested that renaming NAFLD to MAFLD is critical in identifying patients with advanced fibrosis and poor cardiovascular outcomes. There are concerns that the progression to non-alcoholic steatohepatitis (NASH) may become a constant drive in the future healthcare of children and adolescents. There is a necessity to tackle the emerging risk factors for NASH-associated hepatocellular carcinoma (HCC). In this narrative review, we present the current protocol of liver biopsy separated between pre-analytical, analytical, and post-analytical handling. Genetic association investigations have identified single nucleotide polymorphisms implicated in the progression of MAFLD-HCC, many of which seem to belong to the lipid metabolism pathways. PNPLA3 rs738409 variant, TM6SF2 rs58542926 variant, MBOAT7 rs641738 variant, and GCKR variants seem to be significantly associated with NAFLD disease susceptibility. In disclosing the current comprehensive protocol performed at the Children's Hospital of Eastern Ontario, Ottawa, ON, Canada, we support the most recent Kulkarni-Sarin's pledge to rename NAFLD to MAFLD. Grossing of the liver biopsy is key to identifying histologic, immunophenotypical, and ultrastructure data and properly preserving tissue for molecular genomics data.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Division of Anatomic Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, 401 Smyth Road Ottawa, Ottawa, ON K1H 8L1m, Canada
- Department of Laboratory Medicine and Pathology, Stollery Children’s Hospital, University of Alberta Hospital, Edmonton, AB, Canada
| | - Mohit Kehar
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Carolina Jimenez-Rivera
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
72
|
Zheng TL, Sha JC, Deng Q, Geng S, Xiao SY, Yang WJ, Byrne CD, Targher G, Li YY, Wang XX, Wu D, Zheng MH. Object detection: A novel AI technology for the diagnosis of hepatocyte ballooning. Liver Int 2024; 44:330-343. [PMID: 38014574 DOI: 10.1111/liv.15799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has reached epidemic proportions worldwide and is the most frequent cause of chronic liver disease in developed countries. Within the spectrum of liver disease in MAFLD, steatohepatitis is a progressive form of liver disease and hepatocyte ballooning (HB) is a cardinal pathological feature of steatohepatitis. The accurate and reproducible diagnosis of HB is therefore critical for the early detection and treatment of steatohepatitis. Currently, a diagnosis of HB relies on pathological examination by expert pathologists, which may be a time-consuming and subjective process. Hence, there has been interest in developing automated methods for diagnosing HB. This narrative review briefly discusses the development of artificial intelligence (AI) technology for diagnosing fatty liver disease pathology over the last 30 years and provides an overview of the current research status of AI algorithms for the identification of HB, including published articles on traditional machine learning algorithms and deep learning algorithms. This narrative review also provides a summary of object detection algorithms, including the principles, historical developments, and applications in the medical image analysis. The potential benefits of object detection algorithms for HB diagnosis (specifically those combined with a transformer architecture) are discussed, along with the future directions of object detection algorithms in HB diagnosis and the potential applications of generative AI on transformer architecture in this field. In conclusion, object detection algorithms have huge potential for the identification of HB and could make the diagnosis of MAFLD more accurate and efficient in the near future.
Collapse
Affiliation(s)
- Tian-Lei Zheng
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun-Cheng Sha
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Deng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, China
| | - Shi Geng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wen-Jun Yang
- Department of Pathology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- IRCSS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Yang-Yang Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang-Xue Wang
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Wu
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| |
Collapse
|
73
|
Ramírez-Mejía MM, Jiménez-Gutiérrez C, Eslam M, George J, Méndez-Sánchez N. Breaking new ground: MASLD vs. MAFLD-which holds the key for risk stratification? Hepatol Int 2024; 18:168-178. [PMID: 38127259 DOI: 10.1007/s12072-023-10620-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The classification and nomenclature of non-alcoholic fatty liver disease (NAFLD) has been the subject of ongoing debate in the medical community. Through the introduction of metabolic dysfunction-associated fatty liver disease (MAFLD) and the later release of metabolic dysfunction-associated steatotic liver disease (MASLD), the limitations associated with NAFLD are intended to be addressed. Both terminologies incorporate the metabolic component of the disease by providing diagnostic criteria that relies on the presence of underlying metabolic risk factors. MATERIALS AND METHODS An epidemiologic cross-sectional study of individuals who had undergone abdominal ultrasound and vibration-controlled transient elastography (VCTE) as part of a routine check was performed. We evaluated clinical, anthropometric, and biochemical variables to determine the metabolic profile of each subject. RESULTS The study included a total of 500 participants, 56.8% (n = 284) males and 43.2% (n = 216) females, with a mean age of 49 ± 10 years. 59.4% (n = 297) were diagnosed with MAFLD and MASLD, 10.2% (n = 51) were diagnosed only with MASLD and 30.4% (n = 152) were not diagnosed with either MAFLD or MASLD. The differences in prevalence were mainly based on the detection of individuals with a BMI < 25 kg/m2, where MASLD captures the largest number (p < 0.001). CONCLUSIONS Although MASLD has a higher capture of lean patients compared to MAFLD, patients with MAFLD and MASLD have a worse metabolic profile than those with only MASLD. Our results provide evidence that MAFLD better identifies patients likely to have a higher risk of liver fibrosis and of disease progression.
Collapse
Affiliation(s)
- Mariana Michelle Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico.
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
74
|
Quarleri J, Delpino MV. Molecular mechanisms underlying SARS-CoV-2 hepatotropism and liver damage. World J Hepatol 2024; 16:1-11. [PMID: 38313242 PMCID: PMC10835487 DOI: 10.4254/wjh.v16.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily targets the respiratory system, but evidence suggests extrapulmonary organ involvement, notably in the liver. Viral RNA has been detected in hepatic tissues, and in situ hybridization revealed virions in blood vessels and endothelial cells. Electron microscopy confirmed viral particles in hepatocytes, emphasizing the need for understanding hepatotropism and direct cytopathic effects in COVID-19-related liver injury. Various factors contribute to liver injury, including direct cytotoxicity, vascular changes, inflammatory responses, immune reactions from COVID-19 and vaccinations, and drug-induced liver injury. Although a typical hepatitis presentation is not widely documented, elevated liver biochemical markers are common in hospitalized COVID-19 patients, primarily showing a hepatocellular pattern of elevation. Long-term studies suggest progressive cholestasis may affect 20% of patients with chronic liver disease post-SARS-CoV-2 infection. The molecular mechanisms underlying SARS-CoV-2 infection in the liver and the resulting liver damage are complex. This "Editorial" highlights the expression of the Angiotensin-converting enzyme-2 receptor in liver cells, the role of inflammatory responses, the impact of hypoxia, the involvement of the liver's vascular system, the infection of bile duct epithelial cells, the activation of hepatic stellate cells, and the contribution of monocyte-derived macrophages. It also mentions that pre-existing liver conditions can worsen the outcomes of COVID-19. Understanding the interaction of SARS-CoV-2 with the liver is still evolving, and further research is required.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| |
Collapse
|
75
|
Buchynskyi M, Oksenych V, Kamyshna I, Kamyshnyi O. Exploring Paxlovid Efficacy in COVID-19 Patients with MAFLD: Insights from a Single-Center Prospective Cohort Study. Viruses 2024; 16:112. [PMID: 38257811 PMCID: PMC10819977 DOI: 10.3390/v16010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This study investigates the intricate interplay between Metabolic-associated Fatty Liver Disease (MAFLD) and COVID-19, exploring the impact of MAFLD on disease severity, outcomes, and the efficacy of the antiviral agent Paxlovid (nirmatrelvir/ritonavir). MAFLD, affecting a quarter of the global population, emerges as a potential risk factor for severe COVID-19, yet the underlying pathophysiological mechanisms remain elusive. This study focuses on the clinical significance of Paxlovid, the first orally bioavailable antiviral agent granted Emergency Use Authorization in the United States. Notably, outcomes from phase II/III trials exhibit an 88% relative risk reduction in COVID-19-associated hospitalization or mortality among high-risk patients. Despite conflicting data on the association between MAFLD and COVID-19 severity, this research strives to bridge the gap by evaluating the effectiveness of Paxlovid in MAFLD patients with COVID-19, addressing the scarcity of relevant studies.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
76
|
Wang S, Lin X, Zhu C, Dong Y, Guo Y, Xie Z, He X, Ju W, Chen M. Association between nonalcoholic fatty liver disease and increased glucose-to-albumin ratio in adults without diabetes. Front Endocrinol (Lausanne) 2024; 14:1287916. [PMID: 38264288 PMCID: PMC10804880 DOI: 10.3389/fendo.2023.1287916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) affects approximately 30% of individuals globally. Both serum glucose and albumin were demonstrated to be potential markers for the development of NAFLD. We hypothesized that the risk of NAFLD may be proportional to the glucose-to-albumin ratio (GAR). Methods Based on information from the National Health and Nutrition Examination Survey (NHANES) 1999-2018, it was determined that GAR was associated with an increased risk of NAFLD and liver fibrosis utilizing weighted multivariable logistic regression. Participants with a fatty liver index (FLI) over 60 were identified with NAFLD, and those with an NAFLD fibrosis score (NFS) >0.676 with evidence of NAFLD were labeled with advanced hepatic fibrosis (AHF). The liver biopsy was utilized to verify the relationship between GAR and FLD in our center cohort. Mendelian randomization analysis investigated the genetic relationship between GAR and NAFLD. Results Of 15,534 eligible participants, 36.4% of participants were identified as NAFLD without AHF. GAR was positively correlated with the probability of NAFLD following full adjustment for possible variables (OR = 1.53, 95% CI: 1.39-1.67). It was confirmed that patients with NAFLD and AHF had an inferior prognosis. The relationship between GAR and NFS was favorable (R = 0.46, P< 0.0001), and NAFLD patients with a higher GAR tended to develop poor survival. In our center cohort, the association between GAR and NAFLD was verified. Conclusion Among participants without diabetes, greater GAR was linked to higher risks of NAFLD. In addition, NAFLD patients with higher GAR tended to develop liver fibrosis and adverse outcomes.
Collapse
Affiliation(s)
- Shuai Wang
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaohong Lin
- Department of Breast and Thyroid Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuchen Zhu
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuqi Dong
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhonghao Xie
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
77
|
Bilson J, Mantovani A, Byrne CD, Targher G. Steatotic liver disease, MASLD and risk of chronic kidney disease. DIABETES & METABOLISM 2024; 50:101506. [PMID: 38141808 DOI: 10.1016/j.diabet.2023.101506] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
With the rising tide of fatty liver disease related to metabolic dysfunction worldwide, the association of this common liver disease with chronic kidney disease (CKD) has become increasingly evident. In 2020, the more inclusive term metabolic dysfunction-associated fatty liver disease (MAFLD) was proposed to replace the old term non-alcoholic fatty liver disease (NAFLD). In 2023, a modified Delphi process was led by three large pan-national liver associations. There was consensus to change the fatty liver disease nomenclature and definition to include the presence of at least one of five common cardiometabolic risk factors as diagnostic criteria. The name chosen to replace NAFLD was metabolic dysfunction-associated steatotic liver disease (MASLD). The change of nomenclature from NAFLD to MAFLD and then MASLD has resulted in a reappraisal of the epidemiological trends and associations with the risk of developing CKD. The observed association between MAFLD/MASLD and CKD and our understanding that CKD can be an epiphenomenon linked to underlying metabolic dysfunction support the notion that individuals with MASLD are at substantially higher risk of incident CKD than those without MASLD. This narrative review provides an overview of the literature on (a) the evolution of criteria for diagnosing this highly prevalent metabolic liver disease, (b) the epidemiological evidence linking MASLD to the risk of CKD, (c) the underlying mechanisms by which MASLD (and factors strongly linked with MASLD) may increase the risk of developing CKD, and (d) the potential drug treatments that may benefit both MASLD and CKD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
78
|
Di Ciaula A, Portincasa P. A balloon is better than diet: the role of lifestyle changes in the management of obesity and steatotic liver, and need for a winning strategy. Intern Emerg Med 2024; 19:5-7. [PMID: 37848585 DOI: 10.1007/s11739-023-03448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Preventive and Regenerative Medicine and Ionian Area (DiMePrev-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
79
|
Kaya E, Yilmaz Y. Noninvasive, serum-based evaluation of liver fibrosis in metabolic (dysfunction)-associated fatty liver disease. METABOLIC STEATOTIC LIVER DISEASE 2024:137-150. [DOI: 10.1016/b978-0-323-99649-5.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
80
|
Tanaka M, Akiyama Y, Mori K, Hosaka I, Kato K, Endo K, Ogawa T, Sato T, Suzuki T, Yano T, Ohnishi H, Hanawa N, Furuhashi M. Predictive modeling for the development of diabetes mellitus using key factors in various machine learning approaches. DIABETES EPIDEMIOLOGY AND MANAGEMENT 2024; 13:100191. [DOI: 10.1016/j.deman.2023.100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
81
|
Choi KY, Kim TY, Chon YE, Kim MN, Lee JH, Hwang SG, Lee J, Kwak MK, Hong E, Choi YM, Ha Y. Impact of anthropometric parameters on outcomes in Asians with metabolic dysfunction-associated fatty liver disease. J Cachexia Sarcopenia Muscle 2023; 14:2747-2756. [PMID: 37881112 PMCID: PMC10751424 DOI: 10.1002/jcsm.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND We examined the incidence and predictors of clinical outcomes in metabolic dysfunction-associated fatty liver disease (MAFLD), focusing on anthropometric parameters. METHODS Adult patients with MAFLD were identified in nationwide databases and a hospital cohort. Primary endpoints were atherosclerotic cardiovascular disease (ASCVD) and advanced fibrosis. Logistic and Cox regression analyses were used to analyse the association between anthropometric parameters and endpoints. RESULTS In total, 4407 of 15 256 (28.9%) and 6274 of 25 784 subjects (24.3%) had MAFLD in the nationwide database; of these, 403 (9.2%) and 437 (7.0%) subjects were of lean/normal weight, respectively. Compared to the overweight/obese group, the lean/normal weight group had a significantly lower muscle mass (15.0 vs. 18.9 kg) and handgrip strength (31.9 vs. 35.1 kg) and had a higher ASCVD risk (9.0% vs. 6.3% and 15.9% vs. 8.5%; Ps < 0.001). Sarcopenia (odds ratio [OR], 6.66; 95% confidence interval [CI], 1.79-24.80) and handgrip strength (OR, 0.92; 95% CI, 0.86-0.97; Ps = 0.005) were associated with the ASCVD risk in the lean/normal weight group. In a hospital cohort (n = 1363), the ASCVD risk was significantly higher in the lean/normal weight group than in the overweight/obese group (median follow-up, 39.1 months). Muscle mass was inversely correlated with the ASCVD risk (hazard ratio [HR], 0.72; 95% CI, 0.56-0.94), while visceral adiposity was associated with advanced fibrosis (HR, 1.36; 95% CI, 1.10-1.69; Ps < 0.05). CONCLUSIONS Muscle mass/strength was significantly associated with the ASCVD risk in patients with MAFLD. Visceral adiposity was an independent predictor of advanced fibrosis.
Collapse
Affiliation(s)
- Kyu Yeon Choi
- Department of Gastroenterology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Tae Yeon Kim
- Department of Gastroenterology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Young Eun Chon
- Department of Gastroenterology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Mi Na Kim
- Department of Gastroenterology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Joo Ho Lee
- Department of Gastroenterology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| | - Seong Gyu Hwang
- Department of Gastroenterology, CHA Gumi Medical CenterCHA UniversityGumiSouth Korea
| | - Jiwoo Lee
- Department of Endocrinology and Metabolism, Hallym University Dongtan Sacred Heart HospitalHallym University College of MedicineHwaseongSouth Korea
| | - Mi Kyung Kwak
- Department of Endocrinology and Metabolism, Hallym University Dongtan Sacred Heart HospitalHallym University College of MedicineHwaseongSouth Korea
| | - Eun‐Gyoung Hong
- Department of Endocrinology and Metabolism, Hallym University Dongtan Sacred Heart HospitalHallym University College of MedicineHwaseongSouth Korea
| | - Yun Mi Choi
- Department of Endocrinology and Metabolism, Hallym University Dongtan Sacred Heart HospitalHallym University College of MedicineHwaseongSouth Korea
| | - Yeonjung Ha
- Department of Gastroenterology, CHA Bundang Medical CenterCHA UniversitySeongnamSouth Korea
| |
Collapse
|
82
|
Díaz LA, Arab JP, Louvet A, Bataller R, Arrese M. The intersection between alcohol-related liver disease and nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:764-783. [PMID: 37582985 DOI: 10.1038/s41575-023-00822-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD) are the leading causes of chronic liver disease worldwide. NAFLD and ALD share pathophysiological, histological and genetic features and both alcohol and metabolic dysfunction coexist as aetiological factors in many patients with hepatic steatosis. A diagnosis of NAFLD requires the exclusion of significant alcohol consumption and other causes of liver disease. However, data suggest that significant alcohol consumption is often under-reported in patients classified as having NAFLD and that alcohol and metabolic factors interact to exacerbate the progression of liver disease. In this Review, we analyse existing data on the interaction between alcohol consumption and metabolic syndrome as well as the overlapping features and differences in the pathogenesis of ALD and NAFLD. We also discuss the clinical implications of the coexistence of alcohol consumption, of any degree, in patients with evidence of metabolic derangement as well as the use of alcohol biomarkers to detect alcohol intake. Finally, we summarize the evolving nomenclature of fatty liver disease and describe a recent proposal to classify patients at the intersection of NAFLD and ALD. We propose that, regardless of the presumed aetiology, patients with fatty liver disease should be evaluated for both metabolic syndrome and alcohol consumption to enable better prognostication and a personalized medicine approach.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Alexandre Louvet
- Service des Maladies de l'Appareil Digestif, Hôpital Huriez, Lille Cedex, France
- Université Lille Nord de France, Lille, France
- Unité INSERM INFINITE 1286, Lille, France
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
83
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
84
|
Lu CW, Yang KC, Chi YC, Wu TY, Chiang CH, Chang HH, Huang KC, Yang WS. Adiponectin-leptin ratio for the early detection of lean non-alcoholic fatty liver disease independent of insulin resistance. Ann Med 2023; 55:634-642. [PMID: 36790383 PMCID: PMC9937001 DOI: 10.1080/07853890.2023.2179106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Lean Non-alcoholic Fatty Liver Disease (NAFLD) shares a similar disease burden to those of their overweight counterparts and should be detected early. We hypothesized that the adiponectin-leptin ratio (AL ratio) could be a good marker for early detection of lean NAFLD independent of insulin resistance. MATERIALS AND METHODS A total of 575 adults without diabetes were enrolled in a community-based study. The subjects were stratified into the lean controls, lean NAFLD, simple overweight/obesity and overweight/obesity NAFLD groups according to body mass index (BMI) and ultrasonographic fatty liver indicators. Serum adiponectin and leptin levels were measured by enzyme-linked immunosorbent assay. Multivariate logistic regression analyses were performed to estimate the odds ratio of having NAFLD in relation to the tertiles of serum AL concentration after adjustment. Receiver operating characteristic (ROC) analyses were applied to evaluate the diagnostic performance of the AL ratio for NAFLD. RESULTS The mean age of the participants was 42.8 ± 11.5 years. Comparing with the lean controls, the odds of having lean NAFLD for the highest versus the lowest tertile of AL ratio was 0.28(95%CI: 0.12-0.69) after adjustment. Putting AL ratio, BMI, triglyceride, AST/ALT ratio to the diagnosis performance of NAFLD, the ROC was 0.85 (95% CI: 0.82-0.88), 0.83 (95% CI 0.78-0.87) and 0.86 (95% CI 081-0.91) for all NAFLD, NAFLD in women and NAFLD in men, respectively. (p < .001). CONCLUSIONS The study revealed that the AL ratio could be a good biomarker to early distinguish lean NAFLD patients from lean controls independent of insulin resistance. [AQ3]Key messagesThe prevalence of non-alcoholic fatty liver disease (NAFLD) increases globally and is related to liver diseases and metabolic dysfunctions. Lean subset of NAFLD shares a similar disease burden to those of their overweight counterparts and should be detected early.Adiponectin-leptin ratio were associated with the severity of steatosis and was a predictor of obese NAFLD better than each single adipokine. To date, there is no investigation that explores specifically for the relationship between lean NAFLD and AL ratio.Our study found that adiponectin-leptin ratio is a sole independent marker regardless of insulin resistance in lean NAFLD. Having lean NAFLD for the highest versus the lowest tertile of adiponectin-leptin ratio was 0.28(95%CI: 0.12-0.69) after adjustment of age, sex, current smoking, exercise habits, HOMA-IR and AST/ALT. ROC for the NAFLD performance is good for the early detection (0.85; 95% CI: 0.82-0.88). Further rigorous investigation is necessary and should be promptly performed.
Collapse
Affiliation(s)
- Chia-Wen Lu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuen-Cheh Yang
- Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Chiao Chi
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsan-Yu Wu
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Hsieh Chiang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Hsiang Chang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chin Huang
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Family Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Family Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
85
|
Ciardullo S, Carbone M, Invernizzi P, Perseghin G. Exploring the landscape of steatotic liver disease in the general US population. Liver Int 2023; 43:2425-2433. [PMID: 37592856 DOI: 10.1111/liv.15695] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of the present study is to explore the epidemiologic impact of the definition of steatotic liver disease (SLD) proposed by a multi-society (American Association for the Study of the Liver-the European Association for the Study of Liver Diseases-Asociación Latinoamericana para el Estudio del Hígado) Delphi consensus statement. METHODS This is a cross-sectional study of US adults participating in the 2017-2020 cycles of the National Health and Nutrition Examination Survey who were evaluated by vibration-controlled transient elastography. Hepatic steatosis and fibrosis were diagnosed by the median value of controlled attenuation parameter and liver stiffness measurement using cut-offs of 274 dB/m and 8.0 kPa, respectively. Recently proposed criteria for metabolic dysfunction-associated steatotic liver disease (MASLD), MetALD (MASLD + significant alcohol consumption), MASLD-Viral hepatitis and cryptogenic SLD were applied. RESULTS SLD was present in 42.1% (95% CI: 40.3-43.9) of the 3173 included participants. Among patients with SLD, 99.4% met the metabolic dysfunction definition. Moreover, 89.4%, 7.7%, 2.4%, 0.4% and 0.1% were defined as MASLD, MetALD, MASLD-Viral, alcoholic liver disease (ALD) (significant alcohol consumption without metabolic dysfunction) and cryptogenic, respectively. No patients without metabolic dysfunction had significant liver fibrosis, which was present in 15.2%, 9.5% and 19.5% of patients with MASLD, MetALD and MASLD-viral, respectively. Approximately, 90% of the overall adult US population could be diagnosed with metabolic dysfunction according to the consensus criteria. A high degree of concordance was found between MASLD and the previously proposed metabolic dysfunction-associated fatty liver disease definition. CONCLUSIONS Metabolic dysfunction is present in almost all patients with SLD in the United States. The new change in diagnostic criteria did not significantly impact disease prevalence.
Collapse
Affiliation(s)
- Stefano Ciardullo
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Marco Carbone
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Rehabilitation, Policlinico di Monza, Monza, Italy
- Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
86
|
Ramírez-Mejía MM, Qi X, Abenavoli L, Romero-Gómez M, Eslam M, Méndez-Sánchez N. Metabolic dysfunction: The silenced connection with fatty liver disease. Ann Hepatol 2023; 28:101138. [PMID: 37468095 DOI: 10.1016/j.aohep.2023.101138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global public health burden. Despite the increase in its prevalence, the disease has not received sufficient attention compared to the associated diseases such as diabetes mellitus and obesity. In 2020 it was proposed to rename NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in order to recognize the metabolic risk factors and the complex pathophysiological mechanisms associated with its development. Furthermore, along with the implementation of the proposed diagnostic criteria, the aim is to address the whole clinical spectrum of the disease, regardless of BMI and the presence of other hepatic comorbidities. As would it be expected with such a paradigm shift, differing viewpoints have emerged regarding the benefits and disadvantages of renaming fatty liver disease. The following review aims to describe the way to the MAFLD from a historical, pathophysiological and clinical perspective in order to highlight why MAFLD is the approach to follow.
Collapse
Affiliation(s)
- Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Liaoning Province, China
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Italy
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
87
|
Valenti L, Aghemo A, Forner A, Petta S, Romeo S, Nahon P. Measuring the impact of the updated Steatotic liver disease nomenclature and definition. Liver Int 2023; 43:2340-2342. [PMID: 37846803 DOI: 10.1111/liv.15731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 10/18/2023]
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine, Biological Resource Center and Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Aghemo
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alejandro Forner
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Salvatore Petta
- Sezione di Gastroenterologia e Epatologia, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Pierre Nahon
- APHP, Liver Unit, Bobigny, France
- Université Sorbonne Paris Nord, F-93000, Bobigny, France
- Inserm, UMR-1138 "Functional Genomics of Solid Tumors", Centre de Recherche des Cordeliers, Université de Paris, Paris, France
| |
Collapse
|
88
|
Huang JF, Tsai PC, Yeh ML, Huang CF, Huang CI, Lee MH, Hsu PY, Wang CW, Wei YJ, Liang PC, Lin YH, Hsieh MH, Yang JF, Hsieh MY, Jang TY, Bair MJ, Lin ZY, Dai CY, Yu ML, Chuang WL. Community-centered Disease Severity Assessment of Metabolic Dysfunction-associated Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:1061-1068. [PMID: 37577215 PMCID: PMC10412709 DOI: 10.14218/jcth.2022.00103s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND AND AIMS Disease severity across the different diagnostic categories of metabolic dysfunction-associated fatty liver disease (MAFLD) remains elusive. This study assessed the fibrosis stages and features of MAFLD between different items. We also aimed to investigate the associations between advanced fibrosis and risk factors. METHODS This multicenter cross-sectional study enrolled adults participating in liver disease screening in the community. Patients were stratified following MAFLD diagnostic criteria, to group A (395 patients) for type 2 diabetes, group B (1,818 patients) for body mass index (BMI)>23 kg/m2, and group C (44 patients) for BMI≤23 kg/m2 with at least two metabolic factors. Advanced fibrosis was defined as a fibrosis-4 index>2.67. RESULTS Between 2009 and 2020, 1,948 MAFLD patients were recruited, including 478 with concomitant liver diseases. Advanced fibrosis was observed in 125 patients. A significantly larger proportion of patients in group C (25.0%) than in group A (7.6%) and group B (5.8%) had advanced fibrosis (p<0.01). Logistic regression analysis found that hepatitis B virus (HBV)/hepatitis C virus (HCV) coinfection (odds ratio [OR]: 12.14, 95% confidence interval [CI]: 4.04-36.52; p<0.01), HCV infection (OR: 7.87, 95% CI: 4.78-12.97; p<0.01), group C (OR: 6.00, 95% CI: 2.53-14.22; p<0.01), and TC/LDL-C (OR: 1.21, 95% CI: 1.06-1.38; p<0.01) were significant predictors of advanced fibrosis. CONCLUSIONS A higher proportion of lean MAFLD patients with metabolic abnormalities had advanced fibrosis. HCV infection was significantly associated with advanced fibrosis.
Collapse
Affiliation(s)
- Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung
| | - Pei-Chien Tsai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Po-Yau Hsu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Wen Wang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Yu-Ju Wei
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Po-Cheng Liang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Yi-Hung Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Meng-Hsuan Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung
| | - Jeng-Fu Yang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung
| | - Ming-Yen Hsieh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Tyng-Yuan Jang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
| | - Ming-Jong Bair
- Division of Gastroenterology, Department of Internal Medicine, Taitung Mackay Memorial Hospital, Taitung
- Mackay Medical College, New Taipei City
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine , National Sun Yat-sen University, Kaohsiung
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine , National Sun Yat-sen University, Kaohsiung
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| |
Collapse
|
89
|
Ramírez-Mejía MM, Méndez-Sánchez N. What Is in a Name: from NAFLD to MAFLD and MASLD—Unraveling the Complexities and Implications. CURRENT HEPATOLOGY REPORTS 2023; 22:221-227. [DOI: 10.1007/s11901-023-00620-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 01/03/2025]
|
90
|
Heerkens L, van Westing AC, Voortman T, Kardys I, Boersma E, Geleijnse JM. Serum uric acid is related to liver and kidney disease and 12-year mortality risk after myocardial infarction. Front Endocrinol (Lausanne) 2023; 14:1240099. [PMID: 37886649 PMCID: PMC10599137 DOI: 10.3389/fendo.2023.1240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Objective To study the associations of non-alcoholic fatty liver disease (NAFLD), chronic kidney disease (CKD), and serum uric acid (SUA) in patients with post-myocardial infarction (MI) patients, and the relationship of SUA with 12-year mortality risk. Methods We included 3,396 patients (60-80 years old, 78% men) of the Alpha Omega Cohort. Multivariable prevalence ratios (PRs) were obtained for the association of NAFLD [fatty liver index (FLI), ≥77 (women) and ≥79 (men)] with CKD [estimated glomerular filtration rate (eGFR), <60 mL/min per 1.73 m2]. We calculated sensitivity and specificity of SUA to detect the (combined) presence and absence of NAFLD and CKD. Cause-specific mortality was monitored from enrolment (2002-2006) through December 2018. Hazard ratios (HRs) for all-cause and cardiovascular disease (CVD) mortality in SUA categories were obtained from multivariable Cox models. Results Median baseline FLI was 67 (men, 68; women, 64), and mean ± SD eGFR was 81 ± 20 mL/min per 1.73 m2 (17% with CKD). Sex-specific FLI was associated with higher CKD prevalence (PRtertile3 vs. tertile1, 1.94; 95% confidence interval: 1.57, 2.39). Baseline SUA was 0.36 ± 0.09 mmol/L. With increasing SUA concentrations, specificity for the presence of NAFLD, CKD, or both increased, and sensitivity decreased. During 12 (interquartile range, 9-14) years of follow-up, 1,592 patients died (713 from CVD). HRs ranged from 1.08 (0.88, 1.32) for SUA ≤0.25 mmol/L to 2.13 (1.75, 2.60) for SUA >0.50 mmol/L vs. SUA >0.30-0.35 mmol/L for all-cause mortality. For CVD mortality, HRs ranged from 1.05 (0.77, 1.44) to 2.43 (1.83, 3.25). Conclusions NAFLD and CKD were strongly associated, which was reflected by higher SUA concentrations. SUA was a strong predictor of 12-year mortality risk after MI.
Collapse
Affiliation(s)
- Luc Heerkens
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Anniek C. van Westing
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Johanna M. Geleijnse
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
91
|
Kuang J, Wang J, Li Y, Li M, Zhao M, Ge K, Zheng D, Cheung KCP, Liao B, Wang S, Chen T, Zhang Y, Wang C, Ji G, Chen P, Zhou H, Xie C, Zhao A, Jia W, Zheng X, Jia W. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab 2023; 35:1752-1766.e8. [PMID: 37591244 DOI: 10.1016/j.cmet.2023.07.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is regarded as a pandemic that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as distinct mechanistic pathways implicated in the development of NAFLD. Here, we report that a group of gut microbiota-modified bile acids (BAs), hyodeoxycholic acid (HDCA) species, are negatively correlated with the presence and severity of NAFLD. HDCA treatment has been shown to alleviate NAFLD in multiple mouse models by inhibiting intestinal farnesoid X receptor (FXR) and upregulating hepatic CYP7B1. Additionally, HDCA significantly increased abundances of probiotic species such as Parabacteroides distasonis, which enhances lipid catabolism through fatty acid-hepatic peroxisome proliferator-activated receptor alpha (PPARα) signaling, which in turn upregulates hepatic FXR. These findings suggest that HDCA has therapeutic potential for treating NAFLD, with a unique mechanism of simultaneously activating hepatic CYP7B1 and PPARα.
Collapse
Affiliation(s)
- Junliang Kuang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jieyi Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Mengci Li
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingliang Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Boya Liao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shouli Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Tianlu Chen
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yinan Zhang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510655, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
92
|
Liu CC, Huang SP, Lee YC, Lee CH, Huang TY, Geng JH, Chang CW, Lin CY, Juan YS, Wu WJ, Hsieh TJ. Metabolic dysfunction-associated fatty liver disease is an early predictor for testosterone deficiency in aging men without metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1252774. [PMID: 37854195 PMCID: PMC10579790 DOI: 10.3389/fendo.2023.1252774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a valuable marker for identifying individuals at increased risk of metabolic dysfunction, liver-related complications, and cardiovascular disease. However, the association between MAFLD and testosterone deficiency (TD) in aging men remains poorly understood. This study aimed to investigate the association between MAFLD and the risk of TD in aging Taiwanese men, with a specific focus on those without metabolic syndrome (MetS). Methods A free health screening program was conducted for Taiwanese men aged over 40 years in Kaohsiung, Taiwan. Participants underwent physical examinations, completed questionnaires regarding demographics, medical history, and clinical symptoms of TD, and provided 20-mL whole blood samples for biochemical, adipocytokine, and hormonal evaluations. Fatty liver index was used to evaluate the risk of fatty liver. Diagnostic criteria for MAFLD included fatty liver along with overweight/obesity, type 2 diabetes, or evidence of metabolic dysregulation. Results A total of 631 men (mean age: 54.4 ± 8.4 years) were enrolled. The prevalence rates of TD and MetS were significantly higher in men with MAFLD compared to those without (both p < 0.001). Additionally, the presence of MAFLD showed a significant correlation with adipocytokines associated with insulin resistance, such as adiponectin, leptin, and retinol-binding protein-4 (RBP-4) levels (all p < 0.001). Among men without MetS, those with MAFLD had a 3.89- and 4.74-fold higher risk of total testosterone < 300 ng/dL and TD, respectively, after adjusting for potential covariates. Conclusion MAFLD is associated with an elevated risk of TD in aging Taiwanese men, particularly in the absence of MetS. This finding suggests that MAFLD could serve as an early predictor of TD, facilitating the identification of high-risk individuals and enabling timely interventions. Further research is needed to validate these findings and explore the underlying mechanisms linking MAFLD, TD, and MetS in diverse populations.
Collapse
Affiliation(s)
- Chia-Chu Liu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yung-Chin Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Tsung-Yi Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung City, Taiwan
| | - Che-Wei Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City, Taiwan
| | - Chung-Yu Lin
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yung-Shun Juan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Tusty-Jiuan Hsieh
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
93
|
Huang S, Shi K, Li Y, Wang J, Jiang L, Gao Y, Yan WF, Shen LT, Yang ZG. Effect of Metabolic Dysfunction-Associated Fatty Liver Disease on Left Ventricular Deformation and Atrioventricular Coupling in Patients With Metabolic Syndrome Assessed by MRI. J Magn Reson Imaging 2023; 58:1098-1107. [PMID: 36591962 DOI: 10.1002/jmri.28588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) was recently recognized as an important risk factor for cardiovascular diseases. PURPOSE To examine the effect of MAFLD on cardiac function in metabolic syndrome by MRI. STUDY TYPE Retrospective. POPULATION One hundred seventy-nine patients with metabolic syndrome (MetS), 101 with MAFLD (MAFLD [+]) and 78 without (MAFLD [-]). Eighty-one adults without any of the components of MetS or cardiac abnormalities were included as control group. FIELD STRENGTH/SEQUENCE 3.0 T; balanced steady-state free precession sequence. ASSESSMENT Left atrial (LA) strain was assessed during three phases: reservoir strain (LA-RS), conduit strain (LA-CS), and booster strain (LA-BS). Left ventricular (LV) global longitudinal (LV-GLS) strain was also derived. The left atrioventricular coupling index (LACI) was calculated as the ratio of LA end-diastolic volume (LA-EDV) and LV-EDV. STATISTICAL TESTS Student's t test or Mann-Whitney U test; One-way analysis of variance. A P value <0.05 was considered statistically significant. RESULTS Among MetS patients, individuals with MAFLD had significantly lower magnitude LV-GLS (-11.6% ± 3.3% vs. -13.8% ± 2.7%) than those without MAFLD. For LA strains, LA-RS (36.9% ± 13.7% vs. 42.9% ± 13.5%) and LA-CS (20.0% ± 10.6% vs. 24.1% ± 9.2%) were also significantly reduced in MAFLD (+) compared to MAFLD (-). The LACIs (17.2% [12.9-21.2] % vs. 15.8% [12.2-19.7] %) were significantly higher in patients with MAFLD compared to those without MAFLD. After adjustment for other clinical factors, MAFLD was found to be independently correlated with LV-GLS (β = -0.270) and LACI (β = 0.260). DATA CONCLUSION MAFLD had an unfavorable effect on LV myocardial strain in MetS. Moreover, LA strain and atrioventricular coupling were further impaired in patients with concomitant MAFLD compared to those without MAFLD. Last, MAFLD was independently associated with subclinical LV dysfunction and atrioventricular coupling after adjustment for other clinical factors. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: 3.
Collapse
Affiliation(s)
- Shan Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
94
|
Chan WK, Chuah KH, Rajaram RB, Lim LL, Ratnasingam J, Vethakkan SR. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J Obes Metab Syndr 2023; 32:197-213. [PMID: 37700494 PMCID: PMC10583766 DOI: 10.7570/jomes23052] [Citation(s) in RCA: 240] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the latest term for steatotic liver disease associated with metabolic syndrome. MASLD is the most common cause of chronic liver disease and is the leading cause of liver-related morbidity and mortality. It is important that all stakeholders be involved in tackling the public health threat of obesity and obesity-related diseases, including MASLD. A simple and clear assessment and referral pathway using non-invasive tests is essential to ensure that patients with severe MASLD are identified and referred to specialist care, while patients with less severe disease remain in primary care, where they are best managed. While lifestyle intervention is the cornerstone of the management of patients with MASLD, cardiovascular disease risk must be properly assessed and managed because cardiovascular disease is the leading cause of mortality. No pharmacological agent has been approved for the treatment of MASLD, but novel anti-hyperglycemic drugs appear to have benefit. Medications used for the treatment of diabetes and other metabolic conditions may need to be adjusted as liver disease progresses to cirrhosis, especially decompensated cirrhosis. Based on non-invasive tests, the concepts of compensated advanced chronic liver disease and clinically significant portal hypertension provide a practical approach to stratifying patients according to the risk of liver-related complications and can help manage such patients. Finally, prevention and management of sarcopenia should be considered in the management of patients with MASLD.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kee-Huat Chuah
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ruveena Bhavani Rajaram
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee-Ling Lim
- Endocrinology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region of China
- Asia Diabetes Foundation, Hong Kong, Special Administrative Region of China
| | - Jeyakantha Ratnasingam
- Endocrinology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shireene Ratna Vethakkan
- Endocrinology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
95
|
Beer S, Babel J, Martin N, Blank V, Wiegand J, Karlas T. Non-invasive assessment of steatohepatitis indicates increased risk of coronary artery disease. PLoS One 2023; 18:e0286882. [PMID: 37768969 PMCID: PMC10538770 DOI: 10.1371/journal.pone.0286882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/25/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Fatty liver diseases (FLD), especially defined as metabolic dysfunction-associated FLD (MAFLD), is of growing importance for patients and health-care providers. Extrahepatic comorbidities, predominantly coronary artery disease (CAD), contribute to excess morbidity and mortality in FLD. Although the association of FLD and CAD is well known, underlying pathophysiological links are not fully understood. Non-invasive means of liver diagnostic enable a fast and thorough characterization of FLD. We therefore assessed the severity of FLD in a cohort of patients at risk of CAD. METHODS Patients scheduled for coronary angiography were characterized by anthropometry, serum-based indices of liver fibrosis (NFS, FIB4), abdominal ultrasound and vibration controlled transient elastography (VCTE) including controlled attenuation parameter (CAP) and the Fibroscan-AST (FAST) score. Patients were stratified according to indication of therapeutic coronary intervention. RESULTS 120 patients were recruited, MAFLD was found in 41%, while advanced fibrosis or cirrhosis were present in only 5%. Coronary vascular intervention was indicated in 42% (n = 50). Severity of steatosis assessed by CAP and risk of fibrosis defined by elevated liver stiffness (VCTE>8 kPa) and fibrosis indices were associated with the need for coronary intervention. FAST score, a marker of fibrotic steatohepatitis, was elevated in the intervention group (0.22 vs. 0.12, p<0.001). Multivariate regression analysis revealed FAST score as strongest predictor of CAD (OR 2.3 95%, CI 1.40-2.96). DISCUSSION MAFLD is a frequent comorbidity in patients at CAD risk, but advanced liver disease has a low prevalence in patients undergoing elective coronary angiography. Therefore, a routine VCTE-based screening for FLD cannot be recommended in cardiac patients. The association of indicators of steatohepatitis with advanced CAD points to inflammatory processes as a conjoint mechanism of both diseases.
Collapse
Affiliation(s)
- Sebastian Beer
- Department of Medicine II, Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
- Integrated Research and Treatment Center Adiposity Diseases, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jonas Babel
- Department of Medicine II, Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
- Department of Operative Medicine II, Division of Visceral-, Transplant-, Thoracic- and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany
| | - Neef Martin
- Department of Cardiology, Leipzig University Medical Center, Leipzig, Germany
| | - Valentin Blank
- Department of Medicine II, Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
- Department of Internal Medicine I (Gastroenterology, Pneumology) and Division of Interdisciplinary Ultrasound, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Johannes Wiegand
- Department of Medicine II, Division of Hepatology, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas Karlas
- Department of Medicine II, Division of Gastroenterology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
96
|
Hernandez-Tejero M, Ravi S, Behari J, Arteel GE, Arab JP, Bataller R. High Variability on Alcohol Intake Threshold in Articles Using the MAFLD Acronym. GASTRO HEP ADVANCES 2023; 3:96-100. [PMID: 39132176 PMCID: PMC11308239 DOI: 10.1016/j.gastha.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/30/2023] [Indexed: 08/13/2024]
Affiliation(s)
- Maria Hernandez-Tejero
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Samhita Ravi
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan Pablo Arab
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Center for Liver Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
97
|
Chen S, Xue H, Huang R, Chen K, Zhang H, Chen X. Associations of MAFLD and MAFLD subtypes with the risk of the incident myocardial infarction and stroke. DIABETES & METABOLISM 2023; 49:101468. [PMID: 37586479 DOI: 10.1016/j.diabet.2023.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a condition characterized by liver fat accumulation and metabolic abnormalities. Given the potential impact of MAFLD on patient health, it is important to understand its association with major adverse cardiovascular events (MACE) such as myocardial infarction (MI) and stroke. In the prospective UK Biobank cohort, we sought to elucidate the association of MAFLD and its subtypes with incident MI and stroke. In this study, we analyzed the data of 325,129 participants in the UK Biobank and calculated relative risks for MI and stroke using Cox regression analysis. Among 325,129 participants over a median duration of 12.8 years follow-up, participants with MAFLD were significantly more likely to experience a MI (hazard ratio [HR] = 1.35, 95% confidence interval [CI: 1.29;1.41] P < 0.001) or a stroke (HR = 1.26 [1.18-1.33] P < 0.001) compared to those without MAFLD. In addition, diabetic, overweight with metabolic dysfunction (MD), and lean MAFLD subtypes were significantly associated with an increased risk for MI and stroke, whereas overweight without MD subtype did not appear to be associated with this risk. Our findings also revealed graded associations between liver fibrosis scores and risk of MI and stroke in MAFLD patients. However, only diabetic, and overweight patients with MD subtypes exhibited graded associations between liver fibrosis score and the risk of MI and stroke among the MAFLD subtypes. Furthermore, the risk alleles traits of fatty liver did not enhance the effect of MAFLD on the risk of MI and stroke. In conclusion, a diagnosis of MAFLD is associated with an increased risk of MI or stroke, and the assessment of MAFLD and its subtypes should be a component of the cardiovascular risk assessment.
Collapse
Affiliation(s)
- Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongliang Xue
- Department of Nutrition, School of Public Health, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Rong Huang
- Medical science and technology innovation center, Jinan Central Hospital, Shandong First Medical University, Shandong, China
| | - Ke Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Xu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China; Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA.
| |
Collapse
|
98
|
Pipitone RM, Zito R, Gambino G, Di Maria G, Javed A, Lupo G, Giglia G, Sardo P, Ferraro G, Rappa F, Carlisi D, Di Majo D, Grimaudo S. Red and golden tomato administration improves fat diet-induced hepatic steatosis in rats by modulating HNF4α, Lepr, and GK expression. Front Nutr 2023; 10:1221013. [PMID: 37727633 PMCID: PMC10505813 DOI: 10.3389/fnut.2023.1221013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD), characterized by lipid accumulation within hepatocytes exceeding 5% of liver weight, is strongly related to metabolic disorders, obesity, and diabetes and represents a health emergency worldwide. There is no standard therapy available for NAFLD. Lifestyle intervention, including phytonutrient intake, is key in preventing NAFLD development and progression. Methods We used a rat model of NAFLD to evaluate the effect of dietary supplementation with red tomato (RT) and golden tomato (GT)-a patented mix of fruit with varying degrees of ripeness and particularly rich in naringenin and chlorogenic acid-after steatosis development. We assessed the effects on body weight, metabolic profile, and hepatic steatosis. Results and discussion We found a correlation between the amelioration of all the parameters and the liver gene expression. Our results showed that, together with the reversion of steatosis, the consumption of RT and GT can cause a significant reduction in triglycerides, low-density lipoprotein-cholesterol, fasting glucose, and homeostasis model assessment index. Meanwhile, we observed an increase in high-density lipoprotein-cholesterol according to the amelioration of the general lipidic profile. Regarding hepatic gene expression, we found the upregulation of Gk and Hnf4α involved in metabolic homeostasis, Lepr involved in adipokine signaling, and Il6 and Tnf involved in inflammatory response. Taken together, our results suggest that dietary intake of red and golden tomatoes, as a nutraceutical approach, has potential in preventing and therapeutics of NAFLD.
Collapse
Affiliation(s)
- Rosaria Maria Pipitone
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Rossella Zito
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Ayesha Javed
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Lupo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Giglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro Mediterranean Institute of Science and Technology- I.E.ME.S.T., Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Postgraduate School of Nutrition and Food Science, University of Palermo, Palermo, Italy
| | - Stefania Grimaudo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
99
|
Eslam M, George J. Two years on, a perspective on MAFLD. EGASTROENTEROLOGY 2023; 1:e100019. [PMID: 39943998 PMCID: PMC11770426 DOI: 10.1136/egastro-2023-100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 01/03/2025]
Abstract
To provide clarity for research studies and clinical care, a set of positive criteria for adults and children with metabolic (dysfunction) associated fatty liver disease (MAFLD) was recently published and has subsequently been widely endorsed. The development and subsequent validation of the criteria for MAFLD has created a positive momentum for change. During the course of the ongoing discussion on the redefinition, some concerns have surfaced that we thought needs clarification. In this review, we provide a perspective on MAFLD and bringing clarity to some of the key aspects that have been recently raised.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
100
|
Wan H, Yu G, Xu S, Chen X, Jiang Y, Duan H, Lin X, Ma Q, Wang D, Liang Y, Liu L, Shen J. Central Sensitivity to Free Triiodothyronine With MAFLD and Its Progression to Liver Fibrosis in Euthyroid Adults. J Clin Endocrinol Metab 2023; 108:e687-e697. [PMID: 36999544 DOI: 10.1210/clinem/dgad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
CONTEXT Impaired sensitivity to thyroid hormones has been demonstrated to be positively associated with the prevalence of metabolic disorders. However, the relationship between sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease (MAFLD) and liver fibrosis remained unclear. OBJECTIVE We aimed to determine the associations of thyroid hormone sensitivity indices with MAFLD and its progression to liver fibrosis in Chinese euthyroid adults. METHODS This community-based study included 7906 euthyroid adults. We calculated the thyroid sensitivity indices, including free triiodothyronine to free thyroxine (FT3/FT4) ratio, Thyroid Feedback Quantile-based Index by FT4 (TFQIFT4), and Thyroid Feedback Quantile-based Index by FT3 (TFQIFT3), indicating peripheral and central thyroid hormone sensitivity respectively. Liver steatosis and fibrosis were diagnosed by vibration-controlled transient elastography (VCTE). Multivariable logistic/linear regression and restricted cubic spline (RCS) analysis were conducted. RESULTS Compared with participants in the first quartile (Q1), the prevalence of MAFLD was increased by 62% in the fourth quartile (Q4) of FT3/FT4 ratio (OR 1.62; 95% CI [1.38, 1.91]) and by 40% in Q4 of TFQIFT3 (OR 1.40; 95% CI [1.18, 1.65]) (both P < .05). No associations between TFQIFT4 and the prevalence of MAFLD were found. In addition, compared with participants in Q1, the prevalence of liver fibrosis was increased by 45% in Q4 of TFQIFT3 (OR 1.45; 95% CI [1.03, 2.06]) (P < .05) in participants with MAFLD. CONCLUSION Impaired central sensitivity to FT3 was associated with MAFLD and its progression to liver fibrosis. More prospective and mechanism studies are warranted to confirm these conclusions.
Collapse
Affiliation(s)
- Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Sirong Xu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Qintao Ma
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Dongmei Wang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Yongqian Liang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Lan Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City 528308, Guangdong, China
| |
Collapse
|