51
|
Prasse C. Reactivity-directed analysis - a novel approach for the identification of toxic organic electrophiles in drinking water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:48-65. [PMID: 33432313 DOI: 10.1039/d0em00471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drinking water consumption results in exposure to complex mixtures of organic chemicals, including natural and anthropogenic chemicals and compounds formed during drinking water treatment such as disinfection by-products. The complexity of drinking water contaminant mixtures has hindered efforts to assess associated health impacts. Existing approaches focus primarily on individual chemicals and/or the evaluation of mixtures, without providing information about the chemicals causing the toxic effect. Thus, there is a need for the development of novel strategies to evaluate chemical mixtures and provide insights into the species responsible for the observed toxic effects. This critical review introduces the application of a novel approach called Reactivity-Directed Analysis (RDA) to assess and identify organic electrophiles, the largest group of known environmental toxicants. In contrast to existing in vivo and in vitro approaches, RDA utilizes in chemico methodologies that investigate the reaction of organic electrophiles with nucleophilic biomolecules, including proteins and DNA. This review summarizes the existing knowledge about the presence of electrophiles in drinking water, with a particular focus on their formation in oxidative treatment systems with ozone, advanced oxidation processes, and UV light, as well as disinfectants such as chlorine, chloramines and chlorine dioxide. This summary is followed by an overview of existing RDA approaches and their application for the assessment of aqueous environmental matrices, with an emphasis on drinking water. RDA can be applied beyond drinking water, however, to evaluate source waters and wastewater for human and environmental health risks. Finally, future research demands for the detection and identification of electrophiles in drinking water via RDA are outlined.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Whiting School of Engineering and Bloomberg School of Public Health, Johns Hopkins University, 3400 N Charles St, Baltimore, MD-21318, USA.
| |
Collapse
|
52
|
Tian Z, Zhao H, Peter KT, Gonzalez M, Wetzel J, Wu C, Hu X, Prat J, Mudrock E, Hettinger R, Cortina AE, Biswas RG, Kock FVC, Soong R, Jenne A, Du B, Hou F, He H, Lundeen R, Gilbreath A, Sutton R, Scholz NL, Davis JW, Dodd MC, Simpson A, McIntyre JK, Kolodziej EP. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021; 371:185-189. [PMID: 33273063 DOI: 10.1126/science.abd6951] [Citation(s) in RCA: 460] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.
Collapse
Affiliation(s)
- Zhenyu Tian
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Haoqi Zhao
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Jill Wetzel
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Christopher Wu
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Ximin Hu
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jasmine Prat
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Emma Mudrock
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Rachel Hettinger
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Allan E Cortina
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Rajshree Ghosh Biswas
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | | - Ronald Soong
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Bowen Du
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Fan Hou
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Huan He
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rachel Lundeen
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Alicia Gilbreath
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, Lacey, WA 98503, USA
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Andre Simpson
- Department of Chemistry, University of Toronto, Scarborough Campus, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup, WA 98371, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA.
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
53
|
Rougé V, von Gunten U, Allard S. Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters. WATER RESEARCH 2020; 187:116418. [PMID: 33011567 DOI: 10.1016/j.watres.2020.116418] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Pre-oxidation is often used before disinfection with chlorine to decrease the reactivity of the water matrix and mitigate the formation of regulated disinfection byproducts (DBPs). This study provides insights on the impact of oxidative pre-treatment with chlorine dioxide (ClO2), ozone (O3), ferrate (Fe(VI)) and permanganate (Mn(VII)) on Suwannee River Natural Organic Matter (SRNOM) properties characterized by the UV absorbance at 254 nm (UV254) and the electron donating capacity (EDC). Changes in NOM reactivity and abatement of DBP precursors are also assessed. The impact of pre-oxidants (based on molar concentration) on UV254 abatement ranked in the order O3 > Mn(VII) > Fe(VI)/ClO2, while the efficiency of pre-oxidation on EDC abatement followed the order Mn(VII) > ClO2 > Fe(VI) > O3 and two phases were observed. At low specific ClO2, Fe(VI) and Mn(VII) doses corresponding to < 50% EDC abatement, a limited relative abatement of UV254 compared to the EDC was observed (~ 8% EDC abatement per 1% UV254 abatement). This suggests the oxidation of phenolic-type moieties to quinone-type moieties which absorb UV254 and don't contribute to EDC. At higher oxidant doses (> 50% EDC abatement), a similar abatement of EDC and UV254 (~ 0.9-1.2% EDC abatement per 1% UV254 abatement) suggested aromatic ring cleavage. In comparison to the other oxidants, O3 abated the relative UV254 more effectively, due to a more efficient cleavage of aromatic rings. For a pre-oxidation with Mn(VII), ClO2 and Fe(VI), similar correlations between the EDC abatement and the chlorine demand or the adsorbable organic halide (AOX) formation were obtained. In contrast, O3 pre-treatment led to a lower chlorine demand and AOX formation for equivalent EDC abatement. For all oxidants, trihalomethane formation was poorly correlated with both EDC and UV254. The EDC abatement was found to be a pre-oxidant-independent surrogate for haloacetonitrile formation. These results emphasize the benefits of combining EDC and UV254 measurement to understand and monitor oxidant-induced changes of NOM and assessing DBP formation.
Collapse
Affiliation(s)
- Valentin Rougé
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, 6845 Perth, Western Australia, Australia; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland; ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), Universitätstrasse 16, CH-8092 Zürich.
| | - Sébastien Allard
- Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, 6845 Perth, Western Australia, Australia.
| |
Collapse
|
54
|
Walpen N, Houska J, Salhi E, Sander M, von Gunten U. Quantification of the electron donating capacity and UV absorbance of dissolved organic matter during ozonation of secondary wastewater effluent by an assay and an automated analyzer. WATER RESEARCH 2020; 185:116235. [PMID: 32823195 DOI: 10.1016/j.watres.2020.116235] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/30/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Ozonation of secondary wastewater treatment plant effluent for the abatement of organic micropollutants requires an accurate process control, which can be based on monitoring ozone-induced changes in dissolved organic matter (DOM). This study presents a novel automated analytical system for monitoring changes in the electron donating capacity (EDC) and UV absorbance of DOM during ozonation. In a first step, a quantitative photometric EDC assay was developed based on electron-transfer reactions from phenolic moieties in DOM to an added chemical oxidant, the radical cation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS·+). The assay is highly sensitive (limit of quantification ∼0.5 mgDOC·L-1) and EDC values of model DOM isolates determined by this assay were in good agreement with values determined previously by mediated electrochemical oxidation (slope = 1.01 ± 0.07, R2 = 0.98). In a second step, the photometric EDC measurement method was transferred onto an automated fluidic system coupled to a photometer (EDC analyzer). The EDC analyzer was then used to monitor changes in EDC and UV absorbance of secondary wastewater effluent treated with ozone. While both parameters exhibited a dose-dependent decrease, a more pronounced decrease in EDC as compared to UV absorbance was observed at specific ozone doses up to 0.4 mgO3·gDOC-1. The concentration of 17α-ethinylestradiol, a phenolic micropollutant with a high ozone reactivity, decreased proportionally to the EDC decrease. In contrast, abatement of less ozone-reactive micropollutants and bromate formation started only after a pronounced initial decrease in EDC. The on-line EDC analyzer presented herein will enable a comprehensive assessment of the combination of EDC and UV absorbance as control parameters for full-scale ozonation.
Collapse
Affiliation(s)
- Nicolas Walpen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Joanna Houska
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Elisabeth Salhi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
55
|
Marron EL, Prasse C, Van Buren J, Sedlak DL. Formation and Fate of Carbonyls in Potable Water Reuse Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10895-10903. [PMID: 32833432 PMCID: PMC7755163 DOI: 10.1021/acs.est.0c02793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Low molecular weight, uncharged compounds have been the subject of considerable study at advanced treatment plants employed for potable water reuse. However, previously identified compounds only account for a small fraction of the total dissolved organic carbon remaining after reverse osmosis treatment. Uncharged carbonyl compounds (e.g., aldehydes and ketones) formed during oxidation have rarely been monitored in potable water reuse systems. To determine the relative importance of these compounds to final product water quality, samples were collected from six potable water reuse facilities and one conventional drinking water treatment plant. Saturated carbonyl compounds (e.g., formaldehyde, acetone) and α,β-unsaturated aldehydes (e.g., acrolein, crotonaldehyde) were quantified with a sensitive new analytical method. Relatively high concentrations of carbonyls (i.e., above 7 μM) were observed after ozonation of wastewater effluent. Biological filtration reduced concentrations of carbonyls by over 90%. Rejection of the carbonyls during reverse osmosis was correlated with molecular weight, with concentrations decreasing by 33% to 58%. Transformation of carbonyls resulted in decreases in concentration of 10% to 90% during advanced oxidation, with observed decreases consistent with rate constants for reactions of the compounds with hydroxyl radicals. Overall, carbonyl compounds accounted for 19% to 38% of the dissolved organic carbon in reverse osmosis-treated water.
Collapse
Affiliation(s)
- Emily L. Marron
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
- NSF Engineering Research Center for Reinventing, the Nation’s Urban Water Infrastructure (ReNUWIt)
| | - Carsten Prasse
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Jean Van Buren
- Department of Chemistry, University of California, Berkeley, California 94720
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720
- NSF Engineering Research Center for Reinventing, the Nation’s Urban Water Infrastructure (ReNUWIt)
- corresponding author:
| |
Collapse
|
56
|
Jin X, Liu Y, Wang Y, Zhang S, Zhang W, Jin P, Xu L, Shi X, Wang XC, Lv S. Towards a comparison between the hybrid ozonation-coagulation (HOC) process using Al- and Fe-based coagulants: Performance and mechanism. CHEMOSPHERE 2020; 253:126625. [PMID: 32289602 DOI: 10.1016/j.chemosphere.2020.126625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the removal performance of a hybrid ozonation-coagulation (HOC) process using AlCl36H2O (Al-HOC) and FeCl36H2O (Fe-HOC) as coagulants for the treatment of wastewater treatment plant (WWTP) effluent and ibuprofen (IBP) was investigated. Compared with the conventional coagulation process and pre-ozonation-coagulation process, much better organic matter removal performance can be achieved for both the Al-HOC and Fe-HOC processes. The Fe-HOC process showed an obviously higher dissolved organic carbon (DOC) removal efficiency than that of the Al-HOC process. Surface hydroxyl groups were determined to be the active sites in generating OH in the HOC process, and the hydrolysed Fe species possessed a higher content of surface hydroxyl groups than the hydrolysed Al species according to fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectra (XPS) analyses. In addition, the hydrolysed Fe species contained a higher portion of tetrahedral sites that were more likely to be stronger Lewis acid sites to react with ozone to generate OH. Furthermore, peroxone reactions in the HOC process were other possible way to enhance the OH generation, and higher H2O2 generation was observed in the Fe-HOC process due to higher O2- generation. Therefore, better removal performance of the Fe-HOC process can be obtained due to the increased OH generation in the Fe-HOC process.
Collapse
Affiliation(s)
- Xin Jin
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuguo Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shaohua Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weijie Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pengkang Jin
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lu Xu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xuan Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shiwen Lv
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
57
|
Wei K, Wang Z, Ouyang C, Cao X, Liang P, Huang X, Zhang X. A hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation: A comprehensive study on a pilot scale. WATER RESEARCH 2020; 173:115536. [PMID: 32032886 DOI: 10.1016/j.watres.2020.115536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Taking advantage of the high mass transfer in the bulk solution of fluidized-bed reactor (FBR), and the benefits of simultaneous particle separation and ozone catalysis on ceramic membranes, we proposed a hybrid fluidized-bed reactor (HFBR) based on arrayed ceramic membranes (ACMs) coupled with powdered activated carbon (PAC) for efficient catalytic ozonation. The optimum HFBR performance on a pilot scale was found at PAC addition of 3 g/L, ozone dosage of 25 mg/L, hydraulic retention time of 60 min and auxiliary aeration strength of 5 m3/h. During the 30-day treatment of coal-gasification secondary effluent (200 L/h), the HFBR system revealed not only a 117% increase in ozone utilization efficiency (ΔCOD/ΔO3) upon pure ozonation but also a highly purified effluent with better sterilization and low residual bromate (∼11 μg/L). Low-molecular-weight organic fragments and acids, as well as phthalate esters were identified as the main products in this process. By density functional theory (DFT) calculations, it was found the main functional groups (carbonyls, -C=O) on the PAC could be protected from direct ozonation in the presence of ozone-degradable organics (e.g. phenolic and aliphatic compounds) in the wastewater through an ozone-competing reaction, which prevented the rapid inactivation of the PAC in catalytic ozonation. A longer service life and cheaper materials for ceramic membranes would benefit low operation costs for the HFBR. Moreover, the addition of PAC could greatly reduce ozone demand by ∼60% in the HFBR, and therefore decrease energy consumption by ∼30%. Hence, the HFBR was proved to be a highly competitive technology for wide application in the near future.
Collapse
Affiliation(s)
- Kajia Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuo Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Changpei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoxin Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
58
|
Liu X, Liu R, Zhu B, Ruan T, Jiang G. Characterization of Carbonyl Disinfection By-Products During Ozonation, Chlorination, and Chloramination of Dissolved Organic Matters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2218-2227. [PMID: 31961661 DOI: 10.1021/acs.est.9b04875] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbonyl compounds are an important class of by-products that are generated in disinfection reactions. These chemicals are ingredients contributing to toxicology in the drinking water system, the compositions and structures of which are worthy of attention. In this study, a chemical derivatization method based on simultaneous light/heavy isotope labeling was established for general recognition of carbonyl compounds and carbonyl disinfection by-products (DBPs) as per the humic substance reference standard (Suwannee river fulvic acid II, SRFA) before and after ozonation, chlorination, and chloramination. Decomposition of macromolecular components into polar carbonyl species was observed to be the most prominent pathway in ozone treatment due to the efficient reactivity of ozone with phenols and alkoxy aromatic rings. As a result, alteration of molecular characteristics was noticed. For instance, ozone-induced carbonyl DBPs in the highly oxygenated compound classes (0.67 ≤ O/C ≤ 1.2, 0.6 < H/C ≤ 1.5) possessed higher O/C but contained less oxygen numbers and carbon numbers. Cl/Br-carbonyl-DBPs were identified after chlorination and chloramination, and I-carbonyl-DBPs were found in ozone and chloramine treatments. Several major halogenated carbonyl homologues were further recognized, including halogenated 4-oxobutenoic acid analogues, halogenated 2,5-dioxohex-3-enoic acid analogues, and halogenated 4-cyclopentene-1,3-diones analogues. These findings illustrate the presence of abundant carbonyl DBPs in water disinfection, and hence their impacts on human health deserve further investigation.
Collapse
Affiliation(s)
- Xueke Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ruirui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
59
|
Ito S, Sakai K, Gamaleev V, Ito M, Hori M, Kato M, Shimizu M. Oxygen radical based on non-thermal atmospheric pressure plasma alleviates lignin-derived phenolic toxicity in yeast. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:18. [PMID: 32010221 PMCID: PMC6988259 DOI: 10.1186/s13068-020-1655-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Vanillin is the main byproduct of alkaline-pretreated lignocellulosic biomass during the process of fermentable-sugar production and a potent inhibitor of ethanol production by yeast. Yeast cells are usually exposed to vanillin during the industrial production of bioethanol from lignocellulosic biomass. Therefore, vanillin toxicity represents a major barrier to reducing the cost of bioethanol production. RESULTS In this study, we analysed the effects of oxygen-radical treatment on vanillin molecules. Our results showed that vanillin was converted to vanillic acid, protocatechuic aldehyde, protocatechuic acid, methoxyhydroquinone, 3,4-dihydroxy-5-methoxybenzaldehyde, trihydroxy-5-methoxybenzene, and their respective ring-cleaved products, which displayed decreased toxicity relative to vanillin and resulted in reduced vanillin-specific toxicity to yeast during ethanol fermentation. Additionally, after a 16-h incubation, the ethanol concentration in oxygen-radical-treated vanillin solution was 7.0-fold greater than that from non-treated solution, with similar results observed using alkaline-pretreated rice straw slurry with oxygen-radical treatment. CONCLUSIONS This study analysed the effects of oxygen-radical treatment on vanillin molecules in the alkaline-pretreated rice straw slurry, thereby finding that this treatment converted vanillin to its derivatives, resulting in reduced vanillin toxicity to yeast during ethanol fermentation. These findings suggest that a combination of chemical and oxygen-radical treatment improved ethanol production using yeast cells, and that oxygen-radical treatment of plant biomass offers great promise for further improvements in bioethanol-production processes.
Collapse
Affiliation(s)
- Shou Ito
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Kiyota Sakai
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Vladislav Gamaleev
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masafumi Ito
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603 Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| | - Motoyuki Shimizu
- Faculty of Agriculture, Meijo University, Nagoya, Aichi 468-8502 Japan
| |
Collapse
|
60
|
Prasse C, von Gunten U, Sedlak DL. Chlorination of Phenols Revisited: Unexpected Formation of α,β-Unsaturated C 4-Dicarbonyl Ring Cleavage Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:826-834. [PMID: 31904937 PMCID: PMC7665061 DOI: 10.1021/acs.est.9b04926] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite decades of research on the fate of phenolic compounds when water is disinfected with hypochlorous acid (HOCl), there is still considerable uncertainty regarding the formation mechanisms and identity of ring cleavage products, especially at higher chlorine doses. This study focuses on the formation of electrophilic ring cleavage products-a class of compounds that poses potential health risks at relatively low concentrations-from the reactions of phenols with chlorine. By monitoring the formation of products of reactions between ring cleavage products and the model nucleophile N-α-acetyl-lysine, we identified the α,β-unsaturated dialdehyde 2-butene-1,4-dial (BDA) and its chlorinated analogue, chloro-2-butene-1,4-dial (Cl-BDA), after the chlorination of phenol, para- and ortho-substituted chlorophenols (2-Cl, 4-Cl, 2,4-diCl-, 2,6-diCl, and 2,4,6-triCl-phenol), and 3,5-di-Cl-catechol. Maximum yields of BDA were observed when chlorine was present in large excess (HOCl/phenol ratios of 30:1 to 50:1), with yields ranging from 18% for phenol to 46% for 3,5-diCl-catechol. BDA and Cl-BDA formation was also observed during the chlorination of brominated phenols. For methyl-substituted phenols, the presence of methyl substituents in both positions ortho to the hydroxy group inhibited BDA and Cl-BDA formation, but the chlorination of cresols and 2,3-dimethylphenol yielded methyl- and dimethyl-BDA species. This study provides new insights into the formation of reactive and toxic electrophiles during chlorine disinfection. It also provides evidence for the importance of phenoxy radicals produced by one-electron transfer reactions initiated by chlorine in the production of dicarbonyl ring cleavage products.
Collapse
Affiliation(s)
- Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
- School of Architecture, Civil, and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne, 1015 Lausanne, Switzerland
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
61
|
Ren W, Xiong L, Yuan X, Yu Z, Zhang H, Duan X, Wang S. Activation of Peroxydisulfate on Carbon Nanotubes: Electron-Transfer Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14595-14603. [PMID: 31721570 DOI: 10.1021/acs.est.9b05475] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study proposed an electrochemical technique for investigating the mechanism of nonradical oxidation of organics with peroxydisulfate (PDS) activated by carbon nanotubes (CNT). The electrochemical property of twelve phenolic compounds (PCs) was evaluated by their half-wave potentials, which were then correlated to their kinetic rate constants in the PDS/CNT system. Integrated with quantitative structure-activity relationships (QSARs), electron paramagnetic resonance (EPR), and radical scavenging tests, the nature of nonradical pathways of phenolic compound oxidation was unveiled to be an electron-transfer regime other than a singlet oxygenation process. The QSARs were established according to their standard electrode potentials, activation energy, and pre-exponential factor. A facile electrochemical analysis method (chronopotentiometry combined with chronoamperometry) was also employed to probe the mechanism, suggesting that PDS was catalyzed initially by CNT to form a CNT surface-confined and -activated PDS (CNT-PDS*) complex with a high redox potential. Then, the CNT-PDS* complex selectively abstracted electrons from the co-adsorbed PCs to initiate the oxidation. Finally, a comparison of PDS/CNT and graphite anodic oxidation under constant potentials was comprehensively analyzed to unveil the relative activity of the nonradical CNT-PDS* complex toward the oxidation of different PCs, which was found to be dependent on the oxidative potentials of the CNT-PDS* complex and the adsorbed organics.
Collapse
Affiliation(s)
- Wei Ren
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center , Wuhan University , Wuhan 430079 , P. R. China
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Liangliang Xiong
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center , Wuhan University , Wuhan 430079 , P. R. China
| | - Xuehong Yuan
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center , Wuhan University , Wuhan 430079 , P. R. China
| | - Ziwei Yu
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center , Wuhan University , Wuhan 430079 , P. R. China
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center , Wuhan University , Wuhan 430079 , P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| | - Shaobin Wang
- School of Chemical Engineering , The University of Adelaide , Adelaide , SA 5005 , Australia
| |
Collapse
|
62
|
Li K, Yang Y, Bacha AUR, Feng Y, Ajmal S, Nabi I, Zhang L. Efficiently complete degradation of 2,4-DCP using sustainable photoelectrochemical reduction and sequential oxidation method. CHEMICAL ENGINEERING JOURNAL 2019; 378:122191. [DOI: 10.1016/j.cej.2019.122191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
|
63
|
Wu QY, Zhou YT, Li W, Zhang X, Du Y, Hu HY. Underestimated risk from ozonation of wastewater containing bromide: Both organic byproducts and bromate contributed to the toxicity increase. WATER RESEARCH 2019; 162:43-52. [PMID: 31254885 DOI: 10.1016/j.watres.2019.06.054] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Ozonation is widely used in wastewater treatment but the associated byproduct formation is a concern. When ozonation is used in the presence of bromide, bromate is generally considered as a major byproduct, and few studies have examined the toxicity of organic byproducts. This study was designed to investigate the cytotoxicity, genotoxicity and DNA/RNA oxidative damage to Chinese hamster ovary (CHO) cells of organic extracts from ozonated wastewater in the absence or presence of bromide. Ozonation effectively detoxified secondary effluents containing no bromide. However, ozonation significantly increased the cytotoxicity and genotoxicity of the effluents spiked with a bromide concentration as low as 100 μg/L, compared with the bromide-free effluent. When the bromide concentration in the effluent was increased to 2000 μg/L, ozonation resulted in 1.4-1.5 times the cytotoxicity and 1.5-5.0 times the genotoxicity of the non-ozonated secondary effluent. Besides, the oxidative stress (including reactive oxygen species and reactive nitrogen species) and DNA/RNA oxidative damage also became more severe and a high level of 8-hydroxy-(deoxy)guanosine was detected in the CHO cell nucleus in the presence of bromide. Cytotoxicity and genotoxicity were found to increase with the formation of total organic bromine (TOBr). When the CHO cells were exposed to both the organic byproducts and bromate formed from wastewater containing 500 and 2000 μg/L bromide, bromate significantly increased oxidative stress and DNA/RNA oxidative damage at relatively high concentration factors, suggesting both organic byproduct and bromate can contribute to toxicity increase. During ozonation of the effluent containing bromide, particular attention should be paid to the organic byproducts such as TOBr.
Collapse
Affiliation(s)
- Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yu-Ting Zhou
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China.
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
64
|
Huang Y, Cheng S, Wu YP, Wu J, Li Y, Huo ZL, Wu JC, Xie XC, Korshin GV, Li AM, Li WT. Developing surrogate indicators for predicting suppression of halophenols formation potential and abatement of estrogenic activity during ozonation of water and wastewater. WATER RESEARCH 2019; 161:152-160. [PMID: 31195331 DOI: 10.1016/j.watres.2019.05.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
This study focused on developing surrogate indicators for predicting oxidation of phenolic groups in dissolved organic matter (DOM), suppression of halophenols' formation potential and abatement of estrogenic activity during ozonation of water and wastewater. The evolution of pH-dependent differential absorbance spectra suggests that O3 preferentially reacts with the DOM phenolic moieties and less so with the aromatic carboxylic groups with increasing O3/DOC (dissolved organic carbon) ratios and changes of UV absorbance and fluorescence. When ozonation used as pretreatment, the formation of halophenols in subsequent chlorination decreased linearly with increasing O3 doses or changes of UV absorbance until it reached 85% suppression of the halophenols' formation from unaltered DOM. The thresholds of decreases of UVA254, UVA280 and humic-like fluorescence corresponding to 85% suppression of halophenols' formation were in the range of 25%-30%, 30%-35% and 30%-45%, respectively. Pre-ozonation also showed a moderate suppression of haloacetic acids (HAAs) formation potentials, ≤26.5% for reverse osmosis isolate of Suwannee River natural organic matter and ≤31.5% for Yangtze River at applied O3 doses. Measurement of changes of estrogenic activity during ozonation of water and wastewater showed that to attain a >90% abatement of estrogenic activity, the corresponding thresholds of decreases of UVA254, UVA280 and humic-like fluorescence were ∼30%, ∼40%, and ∼70%, respectively. Bromate formation was also suppressed to below 10 μg/L before these thresholds. This study suggests that optimal ozonation conditions and a balance between control of disinfection byproducts (halophenols, HAAs and bromate) and elimination of estrogenic activity can be reached based on online data.
Collapse
Affiliation(s)
- Yu Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shi Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ya-Ping Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ji Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zong-Li Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210023, China
| | - Ji-Chun Wu
- Key Laboratory of Surficial Geochemistry Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Xian-Chuan Xie
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Key Laboratory of Surficial Geochemistry Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
65
|
Cheng S, Zhang X, Song W, Pan Y, Lambropoulou D, Zhong Y, Du Y, Nie J, Yang X. Photochemical oxidation of PPCPs using a combination of solar irradiation and free available chlorine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:629-638. [PMID: 31129545 DOI: 10.1016/j.scitotenv.2019.05.184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
The degradation of pharmaceuticals and personal care products (PPCPs) by using solar photolysis in the presence of free available chlorine (FAC) was investigated in simulated drinking water. The combination of free available chlorine and sunlight irradiation dramatically accelerated the degradation of all the contaminants tested through the generation of hydroxyl radicals, reactive chlorine species (RCS) and ozone. Contaminants containing electron-donating moieties degraded quickly and were preferentially degraded by RCS and/or HO oxidation. Primidone, ibuprofen and atrazine, which contain electron-withdrawing moieties, were mainly degraded by HO. Trace amounts of O3 contributed greatly to carbamazepine's degradation. Degradation of PPCPs was accelerated in oxygenated solutions. Increasing chlorine concentrations barely enhanced removal of PPCPs bearing electron-withdrawing moieties. Higher pH generally decreased the degradation rate constants along with reduced levels of HO and Cl, but diclofenac, gemfibrozil, caffeine and carbamazepine had peak degradation rate constants at pH 7-8. The cytotoxicity using Chinese hamster ovary (CHO) cell did not show significant enhancement in solar/FAC treated water. Combining chlorination with sunlight may provide a simple and energy-efficient approach for improving the removal of organic contaminants during water treatment.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200080, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Τhessaloniki, Thessaloniki 54124, Greece
| | - Yu Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye Du
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jianxin Nie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
66
|
Fang C, Gao X, Zhang X, Zhu J, Sun SP, Wang X, Wu WD, Wu Z. Facile synthesis of alkaline-earth metal manganites for the efficient degradation of phenolic compounds via catalytic ozonation and evaluation of the reaction mechanism. J Colloid Interface Sci 2019; 551:164-176. [DOI: 10.1016/j.jcis.2019.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
|
67
|
Lim S, McArdell CS, von Gunten U. Reactions of aliphatic amines with ozone: Kinetics and mechanisms. WATER RESEARCH 2019; 157:514-528. [PMID: 30986698 DOI: 10.1016/j.watres.2019.03.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Aliphatic amines are common constituents in micropollutants and dissolved organic matter and present in elevated concentrations in wastewater-impacted source waters. Due to high reactivity, reactions of aliphatic amines with ozone are likely to occur during ozonation in water and wastewater treatment. We investigated the kinetics and mechanisms of the reactions of ozone with ethylamine, diethylamine, and triethylamine as model nitrogenous compounds. Species-specific second-order rate constants for the neutral parent amines ranged from 9.3 × 104 to 2.2 × 106 M-1s-1 and the apparent second-order rate constants at pH 7 for potential or identified transformation products were 6.8 × 105 M-1s-1 for N,N-diethylhydroxylamine, ∼105 M-1s-1 for N-ethylhydroxylamine, 1.9 × 103 M-1s-1 for N-ethylethanimine oxide, and 3.4 M-1s-1 for nitroethane. Product analyses revealed that all amines were transformed to products containing a nitrogen-oxygen bond (e.g., triethylamine N-oxide and nitroethane) with high yields, i.e., 64-100% with regard to the abated target amines. These findings could be confirmed by measurements of singlet oxygen and hydroxyl radical which are formed during the amine-ozone reactions. Based on the high yields of nitroethane from ethylamine and diethylamine, a significant formation of nitroalkanes can be expected during ozonation of waters containing high levels of dissolved organic nitrogen, as expected in wastewaters or wastewater-impaired source waters. This may pose adverse effects on the aquatic environment and human health.
Collapse
Affiliation(s)
- Sungeun Lim
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
68
|
Zhou HY, Li YZ, Jiang R, Hu HF, Wang YS, Liu ZQ, Xue YP, Zheng YG. A high-throughput screening method for improved R-2-(4-hydroxyphenoxy)propionic acid biosynthesis. Bioprocess Biosyst Eng 2019; 42:1573-1582. [PMID: 31190281 DOI: 10.1007/s00449-019-02154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be biosynthesized through selective introduction of a hydroxyl group (-OH) into the substrate R-2-phenoxypropionic acid (R-PPA) at C-4 position, facilitated by microorganisms with hydroxylases. In this study, an efficient high-throughput screening method for improved R-HPPA biosynthesis through microbial hydroxylation was developed. As a hydroxylated aromatic product, R-HPPA could be oxidized by oxidant potassium dichromate to form brown-colored quinone-type compound. The concentration of R-HPPA can be quantified according to the absorbance of the colored compound at a suitable wavelength of 570 nm; and the R-HPPA biosynthetic capability of microorganism strains could also be rapidly evaluated. After optimization of the assay conditions, the high-throughput screening method was successfully used in identification of Beauveria bassiana mutants with enhanced R-HPPA biosynthesis capacity. A positive mutant C-7 with high tolerance to 20 g/L R-PPA was rapidly selected from 1920 mutants. The biomass and R-HPPA titer were 12.5- and 38.19-fold higher compared with the original strain at 20 g/L R-PPA. This high-throughput screening method developed in this work could also be a potential tool for screening strains producing other important phenolic compounds.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Zuo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rui Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hai-Feng Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
69
|
Leresche F, McKay G, Kurtz T, von Gunten U, Canonica S, Rosario-Ortiz FL. Effects of Ozone on the Photochemical and Photophysical Properties of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5622-5632. [PMID: 31022348 DOI: 10.1021/acs.est.8b06410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study focused on the effects of ozonation on the photochemical and photophysical properties of dissolved organic matter (DOM). Upon ozonation, a decrease in DOM absorbance was observed in parallel with an increase in singlet oxygen (1O2) and fluorescence quantum yields (Φ1O2 and ΦF). The increase in Φ1O2 was attributed to the formation of quinone-like moieties during ozonation of the phenolic moieties of DOM, while the increase in ΦF can be explained by a significant decrease in the internal conversion rate of the first excited singlet state of the DOM (1DOM*). It is a consequence of an increase in the average energy of the first electronic transition (S1 → S0) that was assessed using the wavelength of maximum fluorescence emission (λF,max). Furthermore, ozonation did not affect the ratio of the apparent steady-state concentrations of excited triplet DOM (3DOM*) and 1O2, indicating that ozonation does not affect the efficiency of 1O2 production from 3DOM*. The consequences of these changes for the phototransformation rates of micropollutants in surface waters were examined using photochemical model calculations. The decrease in DOM absorbance caused by ozonation leads to an enhancement of direct photolysis rates due to the increased transparency of the water. Rates of indirect photooxidation induced by 1O2 and 3DOM* slightly decrease after ozonation.
Collapse
Affiliation(s)
- Frank Leresche
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Garrett McKay
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Tyler Kurtz
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC) , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Silvio Canonica
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
70
|
Dar AA, Wang X, Wang S, Ge J, Shad A, Ai F, Wang Z. Ozonation of pentabromophenol in aqueous basic medium: Kinetics, pathways, mechanism, dimerization and toxicity assessment. CHEMOSPHERE 2019; 220:546-555. [PMID: 30597362 DOI: 10.1016/j.chemosphere.2018.12.154] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Ozonation has been identified effective technique to degrade phenolic compounds, and production of intermediate dimers are major threat. In this study, we systematically investigated the degradation of Pentabromophenol (PBP) in an aqueous medium by using two different ozone generators (sources: air and water). We studied various factors that influenced the degradation kinetics of PBP, including the pH (7.0, 8.0, and 9.0), humic acid (HA) and anions (Cl-, SO42-, NO3-, and HCO3-). PBP was efficiently degraded within 5 min (O3 source: water) and 45 min (O3 source: air) at pH 8.0 maintained by phosphate buffer. Reaction kinetics revealed 17 b y-products with five possible pathways, including dimers with their isomers and lower bromophenols. Furthermore, the frontier molecular orbital theory was employed to confirm the proposed ozonation pathways, including the breakage of the CO bond at C5 and C4 positions, and the cleavage of the CC bond at C3 and C6 position. Product P5, P14 (hydroxyl-nonabromophenyl ether) and P15 (dihydroxyl-octabromophenyl ether) were identified with isomers. Ecological Structure Activity Relationships toxicity assessment resulted into the conversion of highly toxic PBP (acute toxicity: LC50 = 0.11 mg L-1 for fish, LC50 = 0.124 mg L-1 for daphnia, and EC50 = 0.118 mg L-1 for green algae) to less harmful products aside from dimers. P14 (acute toxicity: LC50 = 1.04 × 105) found to be more toxic as compare to PBP. From these findings, we concluded that ozonation is an effective and ideal process for PBP degradation.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Xinghao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Siyuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Jiali Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Asam Shad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
71
|
Tentscher PR, Lee M, von Gunten U. Micropollutant Oxidation Studied by Quantum Chemical Computations: Methodology and Applications to Thermodynamics, Kinetics, and Reaction Mechanisms. Acc Chem Res 2019; 52:605-614. [PMID: 30829468 DOI: 10.1021/acs.accounts.8b00610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The abatement of organic micropollutants during oxidation processes has become an emerging issue for various urban water systems such as drinking water, wastewater, and water reuse. Reaction kinetics and mechanisms play an important role in terms of efficiency of these processes and the formation of transformation products, which are controlled by functional groups in the micropollutants and the applied oxidants. So far, the kinetic and mechanistic information on the underlying reactions was obtained by experimental studies; additionally, predictive quantitative structure-activity relationships (QSARs) were applied to determine reaction kinetics for the oxidation of emerging compounds. Since this experimental approach is very laborious and there are tens of thousands potential contaminants, alternative strategies need to be developed to predict the fate of micropollutants during oxidative water treatment. Due to significant developments in quantum chemical (QC) computations in recent years and increased computational capacity, QC-based methods have become an alternative or a supplement to the current experimental approach. This Account provides a critical assessment of the current state-of-the-art of QC-based methods for the assessment of oxidation of micropollutants. Starting from a given input structure, QC computations need to locate energetic minima on the potential energy surface (PES). Then, useful thermodynamic and kinetic information can be estimated by different approaches: Experimentally determined reaction mechanisms can be validated by identification of transition structures on the PES, which can be obtained for addition reactions, heavy atom transfer (Cl+, Br+, O·) and H atom transfer (simultaneous proton and electron transfer) reactions. However, transition structures in the PES cannot be obtained for e--transfer reactions. Second-order rate constants k for the reactions of micropollutants with chemical oxidants can be obtained by ab initio calculations or by QSARs with various QC descriptors. It has been demonstrated that second-order rate constants from ab initio calculations are within factors 3-750 of the measured values, whereas QSAR-based methods can achieve factors 2-4 compared to the experimental data. The orbital eigenvalue of the highest occupied molecular orbital ( EHOMO) is the most commonly used descriptor for QSAR-based computations of k-values. In combination with results from experimental studies, QC computations can also be applied to investigate reaction mechanisms for verification/understanding of oxidative mechanisms, calculation of branching ratios or regioselectivity, evaluation of the experimental product distribution and assessment of substitution effects. Furthermore, other important physical-chemical constants such as unknown equilibria for species, which are not measurable due to low concentrations, or p Ka values of reactive transient species can be estimated. With further development of QC-based methods, it will become possible to implement kinetic and mechanistic information from such computations in in silico models to predict oxidative transformation of micropollutants. Such predictions can then be complemented by tailored experimental studies to confirm/falsify the computations.
Collapse
Affiliation(s)
- Peter R. Tentscher
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Minju Lee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
72
|
Trogolo D, Arey JS, Tentscher PR. Gas-Phase Ozone Reactions with a Structurally Diverse Set of Molecules: Barrier Heights and Reaction Energies Evaluated by Coupled Cluster and Density Functional Theory Calculations. J Phys Chem A 2019; 123:517-536. [DOI: 10.1021/acs.jpca.8b10323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniela Trogolo
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - J. Samuel Arey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Peter R. Tentscher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
73
|
Önnby L, Salhi E, McKay G, Rosario-Ortiz FL, von Gunten U. Ozone and chlorine reactions with dissolved organic matter - Assessment of oxidant-reactive moieties by optical measurements and the electron donating capacities. WATER RESEARCH 2018; 144:64-75. [PMID: 30014980 DOI: 10.1016/j.watres.2018.06.059] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/08/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Oxidation processes are impacted by the type, concentration and reactivity of the dissolved organic matter (DOM). In this study, the reactions between various types of DOM (Suwannee River fulvic acid (SRFA), Nordic Reservoir NOM (NNOM) and Pony Lake fulvic acid (PLFA)) and two oxidants (ozone and chlorine) were studied in the pH range 2-9 by using a combination of optical measurements and electron donating capacities. The relationships between residual electron donating capacity (EDC) and residual absorbance showed a strong pH dependence for the ozone-DOM reactions with phenolic functional groups being the main reacting moieties. Relative EDC and absorbance abatements (UV254 or UV280) were similar at pH 2. At pH 7 or 9, the relative abatement of EDC was more pronounced than for absorbance, which could be explained by the formation of UV-absorbing products such as benzoquinone from the transformation of phenolic moieties. An increase in fluorescence abatement with increasing pH was also observed during ozonation. The increase in fluorescence quantum yields could not be attributed to formation of benzoquinone, but related to a faster abatement of phenolic moieties relative to fluorophores with low ozone reactivity. The overall •OH yields as a result of DOM-induced ozone consumption increased significantly with increasing pH, which could be related to the higher reactivity of phenolic moieties at higher pH. The •OH yields for SRFA and PLFA were proportional to the phenolic contents, whereas for NNOM, the •OH yield was about 30% higher. During chlorination of DOM at pH 7 an efficient relative EDC abatement was observed whereas the relative absorbance abatement was much less pronounced. This is due to the formation of chlorophenolic moieties, which exert a significant absorbance, and partly lose their electron donating capacity. Pre-ozonation of SRFA leads to a decrease of chloroform and haloacetic acid formation, however, only after a threshold of > ∼50% abatement of the EDC and under conditions which are not precursor limited. The decrease in chloroform and haloacetic acid formation after the threshold EDC abatement was proportional to the relative residual EDC.
Collapse
Affiliation(s)
- Linda Önnby
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Elisabeth Salhi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Garrett McKay
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology (ETH) Zürich, 8092 Zürich, Switzerland; School of Architecture, Civil & Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
74
|
von Gunten U. Oxidation Processes in Water Treatment: Are We on Track? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5062-5075. [PMID: 29672032 DOI: 10.1021/acs.est.8b00586] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical oxidants have been applied in water treatment for more than a century, first as disinfectants and later to abate inorganic and organic contaminants. The challenge of oxidative abatement of organic micropollutants is the formation of transformation products with unknown (eco)toxicological consequences. Four aspects need to be considered for oxidative micropollutant abatement: (i) Reaction kinetics, controlling the efficiency of the process, (ii) mechanisms of transformation product formation, (iii) extent of formation of disinfection byproducts from the matrix, (iv) oxidation induced biological effects, resulting from transformation products and/or disinfection byproducts. It is impossible to test all the thousands of organic micropollutants in the urban water cycle experimentally to assess potential adverse outcomes of an oxidation. Rather, we need multidisciplinary and automated knowledge-based systems, which couple predictions of kinetics, transformation and disinfection byproducts and their toxicological consequences to assess the overall benefits of oxidation processes. A wide range of oxidation processes has been developed in the last decades with a recent focus on novel electricity-driven oxidation processes. To evaluate these processes, they have to be compared to established benchmark ozone- and UV-based oxidation processes by considering the energy demands, economics, the feasibilty, and the integration into future water treatment systems.
Collapse
Affiliation(s)
- Urs von Gunten
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133 , 8600 Duebendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 , Lausanne , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|