51
|
Klaassen A, Liu F, Mugele F, Siretanu I. Correlation between Electrostatic and Hydration Forces on Silica and Gibbsite Surfaces: An Atomic Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:914-926. [PMID: 35025512 PMCID: PMC8793142 DOI: 10.1021/acs.langmuir.1c02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The balance between hydration and Derjaguin-Landau-Verwey-Overbeek (DLVO) forces at solid-liquid interfaces controls many processes, such as colloidal stability, wetting, electrochemistry, biomolecular self-assembly, and ion adsorption. Yet, the origin of molecular scale hydration forces and their relation to the surface charge density that controls the continuum scale electrostatic forces is poorly understood. We argue that these two types of forces are largely independent of each other. To support this hypothesis, we performed atomic force microscopy experiments using intermediate-sized tips that enable the simultaneous detection of DLVO and molecular scale oscillatory hydration forces at the interface between composite gibbsite:silica-aqueous electrolyte interfaces. We extract surface charge densities from forces measured at tip-sample separations of 1.5 nm and beyond using DLVO theory in combination with charge regulation boundary conditions for various pH values and salt concentrations. We simultaneously observe both colloidal scale DLVO forces and oscillatory hydration forces for an individual crystalline gibbsite particle and the underlying amorphous silica substrate for all fluid compositions investigated. While the diffuse layer charge varies with pH as expected, the oscillatory hydration forces are found to be largely independent of pH and salt concentration, supporting our hypothesis that both forces indeed have a very different origin. Oscillatory hydration forces are found to be distinctly more pronounced on gibbsite than on silica. We rationalize this observation based on the distribution of hydroxyl groups available for H bonding on the two distinct surfaces.
Collapse
Affiliation(s)
- Aram Klaassen
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Fei Liu
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
52
|
De Yoreo JJ, Nakouzi E, Jin B, Chun J, Mundy CJ. Assembly-based pathways of crystallization. Faraday Discuss 2022; 235:9-35. [DOI: 10.1039/d2fd00061j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution crystallization of materials ranging from simple salts to complex supramolecular assemblies has long been viewed through the lens of classical nucleation and growth theories in which monomeric building blocks...
Collapse
|
53
|
Penedo M, Miyazawa K, Okano N, Furusho H, Ichikawa T, Alam MS, Miyata K, Nakamura C, Fukuma T. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. SCIENCE ADVANCES 2021; 7:eabj4990. [PMID: 34936434 PMCID: PMC10954033 DOI: 10.1126/sciadv.abj4990] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Atomic force microscopy (AFM) is the only technique that allows label-free imaging of nanoscale biomolecular dynamics, playing a crucial role in solving biological questions that cannot be addressed by other major bioimaging tools (fluorescence or electron microscopy). However, such imaging is possible only for systems either extracted from cells or reconstructed on solid substrates. Thus, nanodynamics inside living cells largely remain inaccessible with the current nanoimaging techniques. Here, we overcome this limitation by nanoendoscopy-AFM, where a needle-like nanoprobe is inserted into a living cell, presenting actin fiber three-dimensional (3D) maps, and 2D nanodynamics of the membrane inner scaffold, resulting in undetectable changes in cell viability. Unlike previous AFM methods, the nanoprobe directly accesses the target intracellular components, exploiting all the AFM capabilities, such as high-resolution imaging, nanomechanical mapping, and molecular recognition. These features should greatly expand the range of intracellular structures observable in living cells.
Collapse
Affiliation(s)
- Marcos Penedo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Naoko Okano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
54
|
Su S, Siretanu I, van den Ende D, Mei B, Mul G, Mugele F. Facet-Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106229. [PMID: 34609757 PMCID: PMC11468202 DOI: 10.1002/adma.202106229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Understanding structure and function of solid-liquid interfaces is essential for the development of nanomaterials for various applications including heterogeneous catalysis in liquid phase processes and water splitting for storage of renewable electricity. The characteristic anisotropy of crystalline nanoparticles is believed to be essential for their performance but remains poorly understood and difficult to characterize. Dual scale atomic force microscopy is used to measure electrostatic and hydration forces of faceted semiconducting SrTiO3 nanoparticles in aqueous electrolyte at variable pH. The following are demonstrated: the ability to quantify strongly facet-dependent surface charges yielding isoelectric points of the dominant {100} and {110} facets that differ by as much as 2 pH units; facet-dependent accumulation of oppositely charged (SiO2 ) particles; and that atomic scale defects can be resolved but are in fact rare for the samples investigated. Atomically resolved images and facet-dependent oscillatory hydration forces suggest a microscopic charge generation mechanism that explains colloidal scale electrostatic forces.
Collapse
Affiliation(s)
- Shaoqiang Su
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Dirk van den Ende
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Bastian Mei
- Photocatalytic Synthesis Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Guido Mul
- Photocatalytic Synthesis Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
55
|
Murakami D, Nishimura SN, Tanaka Y, Tanaka M. Observing the repulsion layers on blood-compatible polymer-grafted interfaces by frequency modulation atomic force microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112596. [DOI: 10.1016/j.msec.2021.112596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
|
56
|
Benaglia S, Uhlig MR, Hernández-Muñoz J, Chacón E, Tarazona P, Garcia R. Tip Charge Dependence of Three-Dimensional AFM Mapping of Concentrated Ionic Solutions. PHYSICAL REVIEW LETTERS 2021; 127:196101. [PMID: 34797127 DOI: 10.1103/physrevlett.127.196101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A molecular scale understanding of the organization and structure of a liquid near a solid surface is currently a major challenge in surface science. It has implications across different fields from electrochemistry and energy storage to molecular biology. Three-dimensional AFM generates atomically resolved maps of solid-liquid interfaces. The imaging mechanism behind those maps is under debate, in particular, for concentrated ionic solutions. Theory predicts that the observed contrast should depend on the tip's charged state. Here, by using neutrally, negatively, and positively charged tips, we demonstrate that the 3D maps depend on the tip's polarization. A neutral tip will explore the total particle density distribution (water and ions) while a charged tip will reveal the charge density distribution. The experimental data reproduce the key findings of the theory.
Collapse
Affiliation(s)
- Simone Benaglia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| |
Collapse
|
57
|
Revealing DNA Structure at Liquid/Solid Interfaces by AFM-Based High-Resolution Imaging and Molecular Spectroscopy. Molecules 2021; 26:molecules26216476. [PMID: 34770895 PMCID: PMC8587808 DOI: 10.3390/molecules26216476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.
Collapse
|
58
|
Cafolla C, Voïtchovsky K. Real-time tracking of ionic nano-domains under shear flow. Sci Rep 2021; 11:19540. [PMID: 34599212 PMCID: PMC8486851 DOI: 10.1038/s41598-021-98137-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The behaviour of ions at solid-liquid interfaces underpins countless phenomena, from the conduction of nervous impulses to charge transfer in solar cells. In most cases, ions do not operate as isolated entities, but in conjunction with neighbouring ions and the surrounding solution. In aqueous solutions, recent studies suggest the existence of group dynamics through water-mediated clusters but results allowing direct tracking of ionic domains with atomic precision are scarce. Here, we use high-speed atomic force microscopy to track the evolution of Rb+, K+, Na+ and Ca2+ nano-domains containing 20 to 120 ions adsorbed at the surface of mica in aqueous solution. The interface is exposed to a shear flow able to influence the lateral motion of single ions and clusters. The results show that, when in groups, metal ions tend to move with a relatively slow dynamics, as can be expected from a correlated group motion, with an average residence timescale of ~ 1-2 s for individual ions at a given atomic site. The average group velocity of the clusters depends on the ions' charge density and can be explained by the ion's hydration state. The lateral shear flow of the fluid is insufficient to desorb ions, but indirectly influences the diffusion dynamics by acting on ions in close vicinity to the surface. The results provide insights into the dynamics of ion clusters when adsorbed onto an immersed solid under shear flow.
Collapse
Affiliation(s)
- Clodomiro Cafolla
- grid.8250.f0000 0000 8700 0572Physics Department, Durham University, Durham, DH1 3LE UK
| | - Kislon Voïtchovsky
- grid.8250.f0000 0000 8700 0572Physics Department, Durham University, Durham, DH1 3LE UK
| |
Collapse
|
59
|
Cao D, Song Y, Tang B, Xu L. Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water. Front Chem 2021; 9:745446. [PMID: 34631666 PMCID: PMC8493245 DOI: 10.3389/fchem.2021.745446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022] Open
Abstract
Interfacial water is closely related to many core scientific and technological issues, covering a broad range of fields, such as material science, geochemistry, electrochemistry and biology. The understanding of the structure and dynamics of interfacial water is the basis of dealing with a series of issues in science and technology. In recent years, atomic force microscopy (AFM) with ultrahigh resolution has become a very powerful option for the understanding of the complex structural and dynamic properties of interfacial water on solid surfaces. In this perspective, we provide an overview of the application of AFM in the study of two dimensional (2D) or three dimensional (3D) interfacial water, and present the prospect and challenges of the AFM-related techniques in experiments and simulations, in order to gain a better understanding of the physicochemical properties of interfacial water.
Collapse
Affiliation(s)
- Duanyun Cao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - BinZe Tang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China
| |
Collapse
|
60
|
Payam AF, Piantanida L, Voïtchovsky K. Development of a flexure-based nano-actuator for high-frequency high-resolution directional sensing with atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:093703. [PMID: 34598531 DOI: 10.1063/5.0057032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Scanning probe microscopies typically rely on the high-precision positioning of a nanoscale probe in order to gain local information about the properties of a sample. At a given location, the probe is used to interrogate a minute region of the sample, often relying on dynamical sensing for improved accuracy. This is the case for most force-based measurements in atomic force microscopy (AFM) where sensing occurs with a tip oscillating vertically, typically in the kHz to MHz frequency regime. While this approach is ideal for many applications, restricting dynamical sensing to only one direction (vertical) can become a serious limitation when aiming to quantify the properties of inherently three-dimensional systems, such as a liquid near a wall. Here, we present the design, fabrication, and calibration of a miniature high-speed scanner able to apply controlled fast and directional in-plane vibrations with sub-nanometer precision. The scanner has a resonance frequency of ∼35 kHz and is used in conjunction with a traditional AFM to augment the measurement capabilities. We illustrate its capabilities at a solid-liquid interface where we use it to quantify the preferred lateral flow direction of the liquid around every sample location. The AFM can simultaneously acquire high-resolution images of the interface, which can be superimposed with the directional measurements. Examples of sub-nanometer measurements conducted with the new scanner are also presented.
Collapse
Affiliation(s)
- Amir F Payam
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
61
|
Li Z, Ruiz VG, Kanduč M, Dzubiella J. Highly Heterogeneous Polarization and Solvation of Gold Nanoparticles in Aqueous Electrolytes. ACS NANO 2021; 15:13155-13165. [PMID: 34370454 DOI: 10.1021/acsnano.1c02668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, and electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl-, BF4-, PF6-, nitrophenolate, and 3- and 4-valent hexacyanoferrate), using classical molecular dynamics simulations with a polarizable core-shell model for the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to considerable alterations of the interfacial polarization. Compared to nonpolarizable NPs, surface polarization modifies water local dipole densities only slightly but has substantial effects on the electrostatic surface potentials and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects cancel out in the far field for monovalent ions but not for polyvalent ions, as anticipated from continuum "image-charge" concepts. Far-field effective Debye-Hückel surface potentials change accordingly in a valence-specific fashion. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (e.g., for charge transfer and interfacial polarization in catalysis and electrochemistry).
Collapse
Affiliation(s)
- Zhujie Li
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Victor G Ruiz
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| | - Matej Kanduč
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin, D-14109 Berlin, Germany
| |
Collapse
|
62
|
Hu J, Ma W, Pan Y, Cheng Z, Yu S, Gao J, Zhang Z, Wan C, Qiu C. Insights on the mechanism of Fe doped ZnO for tightly-bound extracellular polymeric substances tribo-catalytic degradation: The role of hydration layers at the interface. CHEMOSPHERE 2021; 276:130170. [PMID: 33743426 DOI: 10.1016/j.chemosphere.2021.130170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The control of interfacial microbial pollution is of great significance for water safety. Herein, the tribo-catalysis ability of zinc oxide (ZnO) has been investigated, which can realize the control of tightly-bound extracellular polymeric substances (T-EPS) in water under dark environment. The DFT calculation proves the Fe doping introduces the impurity level and decreases the work function from 5.071 eV to 5.045 eV, improves the charge separation of ZnO, and eventually enhances the catalytic reaction efficiency. Characterizing the catalytic reaction process by three-dimensional fluorescence (3D EEM) and fluorescence regional integration (FRI) method, it is found that the T-EPS solution can be degraded 75.8% by Fe-ZnO in 12 min, while ZnO can only degrade 32.2%. Combining with high-resolution scanning probe microscope (HR-SPM) and attenuated total reflection method (ATR-FTIR), hydration layers consist with hydroxyl layer (∼0.23 nm) and water molecular layer (∼0.27 nm) are observed at the interface between Fe-ZnO and T-EPS solution, and terminal hydroxyl group (OHt) is considered to be the active site for the generation of radicals. This study provides an idea for exploring the mechanism of tribo-catalytic reaction and shows its application prospect in the field of microbial inhibition in water.
Collapse
Affiliation(s)
- Jinglu Hu
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China.
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Zihong Cheng
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Shuangen Yu
- National Institute of Clean-and-Low-Carbon Energy, Beijing, 102211, PR China
| | - Jian Gao
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
63
|
Uhlig M, Garcia R. In Situ Atomic-Scale Imaging of Interfacial Water under 3D Nanoscale Confinement. NANO LETTERS 2021; 21:5593-5598. [PMID: 33983752 PMCID: PMC9135320 DOI: 10.1021/acs.nanolett.1c01092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Capillary condensation of water from vapor is an everyday phenomenon which has a wide range of scientific and technological implications. Many aspects of capillary condensation are not well understood such as the structure of interfacial water, the existence of distinct properties of confined water, or the validity of the Kelvin equation at nanoscale. We note the absence of high-spatial resolution images inside a meniscus. Here, we develop an AFM-based method to provide in situ atomic-scale resolution maps of the solid-water interface of a nanomeniscus (80-250 nm3). The separation between the first two hydration layers on graphite is 0.30 nm, while on mica it is 0.28 nm. Those values are very close to the ones expected for the same surfaces immersed in bulk water. Thus, the hydration layer structure on a crystalline surface is independent of the water volume.
Collapse
|
64
|
Ion-dependent protein-surface interactions from intrinsic solvent response. Proc Natl Acad Sci U S A 2021; 118:2025121118. [PMID: 34172582 DOI: 10.1073/pnas.2025121118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The phyllosilicate mineral muscovite mica is widely used as a surface template for the patterning of macromolecules, yet a molecular understanding of its surface chemistry under varying solution conditions, required to predict and control the self-assembly of adsorbed species, is lacking. We utilize all-atom molecular dynamics simulations in conjunction with an electrostatic analysis based in local molecular field theory that affords a clean separation of long-range and short-range electrostatics. Using water polarization response as a measure of the electric fields that arise from patterned, surface-bound ions that direct the adsorption of charged macromolecules, we apply a Landau theory of forces induced by asymmetrically polarized surfaces to compute protein-surface interactions for two muscovite-binding proteins (DHR10-mica6 and C98RhuA). Comparison of the pressure between surface and protein in high-concentration KCl and NaCl aqueous solutions reveals ion-specific differences in far-field protein-surface interactions, neatly capturing the ability of ions to modulate the surface charge of muscovite that in turn selectively attracts one binding face of each protein over all others.
Collapse
|
65
|
Abstract
The ubiquity of aqueous solutions in contact with charged surfaces and the realization that the molecular-level details of water-surface interactions often determine interfacial functions and properties relevant in many natural processes have led to intensive research. Even so, many open questions remain regarding the molecular picture of the interfacial organization and preferential alignment of water molecules, as well as the structure of water molecules and ion distributions at different charged interfaces. While water, solutes and charge are present in each of these systems, the substrate can range from living tissues to metals. This diversity in substrates has led to different communities considering each of these types of aqueous interface. In this Review, by considering water in contact with metals, oxides and biomembranes, we show the essential similarity of these disparate systems. While in each case the classical mean-field theories can explain many macroscopic and mesoscopic observations, it soon becomes apparent that such theories fail to explain phenomena for which molecular properties are relevant, such as interfacial chemical conversion. We highlight the current knowledge and limitations in our understanding and end with a view towards future opportunities in the field.
Collapse
|
66
|
|
67
|
Ranawat YS, Jaques YM, Foster AS. Predicting hydration layers on surfaces using deep learning. NANOSCALE ADVANCES 2021; 3:3447-3453. [PMID: 36133729 PMCID: PMC9419798 DOI: 10.1039/d1na00253h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/03/2021] [Indexed: 06/16/2023]
Abstract
Characterisation of the nanoscale interface formed between minerals and water is essential to the understanding of natural processes, such as biomineralization, and to develop new technologies where function is dominated by the mineral-water interface. Atomic force microscopy offers the potential to characterize solid-liquid interfaces in high-resolution, with several experimental and theoretical studies offering molecular scale resolution by linking measurements directly to water density on the surface. However, the theoretical techniques used to interpret such results are computationally intensive and development of the approach has been limited by interpretation challenges. In this work, we develop a deep learning architecture to learn the solid-liquid interface of polymorphs of calcium carbonate, allowing for the rapid predictions of density profiles with reasonable accuracy.
Collapse
Affiliation(s)
| | - Ygor M Jaques
- Department of Applied Physics, Aalto University Finland
| | - Adam S Foster
- Department of Applied Physics, Aalto University Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
68
|
Gao Q, Tsai W, Balke N. In situ and operando force‐based atomic force microscopy for probing local functionality in energy storage materials. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiang Gao
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wan‐Yu Tsai
- Chemical Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Nina Balke
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
69
|
Heggemann J, Laflör L, Rahe P. Double sample holder for efficient high-resolution studies of an insulator and a metal surface. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053705. [PMID: 34243231 DOI: 10.1063/5.0041172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
A double sample holder supporting both a metal sample and an insulator crystal for high-resolution scanning probe microscopy experiments is described. The metal sample serves as a substrate for tip preparation and tip functionalization to efficiently and reliably enable high-resolution studies of the adjacent insulator surface. Imaging of Ag(111)/mica, Au(111)/mica, CaF2(111), and calcite(104) surfaces is demonstrated at 5 K, including images on calcite(104) produced with a CO terminated tip, which was prepared on the adjacent metal sample.
Collapse
Affiliation(s)
- Jonas Heggemann
- Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Linda Laflör
- Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Philipp Rahe
- Fachbereich Physik, Universität Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| |
Collapse
|
70
|
Yurtsever A, Yoshida T, Badami Behjat A, Araki Y, Hanayama R, Fukuma T. Structural and mechanical characteristics of exosomes from osteosarcoma cells explored by 3D-atomic force microscopy. NANOSCALE 2021; 13:6661-6677. [PMID: 33885545 DOI: 10.1039/d0nr09178b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exosomes have recently gained interest as mediators of cell-to-cell communication and as potential biomarkers for cancer and other diseases. They also have potential as nanocarriers for drug delivery systems. Therefore, detailed structural, molecular, and biomechanical characterization of exosomes is of great importance for developing methods to detect and identify the changes associated with the presence of cancer and other diseases. Here, we employed three-dimensional atomic force microscopy (3D-AFM) to reveal the structural and nanomechanical properties of exosomes at high spatial resolution in physiologically relevant conditions. The substructural details of exosomes released from three different cell types were determined based on 3D-AFM force mapping. The resulting analysis revealed the presence of distinct local domains bulging out from the exosome surfaces, which were associated with the exosomal membrane proteins present on the outer surface. The nanomechanical properties of individual exosomes were determined from the 3D-force maps. We found a considerably high elastic modulus, ranging from 50 to 350 MPa, as compared to that obtained for synthetic liposomes. Moreover, malignancy-dependent changes in the exosome mechanical properties were revealed by comparing metastatic and nonmetastatic tumor cell-derived exosomes. We found a clear difference in their Young's modulus values, suggesting differences in their protein profiles and other exosomal contents. Exosomes derived from a highly aggressive and metastatic k-ras-activated human osteosarcoma (OS) cell line (143B) showed a higher Young's modulus than that derived from a nonaggressive and nonmetastatic k-ras-wildtype human OS cell line (HOS). The increased elastic modulus of the 143B cell-derived exosomes was ascribed to the presence of abundant specific proteins responsible for elastic fiber formation as determined by mass spectroscopy and confirmed by western blotting and ELISA. Therefore, we conclude that exosomes derived from metastatic tumor cells carry an exclusive protein content that differs from their nonmetastatic counterparts, and thus they exhibit different mechanical characteristics. Discrimination between metastatic and nonmetastatic malignant cell-derived exosomes would be of great importance for studying exosome biological functions and using them as diagnostic biomarkers for various tumor types. Our findings further suggest that metastatic tumor cells release exosomes that express increased levels of elastic fiber-associated proteins to preserve their softness.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | |
Collapse
|
71
|
Smirnov KS. Structure and sum-frequency generation spectra of water on neutral hydroxylated silica surfaces. Phys Chem Chem Phys 2021; 23:6929-6949. [PMID: 33729227 DOI: 10.1039/d0cp06465c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural organization and vibrational sum-frequency generation (VSFG) spectra of water on crystalline and amorphous neutral silica surfaces were investigated by classical molecular dynamics simulations. The liquid phase represented with neat water and 1 M NaCl solution was analysed in terms of bonded interfacial layer (BIL), diffuse layer (DL) and bulk region. The simulations show that the structure of BIL depends on the surface morphology and density of surface OH groups. The water-silanol H-bond network and BIL structure are mainly insensitive to the presence of ions in the liquid phase. Molecules in DL of SiO2/neat water interfaces preferentially orient their OH bonds towards the surfaces. This effect is directly related to an effective negative charge of formally neutral surfaces. Ions of the electrolyte solution affect the intermolecular structure in DL by screening the surface electric field and by the chaotropic effect. Calculated phase-sensitive VSFG (Im[χ(2)]) spectrum of BIL features low-frequency negative and high-frequency positive bands. Characteristics of the positive band reflect the strength of water-surface interactions and surface crystallinity, while the position and shape of the negative band are common to all interfaces. The Im[χ(2)] spectrum of DL is dominated by a contribution from the third-order χ(3) susceptibility with the sign of the contribution directly related to the sign of electrostatic potential in the interfacial region. The DL spectrum is strongly affected by the presence of solvated ions. The computed intensity and Im[χ(2)] spectra of the amorphous silica/NaCl solution interface are in a good agreement with the conventional and phase-sensitive experimental VSFG spectra of fused SiO2/water system at low pH, in contrast to the spectra of the amorphous silica/neat water interface. Origins of the discrepancy are discussed.
Collapse
Affiliation(s)
- Konstantin S Smirnov
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement, F-59000 Lille, France.
| |
Collapse
|
72
|
Uhlig MR, Benaglia S, Thakkar R, Comer J, Garcia R. Atomically resolved interfacial water structures on crystalline hydrophilic and hydrophobic surfaces. NANOSCALE 2021; 13:5275-5283. [PMID: 33624666 DOI: 10.1039/d1nr00351h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hydration layers are formed on hydrophilic crystalline surfaces immersed in water. Their existence has also been predicted for hydrophobic surfaces, yet the experimental evidence is controversial. Using 3D-AFM imaging, we probed the interfacial water structure of hydrophobic and hydrophilic surfaces with atomic-scale spatial resolution. We demonstrate that the atomic-scale structure of interfacial water on crystalline surfaces presents two antagonistic arrangements. On mica, a common hydrophilic crystalline surface, the interface is characterized by the formation of 2 to 3 hydration layers separated by approximately 0.3 nm. On hydrophobic surfaces such as graphite or hexagonal boron nitride (h-BN), the interface is characterized by the formation of 2 to 4 layers separated by about 0.5 nm. The latter interlayer distance indicates that water molecules are expelled from the vicinity of the surface and replaced by hydrocarbon molecules. This creates a new 1.5-2 nm thick interface between the hydrophobic surface and the bulk water. Molecular dynamics simulations reproduced the experimental data and confirmed the above interfacial water structures.
Collapse
Affiliation(s)
- Manuel R Uhlig
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Simone Benaglia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ravindra Thakkar
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jeffrey Comer
- Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
73
|
Vilhena JG, Ortega M, Uhlig MR, Garcia R, Pérez R. Practical Guide to Single-Protein AFM Nanomechanical Spectroscopy Mapping: Insights and Pitfalls As Unraveled by All-Atom MD Simulations on Immunoglobulin G. ACS Sens 2021; 6:553-564. [PMID: 33503368 DOI: 10.1021/acssensors.0c02241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atomic force microscopy is an invaluable characterization tool in almost every biophysics laboratory. However, obtaining atomic/sub-nanometer resolution on single proteins has thus far remained elusive-a feat long achieved on hard substrates. In this regard, nanomechanical spectroscopy mapping may provide a viable approach to overcome this limitation. By complementing topography with mechanical properties measured locally, one may thus enhance spatial resolution at the single-protein level. In this work, we perform all-atom molecular dynamics simulations of the indentation process on a single immunoglobulin G (IgG) adsorbed on a graphene slab. Our simulations reveal three different stages as a function of strain: a noncontact regime-where the mechanical response is linked to the presence of the water environment- followed by an elastic response and a final plastic deformation regime. In the noncontact regime, we are able to identify hydrophobic/hydrophilic patches over the protein. This regime provides the most local mechanical information that allows one to discern different regions with similar height/topography and leads to the best spatial resolution. In the elastic regime, we conclude that the Young modulus is a well-defined property only within mechanically decoupled domains. This is caused by the fact that the elastic deformation is associated with a global reorganization of the domain. Differences in the mechanical response are large enough to clearly resolve domains within a single protein, such as the three subunits forming the IgG. Two events, unfolding or protein slipping, are observed in the plastic regime. Our simulations allow us to characterize these two processes and to provide a strategy to identify them in the force curves. Finally, we elaborate on possible challenges that could hamper the interpretation of such experiments/simulations and how to overcome them. All in all, our simulations provide a detailed picture of nanomechanical spectroscopy mapping on single proteins, showing its potential and the challenges that need to be overcome to unlock its full potential.
Collapse
Affiliation(s)
- J. G. Vilhena
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Maria Ortega
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Manuel R. Uhlig
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049 Madrid, Spain
| | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049 Madrid, Spain
| | - Rubén Pérez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
74
|
Xie Z, Li Z, Li J, Kou J, Yao J, Fan J. Electric field-induced gas dissolving in aqueous solutions. J Chem Phys 2021; 154:024705. [PMID: 33445907 DOI: 10.1063/5.0037387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gas dissolution or accumulation regulating in an aqueous environment is important but difficult in various fields. Here, we performed all-atom molecular dynamics simulations to study the dissolution/accumulation of gas molecules in aqueous solutions. It was found that the distribution of gas molecules at the solid-water interface is regulated by the direction of the external electric field. Gas molecules attach and accumulate to the interface with an electric field parallel to the interface, while the gas molecules depart and dissolve into the aqueous solutions with a vertical electric field. The above phenomena can be attributed to the redistribution of water molecules as a result of the change of hydrogen bonds of water molecules at the interface as affected by the electric field. This finding reveals a new mechanism of regulating gas accumulation and dissolution in aqueous solutions and can have tremendous applications in the synthesis of drugs, the design of microfluidic device, and the extraction of natural gas.
Collapse
Affiliation(s)
- Zhang Xie
- Institute of Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Zheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310058, China
| | - Jianlong Kou
- Institute of Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China
| | - Jun Yao
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jintu Fan
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, New York 14853-4401, USA
| |
Collapse
|
75
|
Li HK, Pedro de Souza J, Zhang Z, Martis J, Sendgikoski K, Cumings J, Bazant MZ, Majumdar A. Imaging Arrangements of Discrete Ions at Liquid-Solid Interfaces. NANO LETTERS 2020; 20:7927-7932. [PMID: 33079557 DOI: 10.1021/acs.nanolett.0c02669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The individual and collective behavior of ions near electrically charged interfaces is foundational to a variety of electrochemical phenomena encountered in biology, energy, and the environment. While many theories have been developed to predict the interfacial arrangements of counterions, direct experimental observations and validations have remained elusive. Utilizing cryo-electron microscopy, here we directly visualize individual counterions and reveal their discrete interfacial layering. Comparison with simulations suggests the strong effects of finite ionic size and electrostatic interactions. We also uncover correlated ionic structures under extreme confinement, with the channel widths approaching the ionic diameter (∼1 nm). Our work reveals the roles of ionic size, valency, and confinement in determining the structures of liquid-solid interfaces and opens up new opportunities to study such systems at the single-ion level.
Collapse
Affiliation(s)
- Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kyle Sendgikoski
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics, University of Maryland, College Park, Maryland 20742, United States
| | - John Cumings
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Precourt Institute for Energy, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
76
|
Millan-Solsona R, Checa M, Fumagalli L, Gomila G. Mapping the capacitance of self-assembled monolayers at metal/electrolyte interfaces at the nanoscale by in-liquid scanning dielectric microscopy. NANOSCALE 2020; 12:20658-20668. [PMID: 33043923 DOI: 10.1039/d0nr05723a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic self-assembled monolayers (SAMs) at metal/electrolyte interfaces have been thoroughly investigated both from fundamental and applied points of view. A relevant figure of merit of metal/SAM/electrolyte interfaces is the specific capacitance, which determines the charge that can be accumulated at the metal electrode. Here, we show that the specific capacitance of non-uniform alkanethiol SAMs at gold/electrolyte interfaces can be quantitatively measured and mapped at the nanoscale by in-liquid scanning dielectric microscopy in force detection mode. We show that sub-100 nm spatial resolution in ultrathin (<1 nm) SAMs can be achieved, largely improving the performance of current sensing characterization techniques. The present results provide access to study the dielectric properties of metal/SAM/electrolyte interfaces at scales that have remained unexplored until now.
Collapse
Affiliation(s)
- Ruben Millan-Solsona
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| | - Martí Checa
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain.
| | - Laura Fumagalli
- Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK and National Graphene Institute, University of Manchester, Manchester M13 9PL, UK
| | - Gabriel Gomila
- Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 11-15, 08028, Barcelona, Spain. and Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
77
|
Fukuma T. Improvements in fundamental performance of in-liquid frequency modulation atomic force microscopy. Microscopy (Oxf) 2020; 69:340-349. [PMID: 32780817 DOI: 10.1093/jmicro/dfaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
In-liquid frequency modulation atomic force microscopy (FM-AFM) has been used for visualizing subnanometer-scale surface structures of minerals, organic thin films and biological systems. In addition, three-dimensional atomic force microscopy (3D-AFM) has been developed by combining it with a three-dimensional (3D) tip scanning method. This method enabled the visualization of 3D distributions of water (i.e. hydration structures) and flexible molecular chains at subnanometer-scale resolution. While these applications highlighted the unique capabilities of FM-AFM, its force resolution, speed and stability are not necessarily at a satisfactory level for practical applications. Recently, there have been significant advancements in these fundamental performances. The force resolution was dramatically improved by using a small cantilever, which enabled the imaging of a 3D hydration structure even in pure water and made it possible to directly compare experimental results with simulated ones. In addition, the improved force resolution allowed the enhancement of imaging speed without compromising spatial resolution. To achieve this goal, efforts have been made for improving bandwidth, resonance frequency and/or latency of various components, including a high-speed phase-locked loop (PLL) circuit. With these improvements, now atomic-resolution in-liquid FM-AFM imaging can be performed at ∼1 s/frame. Furthermore, a Si-coating method was found to improve stability and reproducibility of atomic-resolution imaging owing to formation of a stable hydration structure on a tip apex. These improvements have opened up new possibilities of atomic-scale studies on solid-liquid interfacial phenomena by in-liquid FM-AFM.
Collapse
Affiliation(s)
- Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
78
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
79
|
Cheng HW, Valtiner M. Forces, structures, and ion mobility in nanometer-to-subnanometer extreme spatial confinements: Electrochemisty and ionic liquids. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
80
|
Fu C, Mikšátko J, Assies L, Vrkoslav V, Orlandi S, Kalbáč M, Kovaříček P, Zeng X, Zhou B, Muccioli L, Perepichka DF, Orgiu E. Surface-Confined Macrocyclization via Dynamic Covalent Chemistry. ACS NANO 2020; 14:2956-2965. [PMID: 32068388 DOI: 10.1021/acsnano.9b07671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles via dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products-oligomers, macrocycles, or polymers-will form at the surface. In situ scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.
Collapse
Affiliation(s)
- Chaoying Fu
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
- INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
- Department of Chemistry, McGill University, 801 Sherbrooke Street W., Montreal, Quebec, Canada H3A 0B8
| | - Jiří Mikšátko
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Lea Assies
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo námĕstí 542/2, 166 10 Praha, Czech Republic
| | - Silvia Orlandi
- Dipartimento di Chimica Industriale " Toso Montanari ", Università di Bologna, 40136 Bologna, Italy
| | - Martin Kalbáč
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Petr Kovaříček
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
| | - Luca Muccioli
- Dipartimento di Chimica Industriale " Toso Montanari ", Università di Bologna, 40136 Bologna, Italy
- Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, 33405 Talence, France
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street W., Montreal, Quebec, Canada H3A 0B8
| | - Emanuele Orgiu
- INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
| |
Collapse
|
81
|
Hu X, Yang Q, Ye T, Martini A. Simulation of Subnanometer Contrast in Dynamic Atomic Force Microscopy of Hydrophilic Alkanethiol Self-Assembled Monolayers in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2240-2246. [PMID: 32043893 DOI: 10.1021/acs.langmuir.9b03655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atomic resolution imaging of surfaces in liquid environments using atomic force microscopy (AFM) is challenging in terms of both reproducibility and measurement interpretation. To understand the origins of these challenges, we used molecular dynamics simulations of AFM on hydrophilic self-assembled monolayers (SAMs) in water. The force on the model AFM tip was calculated as a function of lateral and vertical position relative to the SAM surface. The contributions of the water and SAMs to the overall force were analyzed, and the former was correlated to the water density distribution. Then, dynamic AFM was modeled by oscillating the tip at a driving amplitude. It was found that the contrast between amplitudes at different lateral positions on the surface was dependent on the vertical position of the tip. Lastly, amplitude maps were produced for two vertical positions at constant height, and the ability to capture atomic resolution was related to the force on the tip. These results offer an explanation for the observed instability in atomic scale imaging using AFM and more generally provide insight into the contrast mechanisms of surface images obtained in liquid environments.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Mechanical Engineering, University of California-Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Quanpeng Yang
- Department of Mechanical Engineering, University of California-Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Tao Ye
- Department of Chemistry and Chemical Biology, University of California-Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California-Merced, 5200 N. Lake Road, Merced, California 95343, United States
| |
Collapse
|
82
|
Foster W, Miyazawa K, Fukuma T, Kusumaatmaja H, Voϊtchovsky K. Self-assembly of small molecules at hydrophobic interfaces using group effect. NANOSCALE 2020; 12:5452-5463. [PMID: 32080696 DOI: 10.1039/c9nr09505e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although common in nature, the self-assembly of small molecules at sold-liquid interfaces is difficult to control in artificial systems. The high mobility of dissolved small molecules limits their residence at the interface, typically restricting the self-assembly to systems under confinement or with mobile tethers between the molecules and the surface. Small hydrogen-bonding molecules can overcome these issues by exploiting group-effect stabilization to achieve non-tethered self-assembly at hydrophobic interfaces. Significantly, the weak molecular interactions with the solid makes it possible to influence the interfacial hydrogen bond network, potentially creating a wide variety of supramolecular structures. Here we investigate the nanoscale details of water and alcohols mixtures self-assembling at the interface with graphite through group-effect. We explore the interplay between inter-molecular and surface interactions by adding small amounts of foreign molecules able to interfere with the hydrogen bond network and systematically varying the length of the alcohol hydrocarbon chain. The resulting supramolecular structures forming at room temperature are then examined using atomic force microscopy with insights from computer simulations. We show that the group-based self-assembly approach investigated here is general and can be reproduced on other substrates such as molybdenum disulphide and graphene oxide, potentially making it relevant for a wide variety of systems.
Collapse
Affiliation(s)
- William Foster
- Durham University, Physics Department, Durham DH1 3LE, UK.
| | | | | | | | | |
Collapse
|
83
|
Teshima H, Li QY, Takata Y, Takahashi K. Gas molecules sandwiched in hydration layers at graphite/water interfaces. Phys Chem Chem Phys 2020; 22:13629-13636. [DOI: 10.1039/d0cp01719a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Frequency shift-distance curves reveal that each adsorbed gas layer is sandwiched between hydration layers with high water density.
Collapse
Affiliation(s)
- Hideaki Teshima
- Department of Aeronautics and Astronautics
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
| | - Yasuyuki Takata
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Mechanical Engineering
| | - Koji Takahashi
- Department of Aeronautics and Astronautics
- Kyushu University
- Fukuoka 819-0395
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
| |
Collapse
|
84
|
Söngen H, Jaques YM, Spijker P, Marutschke C, Klassen S, Hermes I, Bechstein R, Zivanovic L, Tracey J, Foster AS, Kühnle A. Three-dimensional solvation structure of ethanol on carbonate minerals. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:891-898. [PMID: 32566439 PMCID: PMC7296196 DOI: 10.3762/bjnano.11.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
Calcite and magnesite are important mineral constituents of the earth's crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid-liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol - an organic molecule with a single hydroxy group - at the calcite and magnesite (10.4) surfaces by using high-resolution 3D AFM and molecular dynamics (MD) simulations. Within a single AFM data set we are able to resolve both the first laterally ordered solvation layer of ethanol on the calcite surface as well as the following solvation layers that show no lateral order. Our experimental results are in excellent agreement with MD simulations. The qualitative difference in the lateral order can be understood by the differing chemical environment: While the first layer adopts specific binding positions on the ionic carbonate surface, the second layer resides on top of the organic ethyl layer. A comparison of calcite and magnesite reveals a qualitatively similar ethanol arrangement on both carbonates, indicating the general nature of this finding.
Collapse
Affiliation(s)
- Hagen Söngen
- Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 - 14, 55099 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Ygor Morais Jaques
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Peter Spijker
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Christoph Marutschke
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 - 14, 55099 Mainz, Germany
| | - Stefanie Klassen
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 - 14, 55099 Mainz, Germany
| | - Ilka Hermes
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 - 14, 55099 Mainz, Germany
| | - Ralf Bechstein
- Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 - 14, 55099 Mainz, Germany
| | - Lidija Zivanovic
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - John Tracey
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
| | - Adam S Foster
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
- Department of Applied Physics, Aalto University, Helsinki FI-00076, Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan
| | - Angelika Kühnle
- Physical Chemistry I, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10 - 14, 55099 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
85
|
Hong Y, Wang S, Li Q, Song X, Wang Z, Zhang X, Besenbacher F, Dong M. Interfacial icelike water local doping of graphene. NANOSCALE 2019; 11:19334-19340. [PMID: 31423505 DOI: 10.1039/c9nr05832j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Charge transfer at interfaces plays a critical role in the performance of graphene based electronic devices. However, separate control of the charge transfer process in the graphene/SiO2 system is still challenging. Herein, we investigate the effects of the trapped interfacial icelike water layer on the charge transfer between graphene and the SiO2/Si substrate through recording the surface potential changes induced by partial removal of the interfacial icelike water layer upon in situ heating. The scanning Kelvin probe microscopy surface potential mapping shows that the graphene is electronically modified by the icelike water layer as the electron density transfers from graphene to the icelike water layer, resulting in hole-doping of graphene, which was also confirmed by the graphene field effect transistor electrical transport measurements. In addition, the density functional calculations provide in-depth insight into the electronic contributions of the icelike water layer to graphene and the charge transfer mechanism. This research will improve our ability to manipulate graphene's electronic properties for diverse applications, such as humidity sensing.
Collapse
Affiliation(s)
- Yue Hong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Shandong, Jinan 250100, China.
| | - Sanmei Wang
- Institute of Nanosurface Science and Engineering, Shenzhen University, Guangdong, Shenzhen 518060, China.
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Shandong, Jinan 250100, China. and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Xin Song
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Zegao Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Xi Zhang
- Institute of Nanosurface Science and Engineering, Shenzhen University, Guangdong, Shenzhen 518060, China.
| | - Flemming Besenbacher
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Shandong, Jinan 250100, China. and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Mingdong Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Shandong, Jinan 250100, China. and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| |
Collapse
|
86
|
Sun C, Zhao W, Zhang H, Feng G. Molecular insight into structures of monocationic and dicationic ionic liquids in mica slits. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1678773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Chen Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huanhuan Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Nano Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
87
|
Hernández-Muñoz J, Chacón E, Tarazona P. Density functional analysis of atomic force microscopy in a dense fluid. J Chem Phys 2019; 151:034701. [DOI: 10.1063/1.5110366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jose Hernández-Muñoz
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, IFIMAC Condensed Matter Physics Center, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
88
|
Uhlig MR, Martin-Jimenez D, Garcia R. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS 2 and WSe 2 in water. Nat Commun 2019; 10:2606. [PMID: 31197159 PMCID: PMC6565678 DOI: 10.1038/s41467-019-10740-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
The structure and the role of the interfacial water in mediating the interactions of extended hydrophobic surfaces are not well understood. Two-dimensional materials provide a variety of large and atomically flat hydrophobic surfaces to facilitate our understanding of hydrophobic interactions. The angstrom resolution capabilities of three-dimensional AFM are exploited to image the interfacial water organization on graphene, few-layer MoS2 and few-layer WSe2. Those interfaces are characterized by the existence of a 2 nm thick region above the solid surface where the liquid density oscillates. The distances between adjacent layers for graphene, few-layer MoS2 and WSe2 are ~0.50 nm. This value is larger than the one predicted and measured for water density oscillations (~0.30 nm). The experiments indicate that on extended hydrophobic surfaces water molecules are expelled from the vicinity of the surface and replaced by several molecular-size hydrophobic layers.
Collapse
Affiliation(s)
- Manuel R Uhlig
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain
| | - Daniel Martin-Jimenez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain
| | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain.
| |
Collapse
|