51
|
Li X, Shigemitsu H, Goto T, Kida T, Sekino T, Fujitsuka M, Osakada Y. Porphyrin covalent organic nanodisks synthesized using acid-assisted exfoliation for improved bactericidal efficacy. NANOSCALE ADVANCES 2022; 4:2992-2995. [PMID: 36133516 PMCID: PMC9417065 DOI: 10.1039/d2na00318j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Porphyrin covalent organic nanodisks (CONs) were synthesized by exfoliating covalent organic frameworks (COFs) in acidic aqueous solutions at pH 4. The synthesized CONs showed remarkable bactericidal activity against Escherichia coli owing to enhanced generation of singlet oxygen upon visible light irradiation.
Collapse
Affiliation(s)
- Xinxi Li
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Hajime Shigemitsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
- Institute for Advanced Co-Creation Studies, Osaka University 1-1 Yamadagaoka Suita Osaka 565-0871 Japan
| | - Toshiyuki Kida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| | - Yasuko Osakada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University Mihogaoka 8-1 Ibaraki Osaka 567-0047 Japan
- Institute for Advanced Co-Creation Studies, Osaka University 1-1 Yamadagaoka Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| |
Collapse
|
52
|
Quenching Studies as Important Toolkit for Exploring Binding Propensity of Metal Complexes with Serum Albumin and DNA (A Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
53
|
Aizamddin MF, Mahat MM, Zainal Ariffin Z, Nawawi MA, Jani NA, Nor Amdan NA, Sadasivuni KK. Antibacterial Performance of Protonated Polyaniline-Integrated Polyester Fabrics. Polymers (Basel) 2022; 14:2617. [PMID: 35808667 PMCID: PMC9269132 DOI: 10.3390/polym14132617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
During the last few years, there has been an increase in public awareness of antimicrobial fabrics, as well as an increase in commercial opportunities for their use in pharmaceutical and medical settings. The present study reports on the optimized fabrication of protonated polyaniline (PANI)-integrated polyester (PES) fabric. Para-toluene sulfonic acid (pTSA) was used to protonate the PANI fabric and thus grant it antibacterial performance. The results of a 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay showed high antioxidant activity of protonated PANI fabric at a scavenging efficiency of 84.83%. Moreover, the findings revealed remarkably sensitive antibacterial performance of PANI-integrated fabric against the following Gram-positive bacteria: methicillin-resistant Staphylococcus aureus (MRSA), S. epidermidis, and S. aureus; and also against the following Gram-negative bacteria: P. aeruginosa, E. coli, and S. typhi. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and energy dispersive X-ray fluorescence (EDXRF) were used to determine the changes in the structural and elemental compositions of PANI fabric upon treatment with bacterial strains. Electrochemical impedance spectroscopy (EIS) revealed that the electrical conductivity value of protonated PANI fabric decreased by one (1) order of magnitude against P. aeruginosa and S. aureus, from 3.35 ± 7.81 × 10-3 S cm-1 to 6.11 ± 7.81 × 10-4 S cm-1 and 4.63 ± 7.81 × 10-4 S cm-1, respectively. Scanning electron microscopy (SEM) analysis showed the disruption of bacterial membranes and their structures when exposed to protonated PANI fabric; meanwhile, thermogravimetric analysis (TGA) demonstrated that the fabric retained its thermal stability characteristics. These findings open up potential for the use of antimicrobial fabrics in the pharmaceutical and medical sectors.
Collapse
Affiliation(s)
- Muhammad Faiz Aizamddin
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (M.F.A.); (N.A.J.)
| | - Mohd Muzamir Mahat
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (M.F.A.); (N.A.J.)
| | - Zaidah Zainal Ariffin
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Mohd Azizi Nawawi
- School of Chemistry and Environmental Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia;
| | - Nur Aimi Jani
- School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (M.F.A.); (N.A.J.)
| | - Nur Asyura Nor Amdan
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, Shah Alam 40170, Malaysia;
| | | |
Collapse
|
54
|
Zhao D, Chang Q, Fan J, Shu Q, Niu S, Li D, Xie Y, Deng X. Effects of ε‐polylysine and chitosan functionalization on pulp board properties for food packaging. J Appl Polym Sci 2022. [DOI: 10.1002/app.52770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dandan Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Jiahui Fan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Qingfeng Shu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Shasha Niu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering Shanghai University Shanghai China
| |
Collapse
|
55
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
56
|
Antimicrobial adhesive films by plasma-enabled polymerisation of m-cresol. Sci Rep 2022; 12:7560. [PMID: 35534598 PMCID: PMC9085887 DOI: 10.1038/s41598-022-11400-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022] Open
Abstract
This work reveals a versatile new method to produce films with antimicrobial properties that can also bond materials together with robust tensile adhesive strength. Specifically, we demonstrate the formation of coatings by using a dielectric barrier discharge (DBD) plasma to convert a liquid small-molecule precursor, m-cresol, to a solid film via plasma-assisted on-surface polymerisation. The films are quite appealing from a sustainability perspective: they are produced using a low-energy process and from a molecule produced in abundance as a by-product of coal tar processing. This process consumes only 1.5 Wh of electricity to create a 1 cm2 film, which is much lower than other methods commonly used for film deposition, such as chemical vapour deposition (CVD). Plasma treatments were performed in plain air without the need for any carrier or precursor gas, with a variety of exposure durations. By varying the plasma parameters, it is possible to modify both the adhesive property of the film, which is at a maximum at a 1 min plasma exposure, and the antimicrobial property of the film against Escherichia coli, which is at a maximum at a 30 s exposure.
Collapse
|
57
|
Nanoscale copper and silver thin film systems display differences in antiviral and antibacterial properties. Sci Rep 2022; 12:7193. [PMID: 35505071 PMCID: PMC9063624 DOI: 10.1038/s41598-022-11212-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 01/15/2023] Open
Abstract
The current Coronavirus Disease 19 (COVID-19) pandemic has exemplified the need for simple and efficient prevention strategies that can be rapidly implemented to mitigate infection risks. Various surfaces have a long history of antimicrobial properties and are well described for the prevention of bacterial infections. However, their effect on many viruses has not been studied in depth. In the context of COVID-19, several surfaces, including copper (Cu) and silver (Ag) coatings have been described as efficient antiviral measures that can easily be implemented to slow viral transmission. In this study, we detected antiviral properties against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) on surfaces, which were coated with Cu by magnetron sputtering as thin Cu films or as Cu/Ag ultrathin bimetallic nanopatches. However, no effect of Ag on viral titers was observed, in clear contrast to its well-known antibacterial properties. Further enhancement of Ag ion release kinetics based on an electrochemical sacrificial anode mechanism did not increase antiviral activity. These results clearly demonstrate that Cu and Ag thin film systems display significant differences in antiviral and antibacterial properties which need to be considered upon implementation.
Collapse
|
58
|
Zhu Y, Li P, Liu C, Jia M, Luo Y, He D, Liao C, Zhang S. Azobenzene quaternary ammonium salt for photo-controlled and reusable disinfection without drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Sekar PC, Srinivasan E, Chandrasekhar G, Paul DM, Sanjay G, Surya S, Kumar NSAR, Rajasekaran R. Probing the competitive inhibitor efficacy of frog-skin alpha helical AMPs identified against ACE2 binding to SARS-CoV-2 S1 spike protein as therapeutic scaffold to prevent COVID-19. J Mol Model 2022; 28:128. [PMID: 35461388 PMCID: PMC9034900 DOI: 10.1007/s00894-022-05117-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
In COVID-19 infection, the SARS-CoV-2 spike protein S1 interacts to the ACE2 receptor of human host, instigating the viral infection. To examine the competitive inhibitor efficacy of broad spectrum alpha helical AMPs extracted from frog skin, a comparative study of intermolecular interactions between viral S1 and AMPs was performed relative to S1-ACE2p interactions. The ACE2 binding region with S1 was extracted as ACE2p from the complex for ease of computation. Surprisingly, the Spike-Dermaseptin-S9 complex had more intermolecular interactions than the other peptide complexes and importantly, the S1-ACE2p complex. We observed how atomic displacements in docked complexes impacted structural integrity of a receptor-binding domain in S1 through conformational sampling analysis. Notably, this geometry-based sampling approach confers the robust interactions that endure in S1-Dermaseptin-S9 complex, demonstrating its conformational transition. Additionally, QM calculations revealed that the global hardness to resist chemical perturbations was found more in Dermaseptin-S9 compared to ACE2p. Moreover, the conventional MD through PCA and the torsional angle analyses indicated that Dermaseptin-S9 altered the conformations of S1 considerably. Our analysis further revealed the high structural stability of S1-Dermaseptin-S9 complex and particularly, the trajectory analysis of the secondary structural elements established the alpha helical conformations to be retained in S1-Dermaseptin-S9 complex, as substantiated by SMD results. In conclusion, the functional dynamics proved to be significant for viral Spike S1 and Dermaseptin-S9 peptide when compared to ACE2p complex. Hence, Dermaseptin-S9 peptide inhibitor could be a strong candidate for therapeutic scaffold to prevent infection of SARS-CoV-2.
Collapse
Affiliation(s)
- P Chandra Sekar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - E Srinivasan
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to Be University), Chennai, Tamil Nadu, India
| | - G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - D Meshach Paul
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - G Sanjay
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - S Surya
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - N S Arun Raj Kumar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to Be University), Vellore, Tamil Nadu, India.
| |
Collapse
|
60
|
Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. COATINGS 2022. [DOI: 10.3390/coatings12050577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the onset of the COVID-19 pandemic in late 2019, and the catastrophe faced by the world in 2020, the food industry was one of the most affected industries. On the one hand, the pandemic-induced fear and lockdown in several countries increased the online delivery of food products, resulting in a drastic increase in single-use plastic packaging waste. On the other hand, several reports revealed the spread of the viral infection through food products and packaging. This significantly affected consumer behavior, which directly influenced the market dynamics of the food industry. Still, a complete recovery from this situation seems a while away, and there is a need to focus on a potential solution that can address both of these issues. Several biomaterials that possess antiviral activities, in addition to being natural and biodegradable, are being studied for food packaging applications. However, the research community has been ignorant of this aspect, as the focus has mainly been on antibacterial and antifungal activities for the enhancement of food shelf life. This review aims to cover the different perspectives of antiviral food packaging materials using established technology. It focuses on the basic principles of antiviral activity and its mechanisms. Furthermore, the antiviral activities of several nanomaterials, biopolymers, natural oils and extracts, polyphenolic compounds, etc., are discussed.
Collapse
|
61
|
Xu L, Liu Y, Zhou W, Yu D. Electrospun Medical Sutures for Wound Healing: A Review. Polymers (Basel) 2022; 14:1637. [PMID: 35566807 PMCID: PMC9105379 DOI: 10.3390/polym14091637] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
With the increasing demand for wound healing around the world, the level of medical equipment is also increasing, but sutures are still the preferred medical equipment for medical personnel to solve wound closures. Compared with the traditional sutures, the nanofiber sutures produced by combining the preparation technology of drug-eluting sutures have greatly improved both mechanical properties and biological properties. Electrospinning technology has attracted more attention as one of the most convenient and simple methods for preparing functional nanofibers and the related sutures. This review firstly discusses the structural classification of sutures and the performance analysis affecting the manufacture and use of sutures, followed by the discussion and classification of electrospinning technology, and then summarizes the relevant research on absorbable and non-absorbable sutures. Finally, several common polymers and biologically active substances used in creating sutures are concluded, the related applications of sutures are discussed, and the future prospects of electrospinning sutures are suggested.
Collapse
Affiliation(s)
- Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Yanan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (L.X.); (W.Z.)
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
62
|
Khan GR, Malik SI. Ag-enriched TiO 2 nanocoating apposite for self-sanitizing/ self-sterilizing/ self-disinfecting of glass surfaces. MATERIALS CHEMISTRY AND PHYSICS 2022; 282:125803. [PMID: 35153357 PMCID: PMC8818044 DOI: 10.1016/j.matchemphys.2022.125803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The excellent strategy to mitigate the spread of the COVID-19 pandemic is to inhibit the transmission of the SARS-CoV-2. Since fomites are one of the vital routes of coronaviral transmission, disinfecting of fomites play a pivotal role in curbing its survival on the contaminated surfaces. Available commercial disinfectants cannot keep the contaminated surfaces sanitized all the time. Self-disinfecting ability of Ag-enriched TiO2 nanocoating due to its superb photocatalytic efficiency can effectively reduce infections caused by spread of pathogens at public places. Anatase Ag-TiO2 nanocoatings synthesized by sol-gel process at 0.5, 1.5, and 2.5% enriching concentrations were casted on glass substrates by spin-coating technique and subsequently annealed at 650 °C. The morphological shape, crystallographic structure, light absorbance, photo-luminosity, vibrational modes, and functional groups of Ag-TiO2 nanocoating on glass surface were studied by FE-SEM, GIXRD, UV-Visible, Photoluminescence, Raman, and FTIR spectroscopy. The developed anatase Ag-TiO2 nanocoatings manifested to improve photocatalytic disinfecting performance due to the achieved small crystallite size of 10.5-19.2 nm, diminished band gap energy of 2.56-2.60 eV, elevated surface area of 0.802-1.470 ×105 cm2/g, and enhanced light absorbance. Among the enriched specimens, 0.5% Ag-TiO2 nanocoatings predicted an overall exalted functionality compared to pristine one.
Collapse
Affiliation(s)
- G R Khan
- Nanotechnology Research Lab, Department of Physics, National Institute of Technology Srinagar, Hazratbal, 190006, Kashmir, India
| | - S I Malik
- Nanotechnology Research Lab, Department of Physics, National Institute of Technology Srinagar, Hazratbal, 190006, Kashmir, India
| |
Collapse
|
63
|
Basu B, Gowtham N, Xiao Y, Kalidindi SR, Leong KW. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomater 2022; 143:1-25. [PMID: 35202854 DOI: 10.1016/j.actbio.2022.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Conventional approaches to developing biomaterials and implants require intuitive tailoring of manufacturing protocols and biocompatibility assessment. This leads to longer development cycles, and high costs. To meet existing and unmet clinical needs, it is critical to accelerate the production of implantable biomaterials, implants and biomedical devices. Building on the Materials Genome Initiative, we define the concept 'biomaterialomics' as the integration of multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools throughout the entire pipeline of biomaterials development. The Data Science-driven approach is envisioned to bring together on a single platform, the computational tools, databases, experimental methods, machine learning, and advanced manufacturing (e.g., 3D printing) to develop the fourth-generation biomaterials and implants, whose clinical performance will be predicted using 'digital twins'. While analysing the key elements of the concept of 'biomaterialomics', significant emphasis has been put forward to effectively utilize high-throughput biocompatibility data together with multiscale physics-based models, E-platform/online databases of clinical studies, data science approaches, including metadata management, AI/ Machine Learning (ML) algorithms and uncertainty predictions. Such integrated formulation will allow one to adopt cross-disciplinary approaches to establish processing-structure-property (PSP) linkages. A few published studies from the lead author's research group serve as representative examples to illustrate the formulation and relevance of the 'Biomaterialomics' approaches for three emerging research themes, i.e. patient-specific implants, additive manufacturing, and bioelectronic medicine. The increased adaptability of AI/ML tools in biomaterials science along with the training of the next generation researchers in data science are strongly recommended. STATEMENT OF SIGNIFICANCE: This leading opinion review paper emphasizes the need to integrate the concepts and algorithms of the data science with biomaterials science. Also, this paper emphasizes the need to establish a mathematically rigorous cross-disciplinary framework that will allow a systematic quantitative exploration and curation of critical biomaterials knowledge needed to drive objectively the innovation efforts within a suitable uncertainty quantification framework, as embodied in 'biomaterialomics' concept, which integrates multi-omics data and high-dimensional analysis with artificial intelligence (AI) tools, like machine learning. The formulation of this approach has been demonstrated for patient-specific implants, additive manufacturing, and bioelectronic medicine.
Collapse
|
64
|
Fujita T, Hasegawa J, Onoue M, Matsubara R, Yamamoto T, Naito M. Quantitative fluorescent detection of antibacterial activity with pyrene-bearing tannic acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takehiro Fujita
- Data-driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Jun Hasegawa
- Development Strategy Department, Technology Innovation Center, Business Development Division, TOPPAN INC., 1, Kanda Izumicho, Chiyoda-ku, Tokyo 101-0024, Japan
| | - Miki Onoue
- Data-driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ryohei Matsubara
- Development Strategy Department, Technology Innovation Center, Business Development Division, TOPPAN INC., 1, Kanda Izumicho, Chiyoda-ku, Tokyo 101-0024, Japan
| | - Takako Yamamoto
- Development Strategy Department, Technology Innovation Center, Business Development Division, TOPPAN INC., 1, Kanda Izumicho, Chiyoda-ku, Tokyo 101-0024, Japan
| | - Masanobu Naito
- Data-driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
65
|
Nanoparticle Engineered Photocatalytic Paints: A Roadmap to Self-Sterilizing against the Spread of Communicable Diseases. Catalysts 2022. [DOI: 10.3390/catal12030326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Applications of visible-light photocatalytic engineered nanomaterials in the preparation of smart paints are of recent origin. The authors have revealed a great potential of these new paints for self-sterilizing of the surfaces in hospitals and public places simply with visible light exposure and this is reported for the first time in this review. A recent example of a communicable disease such as COVID-19 is considered. With all precautions and preventions taken as suggested by the World Health Organization (WHO), COVID-19 has remained present for a longer time compared to other diseases. It has affected millions of people worldwide and the significant challenge remains of preventing infections due to SARS-CoV-2. The present review is focused on revealing the cause of this widespread disease and suggests a roadmap to control the spread of disease. It is understood that the transmission of SARS-CoV-2 virus takes place through contact surfaces such as doorknobs, packaging and handrails, which may be responsible for many preventable and nosocomial infections. In addition, due to the potent transmissibility of SARS-CoV-2, its ability to survive for longer periods on common touch surfaces is also an important reason for the spread of COVID-19. The existing antimicrobial cleaning technologies used in hospitals are not suitable, viable or economical to keep public places free from such infections. Hence, in this review, an innovative approach of coating surfaces in public places with visible-light photocatalytic nanocomposite paints has been suggested as a roadmap to self-sterilizing against the spread of communicable diseases. The formulations of different nanoparticle engineered photocatalytic paints with their ability to destroy pathogens using visible light, alongwith the field trials are also summarized and reported in this review. The potential suggestions for controlling the spread of communicable diseases are also listed at the end of the review.
Collapse
|
66
|
Liu Q, Wu Y, Li J, Liu E, Tian F, Zhao H, Chen R. Construction of Ag-decorated ZnO with oxygen vacancies for enhanced antibacterial activity via increased H2O2 production. J Inorg Biochem 2022; 231:111778. [DOI: 10.1016/j.jinorgbio.2022.111778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/30/2022] [Accepted: 02/22/2022] [Indexed: 01/19/2023]
|
67
|
Chitosan/benzyloxy-benzaldehyde modified ZnO nano template having optimized and distinct antiviral potency to human cytomegalovirus. Carbohydr Polym 2022; 278:118965. [PMID: 34973780 DOI: 10.1016/j.carbpol.2021.118965] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Utilization of biomolecules encapsulated nano particles is currently originating ample attention to generate unconventional nanomedicines in antiviral research. Zinc oxide nanoparticle has been extensively studied for antimicrobial, antifungal and antifouling properties due to high surface to volume ratios and distinctive chemical as well as physical properties. Nevertheless, still minute information is available on their response on viruses. Here, in situ nanostructured and polysaccharide encapsulated ZnO NPs are fabricated with having antiviral potency and low cytotoxicity (%viability ~ 90%) by simply controlling the formation within interspatial 3D networks of hydrogels through perfect locking mechanism. The two composites ChH@ZnO and ChB@ZnO shows exceedingly effective antiviral activity toward Human cytomegalovirus (HCMV) having cell viability 93.6% and 92.4% up to 400 μg mL-1 concentration. This study brings significant insights regarding the role of ZnO NPs surface coatings on their nanotoxicity and antiviral action and could potentially guide to the development of better antiviral drug.
Collapse
|
68
|
Patti A, Acierno D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers (Basel) 2022; 14:692. [PMID: 35215604 PMCID: PMC8878127 DOI: 10.3390/polym14040692] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims to provide an overview of the latest research studies on the use of biopolymers in various textile processes, from spinning processes to dyeing and finishing treatment, proposed as a possible solution to reduce the environmental impact of the textile industry. Recently, awareness of various polluting aspects of textile production, based on petroleum derivatives, has grown significantly. Environmental issues resulting from greenhouse gas emissions, and waste accumulation in nature and landfills, have pushed research activities toward more sustainable, low-impact alternatives. Polymers derived from renewable resources and/or with biodegradable characteristics were investigated as follows: (i) as constituent materials in yarn production, in view of their superior ability to be decomposed compared with common synthetic petroleum-derived plastics, positive antibacterial activities, good breathability, and mechanical properties; (ii) in textile finishing to act as biological catalysts; (iii) to impart specific functional properties to treated textiles; (iv) in 3D printing technologies on fabric surfaces to replace traditionally more pollutive dye-based and inkjet printing; and (v) in the implants for the treatment of dye-contaminated water. Finally, current projects led by well-known companies on the development of new materials for the textile market are presented.
Collapse
Affiliation(s)
- Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Acierno
- CRdC Nuove Tecnologie per le Attività Produttive Scarl, Via Nuova Agnano 11, 80125 Naples, Italy
| |
Collapse
|
69
|
Biomaterials: Antimicrobial Surfaces in Biomedical Engineering and Healthcare. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
70
|
Krishnan S, Kumar Narasimhan A, Gangodkar D, Dhanasekaran S, Kumar Jha N, Dua K, Thakur VK, Kumar Gupta P. Aptameric nanobiosensors for the diagnosis of COVID-19: An update. MATERIALS LETTERS 2022; 308:131237. [PMID: 34776564 PMCID: PMC8574084 DOI: 10.1016/j.matlet.2021.131237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
COVID-19 pandemic has left a catastrophic effect on the world economy and human civilization. As an effective step towards controlling the transmission of viral infections during multiple waves of COVID-19, there is an urgent need to develop robust nanobiosensors for the detection of SARS-CoV-2 with high sensitivity, specificity, and fast analysis. Aptameric nanobiosensors are rapid and sensitive diagnostic platforms, capable of SARS-CoV-2 detection, which overcomes the limitations of the conventional techniques. This review article presents an outline of the aptameric nanobiosensors established for improved diagnosis of SARS-CoV-2 and the future perspectives are also covered.
Collapse
Affiliation(s)
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Durgaprasad Gangodkar
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
71
|
Abulikemu M, Tabrizi BEA, Ghobadloo SM, Mofarah HM, Jabbour GE. Silver Nanoparticle-Decorated Personal Protective Equipment for Inhibiting Human Coronavirus Infectivity. ACS APPLIED NANO MATERIALS 2022; 5:309-317. [PMID: 37556279 PMCID: PMC8713394 DOI: 10.1021/acsanm.1c03033] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
The Coronavirus disease 2019 (COVID-19) global outbreak and its continued growth and mutation into various forms emphasize the need for effective disinfectants to assist in the reduction of the virus's spread from individual to individuals and community to communities through various modes, including coughing, sneezing, touching of contaminated surfaces, and being in proximity of an unprotected infected person, to mention a few. The rapid development of reliable disinfecting materials or solutions and their incorporation in personal protective equipment is a critical need at the moment that will assist significantly in curbing the spread of the virus SARS-CoV-2, the cause of COVID-19 illness. Here, we present an in situ assembly of antiviral metal nanoparticles on a rigid surface and on commercial face masks made up of nonwoven and woven textiles. The results indicate a very high efficacy of 99.99% against a surrogate virus to SARS-CoV-2. Such a versatile and cost-effective approach using the blade-coating technique can be easily extended to the roll-to-roll manufacturing setting to expedite the efforts and mitigate the rapid spread of the virus.
Collapse
Affiliation(s)
- Mutalifu Abulikemu
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario
K1N 6N5, Canada
| | - Bita E. A. Tabrizi
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario
K1N 6N5, Canada
| | - Shahrokh M. Ghobadloo
- Flow Cytometry and Robotic Facility, Faculty of
Science, University of Ottawa, 20 Marie-Curie, Ottawa, Ontario
K1N 6N5, Canada
| | - Hamed M. Mofarah
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario
K1N 6N5, Canada
| | - Ghassan E. Jabbour
- School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario
K1N 6N5, Canada
| |
Collapse
|
72
|
Domingues JM, Teixeira MO, Teixeira MA, Freitas D, da Silva SF, Tohidi SD, Fernandes RDV, Padrão J, Zille A, Silva C, Antunes JC, Felgueiras HP. Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics 2022; 14:303. [PMID: 35214032 PMCID: PMC8875402 DOI: 10.3390/pharmaceutics14020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most important measures implemented to reduce SARS-CoV-2 transmission has been the use of face masks. Yet, most mask options available in the market display a passive action against the virus, not actively compromising its viability. Here, we propose to overcome this limitation by incorporating antiviral essential oils (EOs) within polycaprolactone (PCL) electrospun fibrous mats to be used as intermediate layers in individual protection masks. Twenty EOs selected based on their antimicrobial nature were examined for the first time against the Escherichia coli MS2 virus (potential surrogate of SARS-CoV-2). The most effective were the lemongrass (LGO), Niaouli (NO) and eucalyptus (ELO) with a virucidal concentration (VC) of 356.0, 365.2 and 586.0 mg/mL, respectively. PCL was processed via electrospinning, generating uniform, beadless fibrous mats. EOs loading was accomplished via two ways: (1) physisorption on pre-existing mats (PCLaEOs), and (2) EOs blending with the polymer solution prior to fiber electrospinning (PCLbEOs). In both cases, 10% v/v VC was used as loading concentration, so the mats' stickiness and overwhelming smell could be prevented. The EOs presence and release from the mats were confirmed by UV-visible spectroscopy (≈5257-631 µg) and gas chromatography-mass spectrometry evaluations (average of ≈14.3% EOs release over 4 h), respectively. PCLbEOs mats were considered the more mechanically and thermally resilient, with LGO promoting the strongest bonds with PCL (PCLbLGO). On the other hand, PCLaNO and PCLaELO were deemed the least cohesive combinations. Mats modified with the EOs were all identified as superhydrophobic, capable of preventing droplet penetration. Air and water-vapor permeabilities were affected by the mats' porosity (PCL < PCLaEOs < PCLbEOs), exhibiting a similar tendency of increasing with the increase of porosity. Antimicrobial testing revealed the mats' ability to retain the virus (preventing infiltration) and to inhibit its action (log reduction averaging 1). The most effective combination against the MS2 viral particles was the PCLbLGO. These mats' scent was also regarded as the most pleasant during sensory evaluation. Overall, data demonstrated the potential of these EOs-loaded PCL fibrous mats to work as COVID-19 active barriers for individual protection masks.
Collapse
Affiliation(s)
- Joana M. Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta O. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - David Freitas
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Samira F. da Silva
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Shafagh D. Tohidi
- Digital Transformation Colab (DTx), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Rui D. V. Fernandes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Carla Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Joana C. Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| |
Collapse
|
73
|
KrF Laser and Plasma Exposure of PDMS-Carbon Composite and Its Antibacterial Properties. MATERIALS 2022; 15:ma15030839. [PMID: 35160785 PMCID: PMC8836707 DOI: 10.3390/ma15030839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
A polydimethylsiloxane (PDMS) composite with multi-walled carbon nanotubes was successfully prepared. Composite foils were treated with both plasma and excimer laser, and changes in their physicochemical properties were determined in detail. Mainly changes in surface chemistry, wettability, and morphology were determined. The plasma treatment of PDMS complemented with subsequent heating led to the formation of a unique wrinkle-like pattern. The impact of different laser treatment conditions on the composite surface was determined. The morphology was determined by AFM and LCM techniques, while chemical changes and chemical surface mapping were studied with the EDS/EDX method. Selected activated polymer composites were used for the evaluation of antibacterial activity using Gram-positive (Staphylococcus epidermidis) and Gram-negative (Escherichia coli) bacteria. The antibacterial effect was achieved against S. epidermidis on pristine PDMS treated with 500 mJ of laser energy and PDMS-C nanocomposite treated with a lower laser fluence of 250 mJ. Silver deposition of PDMS foil increases significantly its antibacterial properties against E. coli, which is further enhanced by the carbon predeposition or high-energy laser treatment.
Collapse
|
74
|
Teradal NL, Tandel RD, Naik VI. Aptasensor: Surface protein detection in case of coronavirus diagnosis. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9334990 DOI: 10.1016/b978-0-323-90280-9.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coronavirus disease (COVID-19) pandemic has left a disastrous effect on the world wealth and human evolution. The recent outbreak of COVID-19 disease is an infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) which belongs to the single-stranded, positive strand RNA viruses. SARS‑CoV‑2 are dangerous threat to public health, economics, and global disciples. Therefore, it is important to identify, isolate, and treat individuals at the early stages of the disease to control the spread. In the present scenario, various analytical tools are available for the detection of several kinds of viruses through the use of different types of biosensing technologies. During the last decades, biosensors have emerged as reliable analytical devices and provide new promising tool for the detection of viruses. Aptamers are ssDNA or RNA oligonucleosides selected by the technique of systematic evolution of ligands by exponential enrichment (SELEX). Aptamers can bind various targets from small molecules to cells or even tissues in the way of antibodies. Aptameric nanobiosensors are rapid and sensitive diagnostic platforms, capable of SARS-CoV-2 detection, which overcomes the limitations of the conventional techniques. This chapter presents the use of aptamers in the fabrication of biosensors for improved diagnosis of SARS-CoV-2 and the future perspectives are also discussed.
Collapse
|
75
|
Vijayakumar BG, Ramesh D, Kumaravel SM, Theresa M, Sethumadhavan A, Venkatesan BP, Radhakrishnan EK, Mani M, Kannan T. Chitosan with pendant (E)-5-((4-acetylphenyl) diazenyl)-6-aminouracil groups as synergetic antimicrobial agents. J Mater Chem B 2022; 10:4048-4058. [DOI: 10.1039/d2tb00240j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional antimicrobial agents are losing the war against drug resistance day-by-day. Chitosan biopolymer is one of the alternative materials that lends itself well to this application by fine-tuning its bioactivity...
Collapse
|
76
|
A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
77
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|
78
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
79
|
Zhou Y, Fletcher NF, Zhang N, Hassan J, Gilchrist MD. Enhancement of Antiviral Effect of Plastic Film against SARS-CoV-2: Combining Nanomaterials and Nanopatterns with Scalability for Mass Manufacturing. NANO LETTERS 2021; 21:10149-10156. [PMID: 34881894 PMCID: PMC8672428 DOI: 10.1021/acs.nanolett.1c02266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Direct contact with contaminated surfaces in frequently accessed areas is a confirmed transmission mode of SARS-CoV-2. To address this challenge, we have developed novel plastic films with enhanced effectiveness for deactivating the SARS-CoV-2 by means of nanomaterials combined with nanopatterns. Results prove that these functionalized films are able to deactivate SARS-CoV-2 by up to 2 orders of magnitude within the first hour compared to untreated films, thus reducing the likelihood of transmission. Nanopatterns can enhance the antiviral effectiveness by increasing the contact area between nanoparticles and virus. Significantly, the established process also considers the issue of scalability for mass manufacturing. A low-cost process for nanostructured antiviral films integrating ultrasonic atomization spray coating and thermal nanoimprinting lithography is proposed. A further in-depth investigation should consider the size, spacing, and shape of nanopillars, the type and concentration of nanoparticles, and the scale-up and integration of these processes with manufacturing for optimal antiviral effectiveness.
Collapse
Affiliation(s)
- Yuyang Zhou
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
and Materials Engineering, University College
Dublin, Dublin D04 KW52, Ireland
- National
Engineering Laboratory for Modern Silk, College of Textile and Clothing
Engineering, Soochow University, Suzhou 215123, China
| | - Nicola F. Fletcher
- School
of Veterinary Medicine, University College
Dublin, Dublin D04 KW52, Ireland
- Conway
Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin D04 KW52, Ireland
| | - Nan Zhang
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
and Materials Engineering, University College
Dublin, Dublin D04 KW52, Ireland
| | - Jaythoon Hassan
- National
Virus Reference Laboratory, University College
Dublin, Dublin D04 KW52, Ireland
| | - Michael D. Gilchrist
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
and Materials Engineering, University College
Dublin, Dublin D04 KW52, Ireland
| |
Collapse
|
80
|
Eloffy MG, El-Sherif DM, Abouzid M, Elkodous MA, El-nakhas HS, Sadek RF, Ghorab MA, Al-Anazi A, El-Sayyad GS. Proposed approaches for coronaviruses elimination from wastewater: Membrane techniques and nanotechnology solutions. NANOTECHNOLOGY REVIEWS 2021; 11:1-25. [DOI: 10.1515/ntrev-2022-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Since the beginning of the third Millennium, specifically during the last 18 years, three outbreaks of diseases have been recorded caused by coronaviruses (CoVs). The latest outbreak of these diseases was Coronavirus Disease 2019 (COVID-19), which has been declared by the World Health Organization (WHO) as a pandemic. For this reason, current efforts of the environmental, epidemiology scientists, engineers, and water sector professionals are ongoing to detect CoV in environmental components, especially water, and assess the relative risk of exposure to these systems and any measures needed to protect the public health, workers, and public, in general. This review presents a brief overview of CoV in water, wastewater, and surface water based on a literature search providing different solutions to keep water protected from CoV. Membrane techniques are very attractive solutions for virus elimination in water. In addition, another essential solution is nanotechnology and its applications in the detection and protection of human and water systems.
Collapse
Affiliation(s)
- M. G. Eloffy
- National Institute of Oceanography and Fisheries, NIOF , Cairo , Egypt
| | - Dina M. El-Sherif
- National Institute of Oceanography and Fisheries, NIOF , Cairo , Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences , 6 Święcickiego Street , 60-781 Poznan , Poland
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology , Toyohashi , Aichi 441-8580 , Japan
| | | | - Rawia F. Sadek
- Chemical Maintenance Unit, Experimental Training Research Reactor Number two (ETRR-2), Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Cairo , Egypt
- Drug Radiation Research Department, Drug Microbiology Laboratory, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , P.O. Box 13759 , Nasr City, Cairo , Egypt
| | - Mohamed A. Ghorab
- U.S. Environmental Protection Agency (EPA), Office of Chemical Safety and Pollution Prevention (OCSPP), Office of Pesticide Programs (OPP) , Washington , DC , USA
- Department of Animal Science, Wildlife Toxicology Laboratory, Institute for Integrative Toxicology (IIT), Michigan State University , East Lansing , MI 48824 , USA
| | - Abdulaziz Al-Anazi
- Department of Chemical Engineering, College of Engineering King Saud University (KSU) , P.O. Box 800 , Riyadh 11421 , Saudi
| | - Gharieb S. El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University , New Galala city , Suez , Egypt
- Drug Radiation Research Department, Drug Microbiology Laboratory, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , P.O. Box 29 , Nasr City, Cairo , Egypt
- Chemical Engineering Department, Military Technical College (MTC), Egyptian Armed Forces , Cairo , Egypt
| |
Collapse
|
81
|
Govind V, Bharadwaj S, Sai Ganesh MR, Vishnu J, Shankar KV, Shankar B, Rajesh R. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Biometals 2021; 34:1217-1235. [PMID: 34398357 PMCID: PMC8366152 DOI: 10.1007/s10534-021-00339-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
Copper (Cu) and its alloys are prospective materials in fighting covid-19 virus and several microbial pandemics, due to its excellent antiviral as well as antimicrobial properties. Even though many studies have proved that copper and its alloys exhibit antiviral properties, this research arena requires further research attention. Several studies conducted on copper and its alloys have proven that copper-based alloys possess excellent potential in controlling the spread of infectious diseases. Moreover, recent studies indicate that these alloys can effectively inactivate the covid-19 virus. In view of this, the present article reviews the importance of copper and its alloys in reducing the spread and infection of covid-19, which is a global pandemic. The electronic databases such as ScienceDirect, Web of Science and PubMed were searched for identifying relevant studies in the present review article. The review starts with a brief description on the history of copper usage in medicine followed by the effect of copper content in human body and antiviral mechanisms of copper against covid-19. The subsequent sections describe the distinctive copper based material systems such as alloys, nanomaterials and coating technologies in combating the spread of covid-19. Overall, copper based materials can be propitiously used as part of preventive and therapeutic strategies in the fight against covid-19 virus.
Collapse
Affiliation(s)
- V Govind
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - S Bharadwaj
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - M R Sai Ganesh
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Jithin Vishnu
- Centre for Biomaterials, Cellular and Molecular Theranostics, CBCMT, Vellore Institute of Technology, Vellore, India
| | - Karthik V Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - R Rajesh
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| |
Collapse
|
82
|
Zheng Y, Tang N, Omar R, Hu Z, Duong T, Wang J, Wu W, Haick H. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202105482] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 08/30/2023]
Abstract
AbstractContemporary medicine suffers from many shortcomings in terms of successful disease diagnosis and treatment, both of which rely on detection capacity and timing. The lack of effective, reliable, and affordable detection and real‐time monitoring limits the affordability of timely diagnosis and treatment. A new frontier that overcomes these challenges relies on smart health monitoring systems that combine wearable sensors and an analytical modulus. This review presents the latest advances in smart materials for the development of multifunctional wearable sensors while providing a bird's eye‐view of their characteristics, functions, and applications. The review also presents the state‐of‐the‐art on wearables fitted with artificial intelligence (AI) and support systems for clinical decision in early detection and accurate diagnosis of disorders. The ongoing challenges and future prospects for providing personal healthcare with AI‐assisted support systems relating to clinical decisions are presented and discussed.
Collapse
Affiliation(s)
- Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Ning Tang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Rawan Omar
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Zhipeng Hu
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
- School of Chemistry Xi'an Jiaotong University Xi'an 710126 P. R. China
| | - Tuan Duong
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Jing Wang
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology Interdisciplinary Research Center of Smart Sensors Xidian University Xi'an 710126 P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute Technion‐Israel Institute of Technology Haifa 3200003 Israel
- School of Advanced Materials and Nanotechnology Interdisciplinary Research Center of Smart Sensors Xidian University Xi'an 710126 P. R. China
| |
Collapse
|
83
|
Bello-Lopez JM, Silva-Bermudez P, Prado G, Martínez A, Ibáñez-Cervantes G, Cureño-Díaz MA, Rocha-Zavaleta L, Manzo-Merino J, Almaguer-Flores A, Ramos-Vilchis C, Rodil SE. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomed Mater 2021; 17. [PMID: 34673548 DOI: 10.1088/1748-605x/ac3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Nanometric materials with biocidal properties effective against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and pathogenic bacteria could be used to modify surfaces, reducing the risk of touching transmission. In this work, we showed that a nanometric layer of bimetallic AgCu can be effectively deposited on polypropylene (PP) fibers. The virucidal properties of the AgCu nanofilm were evaluated by comparing the viral loads remaining on uncoated and coated PP after contact times between 2 and 24 h. Quantification of virion numbers for different initial concentrations indicated a reduction of more than 95% after 2 h of contact. The bactericidal action of the AgCu nanofilm was also confirmed by inoculating uncoated and coated PP with a pool of pathogenic bacteria associated with pneumonia (ESKAPE). Meanwhile, no cytotoxicity was observed for human fibroblasts and keratinocyte cells, indicating that the nanofilm could be in contact with human skin without threat. The deposition of the AgCu nanofilm on the nonwoven component of reusable cloth masks might help to prevent virus and bacterial infection while reducing the pollution burden related to the disposable masks. The possible mechanism of biocide contact action was studied by quantum chemistry calculations that show that the addition of Ag and/or Cu makes the polymeric fiber a better electron acceptor. This can promote the oxidation of the phospholipids present at both the virus and bacterial membranes. The rupture at the membrane exposes and damages the genetic material of the virus. More studies are needed to determine the mechanism of action, but the results reported here indicate that Cu and Ag ions are good allies, which can help protect us from the virus that has caused this disturbing pandemic.
Collapse
Affiliation(s)
- J M Bello-Lopez
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - P Silva-Bermudez
- Unidad de ingeniería de Téjidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - G Prado
- Laboratorio de Biotecnología; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - A Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - Gabriela Ibáñez-Cervantes
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - Mónica Alethia Cureño-Díaz
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - L Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar sn, Ciudad Universitaria, 04510 CDMX, México
| | - J Manzo-Merino
- Cátedras CONACyT-Instituto Nacional de Cancerología, CDMX, México
| | - A Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, 04510 CDMX, México
| | - C Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - S E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| |
Collapse
|
84
|
Shinde DB, Pawar R, Vitore J, Kulkarni D, Musale S, Giram P. Natural and synthetic functional materials for broad spectrum applications in antimicrobials, antivirals and cosmetics. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dasharath B. Shinde
- Symbiosis School of Biological Sciences (SSBS) Symbiosis International (Deemed University) Lavale Pune India
| | - Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy Bharati Vidyapeeth (Deemed to be University) Pune Maharashtra India
| | - Jyotsna Vitore
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) – Ahmedabad (An Institute of National Importance, Government of India) Gujarat India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gujarat, India
| | - Deepak Kulkarni
- Department of Pharmaceutics Srinath College of Pharmacy Aurangabad Maharashtra India
| | - Shubham Musale
- Department of Pharmaceutics Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pune India
| | - Prabhanjan Giram
- Department of Pharmaceutics Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pune India
| |
Collapse
|
85
|
Boas D, Reches M. A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating. Front Bioeng Biotechnol 2021; 9:736679. [PMID: 34746103 PMCID: PMC8564293 DOI: 10.3389/fbioe.2021.736679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The health, economy, and quality of life all over the world are greatly affected by bacterial infections and viral outbreaks. Bacterial cells and viruses, such as influenza, can spread through contaminated surfaces and fomites. Therefore, a possible way to fight these pathogens is to utilize antibacterial and antiviral coatings, which reduce their numbers on contaminated surfaces. Here, we present a novel short peptide that can self-assemble, adhere to various surfaces, and bind different metal ions such as copper, which provides the surface with antibacterial and antiviral properties. For these functions, the peptide incorporates the amino acid 3,4-dihydroxyphenylalanine (DOPA), which provides the peptide with adhesive capabilities; a diphenylalanine motif that induces the self-assembly of the peptide; the metal-binding hexahistidine sequence. Our results demonstrate that the coating, which releases monovalent cuprous ions and hydrogen peroxide, provides the surfaces with significant antibacterial and antiviral properties. Additionally, the coating remains transparent, which is favorable for many objects and especially for display screens.
Collapse
Affiliation(s)
| | - Meital Reches
- The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
86
|
Balkrishna A, Arya V, Rohela A, Kumar A, Verma R, Kumar D, Nepovimova E, Kuca K, Thakur N, Thakur N, Kumar P. Nanotechnology Interventions in the Management of COVID-19: Prevention, Diagnosis and Virus-Like Particle Vaccines. Vaccines (Basel) 2021; 9:1129. [PMID: 34696237 PMCID: PMC8537718 DOI: 10.3390/vaccines9101129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 claimed numerous lives and put nations on high alert. The lack of antiviral medications and the small number of approved vaccines, as well as the recurrence of adverse effects, necessitates the development of novel treatment ways to combat COVID-19. In this context, using databases such as PubMed, Google Scholar, and Science Direct, we gathered information about nanotechnology's involvement in the prevention, diagnosis and virus-like particle vaccine development. This review revealed that various nanomaterials like gold, polymeric, graphene and poly amino ester with carboxyl group coated magnetic nanoparticles have been explored for the fast detection of SARS-CoV-2. Personal protective equipment fabricated with nanoparticles, such as gloves, masks, clothes, surfactants, and Ag, TiO2 based disinfectants played an essential role in halting COVID-19 transmission. Nanoparticles are used not only in vaccine delivery, such as lipid nanoparticles mediated transport of mRNA-based Pfizer and Moderna vaccines, but also in the development of vaccine as the virus-like particles elicit an immune response. There are now 18 virus-like particle vaccines in pre-clinical development, with one of them, developed by Novavax, reported being in phase 3 trials. Due to the probability of upcoming COVID-19 waves, and the rise of new diseases, the future relevance of virus-like particles is imperative. Furthermore, psychosocial variables linked to vaccine reluctance constitute a critical problem that must be addressed immediately to avert pandemic.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
- Department of Allied Sciences, University of Patanjali, Haridwar 249405, India
| | - Akansha Rohela
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249405, India; (A.B.); (V.A.); (A.R.)
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| | - Pankaj Kumar
- Department of Physics, Career Point University, Hamirpur 177001, India; (N.T.); (N.T.); (P.K.)
| |
Collapse
|
87
|
Tao M, Chen J, Huang K. Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
88
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
89
|
Barani M, Zeeshan M, Kalantar-Neyestanaki D, Farooq MA, Rahdar A, Jha NK, Sargazi S, Gupta PK, Thakur VK. Nanomaterials in the Management of Gram-Negative Bacterial Infections. NANOMATERIALS 2021; 11:nano11102535. [PMID: 34684977 PMCID: PMC8540672 DOI: 10.3390/nano11102535] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
The exploration of multiplexed bacterial virulence factors is a major problem in the early stages of Escherichia coli infection therapy. Traditional methods for detecting Escherichia coli (E. coli), such as serological experiments, immunoassays, polymerase chain reaction, and isothermal microcalorimetry have some drawbacks. As a result, detecting E. coli in a timely, cost-effective, and sensitive manner is critical for various areas of human safety and health. Intelligent devices based on nanotechnology are paving the way for fast and early detection of E. coli at the point of care. Due to their specific optical, magnetic, and electrical capabilities, nanostructures can play an important role in bacterial sensors. Another one of the applications involved use of nanomaterials in fighting microbial infections, including E. coli mediated infections. Various types of nanomaterials, either used directly as an antibacterial agent such as metallic nanoparticles (NPs) (silver, gold, zinc, etc.), or as a nanocarrier to deliver and target the antibiotic to the E. coli and its infected area. Among different types, polymeric NPs, lipidic nanocarriers, metallic nanocarriers, nanomicelles, nanoemulsion/ nanosuspension, dendrimers, graphene, etc. proved to be effective vehicles to deliver the drug in a controlled fashion at the targeted site with lower off-site drug leakage and side effects.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.B.); (D.K.-N.)
| | - Mahira Zeeshan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (M.B.); (D.K.-N.)
- Department of Medical Microbiology (Bacteriology and virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Muhammad Asim Farooq
- Faculty of Pharmacy, Department of Pharmaceutics, The University of Lahore, Lahore 54000, Pakistan;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 9861335856, Iran
- Correspondence: (A.R.); (P.K.G.); (V.K.T.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
- Correspondence: (A.R.); (P.K.G.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
- Correspondence: (A.R.); (P.K.G.); (V.K.T.)
| |
Collapse
|
90
|
Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha NK, Gupta PK, Thakur VK. Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review. J Funct Biomater 2021; 12:54. [PMID: 34698244 PMCID: PMC8544389 DOI: 10.3390/jfb12040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent complication during pregnancy. This complex disease is characterized by glucose intolerance and consequent hyperglycemia that begins or is first diagnosed in pregnancy, and affects almost 7% of pregnant women. Previous reports have shown that GDM is associated with increased pregnancy complications and might cause abnormal fetal development. At present, treatments are not suitable for the prevention and management of these patients. As an alternative therapeutic opportunity and a leading scientific technique, nanotechnology has helped enlighten the health of these affected women. Theranostic nanomaterials with unique properties and small sizes (at least <100 nm in one of their dimensions) have been recently engineered for clinics and pharmaceutics. Reducing materials to the nanoscale has successfully changed their properties and enabled them to uniquely interact with cell biomolecules. Several biosensing methods have been developed to monitor glucose levels in GDM patients. Moreover, cerium oxide nanoparticles (NPs), selenium NPs, polymeric NPs, and drug-loaded NPs loaded with therapeutic agents have been used for GDM treatment. Still, there are some challenges associated with the detection limits and toxicity of such nanomaterials. This preliminary review covers the aspects from a fast-developing field to generating nanomaterials and their applications in GDM diagnosis and treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 53898615, Iran
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea;
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India;
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Noida 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
91
|
Nasef MM, Gupta B, Shameli K, Verma C, Ali RR, Ting TM. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers (Basel) 2021; 13:3102. [PMID: 34578003 PMCID: PMC8473120 DOI: 10.3390/polym13183102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles.
Collapse
Affiliation(s)
- Mohamed Mahmoud Nasef
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Roshafima Rasit Ali
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Teo Ming Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Malaysia;
| |
Collapse
|
92
|
Marini M, Legittimo F, Torre B, Allione M, Limongi T, Scaltrito L, Pirri CF, di Fabrizio E. DNA Studies: Latest Spectroscopic and Structural Approaches. MICROMACHINES 2021; 12:mi12091094. [PMID: 34577737 PMCID: PMC8465297 DOI: 10.3390/mi12091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.
Collapse
Affiliation(s)
- Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Correspondence: ; Tel.: +39-011-090-43-22
| | - Francesca Legittimo
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Marco Allione
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Luciano Scaltrito
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Enzo di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| |
Collapse
|
93
|
Wang N, Ferhan AR, Yoon BK, Jackman JA, Cho NJ, Majima T. Chemical design principles of next-generation antiviral surface coatings. Chem Soc Rev 2021; 50:9741-9765. [PMID: 34259262 DOI: 10.1039/d1cs00317h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has accelerated efforts to develop high-performance antiviral surface coatings while highlighting the need to build a strong mechanistic understanding of the chemical design principles that underpin antiviral surface coatings. Herein, we critically summarize the latest efforts to develop antiviral surface coatings that exhibit virus-inactivating functions through disrupting lipid envelopes or protein capsids. Particular attention is focused on how cutting-edge advances in material science are being applied to engineer antiviral surface coatings with tailored molecular-level properties to inhibit membrane-enveloped and non-enveloped viruses. Key topics covered include surfaces functionalized with organic and inorganic compounds and nanoparticles to inhibit viruses, and self-cleaning surfaces that incorporate photocatalysts and triplet photosensitizers. Application examples to stop COVID-19 are also introduced and demonstrate how the integration of chemical design principles and advanced material fabrication strategies are leading to next-generation surface coatings that can help thwart viral pandemics and other infectious disease threats.
Collapse
Affiliation(s)
- Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
94
|
Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O. Mechanisms of instantaneous inactivation of SARS-CoV-2 by silicon nitride bioceramic. Mater Today Bio 2021; 12:100144. [PMID: 34632359 PMCID: PMC8485720 DOI: 10.1016/j.mtbio.2021.100144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
The hydrolytic processes occurring at the surface of silicon nitride (Si3N4) bioceramic have been indicated as a powerful pathway to instantaneous inactivation of SARS-CoV-2 virus. However, the virus inactivation mechanisms promoted by Si3N4 remain yet to be elucidated. In this study, we provide evidence of the instantaneous damage incurred on the SARS-CoV-2 virus upon contact with Si3N4. We also emphasize the safety characteristics of Si3N4 for mammalian cells. Contact between the virions and micrometric Si3N4 particles immediately targeted a variety of viral molecules by inducing post-translational oxidative modifications of S-containing amino acids, nitration of the tyrosine residue in the spike receptor binding domain, and oxidation of RNA purines to form formamidopyrimidine. This structural damage in turn led to a reshuffling of the protein secondary structure. These clear fingerprints of viral structure modifications were linked to inhibition of viral functionality and infectivity. This study validates the notion that Si3N4 bioceramic is a safe and effective antiviral compound; and a primary antiviral candidate to replace the toxic and allergenic compounds presently used in contact with the human body and in long-term environmental sanitation.
Collapse
Affiliation(s)
- G Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0854, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - F Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - E Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| | - Y Fujita
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| | - M Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| | - T Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - T Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - N Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - E Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - W Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606-8585, Japan
| | - I Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - O Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602-8566, Japan
| |
Collapse
|
95
|
Kumar A, Han SS. Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4777. [PMID: 34500866 PMCID: PMC8432490 DOI: 10.3390/ma14174777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Bacterial nanocellulose (BNC, as exopolysaccharide) synthesized by some specific bacteria strains is a fascinating biopolymer composed of the three-dimensional pure cellulosic nanofibrous matrix without containing lignin, hemicellulose, pectin, and other impurities as in plant-based cellulose. Due to its excellent biocompatibility (in vitro and in vivo), high water-holding capacity, flexibility, high mechanical properties, and a large number of hydroxyl groups that are most similar characteristics of native tissues, BNC has shown great potential in tissue engineering applications. This review focuses on and discusses the efficacy of BNC- or BNC-based biomaterials for hard tissue regeneration. In this review, we provide brief information on the key aspects of synthesis and properties of BNC, including solubility, biodegradability, thermal stability, antimicrobial ability, toxicity, and cellular response. Further, modification approaches are discussed briefly to improve the properties of BNC or BNC-based structures. In addition, various biomaterials by using BNC (as sacrificial template or matrix) or BNC in conjugation with polymers and/or fillers are reviewed and discussed for dental and bone tissue engineering applications. Moreover, the conclusion with perspective for future research directions of using BNC for hard tissue regeneration is briefly discussed.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Sung-Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
96
|
Marinescu M. Synthesis of Antimicrobial Benzimidazole-Pyrazole Compounds and Their Biological Activities. Antibiotics (Basel) 2021; 10:1002. [PMID: 34439052 PMCID: PMC8389006 DOI: 10.3390/antibiotics10081002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
The synthesis of new compounds with antimicrobial and antiviral properties is a central objective today in the context of the COVID-19 pandemic. Benzimidazole and pyrazole compounds have remarkable biological properties, such as antimicrobial, antiviral, antitumor, analgesic, anti-inflammatory, anti-Alzheimer's, antiulcer, antidiabetic. Moreover, recent literature mentions the syntheses and antimicrobial properties of some benzimidazole-pyrazole hybrids, as well as other biological properties thereof. In this review, we aim to review the methods of synthesis of these hybrids, the antimicrobial activities of the compounds, their correlation with various groups present on the molecule, as well as their pharmaceutical properties.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Soseaua Panduri, 030018 Bucharest, Romania
| |
Collapse
|
97
|
Tan E, Kahyaoğlu İM, Karakuş S. A sensitive and smartphone colorimetric assay for the detection of hydrogen peroxide based on antibacterial and antifungal matcha extract silver nanoparticles enriched with polyphenol. Polym Bull (Berl) 2021; 79:7363-7389. [PMID: 34413556 PMCID: PMC8364309 DOI: 10.1007/s00289-021-03857-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Current trends in scientific studies focus on the development of smartphone-based biosensors via green nanoparticle for clinical diagnosis, food, and environmental monitoring. In this study, we developed a novel portable smartphone-based biosensor via green dendrimer-coated matcha extract/silver nanoparticles (ME-Ag NPs) enriched with polyphenol for detecting hydrogen peroxide (H2O2). Also, we investigated the biological evaluation of the nanostructure as a safe preservative for use in biomedical applications. Ag NPs were prepared using a green sonochemical method and were characterized to determine surface and chemical properties by different techniques such as scanning electron microscopy-energy-dispersive X-ray, transmission electron microscope, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray diffraction, and Brunauer-Emmett-Teller. Furthermore, antimicrobial and antifungal properties of ME-Ag NPs were investigated against pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aureginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The experimental sensor methodology was based on the detection of H2O2 by analysis of images of novel silver nanostructure-coated papers and processing of color histograms with a RGB (red-green-blue) analyzer software. Consequently, the smartphone-based biosensor exhibited high sensitivity with detection limits of 0.82 μM response time of 5 s. The smartphone-based biosensor via ME-Ag NPs provided a rapid and selective detection of H2O2.
Collapse
Affiliation(s)
- Ezgi Tan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - İbrahim Mizan Kahyaoğlu
- Department of Chemistry, Faculty of Science and Arts, Kurupelit, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Selcan Karakuş
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| |
Collapse
|
98
|
Aazem I, Rathinam P, Pillai S, Honey G, Vengellur A, Bhat SG, Sailaja GS. Active bayerite underpinned Ag2O/Ag: An efficient antibacterial nanohybrid combating microbial contamination. Metallomics 2021; 13:6342163. [PMID: 34351413 DOI: 10.1093/mtomcs/mfab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022]
Abstract
Active surfaces with bactericidal properties are of paramount importance in health care sector as a judicious approach to confront prevalent challenges presented by disastrous pathogenic infections and antibiotic-resistant microbes. Herein, we present Bayerite underpinned Ag2O/Ag (ALD), a nanohybrid with excellent antibacterial and antibiofilm functionalities against tested standard strains and clinical isolates. The multicomponent system coexists and complement each other with respect to phase and functionalities, demonstrated by XRD, XPS and TEM analyses. In situ reduction of Ag+ ions to Ag0 over Bayerite as a stable bound phase is favoured by pH of the reaction, yielding 60-80% bound Ag protruding outwards facilitating active surface for interaction with microbes. ALD has a minimum inhibitory concentration (MIC) of 0.068 mg/mL against clinical isolates: Pseudomonas aeruginosa RRLP1, RRLP2, Acinetobactor baumannii C78 and C80. Disc diffusion assay demonstrated excellent antibacterial activity against standard strains (positive control: standard antibiotic disc, Amikacin). ALD incorporated PMMA films (5 and 10 wt%(PALD-5 and PALD-10) exhibited significant contact killing (99.9%) of clinical isolates in drop-test besides strong antibacterial activity (disc diffusion assay) comparable to that of ALD. ALD exemplified a dose (0.034 mg/mL and 0.017 mg/mL) dependent biofilm inhibition (p < 0.001) and significant eradication of pre-formed biofilms (p < 0.001) by clinical isolates. PALD 5 and PALD 10 significantly declined the number of viable biofilm associated bacteria (99.9%) compared to control. Both ALD and PALD samples are proposed as green antibacterial materials with antibiofilm properties. Results also present ample opportunity to explore PALD as antibacterial and/or antibiofilm coating formulations.
Collapse
Affiliation(s)
- Irthasa Aazem
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala-682022 - India
| | - Prasanth Rathinam
- Department of Biochemistry and Medical Biotechnology Laboratory, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala -689101, India
| | - Saju Pillai
- Material Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala-695019, India
| | - Gopinathan Honey
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - Ajith Vengellur
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, Kerala-682022 - India.,Centre for Excellence in Advanced Materials, Cochin University of Science and Technology, Kochi, Kerala-682022, India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, Kerala-682022, India
| |
Collapse
|
99
|
Biodegradable Nanofibrous Membranes for Medical and Personal Protection Applications: Manufacturing, Anti-COVID-19 and Anti-Multidrug Resistant Bacteria Evaluation. MATERIALS 2021; 14:ma14143862. [PMID: 34300781 PMCID: PMC8306818 DOI: 10.3390/ma14143862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Biodegradable nanofibrous hybrid membranes of polyvinyl alcohol (PVA) with ZnO and CuO nanoparticles were manufactured and characterized, and their anti-COVID-19 and anti-multidrug resistant bacteria activities were also evaluated. The morphological structures of the prepared PVA composites nanofibers were observed by scanning electron microscope (SEM), which revealed a homogenous pattern of the developed nanofibers, with an average fibrous diameter of 200–250 nm. Moreover, the results of the SEM showed that the fiber size changed with the type and the concentration of the metal oxide. Moreover, the antiviral and antibacterial potential capabilities of the developed nanofibrous membranes were tested in blocking the viral fusion of SARS-COV-2, as a representative activity for COVID-19 deactivation, as well as for their activity against a variety of bacterial strains, including multi-drug resistant bacteria (MDR). The results revealed that ZnO loaded nanofibers were more potent antiviral agents than their CuO analogues. This antiviral action was attributed to the fact that inorganic metallic compounds have the ability to extract hydrogen bonds with viral proteins, causing viral rupture or morphological changes. On the other hand, the anti-multi-drug resistant activity of the prepared nanofibers was also evaluated using two techniques; the standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions and the standard test method for determining the activity of incorporated antimicrobial agents in polymeric or hydrophobic materials. Both techniques proved the superiority of the ZnO loaded nanofibers over the CuO loaded fibers. The results of the antiviral and antibacterial tests showed the effectiveness of such nanofibrous formulas, not only for medical applications, but also for the production of personal protection equipment, such as gowns and textiles.
Collapse
|
100
|
Alayande AB, Kang Y, Jang J, Jee H, Lee YG, Kim IS, Yang E. Antiviral Nanomaterials for Designing Mixed Matrix Membranes. MEMBRANES 2021; 11:membranes11070458. [PMID: 34206245 PMCID: PMC8303748 DOI: 10.3390/membranes11070458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 01/02/2023]
Abstract
Membranes are helpful tools to prevent airborne and waterborne pathogenic microorganisms, including viruses and bacteria. A membrane filter can physically separate pathogens from air or water. Moreover, incorporating antiviral and antibacterial nanoparticles into the matrix of membrane filters can render composite structures capable of killing pathogenic viruses and bacteria. Such membranes incorporated with antiviral and antibacterial nanoparticles have a great potential for being applied in various application scenarios. Therefore, in this perspective article, we attempt to explore the fundamental mechanisms and recent progress of designing antiviral membrane filters, challenges to be addressed, and outlook.
Collapse
Affiliation(s)
| | - Yesol Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Jaewon Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Hobin Jee
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon-si 24341, Korea;
| | - In S. Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (Y.K.); (J.J.); (I.S.K.)
| | - Euntae Yang
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong-si 53064, Korea;
- Correspondence:
| |
Collapse
|