51
|
McCloskey DJ, Dontschuk N, Broadway DA, Nadarajah A, Stacey A, Tetienne JP, Hollenberg LCL, Prawer S, Simpson DA. Enhanced Widefield Quantum Sensing with Nitrogen-Vacancy Ensembles Using Diamond Nanopillar Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13421-13427. [PMID: 32100531 DOI: 10.1021/acsami.9b19397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Surface micro- and nano-patterning techniques are often employed to enhance the optical interface to single photoluminescent emitters in diamond, but the utility of such surface structuring in applications requiring ensembles of emitters is still open to investigation. Here, we demonstrate scalable and fault-tolerant fabrication of closely packed arrays of fluorescent diamond nanopillars, each hosting its own dense, uniformly bright ensemble of near-surface nitrogen-vacancy centers. We explore the optimal sizes for these structures and realize enhanced spin and photoluminescence properties resulting in a 4.5 times increase in optically detected magnetic resonance sensitivity when compared to unpatterned surfaces. Utilizing the increased measurement sensitivity, we image the mechanical stress tensor in each diamond pillar across the arrays and show that the fabrication process has a negligible impact on in-built stress compared to the unpatterned surface. Our results represent a valuable pathway toward future multimodal and vector-resolved imaging studies, for instance in biological contexts.
Collapse
Affiliation(s)
- Daniel J McCloskey
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nikolai Dontschuk
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David A Broadway
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Athavan Nadarajah
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair Stacey
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Lloyd C L Hollenberg
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David A Simpson
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
52
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
53
|
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903663. [PMID: 31566837 PMCID: PMC6946854 DOI: 10.1002/adma.201903663] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie-Fu Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Smalley
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
54
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
55
|
Harberts J, Haferkamp U, Haugg S, Fendler C, Lam D, Zierold R, Pless O, Blick RH. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater Sci 2020; 8:2434-2446. [DOI: 10.1039/d0bm00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Stefanie Haugg
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Dennis Lam
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert H. Blick
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
- Material Science and Engineering
| |
Collapse
|
56
|
Wu Y, Chen H, Guo L. Opportunities and dilemmas of in vitro nano neural electrodes. RSC Adv 2020; 10:187-200. [PMID: 35492533 PMCID: PMC9047985 DOI: 10.1039/c9ra08917a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023] Open
Abstract
Developing electrophysiological platforms to capture electrical activities of neurons and exert modulatory stimuli lays the foundation for many neuroscience-related disciplines, including the neuron–machine interface, neuroprosthesis, and mapping of brain circuitry.
Collapse
Affiliation(s)
- Yu Wu
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| | - Haowen Chen
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| | - Liang Guo
- Department of Electrical and Computer Engineering
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
57
|
Highly active oxygen evolution integrated with efficient CO 2 to CO electroreduction. Proc Natl Acad Sci U S A 2019; 116:23915-23922. [PMID: 31723041 DOI: 10.1073/pnas.1915319116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrochemical reduction of CO2 to useful chemicals has been actively pursued for closing the carbon cycle and preventing further deterioration of the environment/climate. Since CO2 reduction reaction (CO2RR) at a cathode is always paired with the oxygen evolution reaction (OER) at an anode, the overall efficiency of electrical energy to chemical fuel conversion must consider the large energy barrier and sluggish kinetics of OER, especially in widely used electrolytes, such as the pH-neutral CO2-saturated 0.5 M KHCO3 OER in such electrolytes mostly relies on noble metal (Ir- and Ru-based) electrocatalysts in the anode. Here, we discover that by anodizing a metallic Ni-Fe composite foam under a harsh condition (in a low-concentration 0.1 M KHCO3 solution at 85 °C under a high-current ∼250 mA/cm2), OER on the NiFe foam is accompanied by anodic etching, and the surface layer evolves into a nickel-iron hydroxide carbonate (NiFe-HC) material composed of porous, poorly crystalline flakes of flower-like NiFe layer-double hydroxide (LDH) intercalated with carbonate anions. The resulting NiFe-HC electrode in CO2-saturated 0.5 M KHCO3 exhibited OER activity superior to IrO2, with an overpotential of 450 and 590 mV to reach 10 and 250 mA/cm2, respectively, and high stability for >120 h without decay. We paired NiFe-HC with a CO2RR catalyst of cobalt phthalocyanine/carbon nanotube (CoPc/CNT) in a CO2 electrolyzer, achieving selective cathodic conversion of CO2 to CO with >97% Faradaic efficiency and simultaneous anodic water oxidation to O2 The device showed a low cell voltage of 2.13 V and high electricity-to-chemical fuel efficiency of 59% at a current density of 10 mA/cm2.
Collapse
|
58
|
Membrane curvature underlies actin reorganization in response to nanoscale surface topography. Proc Natl Acad Sci U S A 2019; 116:23143-23151. [PMID: 31591250 DOI: 10.1073/pnas.1910166116] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Surface topography profoundly influences cell adhesion, differentiation, and stem cell fate control. Numerous studies using a variety of materials demonstrate that nanoscale topographies change the intracellular organization of actin cytoskeleton and therefore a broad range of cellular dynamics in live cells. However, the underlying molecular mechanism is not well understood, leaving why actin cytoskeleton responds to topographical features unexplained and therefore preventing researchers from predicting optimal topographic features for desired cell behavior. Here we demonstrate that topography-induced membrane curvature plays a crucial role in modulating intracellular actin organization. By inducing precisely controlled membrane curvatures using engineered vertical nanostructures as topographies, we find that actin fibers form at the sites of nanostructures in a curvature-dependent manner with an upper limit for the diameter of curvature at ∼400 nm. Nanotopography-induced actin fibers are branched actin nucleated by the Arp2/3 complex and are mediated by a curvature-sensing protein FBP17. Our study reveals that the formation of nanotopography-induced actin fibers drastically reduces the amount of stress fibers and mature focal adhesions to result in the reorganization of actin cytoskeleton in the entire cell. These findings establish the membrane curvature as a key linkage between surface topography and topography-induced cell signaling and behavior.
Collapse
|
59
|
Liu T, Cui Q, Wu Q, Li X, Song K, Ge D, Guan S. Mechanism Study of Bacteria Killed on Nanostructures. J Phys Chem B 2019; 123:8686-8696. [DOI: 10.1021/acs.jpcb.9b07732] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tianqing Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qianqian Cui
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Qiqi Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xiangqin Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Kedong Song
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Shui Guan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
60
|
Abstract
Intracellular cargo delivery is an essential step in many biomedical applications including gene editing and biologics therapy. Examples of cargo include nucleic acids (RNA and DNA), proteins, small biomolecules, and drugs, which can vary substantially in terms of their sizes, charges, solubility, and stability. Viruses have been used traditionally to deliver nucleic acids into cells, but the method suffers from limitations such as small cargo size, safety concerns, and viral genome integration into host cells, all of which complicate therapeutic applications. Commercially available techniques using biochemicals and bulk electroporation are, in general, poorly compatible with primary cells such as human induced pluripotent stem cells and immune cells, which are increasingly important candidates for adoptive cell therapy. Nanostructures, with dimensions ranging from tens of nanometers to a few micrometers, may play a critical role in overcoming cellular manipulation and delivery challenges and provide a powerful alternative to conventional techniques. A critical feature that differentiates nanostructures from viral, biochemical, and bulk electroporation techniques is that they interface with cells at a scale measuring ten to hundreds of nanometers in size. This highly local interaction enables application of stronger and more direct stimuli such as mechanical force, heat, or electric fields than would be possible in a bulk treatment. Compared to popular viral, biochemical, and bulk electroporation methods, nanostructures were found to minimally perturb cells with cells remaining in good health during postdelivery culture. These advantages have enabled nanostructures such as nanowires and nanotubes to successfully interface with a wide variety of cells, including primary immune cells and cardiomyocytes, for in vitro and in vivo applications. This Account is focused on using nanostructures for cargo delivery into biological cells. In this Account, we will first outline the historical developments using nanostructures for interfacing with cells. We will highlight how mechanistic understanding of nano-bio interactions has evolved over the last decade and how this improved knowledge has motivated coupling of electric and magnetic fields to nanostructures to improve delivery outcomes. There will also be an in-depth discussion on the merits of nanostructures in comparison to conventional methods using viruses, biochemicals, and bulk electroporation. Finally, motivated by our observations on the lack of consistency in reporting key metrics such as efficiency in literature, we suggest a set of metrics for documenting experimental results with the aim to promote standardization in reporting and ease in comparing. We suggest the use of more sophisticated tools such as RNA transcriptomics for thorough assessment of cell perturbation attributed to intracellular delivery. We hope that this Account can effectively capture the progress of nanostructure-mediated cargo delivery and encourage new innovations.
Collapse
Affiliation(s)
- Andy Tay
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States,Department of Biomedical Engineering, National University of Singapore, 117583 Singapore
| | - Nicholas Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States,Corresponding Author:
| |
Collapse
|
61
|
Necula MG, Mazare A, Ion RN, Ozkan S, Park J, Schmuki P, Cimpean A. Lateral Spacing of TiO 2 Nanotubes Modulates Osteoblast Behavior. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2956. [PMID: 31547276 PMCID: PMC6766216 DOI: 10.3390/ma12182956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023]
Abstract
Titanium dioxide (TiO2) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO2 nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively. Both nanostructured surfaces supported cell viability and proliferation in approximately equal extent. However, obvious differences in the cell spreading areas, morphologies, the organization of the actin cytoskeleton and the pattern of the focal adhesions were noticed. Furthermore, investigation of the pre-osteoblast differentiation potential indicated a higher capacity of larger spacing nanostructure to enhance the expression of the alkaline phosphatase, osteopontin and osteocalcin osteoblast specific markers inducing osteogenic differentiation. These findings provide the proof that lateral spacing of the TiO2 nanotube coated titanium (Ti) surfaces has to be considered in designing bone implants with improved biological performance.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Raluca Nicoleta Ion
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
62
|
Desbiolles BXE, de Coulon E, Bertsch A, Rohr S, Renaud P. Intracellular Recording of Cardiomyocyte Action Potentials with Nanopatterned Volcano-Shaped Microelectrode Arrays. NANO LETTERS 2019; 19:6173-6181. [PMID: 31424942 DOI: 10.1021/acs.nanolett.9b02209] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Micronanotechnology-based multielectrode arrays have led to remarkable progress in the field of transmembrane voltage recording of excitable cells. However, providing long-term optoporation- or electroporation-free intracellular access remains a considerable challenge. In this study, a novel type of nanopatterned volcano-shaped microelectrode (nanovolcano) is described that spontaneously fuses with the cell membrane and permits stable intracellular access. The complex nanostructure was manufactured following a simple and scalable fabrication process based on ion beam etching redeposition. The resulting ring-shaped structure provided passive intracellular access to neonatal rat cardiomyocytes. Intracellular action potentials were successfully recorded in vitro from different devices, and continuous recording for more than 1 h was achieved. By reporting transmembrane action potentials at potentially high spatial resolution without the need to apply physical triggers, the nanovolcanoes show distinct advantages over multielectrode arrays for the assessment of electrophysiological characteristics of cardiomyocyte networks at the transmembrane voltage level over time.
Collapse
Affiliation(s)
- B X E Desbiolles
- Laboratory of Microsystems LMIS4 , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - E de Coulon
- Group Rohr, Department of Physiology , University of Bern , 3012 Bern , Switzerland
| | - A Bertsch
- Laboratory of Microsystems LMIS4 , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - S Rohr
- Group Rohr, Department of Physiology , University of Bern , 3012 Bern , Switzerland
| | - P Renaud
- Laboratory of Microsystems LMIS4 , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| |
Collapse
|
63
|
Mehrjou B, Mo S, Dehghan-Baniani D, Wang G, Qasim AM, Chu PK. Antibacterial and Cytocompatible Nanoengineered Silk-Based Materials for Orthopedic Implants and Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31605-31614. [PMID: 31385497 DOI: 10.1021/acsami.9b09066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many postsurgical complications stem from bacteria colony formation on the surface of implants, but the usage of antibiotic agents may cause antimicrobial resistance. Therefore, there is a strong demand for biocompatible materials with an intrinsic antibacterial resistance not requiring extraneous chemical agents. In this study, homogeneous nanocones were fabricated by oxygen plasma etching on the surface of natural, biocompatible Bombyx mori silk films. The new hydroxyl bonds formed on the surface of the nanopatterned film by plasma etching increased the surface energy by around 176%. This hydrophilic nanostructure reduced the bacterial attachment by more than 90% for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and at the same time improved the proliferation of osteoblast cells by 30%. The nanoengineered substrate and pristine silk were cultured for 6 h with three different bacteria concentrations of 107, 105, and 103 CFU mL-1 and the cell proliferation on the nanopatterned samples was significantly higher due to limited bacteria attachment and prevention of biofilm formation. The concept and materials described here reveal a promising alternative to produce biomaterials with an inherent biocompatibility and bacterial resistance simultaneously to mitigate postsurgical infections and minimize the use of antibiotics.
Collapse
Affiliation(s)
- Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Shi Mo
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Dorsa Dehghan-Baniani
- Division of Biomedical Engineering, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Sai Kung , Hong Kong
| | - Guomin Wang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Abdul Mateen Qasim
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong
| |
Collapse
|
64
|
Abstract
Biological systems have evolved biochemical, electrical, mechanical, and genetic networks to perform essential functions across various length and time scales. High-aspect-ratio biological nanowires, such as bacterial pili and neurites, mediate many of the interactions and homeostasis in and between these networks. Synthetic materials designed to mimic the structure of biological nanowires could also incorporate similar functional properties, and exploiting this structure-function relationship has already proved fruitful in designing biointerfaces. Semiconductor nanowires are a particularly promising class of synthetic nanowires for biointerfaces, given (1) their unique optical and electronic properties and (2) their high degree of synthetic control and versatility. These characteristics enable fabrication of a variety of electronic and photonic nanowire devices, allowing for the formation of well-defined, functional bioelectric interfaces at the biomolecular level to the whole-organ level. In this Focus Review, we first discuss the history of bioelectric interfaces with semiconductor nanowires. We next highlight several important, endogenous biological nanowires and use these as a framework to categorize semiconductor nanowire-based biointerfaces. Within this framework we then review the fundamentals of bioelectric interfaces with semiconductor nanowires and comment on both material choice and device design to form biointerfaces spanning multiple length scales. We conclude with a discussion of areas with the potential for greatest impact using semiconductor nanowire-enabled biointerfaces in the future.
Collapse
Affiliation(s)
- Bozhi Tian
- Department of Chemistry, the University of Chicago, Chicago, IL USA
- The James Franck Institute, the University of Chicago, Chicago, IL USA
- The Institute for Biophysical Dynamics, Chicago, IL USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
65
|
Henn I, Atkins A, Markus A, Shpun G, Barad H, Farah N, Mandel Y. SEM/FIB Imaging for Studying Neural Interfaces. Dev Neurobiol 2019; 80:305-315. [DOI: 10.1002/dneu.22707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/11/2019] [Accepted: 06/15/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Itai Henn
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Ayelet Atkins
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Amos Markus
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
| | - Gal Shpun
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Hannah‐Noa Barad
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
- Department of Chemistry, Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
| | - Nairouz Farah
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Faculty of Life Science, School of Optometry and Vision Science Bar‐Ilan University Ramat Gan Israel
| | - Yossi Mandel
- Mina and Everard Goodman Faculty of Life Sciences Bar‐Ilan University Ramat Gan Israel
- Bar‐Ilan Institute for Nanotechnology and Advanced Materials (BINA) Bar‐Ilan University Ramat Gan Israel
- Faculty of Life Science, School of Optometry and Vision Science Bar‐Ilan University Ramat Gan Israel
| |
Collapse
|
66
|
Abstract
The prevention of infectious diseases is a global challenge where multidrug-resistant bacteria or "superbugs" pose a serious threat to worldwide public health. Microtopographic surfaces have attracted much attention as they represent a biomimetic and nontoxic surface antibacterial strategy to replace biocides. The antimicrobial effect of such natural and biomimetic surface nanostructures involves a physical approach which eradicates bacteria via the structural features of the surfaces without any release of biocides or chemicals. These recent developments present a significant proof-of-concept and a powerful tool in which cellular adhesion and death caused by a physical approach, can be controlled by the micro/nanotopology of such surfaces. This represents an innovative direction of development of clean, effective and nonresistant antimicrobial surfaces. The minireview will cover novel approaches for the construction of nanostructures on surfaces in order to create antimicrobial surface in an environmentally friendly, nontoxic manner.
Collapse
Affiliation(s)
- Guangshun Yi
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Siti Nurhanna Riduan
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Yuan Yuan
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| | - Yugen Zhang
- a Institute of Bioengineering and Nanotechnology, The Nanos , Singapore , Singapore
| |
Collapse
|
67
|
Staufer O, Weber S, Bengtson CP, Bading H, Rustom A, Spatz JP. Adhesion Stabilized en Masse Intracellular Electrical Recordings from Multicellular Assemblies. NANO LETTERS 2019; 19:3244-3255. [PMID: 30950627 PMCID: PMC6727598 DOI: 10.1021/acs.nanolett.9b00784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Indexed: 05/02/2023]
Abstract
Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.
Collapse
Affiliation(s)
- Oskar Staufer
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - C. Peter Bengtson
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Amin Rustom
- Department
of Neurobiology, Interdisciplinary Center
for Neurosciences, Im
Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Physical Chemistry, Department for Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
68
|
Hansel C, Crowder SW, Cooper S, Gopal S, João Pardelha da Cruz M, de Oliveira Martins L, Keller D, Rothery S, Becce M, Cass AEG, Bakal C, Chiappini C, Stevens MM. Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS NANO 2019; 13:2913-2926. [PMID: 30829469 PMCID: PMC6439438 DOI: 10.1021/acsnano.8b06998] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
Biomaterial substrates can be engineered to present topographical signals to cells which, through interactions between the material and active components of the cell membrane, regulate key cellular processes and guide cell fate decisions. However, targeting mechanoresponsive elements that reside within the intracellular domain is a concept that has only recently emerged. Here, we show that mesoporous silicon nanoneedle arrays interact simultaneously with the cell membrane, cytoskeleton, and nucleus of primary human cells, generating distinct responses at each of these cellular compartments. Specifically, nanoneedles inhibit focal adhesion maturation at the membrane, reduce tension in the cytoskeleton, and lead to remodeling of the nuclear envelope at sites of impingement. The combined changes in actin cytoskeleton assembly, expression and segregation of the nuclear lamina, and localization of Yes-associated protein (YAP) correlate differently from what is canonically observed upon stimulation at the cell membrane, revealing that biophysical cues directed to the intracellular space can generate heretofore unobserved mechanosensory responses. These findings highlight the ability of nanoneedles to study and direct the phenotype of large cell populations simultaneously, through biophysical interactions with multiple mechanoresponsive components.
Collapse
Affiliation(s)
- Catherine
S. Hansel
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Spencer W. Crowder
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Samuel Cooper
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Sahana Gopal
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maria João Pardelha da Cruz
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de
Lisboa, 1649-004 Lisbon, Portugal
| | - Leonardo de Oliveira Martins
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Debora Keller
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stephen Rothery
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michele Becce
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anthony E. G. Cass
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chris Bakal
- Chester Beatty
Laboratories, Institute for Cancer Research, London SW3 6JB, U.K.
| | - Ciro Chiappini
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Chemistry, Department of Bioengineering, Institute for Biomedical
Engineering, Department of Surgery and Cancer, Department of Medicine, and Facility for Imaging by Light Microscopy, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
69
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
70
|
Gopal S, Chiappini C, Penders J, Leonardo V, Seong H, Rothery S, Korchev Y, Shevchuk A, Stevens MM. Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806788. [PMID: 30680803 PMCID: PMC6606440 DOI: 10.1002/adma.201806788] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Indexed: 05/18/2023]
Abstract
Owing to their ability to efficiently deliver biological cargo and sense the intracellular milieu, vertical arrays of high aspect ratio nanostructures, known as nanoneedles, are being developed as minimally invasive tools for cell manipulation. However, little is known of the mechanisms of cargo transfer across the cell membrane-nanoneedle interface. In particular, the contributions of membrane piercing, modulation of membrane permeability and endocytosis to cargo transfer remain largely unexplored. Here, combining state-of-the-art electron and scanning ion conductance microscopy with molecular biology techniques, it is shown that porous silicon nanoneedle arrays concurrently stimulate independent endocytic pathways which contribute to enhanced biomolecule delivery into human mesenchymal stem cells. Electron microscopy of the cell membrane at nanoneedle sites shows an intact lipid bilayer, accompanied by an accumulation of clathrin-coated pits and caveolae. Nanoneedles enhance the internalization of biomolecular markers of endocytosis, highlighting the concurrent activation of caveolae- and clathrin-mediated endocytosis, alongside macropinocytosis. These events contribute to the nanoneedle-mediated delivery (nanoinjection) of nucleic acids into human stem cells, which distribute across the cytosol and the endolysosomal system. This data extends the understanding of how nanoneedles modulate biological processes to mediate interaction with the intracellular space, providing indications for the rational design of improved cell-manipulation technologies.
Collapse
Affiliation(s)
- Sahana Gopal
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Ciro Chiappini
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Jelle Penders
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Vincent Leonardo
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Hyejeong Seong
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| | - Stephen Rothery
- Facility for Imaging by Light Microscopy, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London, SW7 2BB, UK
| | - Yuri Korchev
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Andrew Shevchuk
- Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Molly M Stevens
- Department of Materials, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
- Department of Bioengineering, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2AZ, UK
| |
Collapse
|
71
|
|
72
|
Le Saux G, Bar-Hanin N, Edri A, Hadad U, Porgador A, Schvartzman M. Nanoscale Mechanosensing of Natural Killer Cells is Revealed by Antigen-Functionalized Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805954. [PMID: 30488552 DOI: 10.1002/adma.201805954] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Cells sense their environment by transducing mechanical stimuli into biochemical signals. Commonly used tools to study cell mechanosensing provide limited spatial and force resolution. Here, a novel nanowire-based platform for monitoring cell forces is reported. Nanowires are functionalized with ligands for cell immunoreceptors, and they are used to explore the mechanosensitivity of natural killer (NK) cells. In particular, it is found that NK cells apply centripetal forces to nanowires, and that the nanowires stimulate cell contraction. Based on the nanowire deformation, it is calculated that cells apply forces of down to 10 pN, which is the smallest value demonstrated so far by microstructured platforms for cell spreading. Furthermore, the roles of: i) nanowire topography and ii) activating ligands in the cell immune function are studied and it is found that only their combination produces enhanced population of activated NK cells. Thus, a mechanosensing mechanism of NK cells is proposed, by which they integrate biochemical and mechanical stimuli into a decision-making machinery analogous to the AND logic gate, whose output is the immune activation. This work reveals unprecedented mechanical aspects of NK cell immune function and introduces an innovative nanomaterial for studying cellular mechanics with unparalleled spatial and mechanical resolution.
Collapse
Affiliation(s)
- Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Netanel Bar-Hanin
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
73
|
Tsui TY, Logan M, Moussa HI, Aucoin MG. What's Happening on the Other Side? Revealing Nano-Meter Scale Features of Mammalian Cells on Engineered Textured Tantalum Surfaces. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E114. [PMID: 30602684 PMCID: PMC6337376 DOI: 10.3390/ma12010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Advanced engineered surfaces can be used to direct cell behavior. These behaviors are typically characterized using either optical, atomic force, confocal, or electron microscopy; however, most microscopic techniques are generally restricted to observing what's happening on the "top" side or even the interior of the cell. Our group has focused on engineered surfaces typically reserved for microelectronics as potential surfaces to control cell behavior. These devices allow the exploration of novel substrates including titanium, tungsten, and tantalum intermixed with silicon oxide. Furthermore, these devices allow the exploration of the intricate patterning of surface materials and surface geometries i.e., trenches. Here we present two important advancements in our research: (1) the ability to split a fixed cell through the nucleus using an inexpensive three-point bend micro-cleaving technique and image 3D nanometer scale cellular components using high-resolution scanning electron microscopy; and (2) the observation of nanometer projections from the underbelly of a cell as it sits on top of patterned trenches on our devices. This application of a 3-point cleaving technique to visualize the underbelly of the cell is allowing a new understanding of how cells descend into surface cavities and is providing a new insight on cell migration mechanisms.
Collapse
Affiliation(s)
- Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Hassan I Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
74
|
Iandolo D, Pennacchio FA, Mollo V, Rossi D, Dannhauser D, Cui B, Owens RM, Santoro F. Electron Microscopy for 3D Scaffolds-Cell Biointerface Characterization. ACTA ACUST UNITED AC 2018; 3:e1800103. [PMID: 32627375 DOI: 10.1002/adbi.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Cell fate is largely determined by interactions that occur at the interface between cells and their surrounding microenvironment. For this reason, especially in the field of tissue-engineering, there is a growing interest in developing techniques that allow evaluating cell-material interaction at the nanoscale, particularly focusing on cell adhesion processes. While for 2D culturing systems a consolidated series of tools already satisfy this need, in 3D environments, more closely recapitulating complex in vivo structures, there is still a lack of procedures furthering the comprehension of cell-material interactions. Here, the use of scanning electron microscopy coupled with a focused ion beam (SEM/FIB) for the characterization of cell interactions with 3D scaffolds obtained by different fabrication techniques is reported for the first time. The results clearly show the capability of the developed approach to preserve and finely resolve scaffold-cell interfaces highlighting details such as plasma membrane arrangement, extracellular matrix architecture and composition, and cellular structures playing a role in cell adhesion to the surface. It is anticipated that the developed approach will be relevant for the design of efficient cell-instructive platforms in the study of cellular guidance strategies for tissue-engineering applications as well as for in vitro 3D models.
Collapse
Affiliation(s)
- Donata Iandolo
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK
| | - Fabrizio A Pennacchio
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Italy
| | - Domenico Rossi
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Italy
| | - David Dannhauser
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Italy
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, CA, 94305, USA
| | - Roisin M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125, Italy
| |
Collapse
|
75
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
76
|
Seo J, Kim J, Joo S, Choi JY, Kang K, Cho WK, Choi IS. Nanotopography-Promoted Formation of Axon Collateral Branches of Hippocampal Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801763. [PMID: 30028572 DOI: 10.1002/smll.201801763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Axon collateral branches, as a key structural motif of neurons, allow neurons to integrate information from highly interconnected, divergent networks by establishing terminal boutons. Although physical cues are generally known to have a comprehensive range of effects on neuronal development, their involvement in axonal branching remains elusive. Herein, it is demonstrated that the nanopillar arrays significantly increase the number of axon collateral branches and also promote their growth. Immunostaining and biochemical analyses indicate that the physical interactions between the nanopillars and the neurons give rise to lateral filopodia at the axon shaft via cytoskeletal changes, leading to the formation of axonal branches. This report, demonstrates that nanotopography regulates axonal branching, and provides a guideline for the design of sophisticated neuron-based devices and scaffolds for neuro-engineering.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Juan Kim
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Sunghoon Joo
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Ji Yu Choi
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Insung S Choi
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
77
|
Kavaldzhiev MN, Perez JE, Sougrat R, Bergam P, Ravasi T, Kosel J. Inductively actuated micro needles for on-demand intracellular delivery. Sci Rep 2018; 8:9918. [PMID: 29967360 PMCID: PMC6028653 DOI: 10.1038/s41598-018-28194-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
Methods that provide controlled influx of molecules into cells are of critical importance for uncovering cellular mechanisms, drug development and synthetic biology. However, reliable intracellular delivery without adversely affecting the cells is a major challenge. We developed a platform for on-demand intracellular delivery applications, with which cell membrane penetration is achieved by inductive heating of micro needles. The micro needles of around 1 μm in diameter and 5 μm in length are made of gold using a silicon-based micro fabrication process that provides flexibility with respect to the needles' dimensions, pitch, shell thickness and the covered area. Experiments with HCT 116 colon cancer cells showed a high biocompatibility of the gold needle platform. Transmission electron microscopy of the cell-needle interface revealed folding of the cell membrane around the needle without penetration, preventing any delivery, which was confirmed using the EthD-1 fluorescent dye. The application of an alternating magnetic field, however, resulted in the delivery of EthD-1 by localized heating of the micro needles. Fluorescence quantification showed that intracellular delivery, with as high as 75% efficiency, is achieved for specific treatment times between 1 and 5 minutes. Overexposure of the cells to the heated micro needles, i.e. longer magnetic field application, leads to an increase in cell death, which can be exploited for cleaning the platform. This method allows to perform intracellular deliver by remotely activating the micro needles via a magnetic field, and it is controlled by the application time, making it a versatile and easy to use method. The wireless actuation could also be an attractive feature for in-vivo delivery and implantable devices.
Collapse
Affiliation(s)
- Mincho N Kavaldzhiev
- Computer, Electrical and Mathematical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jose E Perez
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rachid Sougrat
- Imaging and Characterization Core Lab-EM, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ptissam Bergam
- Imaging and Characterization Core Lab-EM, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jürgen Kosel
- Computer, Electrical and Mathematical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
78
|
Tseng KH, Lin YH, Tien DC, Chang CY, Stobinski L. The Suspension of Platinum Nanoparticles Prepared by Electric Discharge Method in Ethanol. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
79
|
McGuire AF, Santoro F, Cui B. Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:101-126. [PMID: 29570360 PMCID: PMC6530470 DOI: 10.1146/annurev-anchem-061417-125705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Measurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface. Here, we endeavor to survey this research with an emphasis on the interface as driven by cellular mechanisms.
Collapse
Affiliation(s)
- Allister F McGuire
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - Francesca Santoro
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Naples, Italy;
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
80
|
Lou HY, Zhao W, Zeng Y, Cui B. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling. Acc Chem Res 2018; 51:1046-1053. [PMID: 29648779 DOI: 10.1021/acs.accounts.7b00594] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
Collapse
Affiliation(s)
- Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
81
|
Zeng Y, Wong ST, Teo SK, Leong KW, Chiam KH, Yim EKF. Human mesenchymal stem cell basal membrane bending on gratings is dependent on both grating width and curvature. Sci Rep 2018; 8:6444. [PMID: 29691432 PMCID: PMC5915387 DOI: 10.1038/s41598-018-24123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/13/2018] [Indexed: 01/12/2023] Open
Abstract
The topography of the extracellular substrate provides physical cues to elicit specific downstream biophysical and biochemical effects in cells. An example of such a topographical substrate is periodic gratings, where the dimensions of the periodic gratings influence cell morphology and directs cell differentiation. We first develop a novel sample preparation technique using Spurr's resin to allow for cross-sectional transmission electron microscopy imaging of cells on grating grooves, and observed that the plasma membrane on the basal surface of these cells can deform and bend into grooves between the gratings. We postulate that such membrane bending is an important first step in eliciting downstream effects. Thus, we use a combination of image analysis and mathematical modeling to explain the extent of bending of basal membrane into grooves. We show that the extent to which the basal membrane bends into grooves depends on both groove width and angle of the grating ridge. Our model predicts that the basal membrane will bend into grooves when they are wider than 1.9 µm in width. The existence of such a threshold may provide an explanation for how the width of periodic gratings may bring about cellular downstream effects, such as cell proliferation or differentiation.
Collapse
Affiliation(s)
- Yukai Zeng
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore
| | - Sum Thai Wong
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Soo Kng Teo
- Institute of High Performance Computing, A*STAR, Singapore, 138632, Singapore
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Keng-Hwee Chiam
- Bioinformatics Institute, A*STAR, Singapore, 138671, Singapore.
| | - Evelyn K F Yim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore. .,Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
82
|
Rotenberg MY, Tian B. Talking to cells: semiconductor nanomaterials at the cellular interface. ADVANCED BIOSYSTEMS 2018; 2:1700242. [PMID: 30906852 PMCID: PMC6430216 DOI: 10.1002/adbi.201700242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interface of biological components with semiconductors is a growing field with numerous applications. For example, the interfaces can be used to sense and modulate the electrical activity of single cells and tissues. From the materials point of view, silicon is the ideal option for such studies due to its controlled chemical synthesis, scalable lithography for functional devices, excellent electronic and optical properties, biocompatibility and biodegradability. Recent advances in this area are pushing the bio-interfaces from the tissue and organ level to the single cell and sub-cellular regimes. In this progress report, we will describe some fundamental studies focusing on miniaturizing the bioelectric and biomechanical interfaces. Additionally, many of our highlighted examples involve freestanding silicon-based nanoscale systems, in addition to substrate-bound structures or devices; the former offers new promise for basic research and clinical application. In this report, we will describe recent developments in the interfacing of neuronal and cardiac cells and their networks. Moreover, we will briefly discuss the incorporation of semiconductor nanostructures for interfacing non-excitable cells in applications such as probing intracellular force dynamics and drug delivery. Finally, we will suggest several directions for future exploration.
Collapse
Affiliation(s)
| | - Bozhi Tian
- The James Franck Institute, the University of Chicago, Chicago, IL 60637
- Department of Chemistry, the University of Chicago, Chicago, IL 60637
- The Institute for Biophysical Dynamics, Chicago, IL 60637
| |
Collapse
|
83
|
Abbott J, Ye T, Ham D, Park H. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Acc Chem Res 2018; 51:600-608. [PMID: 29437381 DOI: 10.1021/acs.accounts.7b00519] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrode technology for electrophysiology has a long history of innovation, with some decisive steps including the development of the voltage-clamp measurement technique by Hodgkin and Huxley in the 1940s and the invention of the patch clamp electrode by Neher and Sakmann in the 1970s. The high-precision intracellular recording enabled by the patch clamp electrode has since been a gold standard in studying the fundamental cellular processes underlying the electrical activities of neurons and other excitable cells. One logical next step would then be to parallelize these intracellular electrodes, since simultaneous intracellular recording from a large number of cells will benefit the study of complex neuronal networks and will increase the throughput of electrophysiological screening from basic neurobiology laboratories to the pharmaceutical industry. Patch clamp electrodes, however, are not built for parallelization; as for now, only ∼10 patch measurements in parallel are possible. It has long been envisioned that nanoscale electrodes may help meet this challenge. First, nanoscale electrodes were shown to enable intracellular access. Second, because their size scale is within the normal reach of the standard top-down fabrication, the nanoelectrodes can be scaled into a large array for parallelization. Third, such a nanoelectrode array can be monolithically integrated with complementary metal-oxide semiconductor (CMOS) electronics to facilitate the large array operation and the recording of the signals from a massive number of cells. These are some of the central ideas that have motivated the research activity into nanoelectrode electrophysiology, and these past years have seen fruitful developments. This Account aims to synthesize these findings so as to provide a useful reference. Summing up from the recent studies, we will first elucidate the morphology and associated electrical properties of the interface between a nanoelectrode and a cellular membrane, clarifying how the nanoelectrode attains intracellular access. This understanding will be translated into a circuit model for the nanobio interface, which we will then use to lay out the strategies for improving the interface. The intracellular interface of the nanoelectrode is currently inferior to that of the patch clamp electrode; reaching this benchmark will be an exciting challenge that involves optimization of electrode geometries, materials, chemical modifications, electroporation protocols, and recording/stimulation electronics, as we describe in the Account. Another important theme of this Account, beyond the optimization of the individual nanoelectrode-cell interface, is the scalability of the nanoscale electrodes. We will discuss this theme using a recent development from our groups as an example, where an array of ca. 1000 nanoelectrode pixels fabricated on a CMOS integrated circuit chip performs parallel intracellular recording from a few hundreds of cardiomyocytes, which marks a new milestone in electrophysiology.
Collapse
Affiliation(s)
| | | | | | - Hongkun Park
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
84
|
Lin N, Berton P, Moraes C, Rogers RD, Tufenkji N. Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. Adv Colloid Interface Sci 2018; 252:55-68. [PMID: 29317019 DOI: 10.1016/j.cis.2017.12.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Over the past ten years, a next-generation approach to combat bacterial contamination has emerged: one which employs nanostructure geometry to deliver lethal mechanical forces causing bacterial cell death. In this review, we first discuss advances in both colloidal and topographical nanostructures shown to exhibit such "mechano-bactericidal" mechanisms of action. Next, we highlight work from pioneering research groups in this area of antibacterials. Finally, we provide suggestions for unexplored research topics that would benefit the field of mechano-bactericidal nanostructures. Traditionally, antibacterial materials are loaded with antibacterial agents with the expectation that these agents will be released in a timely fashion to reach their intended bacterial metabolic target at a sufficient concentration. Such antibacterial approaches, generally categorized as chemical-based, face design drawbacks as compounds diffuse in all directions, leach into the environment, and require replenishing. In contrast, due to their mechanisms of action, mechano-bactericidal nanostructures can benefit from sustainable opportunities. Namely, mechano-bactericidal efficacy needs not replenishing since they are not consumed metabolically, nor are they designed to release or leach compounds. For this same reason, however, their action is limited to the bacterial cells that have made direct contact with mechano-bactericidal nanostructures. As suspended colloids, mechano-bactericidal nanostructures such as carbon nanotubes and graphene nanosheets can pierce or slice bacterial membranes. Alternatively, surface topography such as mechano-bactericidal nanopillars and nanospikes can inflict critical membrane damage to microorganisms perched upon them, leading to subsequent cell lysis and death. Despite the infancy of this area of research, materials constructed from these nanostructures show remarkable antibacterial potential worthy of further investigation.
Collapse
|
85
|
Zhou J, Zhang X, Sun J, Dang Z, Li J, Li X, Chen T. The effects of surface topography of nanostructure arrays on cell adhesion. Phys Chem Chem Phys 2018; 20:22946-22951. [DOI: 10.1039/c8cp03538e] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of geometry and surface density distribution of nanopillars on cell adhesion studied by a quantitative thermodynamic model showed that high (low) surface distribution density and large (small) radius result in the “Top” (“Bottom”) mode.
Collapse
Affiliation(s)
- Jing Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Xiaowei Zhang
- State Key Laboratory of Environment-friendly Energy Materials
- Southwest University of Science and Technology
- Mianyang 621010
- China
| | - Jizheng Sun
- College of Life Science
- Taishan Medical University
- Taian 271016
- China
| | - Zechun Dang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Jinqi Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| |
Collapse
|
86
|
Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci 2017; 508:603-616. [DOI: 10.1016/j.jcis.2017.07.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
87
|
Sharma P, Cho HA, Lee JW, Ham WS, Park BC, Cho NH, Kim YK. Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires. NANOSCALE 2017; 9:15371-15378. [PMID: 28975187 DOI: 10.1039/c7nr05219g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zinc oxide (ZnO) nanocomposites have been widely applied in biomedical fields due to their multifunctionality and biocompatibility. However, the physicochemical properties of ZnO nanocomposite involved in nano-bio interactions are poorly defined. To assess the potential applicability of ZnO nanowires for intracellular delivery of biomolecules, we examined the dynamics of cellular activity of cells growing on densely packed ZnO nanowire arrays with two different physical conformations, vertical (VNW) or fan-shaped (FNW) nanowires. Although a fraction of human embryonic kidney cells cultured on VNW or FNW underwent rapid apoptosis, peaking at 6 h after incubation, cells could survive and replicate without significant apoptosis on the foreign substrate after 12 h of lag phase. In addition, the cells formed lamellipodia to wrap FNW, and efficiently took up peptides non-covalently coated on VNW and FNW within 30 min of incubation. Moreover, FNW could mediate intracellular delivery of associated DNAs and their gene expression, suggesting that ZnO nanowires transiently penetrate membranes to mediate intranuclear delivery of exogenous DNA. These results indicate that ZnO nanowire arrays can serve as nanocomposites for manipulating nano-bio interfaces if appropriately modified in a 3-dimensional conformation.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
88
|
Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2199-2207. [DOI: 10.1016/j.nano.2017.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022]
|
89
|
Cheng A, Chen H, Schwartz Z, Boyan BD. Imaging analysis of the interface between osteoblasts and microrough surfaces of laser-sintered titanium alloy constructs. J Microsc 2017; 270:41-52. [PMID: 28960365 DOI: 10.1111/jmi.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/07/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
Previous work using focused ion beam (FIB) analysis of osteoblasts on smooth and microrough Ti surfaces showed that the average cell aspect ratio and distance from the surface are greater on the rough surface. In order to better interrogate the relationship between individual cells and their substrate using multiple imaging modalities, we developed a method that tracks the same cell across confocal laser scanning microscopy (CLSM) to correlate surface microroughness with cell morphology and cytoskeleton; scanning electron microscopy (SEM) to provide higher resolution for observation of nanoroughness as well as chemical mapping via energy dispersive X-ray spectroscopy; and transmission electron microscopy (TEM) for high-resolution imaging. FIB was used to prepare thin sections of the cell-material interface for TEM, or for three-dimensional electron tomography. Cells were cultured on laser-sintered Ti-6Al-4V substrates with polished or etched surfaces. Direct cell to surface attachments were observed across surfaces, though bridging across macroscale surface features occurred on rough substrates. Our results show that surface roughness, cell cytoskeleton and gross morphology can be correlated with the cell-material cross-sectional interface at the single cell level across multiple high-resolution imaging modalities. This work provides a platform method for further investigating mechanisms of the cell-material interface.
Collapse
Affiliation(s)
- A Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, U.S.A.,Department of Biomedical Engineering, Peking University, Beijing, China
| | - H Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Z Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A.,Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, U.S.A
| | - B D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, U.S.A.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| |
Collapse
|
90
|
Abstract
Nanoneedles are high aspect ratio nanostructures with a unique biointerface. Thanks to their peculiar yet poorly understood interaction with cells, they very effectively sense intracellular conditions, typically with lower toxicity and perturbation than traditionally available probes. Through long-term, reversible interfacing with cells, nanoneedles can monitor biological functions over the course of several days. Their nanoscale dimension and the assembly into large-scale, ordered, dense arrays enable monitoring the functions of large cell populations, to provide functional maps with submicron spatial resolution. Intracellularly, they sense electrical activity of complex excitable networks, as well as concentration, function, and interaction of biomolecules in situ, while extracellularly they can measure the forces exerted by cells with piconewton detection limits, or efficiently sort rare cells based on their membrane receptors. Nanoneedles can investigate the function of many biological systems, ranging from cells, to biological fluids, to tissues and living organisms. This review examines the devices, strategies, and workflows developed to use nanoneedles for sensing in biological systems.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London , SE1 9RT, London, United Kingdom
| |
Collapse
|
91
|
Santoro F, Zhao W, Joubert LM, Duan L, Schnitker J, van de Burgt Y, Lou HY, Liu B, Salleo A, Cui L, Cui Y, Cui B. Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. ACS NANO 2017; 11:8320-8328. [PMID: 28682058 PMCID: PMC5806611 DOI: 10.1021/acsnano.7b03494] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The interface between cells and nonbiological surfaces regulates cell attachment, chronic tissue responses, and ultimately the success of medical implants or biosensors. Clinical and laboratory studies show that topological features of the surface profoundly influence cellular responses; for example, titanium surfaces with nano- and microtopographical structures enhance osteoblast attachment and host-implant integration as compared to a smooth surface. To understand how cells and tissues respond to different topographical features, it is of critical importance to directly visualize the cell-material interface at the relevant nanometer length scale. Here, we present a method for in situ examination of the cell-to-material interface at any desired location, based on focused ion beam milling and scanning electron microscopy imaging to resolve the cell membrane-to-material interface with 10 nm resolution. By examining how cell membranes interact with topographical features such as nanoscale protrusions or invaginations, we discovered that the cell membrane readily deforms inward and wraps around protruding structures, but hardly deforms outward to contour invaginating structures. This asymmetric membrane response (inward vs outward deformation) causes the cleft width between the cell membrane and the nanostructure surface to vary by more than an order of magnitude. Our results suggest that surface topology is a crucial consideration for the development of medical implants or biosensors whose performances are strongly influenced by the cell-to-material interface. We anticipate that the method can be used to explore the direct interaction of cells/tissue with medical devices such as metal implants in the future.
Collapse
Affiliation(s)
- Francesca Santoro
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
- Correspondence to: ,
| | - Wenting Zhao
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | | | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
| | - Jan Schnitker
- Institute of Bioelectronics ICS/PGI-8, Forschungszentrum Juelich, Juelich, 52428, Germany
| | - Yoeri van de Burgt
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
| | - Bofei Liu
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Alberto Salleo
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
| | - Lifeng Cui
- Department of Material Science and Engineering, Dongguan University of Technology, Guangdong 523808, China
| | - Yi Cui
- Department of Material Science and Engineering, Stanford University, Stanford, CA94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator, Menlo Park, CA94025, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA94305, USA
- Correspondence to: ,
| |
Collapse
|
92
|
Enhancement of electro-chemical properties of TiO2 nanotubes for biological interfacing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:111-120. [DOI: 10.1016/j.msec.2017.03.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 01/15/2023]
|
93
|
Zhao W, Hanson L, Lou HY, Akamatsu M, Chowdary PD, Santoro F, Marks JR, Grassart A, Drubin DG, Cui Y, Cui B. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. NATURE NANOTECHNOLOGY 2017; 12:750-756. [PMID: 28581510 PMCID: PMC5544585 DOI: 10.1038/nnano.2017.98] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2017] [Indexed: 05/02/2023]
Abstract
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Lindsey Hanson
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Praveen D. Chowdary
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Francesca Santoro
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| | - Jessica R. Marks
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Alexandre Grassart
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305, USA
| |
Collapse
|
94
|
Liu R, Chen R, Elthakeb AT, Lee SH, Hinckley S, Khraiche ML, Scott J, Pre D, Hwang Y, Tanaka A, Ro YG, Matsushita AK, Dai X, Soci C, Biesmans S, James A, Nogan J, Jungjohann KL, Pete DV, Webb DB, Zou Y, Bang AG, Dayeh SA. High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons. NANO LETTERS 2017; 17:2757-2764. [PMID: 28384403 PMCID: PMC6045931 DOI: 10.1021/acs.nanolett.6b04752] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a new hybrid integration scheme that offers for the first time a nanowire-on-lead approach, which enables independent electrical addressability, is scalable, and has superior spatial resolution in vertical nanowire arrays. The fabrication of these nanowire arrays is demonstrated to be scalable down to submicrometer site-to-site spacing and can be combined with standard integrated circuit fabrication technologies. We utilize these arrays to perform electrophysiological recordings from mouse and rat primary neurons and human induced pluripotent stem cell (hiPSC)-derived neurons, which revealed high signal-to-noise ratios and sensitivity to subthreshold postsynaptic potentials (PSPs). We measured electrical activity from rodent neurons from 8 days in vitro (DIV) to 14 DIV and from hiPSC-derived neurons at 6 weeks in vitro post culture with signal amplitudes up to 99 mV. Overall, our platform paves the way for longitudinal electrophysiological experiments on synaptic activity in human iPSC based disease models of neuronal networks, critical for understanding the mechanisms of neurological diseases and for developing drugs to treat them.
Collapse
Affiliation(s)
- Ren Liu
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Renjie Chen
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ahmed T. Elthakeb
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sang Heon Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sandy Hinckley
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Massoud L. Khraiche
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - John Scott
- Neurobiology Section, Biological Sciences Division, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Deborah Pre
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoontae Hwang
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Atsunori Tanaka
- Graduate Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yun Goo Ro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Albert K. Matsushita
- Graduate Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Xing Dai
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cesare Soci
- Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Steven Biesmans
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Anthony James
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - John Nogan
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Katherine L. Jungjohann
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Douglas V. Pete
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Denise B. Webb
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anne G. Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shadi A. Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Graduate Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Corresponding Author:
| |
Collapse
|
95
|
Buch-Månson N, Kang DH, Kim D, Lee KE, Yoon MH, Martinez KL. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. NANOSCALE 2017; 9:5517-5527. [PMID: 28401963 DOI: 10.1039/c6nr09700f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the past decade, vertical nanostructures have provided novel approaches for biomedical applications such as intracellular delivery/detection, specific cell capture, membrane potential measurement, and cellular activity regulation. Although the feasibility of the vertical nanostructures as a new biological tool has been thoroughly demonstrated, a better understanding of cell behavior on vertical nanostructures, in particular the effects of geometry, is essential for advanced applications. To investigate the cell behavior according to the variation of the spacing between vertical nanostructures, we have interfaced fibroblasts (NIH3T3) with density-controlled vertical silicon nanocolumn arrays (vSNAs). Over a wide range of vSNA densities, we observe three distinct cell settling regimes and investigate both overall cell behavior (adhesions, morphology, and mobility) and detailed biomacromolecule variance (F-actin and focal adhesion) across these regimes. We expect that these systematic observations could serve as a guide for improved nanostructure array design for the desired cell manipulation.
Collapse
Affiliation(s)
- Nina Buch-Månson
- Department of Chemistry and Nano-science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
96
|
Nissan I, Kumar VB, Porat Z, Makovec D, Shefi O, Gedanken A. Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. J Mater Chem B 2017; 5:1371-1379. [PMID: 32264629 DOI: 10.1039/c6tb02508k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this paper, we report the fabrication of an antibacterial material, Ga-doped C-dots on Ga nanoparticles (Ga@C-dots@Ga NPs), which is deposited on a glass substrate for neural growth. A one-step sonochemical process is applied for the simultaneous fabrication and coating of Ga@C-dots@Ga NPs using PEG 400 and molten gallium. The physical and chemical characteristics of the synthesized materials were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), fluorescence analysis, dynamic light scattering (DLS) and other techniques. SH-SY5Y cells were plated on the substrates. The effect of the Ga@C-dots@Ga NPs on the development of neurites during the initiation and elongation growth phases was studied and compared with C-dots, Ga@C-dots and Ga NPs. Our research focuses on the influence of the physical and chemical properties of composites on neurite growth. We observed that cells grown on a Ga@C-dots@Ga-coated substrate exhibit a 97% increase in the number of branches originating from the soma. We found that surface modification and particle morphology play a significant role in the neural growth.
Collapse
Affiliation(s)
- Ifat Nissan
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | | | | | | | | | | |
Collapse
|
97
|
Lin ZC, McGuire AF, Burridge PW, Matsa E, Lou HY, Wu JC, Cui B. Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. MICROSYSTEMS & NANOENGINEERING 2017; 3:16080. [PMID: 31057850 PMCID: PMC6444980 DOI: 10.1038/micronano.2016.80] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 05/19/2023]
Abstract
The measurement of the electrophysiology of human pluripotent stem cell-derived cardiomyocytes is critical for their biomedical applications, from disease modeling to drug screening. Yet, a method that enables the high-throughput intracellular electrophysiology measurement of single cardiomyocytes in adherent culture is not available. To address this area, we have fabricated vertical nanopillar electrodes that can record intracellular action potentials from up to 60 single beating cardiomyocytes. Intracellular access is achieved by highly localized electroporation, which allows for low impedance electrical access to the intracellular voltage. Herein, we demonstrate that this method provides the accurate measurement of the shape and duration of intracellular action potentials, validated by patch clamp, and can facilitate cellular drug screening and disease modeling using human pluripotent stem cells. This study validates the use of nanopillar electrodes for myriad further applications of human pluripotent stem cell-derived cardiomyocytes such as cardiomyocyte maturation monitoring and electrophysiology-contractile force correlation.
Collapse
Affiliation(s)
- Ziliang Carter Lin
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Paul W. Burridge
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University, Chicago, IL 60611, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- ()
| |
Collapse
|
98
|
Seyock S, Maybeck V, Scorsone E, Rousseau L, Hébert C, Lissorgues G, Bergonzo P, Offenhäusser A. Interfacing neurons on carbon nanotubes covered with diamond. RSC Adv 2017. [DOI: 10.1039/c6ra20207a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigation of the interface and needed adhesion surface for neuronal cells on carbon nanotubes covered with diamond.
Collapse
Affiliation(s)
- Silke Seyock
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| | - Vanessa Maybeck
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| | | | | | | | | | | | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| |
Collapse
|
99
|
Zimmerman JF, Parameswaran R, Murray G, Wang Y, Burke M, Tian B. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. SCIENCE ADVANCES 2016; 2:e1601039. [PMID: 28028534 PMCID: PMC5161427 DOI: 10.1126/sciadv.1601039] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/08/2016] [Indexed: 05/12/2023]
Abstract
The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active "burst-like" transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high-aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies.
Collapse
Affiliation(s)
- John F. Zimmerman
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Parameswaran
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Graeme Murray
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Yucai Wang
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Michael Burke
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author.
| |
Collapse
|
100
|
Harding FJ, Surdo S, Delalat B, Cozzi C, Elnathan R, Gronthos S, Voelcker NH, Barillaro G. Ordered Silicon Pillar Arrays Prepared by Electrochemical Micromachining: Substrates for High-Efficiency Cell Transfection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29197-29202. [PMID: 27744675 DOI: 10.1021/acsami.6b07850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ordered arrays of silicon nano- to microscale pillars are used to enable biomolecular trafficking into primary human cells, consistently demonstrating high transfection efficiency can be achieved with broader and taller pillars than reported to date. Cell morphology on the pillar arrays is often strikingly elongated. Investigation of the cellular interaction with the pillar reveals that cells are suspended on pillar tips and do not interact with the substrate between the pillars. Although cells remain suspended on pillar tips, acute local deformation of the cell membrane was noted, allowing pillar tips to penetrate the cell interior, while retaining cell viability.
Collapse
Affiliation(s)
- Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Salvatore Surdo
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Chiara Cozzi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| | - Roey Elnathan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Stan Gronthos
- South Australian Health and Medical Research Institute , Adelaide 5005, South Australia, Australia
- Mesenchymal Stem Cell Group Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide , Adelaide, South Australia, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, Mawson Lakes, University of South Australia , Adelaid, South Australia 5095, Australia
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa , via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|