51
|
Humulus lupulus L. as a Natural Source of Functional Biomolecules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hops (Humulus lupulus L.) are used traditionally in the brewing industry to confer bitterness, aroma, and flavor to beer. However, in recent years, it has been reported that female inflorescences contain a huge variety of bioactive compounds. Due to the growing interest of the consumers by natural ingredients, intense research has been carried out in the last years to find new sources of functional molecules. This review collects the works about the bioactive potential of hops with applications in the food, pharmaceutical, or cosmetic industries. Moreover, an overview of the main extraction technologies to recover biomolecules from hops is shown. Bioactivities of hop extracts such as antibacterial, antifungal, cardioprotective, antioxidant, anti-inflammatory, anticarcinogenic, and antiviral are also summarized. It can be concluded that hops present a high potential of bioactive ingredients with high quality that can be used as preservative agents in fresh foods, extending their shelf life, and they can be incorporated in cosmetic formulation for skincare as well.
Collapse
|
52
|
Wu CN, Sun LC, Chu YL, Yu RC, Hsieh CW, Hsu HY, Hsu FC, Cheng KC. Bioactive compounds with anti-oxidative and anti-inflammatory activities of hop extracts. Food Chem 2020; 330:127244. [PMID: 32526652 DOI: 10.1016/j.foodchem.2020.127244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
The aim of this study is to simultaneously evaluate anti-oxidative and anti-inflammatory activities of the hop extracts by different solvents. Hop water extract (HWE) and hop ethanol extracts (HEEs) were prepared by extracting hop pellets with hot water at 90 °C and ethanol solutions (55%, 75%, and 95%), respectively. Bioactive compound such as α-acid, β-acid, total phenolic, and total flavonoid contents were determined. All the HEEs showed higher anti-oxidative activities than the HWEs. The HEEs showing the highest anti-oxidative activities are different in the experiments with different free radicals. For anti-inflammatory activities, both the HWE and HEEs decreased NO productions. HWE decreased TNF-α and IL-6 secretion but showed no effect on IL-1β, while HEEs decreased IL-1β and IL-6 secretion but increased TNF-α secretion. Except for TNF-α secretion, the HEEs showed higher anti-inflammatory activities than the HWE. Future work is to explore the possible mechanism to improve the ethanol extraction procedure.
Collapse
Affiliation(s)
- Chun-Nan Wu
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chin Sun
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Roch-Chui Yu
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
53
|
Wanas AS, Radwan MM, Chandra S, Lata H, Mehmedic Z, Ali A, Baser KHC, Demirci B, ElSohly MA. Chemical Composition of Volatile Oils of Fresh and Air-Dried Buds of Cannabis chemovars, Their Insecticidal and Repellent Activities. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20926729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The volatile oils of fresh and air-dried buds of 3 different varieties of Cannabis, namely, high cannabidiol (CBD) chemotype, intermediate CBD/tetrahydrocannabinol (THC) chemotype, and high THC chemotype were prepared by hydrodistillation. Gas chromatography analysis of the volatile oils resulted in the identification of 71 compounds, of which 33 were monoterpenes and 38 were sesquiterpenes. The volatile oil obtained from the THC chemotype showed an increase in the ratio of the sesquiterpenes to monoterpenes content. The content of terpinolene was dramatically decreased upon drying of THC chemotype. Moderate increase in β-caryophyllene and caryophyllene oxide was observed. However, there was no detectable change in the percentage of monoterpenes and sesquiterpenes content in both the intermediate type and CBD chemotype upon drying. The insecticidal activity of the volatile oils was evaluated. The oil obtained from the fresh and dried high CBD cannabis showed good biting deterrent activity at 10 ug/cm2 compared with N, N-diethyl-meta-toluamide at 4.78 µg/cm2, and good larvicidal activity.
Collapse
Affiliation(s)
- Amira S. Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Hemant Lata
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Zlatko Mehmedic
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Abbas Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - KHC Baser
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA
| |
Collapse
|
54
|
Mozzon M, Foligni R, Mannozzi C. Brewing Quality of Hop Varieties Cultivated in Central Italy Based on Multivolatile Fingerprinting and Bitter Acid Content. Foods 2020; 9:foods9050541. [PMID: 32365738 PMCID: PMC7278677 DOI: 10.3390/foods9050541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
The brewing value of hops is mainly affected by the content and composition of humulones (α-acids) and essential oil. Interest in hop plantations is increasing more and more in Italy, in parallel with the rising number of microbreweries and brewpubs, which are strongly oriented towards local production chains. In this context, a selection of 15 international hop varieties were grown, under the same conditions, in an experimental field in the Marche region, Central Italy, with the aim of assessing their suitability for beer production. A multivariate analysis approach to experimental data showed a high content of α- and β-acids and myrcene in the Centennial, Brewer’s Gold, Sterling, Cascade, Nugget, and Columbus varieties; a consistently lower percentages of humulones and a predominance of sesquiterpene hydrocarbons in the cultivars Mount Hood, Northern Brewer, Northdown, Galena, Willamette, and Fuggle; and a desirable high α-acids content and a sesquiterpene-type aroma in cultivars Chinook, Yeoman, and Hallertau. Further studies are needed to assess the environmental adaptability and the yield performance of hop plants in the pedoclimatic conditions of the Central Italy hills.
Collapse
Affiliation(s)
| | - Roberta Foligni
- Correspondence: (R.F.); (C.M.); Tel.: +39-071-220-4010 (R.F.); +39-071-220-4014 (C.M.)
| | - Cinzia Mannozzi
- Correspondence: (R.F.); (C.M.); Tel.: +39-071-220-4010 (R.F.); +39-071-220-4014 (C.M.)
| |
Collapse
|
55
|
Pérez-Manríquez J, Escalona N, Pérez-Correa J. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols
and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze
formation caused by the interaction between polyphenols and proteins, most phenolic compounds are
removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP)
adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological
effects; that waste could be used as a rich, low-cost source of these compounds, though
little is known about its composition and potential attributes. This work aims to review the polyphenols
present in this brewery waste stream, as well as the health benefits associated with their consumption.
Collapse
Affiliation(s)
- J. Pérez-Manríquez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - N. Escalona
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - J.R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
56
|
Benkherouf AY, Logrén N, Somborac T, Kortesniemi M, Soini SL, Yang B, Salo-Ahen OMH, Laaksonen O, Uusi-Oukari M. Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABA A receptors. Eur J Pharmacol 2020; 873:172962. [PMID: 32001220 DOI: 10.1016/j.ejphar.2020.172962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 02/05/2023]
Abstract
Hops (Humulus lupulus L.), a major component of beer, contain potentially neuroactive compounds that made it useful in traditional medicine as a sleeping aid. The present study aims to investigate the individual components in hops acting as allosteric modulators in GABAA receptors and bring further insight into the mode of action behind the sedative properties of hops. GABA-potentiating effects were measured using [3H]ethynylbicycloorthobenzoate (EBOB) radioligand binding assay in native GABAA receptors. Flumazenil sensitivity of GABA-potentiating effects, [3H]Ro 15-4513, and [3H]flunitrazepam binding assays were used to examine the binding to the classical benzodiazepines site. Humulone (alpha acid) and 6-prenylnaringenin (prenylflavonoid) were the most potent compounds displaying a modulatory activity at low micromolar concentrations. Humulone and 6-prenylnaringenin potentiated GABA-induced displacement of [3H]EBOB binding in a concentration-dependent manner where the IC50 values for this potentiation in native GABAA receptors were 3.2 μM and 3.7 μM, respectively. Flumazenil had no significant effects on humulone- or 6-prenylnaringenin-induced displacement of [3H]EBOB binding. [3H]Ro 15-4513 and [3H]flunitrazepam displacements were only minor with humulone but surprisingly prominent with 6-prenylnaringenin despite its flumazenil-insensitive modulatory activity. Thus, we applied molecular docking methods to investigate putative binding sites and poses of 6-prenylnaringenin at the GABAA receptor α1β2γ2 isoform. Radioligand binding and docking results suggest a dual mode of action by 6-prenylnaringenin on GABAA receptors where it may act as a positive allosteric modulator at α+β- binding interface as well as a null modulator at the flumazenil-sensitive α+γ2- binding interface.
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Nora Logrén
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Tamara Somborac
- Pharmaceutical Sciences Laboratory and Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory and Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
57
|
McCallum JL, Nabuurs MH, Gallant ST, Kirby CW, Mills AAS. Phytochemical Characterization of Wild Hops ( Humulus lupulus ssp. lupuloides) Germplasm Resources From the Maritimes Region of Canada. FRONTIERS IN PLANT SCIENCE 2019; 10:1438. [PMID: 31921222 PMCID: PMC6917649 DOI: 10.3389/fpls.2019.01438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/16/2019] [Indexed: 05/06/2023]
Abstract
A survey was conducted in the Maritimes region of eastern Canada to measure the phytochemical diversity of prenylchalcone, soft resins (alpha & beta acids), and flavonol constituents from 30 unique wild-growing populations of hops (Humulus lupulus L.). Based on cone chemometrics, the majority of accessions (63.3%) are native Humulus lupulus ssp. lupoloides, with cones containing both xanthogalenol and 4'-O-methyl xanthohumol as chemotaxonomic indicator molecules. Interestingly, the leaves of all verified Humulus lupulus ssp. lupulus accessions accumulated high proportions (>0.20 total flavonols) of two acylated flavonol derivatives (kaempferol-3-O-(6''-O-malonyl)-β-D-glucopyranoside; quercetin-3-O-(6''-O-malonyl)-β-D-glucopyranoside), both previously unreported from hops leaves. The native lupuloides accessions examined possess only trace amounts of this compound in their leaves (<0.10 total flavonols), suggesting its potential utility as a novel, leaf-derived chemotaxonomic marker for subspecies identification purposes. A leaf-derived taxonomic marker is useful for identifying wild-growing accessions, as leaves are present throughout the entire growing season, whereas cones are only produced late in summer. Additionally, the collection of cones from 10-meter tall wild plants in overgrown riparian habitats is often difficult. The total levels of alpha acids, beta acids, and prenylchalcones in wild-collected Maritimes lupuloides cones are markedly higher than those previously reported for lupuloides individuals in the westernmost extent of its native range and show potentially valuable traits for future cultivar development, while some may be worthy of immediate commercial release. The accessions will be maintained as a core germplasm resource for future cultivar development.
Collapse
Affiliation(s)
- Jason L. McCallum
- Agriculture and Agri-Food Canada, Charlottetown Research and Development Centre, Charlottetown, Canada
| | | | | | | | | |
Collapse
|
58
|
Osorio-Paz I, Brunauer R, Alavez S. Beer and its non-alcoholic compounds in health and disease. Crit Rev Food Sci Nutr 2019; 60:3492-3505. [PMID: 31782326 DOI: 10.1080/10408398.2019.1696278] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate alcohol consumption has been associated with beneficial effects on human health. Specifically, consumption of red wine and beer has shown a J-shape relation with many important diseases. While a role of ethanol cannot be excluded, the high content of polyphenols in both beverages has been proposed to contribute to these effects, with beer having the advantage over wine that it is lower in alcohol. In addition to ethanol, beer contains a wide variety of compounds with known medicinal potential such as kaempferol, quercetin, tyrosol and phenolic acids, and it is the main dietary source for the flavones xanthohumol and 8-prenylnaringenin, and bitter acids such as humulones and lupulones. Clinical and pre-clinical evidence for the protective effects of moderate beer consumption against cardiovascular disease and other diseases has been accumulating since the 1990s, and the non-alcoholic compounds of beer likely exert most of the observed beneficial effects. In this review, we summarize and discuss the effects of beer consumption in health and disease as well as the clinical potential of its non-alcoholic compounds which may be promising candidates for new therapies against common chronic diseases.
Collapse
Affiliation(s)
- Ixchel Osorio-Paz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, México
| |
Collapse
|
59
|
Salviati E, Ciaglia E, Sommella E, Montella F, Bertamino A, Ostacolo C, Parrino B, Rubino R, Vecchione C, Puca A, Novellino E, Campiglia P. Immunomodulatory activity of Humulus lupulus bitter acids fraction: Enhancement of natural killer cells function by NKp44 activating receptor stimulation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
60
|
Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the Effect of Ultrasound-Assisted Pretreatment. AGRIENGINEERING 2019. [DOI: 10.3390/agriengineering1030030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The investigation presented herein had as its scope the development of an integrated process for the efficient extraction of polyphenols from hop. For this purpose, a novel, natural deep eutectic solvent (DES) was synthesised, composed of glycerol and L-alanine, and the process was optimised by deploying a response surface methodology based on a Box–Behnken design. The variables considered were the DES/water proportion, the liquid-to-solid ratio and the stirring speed. Under the optimised conditions, the yield in total polyphenols achieved was 118.97 ± 8.27 mg gallic acid equivalents per g of dry mass. Ultrasonication, incorporated into the process as a pretreatment step, was shown to significantly change the kinetic pattern of polyphenol extraction and contributed to attaining higher yields only at 80 °C, whereas at lower temperatures a supressing effect was observed. Furthermore, increasing temperature was negatively correlated with the second-order extraction rates, evidencing a slow-down of the extraction rate at elevated temperatures.
Collapse
|
61
|
Liu Z, Wang Y, Liu Y. Geographical origins and varieties identification of hops (Humulus lupulus L.) by multi-metal elements fingerprinting and the relationships with functional ingredients. Food Chem 2019; 289:522-530. [DOI: 10.1016/j.foodchem.2019.03.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
|
62
|
Lin M, Xiang D, Chen X, Huo H. Role of Characteristic Components of Humulus lupulus in Promoting Human Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8291-8302. [PMID: 31287692 DOI: 10.1021/acs.jafc.9b03780] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the next 50 years, the prevention and control of chronic diseases, such as obesity, cardiovascular disease, Alzheimer's disease, and many cancers, will be one of the most critical challenges in human health. Plant biochemistry and phytonutrient supplements are a promising complementary therapy for the management of chronic disease. Among them, Humulus lupulus has attracted special attention throughout the world because it contains numerous dietary phytochemicals that not only contribute to the aroma and flavor of beer but may also be used for medicinal purposes, as its properties include antiseptic, (an)aphrodisiac, anticancer, antiplatelet, antibacterial, antidiuretic, anti-inflammatory, sedative, hypnotic, and stomachic properties. This review sought to identify and understand the risk factors for chronic disease with a focus on two types of phytochemicals, bitter acids and xanthohumol. The goal was to understand how their metabolites promote human health and reduce the risk of chronic disease.
Collapse
Affiliation(s)
- Mengfei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou 510642 , China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm , Guangzhou 510642 , China
- Mid-Florida Research & Education Center , IFAS, University of Florida , Apopka , Florida 32703 , United States
| | - Diying Xiang
- College of Horticulture , Hebei Agricultural University , Hebei 071066 , China
- Mid-Florida Research & Education Center , IFAS, University of Florida , Apopka , Florida 32703 , United States
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources , South China Agricultural University , Guangzhou 510642 , China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm , Guangzhou 510642 , China
| | - Heqiang Huo
- Mid-Florida Research & Education Center , IFAS, University of Florida , Apopka , Florida 32703 , United States
| |
Collapse
|
63
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
64
|
Kobus-Cisowska J, Szymanowska-Powałowska D, Szczepaniak O, Kmiecik D, Przeor M, Gramza-Michałowska A, Cielecka-Piontek J, Smuga-Kogut M, Szulc P. Composition and In Vitro Effects of Cultivars of Humulus lupulus L. Hops on Cholinesterase Activity and Microbial Growth. Nutrients 2019; 11:nu11061377. [PMID: 31248112 PMCID: PMC6627407 DOI: 10.3390/nu11061377] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Common hop (Humulus lupulus L.) has significant health-promoting properties. Hop cones contain resins, essential oils, proteins, polyphenols, lipids, waxes, and cellulose. Hop extracts include bioactive compounds such as polyphenolic compounds (phenolic acids, and flavonols), and chlorophylls. The aim of this study was to compare the pro-health potential of hop cone extracts obtained from three cultivars (Magnum, Lubelski, and Marynka). The results showed that the cones of Magnum cultivar demonstrated the highest biological activity. The sum of phenolic acids and flavonols in ethanol extract was the highest for this variety and was equal 4903.5 µg/g dw. Ethanol extracts of Magnum cultivars showed the highest degree of iron ion chelation (55.43-88.76%) as well as the activity against 1,1-diphenyl-2-picrylhydrazyl radical (4.75 mmol Tx/g dw). Hop cone extracts as cholinesterase inhibitors showed high potential for aqueous variants. In terms of antimicrobial activity, all investigated extracts demonstrated strong inhibition against Staphylococcus aureus and Staphylococcus epidermidis, with the Magnum cultivar showing the strongest inhibition. Owing to the biofunctional features of hop cone, it can be concluded that it is an attractive raw material with pro-health potential that can be used much more widely in food technology. However, it should be noted that toxicological tests and in vitro tests must be carried out before the raw material is used in food production.
Collapse
Affiliation(s)
- Joanna Kobus-Cisowska
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | | | - Oskar Szczepaniak
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | - Dominik Kmiecik
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | - Monika Przeor
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | - Anna Gramza-Michałowska
- Department of Gastronomical Sciences and Functional Foods, Poznan University of Life Sciences, 60-637 Poznan, Poland.
| | | | - Małgorzata Smuga-Kogut
- Department of Agrobiotechnology, Koszalin University of Technology, 75-453 Koszalin, Poland.
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, 60-621 Poznan, Poland.
| |
Collapse
|
65
|
Duarte LM, Amorim TL, Adriano LHC, Oliveira MAL. Baseline separation of α and β‐acids homologues and isomers in hop (
Humulus lupulus L
.) by CD‐MEKC‐UV. Electrophoresis 2019; 40:1779-1786. [DOI: 10.1002/elps.201900101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Lucas M. Duarte
- GQAQ: Grupo de Química Analítica e Quimiometria, Departament of ChemistryUniversidade Federal de Juiz de Fora Juiz de Fora Brazil
| | - Tatiane L. Amorim
- GQAQ: Grupo de Química Analítica e Quimiometria, Departament of ChemistryUniversidade Federal de Juiz de Fora Juiz de Fora Brazil
| | - Luiz H. C. Adriano
- GQAQ: Grupo de Química Analítica e Quimiometria, Departament of ChemistryUniversidade Federal de Juiz de Fora Juiz de Fora Brazil
| | - Marcone A. L. Oliveira
- GQAQ: Grupo de Química Analítica e Quimiometria, Departament of ChemistryUniversidade Federal de Juiz de Fora Juiz de Fora Brazil
| |
Collapse
|
66
|
Hsu YY, Kao TH. Evaluation of prenylflavonoids and hop bitter acids in surplus yeast. Journal of Food Science and Technology 2019; 56:1939-1953. [PMID: 30996429 DOI: 10.1007/s13197-019-03660-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/14/2019] [Accepted: 02/17/2019] [Indexed: 01/25/2023]
Abstract
This study developed a high performance liquid chromatography with diode array detection (HPLC-DAD) and tandem mass spectrometry (MS-MS) method for determination of prenylflavonoids and hop bitter acids in surplus yeast, a byproduct from beer brewing process. This method enabled the simultaneous separation of 4 prenylflavonoids and 20 hop bitter acids within 30 min by employing a Hypersil-Keystone HyPURITY C18 column and a gradient mobile phase composed of phosphoric acid aqueous solution at pH 1.6 and acetonitrile. For HPLC-DAD analysis, the limits of detection and limits of quantitation ranged from 0.04 to 0.15 µg/mL and from 0.12 to 0.45 µg/mL, respectively, and the recoveries ranged from 82.6 to 99.7%. The intra-day variability and inter-day variability ranged from 1.37 to 8.82% and from 0.68 to 9.74%, respectively. For qualitation by MS-MS, the positive mode was discovered to possess satisfactory collision capacity and high sensitivity for prenylflavonoids, while the negative mode was more suitable for the ionization of hop bitter acids. The content of hop bitter acids in surplus yeast were higher than that of prenylflavonoids, and isomers and oxidation products of hop bitter acids were found. This study has advantages in identifying more components, short separation time, satisfactory resolution, high accuracy and high precision.
Collapse
Affiliation(s)
- Ying-Yu Hsu
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 242 Taiwan
| | - Tsai-Hua Kao
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 242 Taiwan
| |
Collapse
|
67
|
Guo X, Shen H, Liu Y, Wang Q, Wang X, Peng C, Liu W, Zhao ZK. Enabling Heterologous Synthesis of Lupulones in the Yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 2019; 188:787-797. [PMID: 30684240 DOI: 10.1007/s12010-019-02957-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
Abstract
Lupulones, naturally produced by glandular trichomes of hop (Humulus lupulus), are prenylated phloroglucinol derivatives that contribute the bitter flavor of beer and demonstrate antimicrobial and anticancer activities. It is appealing to develop microbial cell factories such that lupulones may be produced via fermentation technology in lieu of extraction from limited plant resources. In this study, the yeast Saccharomyces cerevisiae transformants harboring a synthetic lupulone pathway that consisted of five genes from hop were constructed. The transformants accumulated several precursors but failed to accumulate lupulones. Overexpression of 3-hydroxy-3-methyl glutaryl co-enzyme A reductase, the key enzyme in precursor formation in the mevalonate pathway, also failed to achieve a detectable level of lupulones. To decrease the consumption of the precursors, the ergosterol biosynthesis pathway was chemically downregulated by a small molecule ketoconazole, leading to successful production of lupulones. Our study demonstrated a combination of molecular biology and chemical biology to regulate the metabolism for heterologous production of lupulones. The strategy may be valuable for future engineering microbial process for other prenylated natural products.
Collapse
Affiliation(s)
- Xiaojia Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxue Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chang Peng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
68
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|
69
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
70
|
Seliger JM, Cicek SS, Witt LT, Martin HJ, Maser E, Hintzpeter J. Selective Inhibition of Human AKR1B10 by n-Humulone, Adhumulone and Cohumulone Isolated from Humulus lupulus Extract. Molecules 2018; 23:E3041. [PMID: 30469331 PMCID: PMC6278539 DOI: 10.3390/molecules23113041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Hop-derived compounds have been subjected to numerous biomedical studies investigating their impact on a wide range of pathologies. Isomerised bitter acids (isoadhumulone, isocohumulone and isohumulone) from hops, used in the brewing process of beer, are known to inhibit members of the aldo-keto-reductase superfamily. Aldo-keto-reductase 1B10 (AKR1B10) is upregulated in various types of cancer and has been reported to promote carcinogenesis. Inhibition of AKR1B10 appears to be an attractive means to specifically treat RAS-dependent malignancies. However, the closely related reductases AKR1A1 and AKR1B1, which fulfil important roles in the detoxification of endogenous and xenobiotic carbonyl compounds oftentimes crossreact with inhibitors designed to target AKR1B10. Accordingly, there is an ongoing search for selective AKR1B10 inhibitors that do not interact with endogeneous AKR1A1 and AKR1B1-driven detoxification systems. In this study, unisomerised α-acids (adhumulone, cohumulone and n-humulone) were separated and tested for their inhibitory potential on AKR1A1, AKR1B1 and AKR1B10. Also AKR1B10-mediated farnesal reduction was effectively inhibited by α-acid congeners with Ki-values ranging from 16.79 ± 1.33 µM (adhumulone) to 3.94 ± 0.33 µM (n-humulone). Overall, α-acids showed a strong inhibition with selectivity (115⁻137 fold) for AKR1B10. The results presented herein characterise hop-derived α-acids as a promising basis for the development of novel and selective AKR1B10-inhibitors.
Collapse
Affiliation(s)
- Jan Moritz Seliger
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| | - Serhat Sezai Cicek
- Department of Pharmaceutical Biology, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, D-24118 Kiel, Germany.
| | - Lydia T Witt
- Department of Pharmaceutical Chemistry, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, D-24118 Kiel, Germany.
| | - Hans-Jörg Martin
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| | - Jan Hintzpeter
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswikerstr. 10, D-24105 Kiel, Germany.
| |
Collapse
|
71
|
Genome-Wide Transcriptomic Analysis Reveals Insights into the Response to Citrus bark cracking viroid (CBCVd) in Hop ( Humulus lupulus L.). Viruses 2018; 10:v10100570. [PMID: 30340328 PMCID: PMC6212812 DOI: 10.3390/v10100570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viroids are smallest known pathogen that consist of non-capsidated, single-stranded non-coding RNA replicons and they exploits host factors for their replication and propagation. The severe stunting disease caused by Citrus bark cracking viroid (CBCVd) is a serious threat, which spreads rapidly within hop gardens. In this study, we employed comprehensive transcriptome analyses to dissect host-viroid interactions and identify gene expression changes that are associated with disease development in hop. Our analysis revealed that CBCVd-infection resulted in the massive modulation of activity of over 2000 genes. Expression of genes associated with plant immune responses (protein kinase and mitogen-activated protein kinase), hypersensitive responses, phytohormone signaling pathways, photosynthesis, pigment metabolism, protein metabolism, sugar metabolism, and modification, and others were altered, which could be attributed to systemic symptom development upon CBCVd-infection in hop. In addition, genes encoding RNA-dependent RNA polymerase, pathogenesis-related protein, chitinase, as well as those related to basal defense responses were up-regulated. The expression levels of several genes identified from RNA sequencing analysis were confirmed by qRT-PCR. Our systematic comprehensive CBCVd-responsive transcriptome analysis provides a better understanding and insights into complex viroid-hop plant interaction. This information will assist further in the development of future measures for the prevention of CBCVd spread in hop fields.
Collapse
|
72
|
Ocvirk M, Nečemer M, Košir IJ. The determination of the geographic origins of hops (Humulus lupulus L.) by multi-elemental fingerprinting. Food Chem 2018; 277:32-37. [PMID: 30502152 DOI: 10.1016/j.foodchem.2018.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022]
Abstract
For brewers, it is important to know the geographic origins of the hop plants (Humulus lupulus L.) used in their brewing processes since the contents and compositions of the bitter resins and essential oils in them depend on the environmental conditions during their growth. In this study, the multi-elemental profiles of hop plants from each of the world's main growing regions were determined by non-destructive energy dispersive X-ray fluorescence spectrometry (EDXRF). Understanding the multi-element profiles of the plants could be a useful tool in determining the geographic origins of produced hop plants.
Collapse
Affiliation(s)
- Miha Ocvirk
- Institute for Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia
| | - Marijan Nečemer
- Department of Low and Medium Energy Physics, "J. Stefan" Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Iztok Jože Košir
- Institute for Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| |
Collapse
|
73
|
Kok BP, Galmozzi A, Littlejohn NK, Albert V, Godio C, Kim W, Kim SM, Bland JS, Grayson N, Fang M, Meyerhof W, Siuzdak G, Srinivasan S, Behrens M, Saez E. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol Metab 2018; 16:76-87. [PMID: 30120064 PMCID: PMC6158035 DOI: 10.1016/j.molmet.2018.07.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Extracts of the hops plant have been shown to reduce weight and insulin resistance in rodents and humans, but elucidation of the mechanisms responsible for these benefits has been hindered by the use of heterogeneous hops-derived mixtures. Because hop extracts are used as flavoring agents for their bitter properties, we hypothesized that bitter taste receptors (Tas2rs) could be mediating their beneficial effects in metabolic disease. Studies have shown that exposure of cultured enteroendocrine cells to bitter tastants can stimulate release of hormones, including glucagon-like peptide 1 (GLP-1). These findings have led to the suggestion that activation of Tas2rs may be of benefit in diabetes, but this tenet has not been tested. Here, we have assessed the ability of a pure derivative of a hops isohumulone with anti-diabetic properties, KDT501, to signal through Tas2rs. We have further used this compound as a tool to systematically assess the impact of bitter taste receptor activation in obesity-diabetes. METHODS KDT501 was tested in a panel of bitter taste receptor signaling assays. Diet-induced obese mice (DIO) were dosed orally with KDT501 and acute effects on glucose homeostasis determined. A wide range of metabolic parameters were evaluated in DIO mice chronically treated with KDT501 to establish the full impact of activating gut bitter taste signaling. RESULTS We show that KDT501 signals through Tas2r108, one of 35 mouse Tas2rs. In DIO mice, acute treatment stimulated GLP-1 secretion and enhanced glucose tolerance. Chronic treatment caused weight and fat mass loss, increased energy expenditure, enhanced glucose tolerance and insulin sensitivity, normalized plasma lipids, and induced broad suppression of inflammatory markers. Chronic KDT501 treatment altered enteroendocrine hormone levels and bile acid homeostasis and stimulated sustained GLP-1 release. Combined treatment with a dipeptidyl peptidase IV inhibitor amplified the incretin-based benefits of this pure isohumulone. CONCLUSIONS Activation of Tas2r108 in the gut results in a remodeling of enteroendocrine hormone release and bile acid metabolism that ameliorates multiple features of metabolic syndrome. Targeting extraoral bitter taste receptors may be useful in metabolic disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey S Bland
- Kindex Pharmaceuticals, 800 Fifth Avenue, Seattle, WA, 98104, USA
| | - Neile Grayson
- Kindex Pharmaceuticals, 800 Fifth Avenue, Seattle, WA, 98104, USA
| | - Mingliang Fang
- Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Gary Siuzdak
- Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | | |
Collapse
|
74
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Westendorf J, Gregoretti L, Manini P, Chesson A. Safety and efficacy of a super critical carbon dioxide extract of Humulus lupulus L. flos when used as a feed flavouring for all animal species. EFSA J 2018; 16:e05462. [PMID: 32625735 PMCID: PMC7009665 DOI: 10.2903/j.efsa.2018.5462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on the safety and efficacy of a super critical carbon dioxide extract of Humulus lupulus L. flos (hop strobiles) when used as a sensory feed additive for all animal species. The additive is specified to containing 40% beta acids and less than 0.2% alpha acids. Known substances of concern ■■■■■ were not detected. It is intended for use as a sensory additive for all animal species at a maximum application rate of 50 mg additive/kg complete feed. Tolerance studies were provided with weaned piglets, chickens for fattening, dairy cows and fish in support of the application for all animal species. However, the FEEDAP Panel could only conclude that the additive is safe for weaned piglets, pigs for fattening and minor growing porcine species at the maximum proposed application rate. No concerns for consumer safety were identified for the use of the additive at the proposed use level in animal nutrition. In the presence of water, the additive is corrosive to skin and eyes. The additive is a potential respiratory and skin sensitiser. Use of the additive in animal production is not expected to pose a risk for the terrestrial or fresh water environment. Since harvested hop and its extracts are recognised to flavour food and its function in feed would be essentially the same as that in food, no further demonstration of efficacy is considered necessary.
Collapse
|
75
|
Di Sotto A, Checconi P, Celestino I, Locatelli M, Carissimi S, De Angelis M, Rossi V, Limongi D, Toniolo C, Martinoli L, Di Giacomo S, Palamara AT, Nencioni L. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5919237. [PMID: 30140367 PMCID: PMC6081516 DOI: 10.1155/2018/5919237] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
A hydroalcoholic extract from female inflorescences of Humulus lupulus L. (HOP extract) was evaluated for its anti-influenza activity. The ability of the extract to interfere with different phases of viral replication was assessed, as well as its effect on the intracellular redox state, being unbalanced versus the oxidative state in infected cells. The radical scavenging power, inhibition of lipoperoxidation, and ferric reducing activity were assayed as antioxidant mechanisms. A phytochemical characterization of the extract was also performed. We found that HOP extract significantly inhibited replication of various viral strains, at different time from infection. Viral replication was partly inhibited when virus was incubated with extract before infection, suggesting a direct effect on the virions. Since HOP extract was able to restore the reducing conditions of infected cells, by increasing glutathione content, its antiviral activity might be also due to an interference with redox-sensitive pathways required for viral replication. Accordingly, the extract exerted radical scavenging and reducing effects and inhibited lipoperoxidation and the tBOOH-induced cytotoxicity. At phytochemical analysis, different phenolics were identified, which altogether might contribute to HOP antiviral effect. In conclusion, our results highlighted anti-influenza and antioxidant properties of HOP extract, which encourage further in vivo studies to evaluate its possible application.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola Checconi
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Ignacio Celestino
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University “G. D'Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefania Carissimi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Rossi
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Dolores Limongi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Chiara Toniolo
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Lucia Martinoli
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
76
|
Gage SL, Ahumada F, Rivera A, Graham H, DeGrandi-Hoffman G. Smoke Conditions Affect the Release of the Venom Droplet Accompanying Sting Extension in Honey Bees (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5060209. [PMID: 30060211 PMCID: PMC6105110 DOI: 10.1093/jisesa/iey073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Honey bees (Apis mellifera) (Hymenoptera: Apidae) are social insects that have evolved a coordinated defensive response to ensure colony survival. Their nests may contain valuable resources such as pollen and nectar that are attractive to a range of insect and mammalian intruders and need protecting. With sufficient provocation, honey bees will mobilize and sting intruders, who are likely to incur additional stings. To inspect and manage their colonies, beekeepers apply smoke to decrease the likelihood of being stung. The use of smoke is a ubiquitous beekeeping practice, but the reasons behind its efficacy remain unknown. In this study, we examined the effects of smoke on honey bee defensive behavior by assessing individual sting extension responses under smoke conditions. We applied a brief voltage to the bee, ranging from a mild to a strong perturbation, and assessed four components of the sting extension reflex using two types of smoke. We found that smoke did not influence the probability of sting extension, but it did affect whether a venom droplet was released with the stinger. The venom droplet was more likely to be released at higher voltage levels, but this effect was significantly reduced under smoke conditions. Based on these results, we propose that the venom droplet coincides with greater agitation in individual bees; and smoke reduces the probability of its release. We speculate that the venom droplet serves to amplify the sting alarm pheromone, and smoke, in its ability to reduce droplet formation, may indicate that less alarm pheromone is released.
Collapse
Affiliation(s)
- Stephanie L Gage
- Carl Hayden Bee Research Center, USDA-Agricultural Research Service, Tucson
| | | | - Angela Rivera
- Carl Hayden Bee Research Center, USDA-Agricultural Research Service, Tucson
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA-Agricultural Research Service, Tucson
| | | |
Collapse
|
77
|
Tang YQ, Li YQ, Xie YB, Zhang JS, Li W, Lou LL, Zhang G, Yin S. Evodialones A and B: Polyprenylated Acylcyclopentanone Racemates with a 3-Ethyl-1,1-diisopentyl-4-methylcyclopentane Skeleton from Evodia lepta. JOURNAL OF NATURAL PRODUCTS 2018; 81:1483-1487. [PMID: 29847131 DOI: 10.1021/acs.jnatprod.7b00993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two polyprenylated acylcyclopentanone racemates, evodialones A (1) and B (2), featuring a 3-ethyl-1,1-diisopentyl-4-methylcyclopentane skeleton, were isolated from an extract of the aerial parts of Evodia lepta. Evodialone A (1) was resolved by chiral-phase HPLC to afford a pair of enantiomers, (+)- and (-)-evodialones A (1b/1a), while evodialone B (2) could not be resolved. Their structures were elucidated by spectroscopic analysis and a combination of computational techniques including gauge-independent atomic orbital calculation of 1D NMR data and experimental and TDDFT-calculated ECD spectra. A putative biosynthetic pathway of 1 and 2 starting from the monocyclic polyprenylated acylphloroglucinols is proposed. All the isolates were screened for the antimicrobial activity in vitro, and 1a and 1b showed moderate inhibitory activities against several pathogenic fungi with MICs values of 17.1-68.3 μM.
Collapse
Affiliation(s)
- Ya-Qi Tang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Yi-Qiu Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Yi-Bo Xie
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Jun-Sheng Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Wei Li
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Lan-Lan Lou
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Ge Zhang
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| |
Collapse
|
78
|
Baron EP, Lucas P, Eades J, Hogue O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J Headache Pain 2018; 19:37. [PMID: 29797104 PMCID: PMC5968020 DOI: 10.1186/s10194-018-0862-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Medicinal cannabis registries typically report pain as the most common reason for use. It would be clinically useful to identify patterns of cannabis treatment in migraine and headache, as compared to arthritis and chronic pain, and to analyze preferred cannabis strains, biochemical profiles, and prescription medication substitutions with cannabis. METHODS Via electronic survey in medicinal cannabis patients with headache, arthritis, and chronic pain, demographics and patterns of cannabis use including methods, frequency, quantity, preferred strains, cannabinoid and terpene profiles, and prescription substitutions were recorded. Cannabis use for migraine among headache patients was assessed via the ID Migraine™ questionnaire, a validated screen used to predict the probability of migraine. RESULTS Of 2032 patients, 21 illnesses were treated with cannabis. Pain syndromes accounted for 42.4% (n = 861) overall; chronic pain 29.4% (n = 598;), arthritis 9.3% (n = 188), and headache 3.7% (n = 75;). Across all 21 illnesses, headache was a symptom treated with cannabis in 24.9% (n = 505). These patients were given the ID Migraine™ questionnaire, with 68% (n = 343) giving 3 "Yes" responses, 20% (n = 102) giving 2 "Yes" responses (97% and 93% probability of migraine, respectively). Therefore, 88% (n = 445) of headache patients were treating probable migraine with cannabis. Hybrid strains were most preferred across all pain subtypes, with "OG Shark" the most preferred strain in the ID Migraine™ and headache groups. Many pain patients substituted prescription medications with cannabis (41.2-59.5%), most commonly opiates/opioids (40.5-72.8%). Prescription substitution in headache patients included opiates/opioids (43.4%), anti-depressant/anti-anxiety (39%), NSAIDs (21%), triptans (8.1%), anti-convulsants (7.7%), muscle relaxers (7%), ergots (0.4%). CONCLUSIONS Chronic pain was the most common reason for cannabis use, consistent with most registries. The majority of headache patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with "OG Shark", a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.
Collapse
Affiliation(s)
- Eric P. Baron
- Center for Neurological Restoration - Headache and Chronic Pain Medicine, Department of Neurology, Cleveland Clinic Neurological Institute, 10524 Euclid Avenue, C21, Cleveland, OH 44195 USA
| | - Philippe Lucas
- Tilray, 1100 Maughan Rd, Nanaimo, BC V9X 1J2 Canada
- Social Dimensions of Health, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 Canada
- Canadian Institute for Substance Use Research, 2300 McKenzie Ave, Victoria, BC V8N 5M8 Canada
| | - Joshua Eades
- Tilray, 1100 Maughan Rd, Nanaimo, BC V9X 1J2 Canada
| | - Olivia Hogue
- Section of Biostatistics, Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, JJN3, Cleveland, OH 44195 USA
| |
Collapse
|
79
|
Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proc Natl Acad Sci U S A 2018; 115:E5223-E5232. [PMID: 29760092 PMCID: PMC5984530 DOI: 10.1073/pnas.1802223115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Here, we identify two noncatalytic chalcone isomerase-fold proteins, which are critical for high-efficiency prenylchalcone production in Humulus lupulus. Our results provide insights into their evolutionary development from the ancestral noncatalytic fatty acid-binding chalcone isomerase-fold proteins to specialized auxiliary proteins supporting flavonoid biosynthesis in plants, and open up the possibility of producing high-value plant prenylchalcones using heterologous systems. Xanthohumol (XN) and demethylxanthohumol (DMX) are specialized prenylated chalconoids with multiple pharmaceutical applications that accumulate to high levels in the glandular trichomes of hops (Humulus lupulus L.). Although all structural enzymes in the XN pathway have been functionally identified, biochemical mechanisms underlying highly efficient production of XN have not been fully resolved. In this study, we characterized two noncatalytic chalcone isomerase (CHI)-like proteins (designated as HlCHIL1 and HlCHIL2) using engineered yeast harboring all genes required for DMX production. HlCHIL2 increased DMX production by 2.3-fold, whereas HlCHIL1 significantly decreased DMX production by 30%. We show that CHIL2 is part of an active DMX biosynthetic metabolon in hop glandular trichomes that encompasses a chalcone synthase (CHS) and a membrane-bound prenyltransferase, and that type IV CHI-fold proteins of representative land plants contain conserved function to bind with CHS and enhance its activity. Binding assays and structural docking uncover a function of HlCHIL1 to bind DMX and naringenin chalcone to stabilize the ring-open configuration of these chalconoids. This study reveals the role of two HlCHILs in DMX biosynthesis in hops, and provides insight into their evolutionary development from the ancestral fatty acid-binding CHI-fold proteins to specialized auxiliary proteins supporting flavonoid biosynthesis in plants.
Collapse
|
80
|
Michiu D, Socaci SA, Jimborean MA, Mudura E, Fărcaş AC, Biriş-Dorhoi SE, Tofană M. Determination of Volatile Markers from Magnum Hops in Beer by In-Tube Extraction—Gas Chromatography—Mass Spectrometry. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1458235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Delia Michiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sonia A. Socaci
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mirela A. Jimborean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Elena Mudura
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Anca C. Fărcaş
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Suzana E. Biriş-Dorhoi
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Maria Tofană
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
81
|
Bogdanova K, Röderova M, Kolar M, Langova K, Dusek M, Jost P, Kubelkova K, Bostik P, Olsovska J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res Microbiol 2018; 169:127-134. [DOI: 10.1016/j.resmic.2017.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 11/16/2022]
|
82
|
Effect of hop (Humulus lupulus L.) inclusion in the diet for fattening lambs on animal performance, ruminal characteristics and meat quality. Food Res Int 2018; 108:42-47. [PMID: 29735075 DOI: 10.1016/j.foodres.2018.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 11/23/2022]
Abstract
Thirty male merino lambs were fed with a pelleted total mixed ration (TMR) alone or supplemented with hop (Humulus lupulus L.) cones at two different doses (1.5 and 3.0 g hop cones/kg pelleted TMR, respectively), to study the effects of this dietary source of antioxidants on animal performance, ruminal parameters and meat quality attributes. The results showed that dietary supplementation with hop cones decreased lambs' growth rate (P < 0.05) due to a shift in ruminal fermentation, towards a more acetic and less propionic acid production (P < 0.05). These changes in animal growth rate might have promoted microstructural modifications in the quantity and size of muscle fibres, thereby inducing the differences observed in meat chemical composition, colour and texture (P < 0.05), regardless of the lack of differences in meat antioxidant status (P > 0.10).
Collapse
|
83
|
De Keukeleire D. A Happy, Hoppy Odyssey: From a Flavorsome Hobby to a Dream Job. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-4795-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
84
|
Bryant RW“R, Cohen SD. Characterization of Hop Acids in Spent Brewer's Yeast from Craft and Multinational Sources. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2015-0315-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Seth D. Cohen
- Fermentation Sciences, Appalachian State University, Boone, NC 28808
| |
Collapse
|
85
|
Bertelli D, Brighenti V, Marchetti L, Reik A, Pellati F. Nuclear magnetic resonance and high-performance liquid chromatography techniques for the characterization of bioactive compounds from Humulus lupulus L. (hop). Anal Bioanal Chem 2018; 410:3521-3531. [DOI: 10.1007/s00216-018-0851-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022]
|
86
|
Dostálek P, Karabín M, Jelínek L. Hop Phytochemicals and Their Potential Role in Metabolic Syndrome Prevention and Therapy. Molecules 2017; 22:E1761. [PMID: 29048380 PMCID: PMC6151408 DOI: 10.3390/molecules22101761] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/04/2023] Open
Abstract
Historically, hop cones (Humulus lupulus) have been used since ancient times as a remedy for many ailments and, as a source of polyphenols and bitter acids, is very effective in the treatment of metabolic syndrome (MS). Hop flavonoids, particularly xanthohumol (XN), are substances with hypoglycemic, antihyperlipidemic, and antiobesity activities. Iso-α-acids (IAA) and matured hop bitter acids (MHBA) improve health by influencing lipid metabolism, glucose tolerance, and body weight. The modulatory effect of IAA and MHBA on lipid metabolism may also be responsible for a loss in body weight. These results suggest promising applications for IAA, MHBA, and XN in humans, particularly in the prevention of diet-induced obesity and diabetes.
Collapse
Affiliation(s)
- Pavel Dostálek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Marcel Karabín
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Lukáš Jelínek
- Department of Biotechnology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
87
|
Progar V, Jakše J, Štajner N, Radišek S, Javornik B, Berne S. Comparative transcriptional analysis of hop responses to infection with Verticillium nonalfalfae. PLANT CELL REPORTS 2017; 36:1599-1613. [PMID: 28698905 PMCID: PMC5602066 DOI: 10.1007/s00299-017-2177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/04/2017] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Dynamic transcriptome profiling revealed excessive, yet ineffective, immune response to V. nonalfalfae infection in susceptible hop, global gene downregulation in shoots of resistant hop and only a few infection-associated genes in roots. Hop (Humulus lupulus L.) production is hampered by Verticillium wilt, a disease predominantly caused by the soil-borne fungus Verticillium nonalfalfae. Only a few hop cultivars exhibit resistance towards it and mechanisms of this resistance have not been discovered. In this study, we compared global transcriptional responses in roots and shoots of resistant and susceptible hop plants infected by a lethal strain of V. nonalfalfae. Time-series differential gene expression profiles between infected and mock inoculated plants were determined and subjected to network-based analysis of functional enrichment. In the resistant hop cultivar, a remarkably low number of genes were differentially expressed in roots in response to V. nonalfalfae infection, while the majority of differentially expressed genes were down-regulated in shoots. The most significantly affected genes were related to cutin biosynthesis, cell wall biogenesis, lateral root development and terpenoid biosynthesis. On the other hand, susceptible hop exhibited a strong defence response in shoots and roots, including increased expression of genes associated with plant responses, such as innate immunity, wounding, jasmonic acid pathway and chitinase activity. Strong induction of defence-associated genes in susceptible hop and a low number of infection-responsive genes in the roots of resistant hop are consistent with previous findings, confirming the pattern of excessive response of the susceptible cultivar, which ultimately fails to protect the plant from V. nonalfalfae. This research offers a multifaceted overview of transcriptional responses of susceptible and resistant hop cultivars to V. nonalfalfae infection and represents a valuable resource in the study of this plant-pathogen interaction.
Collapse
Affiliation(s)
- Vasja Progar
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, Žalec, Slovenia
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
88
|
The Effect of Different Starch Liberation and Saccharification Methods on the Microbial Contaminations of Distillery Mashes, Fermentation Efficiency, and Spirits Quality. Molecules 2017; 22:molecules22101647. [PMID: 28974014 PMCID: PMC6151438 DOI: 10.3390/molecules22101647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to evaluate the influence of different starch liberation and saccharification methods on microbiological contamination of distillery mashes. Moreover, the effect of hop α-acid preparation for protection against microbial infections was assessed. The quality of agricultural distillates was also evaluated. When applying the pressureless liberation of starch (PLS) and malt as a source of amylolytic enzymes, the lactic acid bacteria count in the mashes increased several times during fermentation. The mashes obtained using the pressure-thermal method and malt enzymes revealed a similar pattern. Samples prepared using cereal malt exhibited higher concentrations of lactic and acetic acids, as compared to mashes prepared using enzymes of microbial origin. The use of hop α-acids led to the reduction of bacterial contamination in all tested mashes. As a result, fermentation of both mashes prepared with microbial origin enzyme preparations and with barley malt resulted in satisfactory efficiency and distillates with low concentrations of aldehydes.
Collapse
|
89
|
Killeen DP, Watkins OC, Sansom CE, Andersen DH, Gordon KC, Perry NB. Fast Sampling, Analyses and Chemometrics for Plant Breeding: Bitter Acids, Xanthohumol and Terpenes in Lupulin Glands of Hops (Humulus lupulus). PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:50-57. [PMID: 27976466 DOI: 10.1002/pca.2642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/04/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION The valuable secondary metabolites in hops (bitter acids, xanthohumol, volatile monoterpenes and sesquiterpenes) are sequestered in lupulin glands (extracellular trichomes) which can be collected and analysed with little or no sample preparation. OBJECTIVES To determine whether high throughput screening of lupulin glands composition, by fast analyses and chemometrics, could be used for breeder selection of hops with key flavour attributes. METHODS Lupulin glands from 139 plants (39 cultivars/advanced selections) were analysed by Raman and 1 H NMR spectroscopy, and head-space solid-phase microextraction (HS-SPME) GC-FID. The digital X,Y-data were subjected to principal component analysis (PCA) and the results compared with conventional analyses of extracts of whole hops from the same plants. Quantitative 1 H NMR analyses were also done for the bitter acids. RESULTS Raman spectroscopy rapidly identified hops cultivars with high xanthohumol concentrations and high α:β bitter acid ratios. 1 H NMR spectroscopy was slower, requiring a solvent extraction, but distinguished cultivars by cohumulone content as well as α:β acid ratios. HS-SPME-GC rapidly distinguished aroma hops with high myrcene and farnesene contents, and pinpointed a novel selection with unusual sesquiterpenes. The quantitative NMR analyses showed correlations between bitter acid concentrations related to biosynthetic pathways. CONCLUSIONS Analysis of lupulin glands gave reliable results for the main quality indicators used by hops breeders, potentially avoiding harvesting, drying and solvent extracting whole hops. PCA of digital X,Y-data rapidly discriminated different hops chemotypes, and highlighted plants with potential for new flavourcultivars. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel P Killeen
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Oliver C Watkins
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Catherine E Sansom
- The New Zealand Institute for Plant & Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - David H Andersen
- The New Zealand Institute for Plant & Food Research Limited, 55 Old Mill, RD 3, Motueka, 7198, New Zealand
| | - Keith C Gordon
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Dodd-Walls Centre, University of Otago, Dunedin, New Zealand
| | - Nigel B Perry
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
90
|
Zhou K, Wunsch C, Dai J, Li SM. gem-Diprenylation of Acylphloroglucinols by a Fungal Prenyltransferase of the Dimethylallyltryptophan Synthase Superfamily. Org Lett 2016; 19:388-391. [PMID: 28029789 DOI: 10.1021/acs.orglett.6b03594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus terreus aromatic prenyltransferase (AtaPT) catalyzes predominantly C-monoprenylation of acylphloroglucinols in the presence of different prenyl diphosphates. With dimethylallyl diphosphate (DMAPP) as prenyl donor, gem-diprenylated products 1D3, 2D3, and 3D3 were also detected. High conversion of 1D1 to 1D3, 2D1 to 2D3, and 3D1 to 3D3 was demonstrated by incubation with AtaPT and DMAPP. The first example of gem-diprenylation by a member of the dimethylallyltryptophan synthase superfamily is provided.
Collapse
Affiliation(s)
- Kang Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Carsten Wunsch
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Xian Nong Tan Street, Beijing 100050, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Robert-Koch-Strasse 4, 35037 Marburg, Germany
| |
Collapse
|
91
|
Maliar T, Nemeček P, Ürgeová E, Maliarová M, Nesvadba V, Krofta K, Vulganová K, Krošlák E, Kraic J. Secondary metabolites, antioxidant and anti-proteinase activities of methanolic extracts from cones of hop (Humulus lupulus L.) cultivars. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0034-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
92
|
Mishra AK, Duraisamy GS, Matoušek J, Radisek S, Javornik B, Jakse J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. BMC Genomics 2016; 17:919. [PMID: 27846797 PMCID: PMC5109749 DOI: 10.1186/s12864-016-3271-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hop (Humulus lupulus L.) plants are grown primarily for the brewing industry and have been used as a traditional medicinal herb for a long time. Severe hop stunt disease caused by the recently discovered Citrus bark cracking viroid (CBCVd) is one of the most devastating diseases among other viroid infections in hop. MicroRNAs (miRNAs) are a class of non-coding small RNAs that play important roles in gene expression regulation. To identify miRNAs in hop and their response to CBCVd-infection, two small RNA (sRNA) libraries were prepared from healthy and CBCVd-infected hop plants and were investigated by high throughput sequencing. RESULTS A total of 67 conserved and 49 novel miRNAs were identified. Among them, 36 conserved and 37 novel miRNAs were found to be differentially recovered in response to CBCVd-infection. A total of 311 potential targets was predicted for conserved and novel miRNAs based on a sequence homology search using hop transcriptome data. The majority of predicted targets significantly belonged to transcriptional factors that may regulate hop leaf, root and cone growth and development. In addition, the identified miRNAs might also play an important roles in other cellular and metabolic processes, such as signal transduction, stress response and other physiological processes, including prenylflavonoid biosynthesis pathways. Quantitative real time PCR analysis of selected targets revealed their negative correlation with their corresponding CBCVd-responsive miRNAs. CONCLUSIONS Based on the results, we concluded that CBCVd-responsive miRNAs modulate several hormone pathways and transcriptional factors that play important roles in the regulation of metabolism, growth and development. These results provide a framework for further analysis of regulatory roles of sRNAs in plant defense mechanism including other hop infecting viroids in particular.
Collapse
Affiliation(s)
- Ajay Kumar Mishra
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Sebastjan Radisek
- Slovenian Institute of Hop Research and Brewing, Plant Protection Department, Cesta Zalskega tabora 2, Žalec, SI-3310, Slovenia
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
93
|
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, Duraisamy GS, Týcová A, Ono E, Krofta K. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). PLANT MOLECULAR BIOLOGY 2016; 92:263-77. [PMID: 27392499 DOI: 10.1007/s11103-016-0510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/02/2016] [Indexed: 05/20/2023]
Abstract
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kristýna Siglová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Anna Týcová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Karel Krofta
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| |
Collapse
|
94
|
Duraisamy GS, Mishra AK, Kocabek T, Matoušek J. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L). Comput Biol Chem 2016; 64:346-352. [DOI: 10.1016/j.compbiolchem.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
95
|
Biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. Microb Cell Fact 2016; 15:149. [PMID: 27577056 PMCID: PMC5004256 DOI: 10.1186/s12934-016-0549-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Background Type III polyketide synthases (PKSs) contribute to the synthesis of many economically important natural products, which are typically produced by direct extraction from plants or synthesized chemically. For example, humulone and lupulone (Fig. 1a) in hops (Humulus lupulus) account for the characteristic bitter taste of beer and display multiple pharmacological effects. 4-Hydroxy-6-methyl-2-pyrone is a precursor of parasorboside contributing to insect and disease resistance of plant Gerbera hybrida, and was recently demonstrated to be a potential platform chemical.Examples of phloroglucinols (a) and 2-pyrones (b) synthesized by type III PKS. PIBP phlorisobutyrophenone; PIVP phlorisovalerophenone; TAL 4-hydroxy-6-methyl-2-pyrone (triacetic acid lactone); HIPP 4-hydroxy-6-isopropyl-2-pyrone; HIBP 4-hydroxy-6-isobutyl-2-pyrone ![]() Results In this study, we achieved simultaneous biosynthesis of phlorisovalerophenone, a key intermediate of humulone biosynthesis and 4-hydroxy-6-isobutyl-2-pyrone in Escherichia coli from glucose. First, we constructed a biosynthetic pathway of isovaleryl-CoA via hydroxy-3-methylglutaryl CoA followed by dehydration, decarboxylation and reduction in E. coli. Subsequently, the type III PKSs valerophenone synthase or chalcone synthase from plants were introduced into the above E. coli strain, to produce phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone at the highest titers of 6.4 or 66.5 mg/L, respectively. Conclusions The report of biosynthesis of phlorisovalerophenone and 4-hydroxy-6-isobutyl-2-pyrone in E. coli adds a new example to the list of valuable compounds synthesized in E. coli from renewable carbon resources by type III PKSs. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0549-9) contains supplementary material, which is available to authorized users.
Collapse
|
96
|
Probst C, Nelson ME, Grove GG, Twomey MC, Gent DH. Hop Powdery Mildew Control Through Alteration of Spring Pruning Practices. PLANT DISEASE 2016; 100:1599-1605. [PMID: 30686228 DOI: 10.1094/pdis-10-15-1127-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Podosphaera macularis, the causal agent of hop powdery mildew, is a recurrent threat to hops in the Pacific Northwest because of the potential to reduce cone yield and quality. Early-season pruning is a common practice in hop production for horticultural reasons. Studies were conducted over a 3-year period in a commercial hop yard to quantify the effect of pruning method and timing on disease development, yield, and cone quality factors. A 4-week delay in pruning reduced the incidence of leaves with powdery mildew from 46 to 10% and cones from 9 to 1%, with the specific effect being season dependent. Pruning using chemical desiccants rather than by mechanical means had similar effects on disease levels on leaves. On cones, though, chemical pruning had a small but significant reduction in the incidence of powdery mildew compared with mechanical pruning. Cone yield, levels of bittering-acids, and color were not negatively affected in any individual year or cumulatively over three seasons when pruning treatments were applied repeatedly to the same plots during the study period. Delayed pruning may offer a low-cost means of reducing both the incidence of powdery mildew and early-season fungicide inputs in certain cultivars.
Collapse
Affiliation(s)
- Claudia Probst
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser 99350
| | - Mark E Nelson
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser 99350
| | - Gary G Grove
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser 99350
| | - Megan C Twomey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331
| | - David H Gent
- United States Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, and Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331
| |
Collapse
|
97
|
Kostrzewa D, Dobrzyńska-Inger A, Rój E, Grzęda K, Kozłowski K. Isomerization of hop extractα-acids. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dorota Kostrzewa
- New Chemical Syntheses Institute; Al. Tysiąclecia Państwa Polskiego 13A; 24-110 Puławy Poland
| | | | - Edward Rój
- New Chemical Syntheses Institute; Al. Tysiąclecia Państwa Polskiego 13A; 24-110 Puławy Poland
| | - Karolina Grzęda
- New Chemical Syntheses Institute; Al. Tysiąclecia Państwa Polskiego 13A; 24-110 Puławy Poland
| | | |
Collapse
|
98
|
|
99
|
Abdi F, Kazemi F, Ramezani Tehrani F, Roozbeh N. Protocol for systematic review and meta-analysis: hop (Humulus lupulus L.) for menopausal vasomotor symptoms. BMJ Open 2016; 6:e010734. [PMID: 27105715 PMCID: PMC4853989 DOI: 10.1136/bmjopen-2015-010734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Menopause is a critical stage in every woman's life. It can cause a distressing time for women by creating various vasomotor symptoms (VMS). Phytoestrogens can potentially exert various favourable effects and alleviate VMS in postmenopausal women. The hop (Humulus lupulus L.) contains 8-prenylnaringenin (8-PN), the most potent phytoestrogen known to date. The hop is eight times stronger than any other herbal oestrogens. This study aims to conduct a comprehensive systematic review and a meta-analysis survey of the effects of hop in the management of VMS in postmenopausal women. METHODS Only randomised controlled clinical trials, with cluster randomisation and crossover, blinded and non-blinded designs, conducted between 2000 and 2015, will be included in this review. Quasi-experimental and observational studies as well as case reports will be excluded. The studies will be selected if their participants were aged 40-60 years, had elevated follicle-stimulating hormone (FSH) levels and/or menstrual irregularities, and experienced discomforting VMS (at least hot flashes or night sweats). The primary outcome will be the rate of response to treatment, such as changes in frequency and intensity of symptoms in the intervention and placebo groups. 'Hop', 'Humulus', 'menopause', 'vasomotor', 'hot flashes', 'phytoestrogen' and 'night sweats' will be used as search key words. Prior to their inclusion in the review, the selected papers will be assessed by two independent reviewers for methodological validity. Any disagreements will be resolved through a third reviewer. The risk of bias will be independently determined using the Cochrane Risk of Bias Tool. The quality of the papers will be assessed based on the CONSORT checklist. ETHICS AND DISSEMINATION Results will be disseminated through traditional academic literature. Dissemination of results will occur by peer-reviewed publications. The results of our project can help reproductive health researchers when evaluating the discomforts of research procedures described in study protocols or when designing a study. Information on experiences of menopausal women involved in previous studies may also help in future research. The expected dissemination actions are effective treatment in designing strategies that aim to develop women's health and healthcare providers when offering treatment for women with vasomotor symptoms.
Collapse
Affiliation(s)
- Fatemeh Abdi
- Students’ Research Office, Nursing and Midwifery Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Kazemi
- Department of Midwifery and Reproductive Health, Nursing and Midwifery Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Roozbeh
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
100
|
Karabín M, Hudcová T, Jelínek L, Dostálek P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr Rev Food Sci Food Saf 2016; 15:542-567. [PMID: 33401815 DOI: 10.1111/1541-4337.12201] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 02/06/2023]
Abstract
Although female cones of the hop plant (Humulus lupulus) are known primarily as raw material supplying characteristic bitterness and aroma to beer, their equally significant health-promoting effects have been known to mankind for several thousand years and hop is a plant traditionally utilized in folk medicine. This paper summarizes the scientific knowledge on the effects of all 3 major groups of secondary metabolites of hops; polyphenols, essential oils, and resins. Because of their chemical diversity, it is no coincidence that these compounds exhibit a wide range of pharmacologically important properties. In addition to antioxidant, anti-inflammatory, and anticancer-related properties, particular attention is being paid to prenylflavonoids that occur almost exclusively in hops and are considered to be some of the most active phytoestrogens known. Hop oils and resins are well known for their sedative and other neuropharmacological properties, but in addition, these compounds exhibit antibacterial and antifungal effects. Recently, alpha bitter acids have been shown to block the development of a number of complex lifestyle diseases that are referred to by the collective name "metabolic syndrome." Information presented in this review confirms the significant potential for the use of hops in the pharmaceutical industry and provides an understanding of beer as a natural drink that, although moderately consumed, may become a source of many health-promoting compounds.
Collapse
Affiliation(s)
- Marcel Karabín
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tereza Hudcová
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Jelínek
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Dostálek
- Dept. of Biotechnology, Faculty of Food and Biochemical Technology, Univ. of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|