51
|
Nichols AL, Blumenfeld Z, Luebbert L, Knox HJ, Muthusamy AK, Marvin JS, Kim CH, Grant SN, Walton DP, Cohen BN, Hammar R, Looger L, Artursson P, Dougherty DA, Lester HA. Selective Serotonin Reuptake Inhibitors within Cells: Temporal Resolution in Cytoplasm, Endoplasmic Reticulum, and Membrane. J Neurosci 2023; 43:2222-2241. [PMID: 36868853 PMCID: PMC10072302 DOI: 10.1523/jneurosci.1519-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 03/05/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.SIGNIFICANCE STATEMENT Selective serotonin reuptake inhibitors stabilize mood in several disorders. In general, these drugs bind to SERT, which clears serotonin from CNS and peripheral tissues. SERT ligands are effective and relatively safe; primary care practitioners often prescribe them. However, they have several side effects and require 2-6 weeks of continuous administration until they act effectively. How they work remains perplexing, contrasting with earlier assumptions that the therapeutic mechanism involves SERT inhibition followed by increased extracellular serotonin levels. This study establishes that two SERT ligands, fluoxetine and escitalopram, enter neurons within minutes, while simultaneously accumulating in many membranes. Such knowledge will motivate future research, hopefully revealing where and how SERT ligands engage their therapeutic target(s).
Collapse
Affiliation(s)
- Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| | - Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
- Keck School of Medicine, University of Southern California, Los Angeles, California 90007
| | - Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Hailey J Knox
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Anand K Muthusamy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Viginia 20147
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| | - Stephen N Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - David P Walton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| | - Rebekkah Hammar
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Loren Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Viginia 20147
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory Drug Discovery and Development Platform and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91106
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91106
| |
Collapse
|
52
|
Khim Chan S, Yi Lai J, Gan CY, Soon Lim T. A Semi-Rational Mutagenesis Approach For Improved Substrate Activity Of Microbial Transglutaminase. Food Chem 2023; 419:136070. [PMID: 37030209 DOI: 10.1016/j.foodchem.2023.136070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
A higher specific activity of microbial transglutaminase (mTGase) is desirable for a broad range of applications ranging from food industry to biotechnology. Three-dimensional docking simulation of mTGase revealed that residues V65, W69, and Y75 were critical for substrate recognition. A semi-rational mutagenesis approach was applied to each residue to generate three separate mini mutant libraries. A high-throughput screening process identified five mutants that demonstrated improved specific activities than the wild type (WT) mTGase were isolated from the Y75 mini mutant library. Mutant Y75L showed approximately 60% increment in specific activity and improved substrate specificity. Conjugation of two heterologous single-chain fragment variable clones to generate a diabody with mutant Y75L was successfully performed and validated. This work demonstrates the successful application of semi-rational mutagenesis coupled with a high-throughput screening approach to identify mTGase mutants with improved specific activities and specificities which are beneficial for protein-protein conjugation.
Collapse
|
53
|
Tomoiagă RB, Tork SD, Filip A, Nagy LC, Bencze LC. Phenylalanine ammonia-lyases: combining protein engineering and natural diversity. Appl Microbiol Biotechnol 2023; 107:1243-1256. [PMID: 36662259 DOI: 10.1007/s00253-023-12374-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
In this study, rational design and saturation mutagenesis efforts for engineering phenylalanine ammonia-lyase from Petroselinum crispum (PcPAL) provided tailored PALs active towards challenging, highly valuable di-substituted substrates, such as the L-DOPA precursor 3,4-dimethoxy-L-phenylalanine or the 3-bromo-4-methoxy-phenylalanine. The rational design approach and saturation mutagenesis strategy unveiled identical PcPAL variants of improved activity, highlighting the limited mutational variety of the substrate specificity-modulator residues, L134, F137, I460 of PcPAL. Due to the restricted catalytic efficiency of the best performing L134A/I460V and F137V/I460V PcPAL variants, we imprinted these beneficial mutations to PALs of different origins. The variants of PALs from Arabidopsis thaliana (AtPAL) and Anabaena variabilis (AvPAL) showed higher catalytic efficiency than their PcPAL homologues. Further, the engineered PALs were also compared in terms of catalytic efficiency with a novel aromatic ammonia-lyase from Loktanella atrilutea (LaAAL), close relative of the metagenome-derived aromatic ammonia-lyase AL-11, reported recently to possess atypically high activity towards substrates with electron-donor aromatic substituents. Indeed, LaAAL outperformed the engineered Pc/At/AvPALs in the production of 3,4-dimethoxy-L-phenylalanine; however, in case of 3-bromo-4-methoxy derivatives it showed no activity, with computational results supporting the occurrence of steric hindrance. Transferring the unique array of selectivity modulator residues from LaAAL to the well-characterized PALs did not enhance their activity towards the targeted substrates. Moreover, applying the rational design strategy valid for these well-characterized PALs to LaAAL decreased its activity. These results suggest that distinct tailoring rationale is required for LaAAL/AL-11-like aromatic ammonia-lyases, which might represent a distinct PAL subclass, with natural reaction and substrate scope modified through evolutionary processes. KEY POINTS: • PAL-activity for challenging substrates generated by protein engineering • Rational/semi-rational protein engineering reveals constrained mutational variability • Engineered PALs are outperformed by novel ALs of distinct catalytic site signature.
Collapse
Affiliation(s)
- Raluca Bianca Tomoiagă
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Souad Diana Tork
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Alina Filip
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - Levente Csaba Nagy
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania
| | - László Csaba Bencze
- Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, 400028, Cluj-Napoca, Romania.
| |
Collapse
|
54
|
Zhang J, Maggiolo AO, Alfonzo E, Mao R, Porter NJ, Abney N, Arnold FH. Chemodivergent C(sp 3)-H and C(sp 2)-H Cyanomethylation Using Engineered Carbene Transferases. Nat Catal 2023; 6:152-160. [PMID: 36875868 PMCID: PMC9983643 DOI: 10.1038/s41929-022-00908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/09/2022] [Indexed: 01/21/2023]
Abstract
The ubiquity of C-H bonds presents an attractive opportunity to elaborate and build complexity in organic molecules. Methods for selective functionalization, however, often must differentiate among multiple chemically similar and, in some cases indistinguishable, C-H bonds. An advantage of enzymes is that they can be finely tuned using directed evolution to achieve control over divergent C-H functionalization pathways. Here, we demonstrate engineered enzymes that effect a new-to-nature C-H alkylation with unparalleled selectivity: two complementary carbene C-H transferases derived from a cytochrome P450 from Bacillus megaterium deliver an α-cyanocarbene into the α-amino C(sp3)-H bonds or the ortho-arene C(sp2)-H bonds of N-substituted arenes. These two transformations proceed via different mechanisms, yet only minimal changes to the protein scaffold (nine mutations, less than 2% of the sequence) were needed to adjust the enzyme's control over the site-selectivity of cyanomethylation. The X-ray crystal structure of the selective C(sp3)-H alkylase, P411-PFA, reveals an unprecedented helical disruption which alters the shape and electrostatics in the enzyme active site. Overall, this work demonstrates the advantages of enzymes as C-H functionalization catalysts for divergent molecular derivatization.
Collapse
Affiliation(s)
- Juner Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
| | - Ailiena O. Maggiolo
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
| | - Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
| | - Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
| | - Nicholas J. Porter
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
| | - Nayla Abney
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
- Present address: Department of Bioengineering, Stanford University; Stanford, California, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology; Pasadena, California, United States
- Division of Biology and Bioengineering, California Institute of Technology; Pasadena, California, United States
| |
Collapse
|
55
|
Schnettler JD, Klein OJ, Kaminski TS, Colin PY, Hollfelder F. Ultrahigh-Throughput Directed Evolution of a Metal-Free α/β-Hydrolase with a Cys-His-Asp Triad into an Efficient Phosphotriesterase. J Am Chem Soc 2023; 145:1083-1096. [PMID: 36583539 PMCID: PMC9853848 DOI: 10.1021/jacs.2c10673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Finding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart. Enzymes have rapidly evolved to hydrolyze phosphate triesters in response to this challenge, converging onto the same mechanistic solution, which requires bivalent cations as a cofactor for catalysis. In contrast, the previously identified metagenomic promiscuous hydrolase P91, a homologue of acetylcholinesterase, achieves slow phosphotriester hydrolysis mediated by a metal-independent Cys-His-Asp triad. Here, we probe the evolvability of this new catalytic motif by subjecting P91 to directed evolution. By combining a focused library approach with the ultrahigh throughput of droplet microfluidics, we increase P91's activity by a factor of ≈360 (to a kcat/KM of ≈7 × 105 M-1 s-1) in only two rounds of evolution, rivaling the catalytic efficiencies of naturally evolved, metal-dependent phosphotriesterases. Unlike its homologue acetylcholinesterase, P91 does not suffer suicide inhibition; instead, fast dephosphorylation rates make the formation of the covalent adduct rather than its hydrolysis rate-limiting. This step is improved by directed evolution, with intermediate formation accelerated by 2 orders of magnitude. Combining focused, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in nature, resulting in alternative reagents with novel catalytic machineries.
Collapse
Affiliation(s)
- J David Schnettler
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Oskar James Klein
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
56
|
Avila-Crump S, Hemshorn ML, Jones CM, Mbengi L, Meyer K, Griffis JA, Jana S, Petrina GE, Pagar VV, Karplus PA, Petersson EJ, Perona JJ, Mehl RA, Cooley RB. Generating Efficient Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids. ACS Chem Biol 2022; 17:3458-3469. [PMID: 36383641 PMCID: PMC9833845 DOI: 10.1021/acschembio.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic code expansion (GCE) technologies commonly use the pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei (Mm) and Methanosarcina barkeri (Mb) for site-specific incorporation of non-canonical amino acids (ncAAs) into proteins. Recently a homologous PylRS/tRNAPyl pair from Candidatus Methanomethylophilus alvus Mx1201 (Ma) was developed that, lacking the N-terminal tRNA-recognition domain of most PylRSs, overcomes insolubility, instability, and proteolysis issues seen with Mb/Mm PylRSs. An open question is how to alter Ma PylRS specificity to encode specific ncAAs with high efficiency. Prior work focused on "transplanting" ncAA substrate specificity by reconstructing the same active site mutations found in functional Mm/Mb PylRSs in Ma PylRS. Here, we found that this strategy produced low-efficiency Ma PylRSs for encoding three structurally diverse ncAAs: acridonyl-alanine (Acd), 3-nitro-tyrosine, and m-methyl-tetrazinyl-phenylalanine (Tet3.0-Me). On the other hand, efficient Ma PylRS variants were generated by a conventional life/death selection process from a large library of active site mutants: for Acd encoding, one variant was highly functional in HEK293T cells at just 10 μM Acd; for nitroY encoding, two variants also encoded 3-chloro, 3-bromo-, and 3-iodo-tyrosine at high efficiency; and for Tet-3.0-Me, all variants were more functional at lower ncAA concentrations. All Ma PylRS variants identified through selection had at least two different active site residues when compared with their Mb PylRS counterparts. We conclude that Ma and Mm/Mb PylRSs are sufficiently different that "active site transplantation" yields suboptimal Ma GCE systems. This work establishes a paradigm for expanding the utility of the promising Ma PylRS/tRNAPyl GCE platform.
Collapse
Affiliation(s)
- Savanna Avila-Crump
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Marcus L. Hemshorn
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Chloe M. Jones
- Biochemistry and Molecular Biophysics Graduate Group; University of Pennsylvania; 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lea Mbengi
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Kyle Meyer
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Joshua A. Griffis
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Grace E. Petrina
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Vinayak V. Pagar
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - John J. Perona
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| |
Collapse
|
57
|
Wang B, Zhao J, Liu S, Feng J, Luo Y, He X, Wang Y, Ge F, Wang J, Ye B, Huang W, Bo X, Wang Y, Xi JJ. ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants. Emerg Microbes Infect 2022; 11:1488-1499. [PMID: 35587428 PMCID: PMC9176695 DOI: 10.1080/22221751.2022.2079426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent global pandemic was a spillover from the SARS-CoV-2 virus. Viral entry involves the receptor binding domain (RBD) of the viral spike protein interacting with the protease domain (PD) of the cellular receptor, ACE2. We hereby present a comprehensive mutational landscape of the effects of ACE2-PD point mutations on RBD-ACE2 binding using a saturation mutagenesis approach based on microarray-based oligo synthesis and a single-cell screening assay. We observed that changes in glycosylation sites and directly interacting sites of ACE2-PD significantly influenced ACE2-RBD binding. We further engineered an ACE2 decoy receptor with critical point mutations, D30I, L79W, T92N, N322V, and K475F, named C4-1. C4-1 shows a 200-fold increase in neutralization for the SARS-CoV-2 D614G pseudotyped virus compared to wild-type soluble ACE2 and a sevenfold increase in binding affinity to wild-type spike compared to the C-terminal Ig-Fc fused wild-type soluble ACE2. Moreover, C4-1 efficiently neutralized prevalent variants, especially the omicron variant (EC50=16 ng/mL), and rescued monoclonal antibodies, vaccine, and convalescent sera neutralization from viral immune-escaping. We hope to next investigate translating the therapeutic potential of C4-1 for the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Bolun Wang
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Junxuan Zhao
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jingyuan Feng
- College of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Yufeng Luo
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Xinyu He
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Yanmin Wang
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Feixiang Ge
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Junyi Wang
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Buqing Ye
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
58
|
Ridone P, Ishida T, Lin A, Humphreys DT, Giannoulatou E, Sowa Y, Baker MAB. The rapid evolution of flagellar ion selectivity in experimental populations of E. coli. SCIENCE ADVANCES 2022; 8:eabq2492. [PMID: 36417540 PMCID: PMC9683732 DOI: 10.1126/sciadv.abq2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Determining which cellular processes facilitate adaptation requires a tractable experimental model where an environmental cue can generate variants that rescue function. The bacterial flagellar motor (BFM) is an excellent candidate-an ancient and highly conserved molecular complex for bacterial propulsion toward favorable environments. Motor rotation is often powered by H+ or Na+ ion transit through the torque-generating stator subunit of the motor complex, and ion selectivity has adapted over evolutionary time scales. Here, we used CRISPR engineering to replace the native Escherichia coli H+-powered stator with Na+-powered stator genes and report the spontaneous reversion of our edit in a low-sodium environment. We followed the evolution of the stators during their reversion to H+-powered motility and used both whole-genome and RNA sequencing to identify genes involved in the cell's adaptation. Our transplant of an unfit protein and the cells' rapid response to this edit demonstrate the adaptability of the stator subunit and highlight the hierarchical modularity of the flagellar motor.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Tsubasa Ishida
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Angela Lin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| | | | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Matthew A. B. Baker
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| |
Collapse
|
59
|
Vallapurackal J, Stucki A, Liang AD, Klehr J, Dittrich PS, Ward TR. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions. Angew Chem Int Ed Engl 2022; 61:e202207328. [PMID: 36130864 PMCID: PMC9828110 DOI: 10.1002/anie.202207328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/12/2023]
Abstract
The potential for ultrahigh-throughput compartmentalization renders droplet microfluidics an attractive tool for the directed evolution of enzymes. Importantly, it ensures maintenance of the phenotype-genotype linkage, enabling reliable identification of improved mutants. Herein, we report an approach for ultrahigh-throughput screening of an artificial metalloenzyme in double emulsion droplets (DEs) using commercially available fluorescence-activated cell sorters (FACS). This protocol was validated by screening a 400 double-mutant streptavidin library for ruthenium-catalyzed deallylation of an alloc-protected aminocoumarin. The most active variants, identified by next-generation sequencing, were in good agreement with hits obtained using a 96-well plate procedure. These findings pave the way for the systematic implementation of FACS for the directed evolution of (artificial) enzymes and will significantly expand the accessibility of ultrahigh-throughput DE screening protocols.
Collapse
Affiliation(s)
- Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Alexandria Deliz Liang
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Juliane Klehr
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
60
|
Jeong WJ, Song WJ. Design and directed evolution of noncanonical β-stereoselective metalloglycosidases. Nat Commun 2022; 13:6844. [PMID: 36369431 PMCID: PMC9652281 DOI: 10.1038/s41467-022-34713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Metallohydrolases are ubiquitous in nearly all subclasses of hydrolases, utilizing metal elements to activate a water molecule and facilitate its subsequent dissociation of diverse chemical bonds. However, such a catalytic role of metal ions is rarely found with glycosidases that hydrolyze the glycosidic bonds in sugars. Herein, we design metalloglycosidases by constructing a hydrolytically active Zn-binding site within a barrel-shaped outer membrane protein OmpF. Structure- and mechanism-based redesign and directed evolution have led to the emergence of Zn-dependent glycosidases with catalytic proficiency of 2.8 × 109 and high β-stereoselectivity. Biochemical characterizations suggest that the Zn-binding site constitutes a key catalytic motif along with at least one adjacent acidic residue. This work demonstrates that unprecedented metalloenzymes can be tailor-made, expanding the scope of inorganic reactivities in proteinaceous environments, resetting the structural and functional diversity of metalloenzymes, and providing the potential molecular basis of unidentified metallohydrolases and novel whole-cell biocatalysts.
Collapse
Affiliation(s)
- Woo Jae Jeong
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
| | - Woon Ju Song
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
61
|
Kipnis Y, Chaib AO, Vorobieva AA, Cai G, Reggiano G, Basanta B, Kumar E, Mittl PR, Hilvert D, Baker D. Design and optimization of enzymatic activity in a de novo β-barrel scaffold. Protein Sci 2022; 31:e4405. [PMID: 36305767 PMCID: PMC9601869 DOI: 10.1002/pro.4405] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022]
Abstract
While native scaffolds offer a large diversity of shapes and topologies for enzyme engineering, their often unpredictable behavior in response to sequence modification makes de novo generated scaffolds an exciting alternative. Here we explore the customization of the backbone and sequence of a de novo designed eight stranded β-barrel protein to create catalysts for a retro-aldolase model reaction. We show that active and specific catalysts can be designed in this fold and use directed evolution to further optimize activity and stereoselectivity. Our results support previous suggestions that different folds have different inherent amenability to evolution and this property could account, in part, for the distribution of natural enzymes among different folds.
Collapse
Affiliation(s)
- Yakov Kipnis
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA
| | | | - Anastassia A. Vorobieva
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor BiotechnologieBrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Guangyang Cai
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Gabriella Reggiano
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Benjamin Basanta
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Eshan Kumar
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
| | - Peer R.E. Mittl
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | - Donald Hilvert
- Laboratory of Organic ChemistryETH ZurichZurichSwitzerland
| | - David Baker
- Department of BiochemistryUniversity of WashingtonSeattleUSA
- Institute for Protein DesignUniversity of WashingtonSeattleUSA
- Howard Hughes Medical InstituteUniversity of WashingtonSeattleUSA
| |
Collapse
|
62
|
Núñez-Navarro N, Salazar Muñoz J, Castillo F, Ramírez-Sarmiento CA, Poblete-Castro I, Zacconi FC, Parra LP. Discovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis. Int J Mol Sci 2022; 23:ijms232012544. [PMID: 36293414 PMCID: PMC9604523 DOI: 10.3390/ijms232012544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.
Collapse
Affiliation(s)
- Nicolás Núñez-Navarro
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Javier Salazar Muñoz
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Francisco Castillo
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Universidad de Santiago de Chile (USACH), Santiago 8350709, Chile
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| | - Loreto P. Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| |
Collapse
|
63
|
OverFlap PCR: A reliable approach for generating plasmid DNA libraries containing random sequences without a template bias. PLoS One 2022; 17:e0262968. [PMID: 35939421 PMCID: PMC9359533 DOI: 10.1371/journal.pone.0262968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Over the decades, practical biotechnology researchers have aimed to improve naturally occurring proteins and create novel ones. It is widely recognized that coupling protein sequence randomization with various effect screening methodologies is one of the most powerful techniques for quickly, efficiently, and purposefully acquiring these desired improvements. Over the years, considerable advancements have been made in this field. However, developing PCR-based or template-guided methodologies has been hampered by resultant template sequence biases. Here, we present a novel whole plasmid amplification-based approach, which we named OverFlap PCR, for randomizing virtually any region of plasmid DNA without introducing a template sequence bias.
Collapse
|
64
|
Saez-Jimenez V, Scrima S, Lambrughi M, Papaleo E, Mapelli V, Engqvist MKM, Olsson L. Directed Evolution of ( R)-2-Hydroxyglutarate Dehydrogenase Improves 2-Oxoadipate Reduction by 2 Orders of Magnitude. ACS Synth Biol 2022; 11:2779-2790. [PMID: 35939387 PMCID: PMC9396657 DOI: 10.1021/acssynbio.2c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Pathway engineering is commonly employed to improve the
production
of various metabolites but may incur in bottlenecks due to the low
catalytic activity of a particular reaction step. The reduction of
2-oxoadipate to (R)-2-hydroxyadipate is a key reaction
in metabolic pathways that exploit 2-oxoadipate conversion via α-reduction
to produce adipic acid, an industrially important platform chemical.
Here, we engineered (R)-2-hydroxyglutarate dehydrogenase
from Acidaminococcus fermentans (Hgdh)
with the aim of improving 2-oxoadipate reduction. Using a combination
of computational analysis, saturation mutagenesis, and random mutagenesis,
three mutant variants with a 100-fold higher catalytic efficiency
were obtained. As revealed by rational analysis of the mutations found
in the variants, this improvement could be ascribed to a general synergistic
effect where mutation A206V played a key role since it boosted the
enzyme’s activity by 4.8-fold. The Hgdh variants with increased
activity toward 2-oxoadipate generated within this study pave the
way for the bio-based production of adipic acid.
Collapse
Affiliation(s)
- Veronica Saez-Jimenez
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark.,Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Valeria Mapelli
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Martin K M Engqvist
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Lisbeth Olsson
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
65
|
Zhang S, Zhu J, Fan S, Xie W, Yang Z, Si T. Directed evolution of a cyclodipeptide synthase with new activities via label-free mass spectrometric screening. Chem Sci 2022; 13:7581-7586. [PMID: 35872818 PMCID: PMC9241961 DOI: 10.1039/d2sc01637k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Directed evolution is a powerful approach to engineer enzymes via iterative creation and screening of variant libraries. However, assay development for high-throughput mutant screening remains challenging, particularly for new catalytic activities. Mass spectrometry (MS) analysis is label-free and well suited for untargeted discovery of new enzyme products but is traditionally limited by slow speed. Here we report an automated workflow for directed evolution of new enzymatic activities via high-throughput library creation and label-free MS screening. For a proof of concept, we chose to engineer a cyclodipeptide synthase (CDPS) that synthesizes diketopiperazine (DKP) compounds with therapeutic potential. In recombinant Escherichia coli, site-saturation mutagenesis (SSM) and error-prone PCR (epPCR) libraries expressing CDPS mutants were automatically created and cultivated on an integrated work cell. Culture supernatants were then robotically processed for matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS analysis at a rate of 5 s per sample. The resulting mass spectral data were processed via custom computational algorithms, which performed a multivariant analysis of 108 theoretical mass-to-charge (m/z) values of 190 possible DKP molecules within a mass window of 115–373 Da. An F186L CDPS mutant was isolated to produce cyclo(l-Phe–l-Val), which is undetectable in the product profile of the wild-type enzyme. This robotic, label-free MS screening approach may be generally applicable to engineering other enzymes with new activities in high throughput. A robotic workflow for directed evolution of new enzymatic activities via high-throughput library creation and label-free MS screening.![]()
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Jing Zhu
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shuai Fan
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 1000050 China
| | - Wenhao Xie
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhaoyong Yang
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 1000050 China
| | - Tong Si
- CAS Key Lib Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
66
|
Chi H, Zhou Q, Tutol JN, Phelps SM, Lee J, Kapadia P, Morcos F, Dodani SC. Coupling a Live Cell Directed Evolution Assay with Coevolutionary Landscapes to Engineer an Improved Fluorescent Rhodopsin Chloride Sensor. ACS Synth Biol 2022; 11:1627-1638. [PMID: 35389621 PMCID: PMC9184236 DOI: 10.1021/acssynbio.2c00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our understanding of chloride in biology has been accelerated through the application of fluorescent protein-based sensors in living cells. These sensors can be generated and diversified to have a range of properties using laboratory-guided evolution. Recently, we established that the fluorescent proton-pumping rhodopsin wtGR from Gloeobacter violaceus can be converted into a fluorescent sensor for chloride. To unlock this non-natural function, a single point mutation at the Schiff counterion position (D121V) was introduced into wtGR fused to cyan fluorescent protein (CFP) resulting in GR1-CFP. Here, we have integrated coevolutionary analysis with directed evolution to understand how the rhodopsin sequence space can be explored and engineered to improve this starting point. We first show how evolutionary couplings are predictive of functional sites in the rhodopsin family and how a fitness metric based on a sequence can be used to quantify the known proton-pumping activities of GR-CFP variants. Then, we couple this ability to predict potential functional outcomes with a screening and selection assay in live Escherichia coli to reduce the mutational search space of five residues along the proton-pumping pathway in GR1-CFP. This iterative selection process results in GR2-CFP with four additional mutations: E132K, A84K, T125C, and V245I. Finally, bulk and single fluorescence measurements in live E. coli reveal that GR2-CFP is a reversible, ratiometric fluorescent sensor for extracellular chloride with an improved dynamic range. We anticipate that our framework will be applicable to other systems, providing a more efficient methodology to engineer fluorescent protein-based sensors with desired properties.
Collapse
|
67
|
Wittmann BJ, Johnston KE, Almhjell PJ, Arnold FH. evSeq: Cost-Effective Amplicon Sequencing of Every Variant in a Protein Library. ACS Synth Biol 2022; 11:1313-1324. [PMID: 35172576 DOI: 10.1021/acssynbio.1c00592] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Widespread availability of protein sequence-fitness data would revolutionize both our biochemical understanding of proteins and our ability to engineer them. Unfortunately, even though thousands of protein variants are generated and evaluated for fitness during a typical protein engineering campaign, most are never sequenced, leaving a wealth of potential sequence-fitness information untapped. Primarily, this is because sequencing is unnecessary for many protein engineering strategies; the added cost and effort of sequencing are thus unjustified. It also results from the fact that, even though many lower-cost sequencing strategies have been developed, they often require at least some access to and experience with sequencing or computational resources, both of which can be barriers to access. Here, we present every variant sequencing (evSeq), a method and collection of tools/standardized components for sequencing a variable region within every variant gene produced during a protein engineering campaign at a cost of cents per variant. evSeq was designed to democratize low-cost sequencing for protein engineers and, indeed, anyone interested in engineering biological systems. Execution of its wet-lab component is simple, requires no sequencing experience to perform, relies only on resources and services typically available to biology labs, and slots neatly into existing protein engineering workflows. Analysis of evSeq data is likewise made simple by its accompanying software (found at github.com/fhalab/evSeq, documentation at fhalab.github.io/evSeq), which can be run on a personal laptop and was designed to be accessible to users with no computational experience. Low-cost and easy-to-use, evSeq makes the collection of extensive protein variant sequence-fitness data practical.
Collapse
Affiliation(s)
- Bruce J. Wittmann
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Kadina E. Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Patrick J. Almhjell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Frances H. Arnold
- Division of Biology and Biological Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, California 91125, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 210-41, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
68
|
Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction. Nat Chem 2022; 14:313-320. [PMID: 34916595 PMCID: PMC7612480 DOI: 10.1038/s41557-021-00833-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/05/2021] [Indexed: 11/08/2022]
Abstract
The combination of computational design and directed evolution could offer a general strategy to create enzymes with new functions. So far, this approach has delivered enzymes for a handful of model reactions. Here we show that new catalytic mechanisms can be engineered into proteins to accelerate more challenging chemical transformations. Evolutionary optimization of a primitive design afforded an efficient and enantioselective enzyme (BH32.14) for the Morita-Baylis-Hillman (MBH) reaction. BH32.14 is suitable for preparative-scale transformations, accepts a broad range of aldehyde and enone coupling partners and is able to promote selective monofunctionalizations of dialdehydes. Crystallographic, biochemical and computational studies reveal that BH32.14 operates via a sophisticated catalytic mechanism comprising a His23 nucleophile paired with a judiciously positioned Arg124. This catalytic arginine shuttles between conformational states to stabilize multiple oxyanion intermediates and serves as a genetically encoded surrogate of privileged bidentate hydrogen-bonding catalysts (for example, thioureas). This study demonstrates that elaborate catalytic devices can be built from scratch to promote demanding multi-step processes not observed in nature.
Collapse
|
69
|
Tavanti M. Synthetic DNA Libraries for Protein Engineering Toward Process Improvement in Drug Synthesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2397:33-45. [PMID: 34813058 DOI: 10.1007/978-1-0716-1826-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Speeding-up enzyme engineering by directed evolution is a primary target to be achieved for a wider uptake of biocatalysis in pharmaceutical process development. The capability to rapidly generate the designed sequence diversity has profound implications in the overall optimization of protein function. Drawbacks associated with traditional PCR methods for sequence diversification interfere with the generation of all the variants that have been designed. On the contrary, the enhanced quality of synthetic DNA libraries makes the exploration of sequence space more efficient. Here, methods for the effective utilization of synthetic DNA libraries are described. The overall procedure allows the generation of ready-to-screen libraries within two weeks from synthetic DNA acquisition.
Collapse
Affiliation(s)
- Michele Tavanti
- Early Chemical development Pharmaceutical Sciences, R&D AstraZeneca, Cambridge Biomedical Campus, Cambridge, UK. .,Synthetic Biochemistry, Medicinal Science and Technology, Pharma R&D GlaxoSmithKline Medicines Research Centre, Stevenage, UK.
| |
Collapse
|
70
|
Rapp LR, Marques SM, Nebel B, Damborsky J, Hauer B. Engineering CYP153A
M.aq
to Oxyfunctionalize its Inhibitor Dodecylamine Using a LC/MS Based Rapid Flow Analysis Screening. ChemCatChem 2022. [DOI: 10.1002/cctc.202101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lea R. Rapp
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Sérgio M. Marques
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Kamenice 5/A13 625 00 Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Bernd Nebel
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Kamenice 5/A13 625 00 Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Pekarska 53 656 91 Brno Czech Republic
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry Department of Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
71
|
Nichols AL, Blumenfeld Z, Fan C, Luebbert L, Blom AEM, Cohen BN, Marvin JS, Borden PM, Kim CH, Muthusamy AK, Shivange AV, Knox HJ, Campello HR, Wang JH, Dougherty DA, Looger LL, Gallagher T, Rees DC, Lester HA. Fluorescence activation mechanism and imaging of drug permeation with new sensors for smoking-cessation ligands. eLife 2022; 11:e74648. [PMID: 34982029 PMCID: PMC8820738 DOI: 10.7554/elife.74648] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Nicotinic partial agonists provide an accepted aid for smoking cessation and thus contribute to decreasing tobacco-related disease. Improved drugs constitute a continued area of study. However, there remains no reductionist method to examine the cellular and subcellular pharmacokinetic properties of these compounds in living cells. Here, we developed new intensity-based drug-sensing fluorescent reporters (iDrugSnFRs) for the nicotinic partial agonists dianicline, cytisine, and two cytisine derivatives - 10-fluorocytisine and 9-bromo-10-ethylcytisine. We report the first atomic-scale structures of liganded periplasmic binding protein-based biosensors, accelerating development of iDrugSnFRs and also explaining the activation mechanism. The nicotinic iDrugSnFRs detect their drug partners in solution, as well as at the plasma membrane (PM) and in the endoplasmic reticulum (ER) of cell lines and mouse hippocampal neurons. At the PM, the speed of solution changes limits the growth and decay rates of the fluorescence response in almost all cases. In contrast, we found that rates of membrane crossing differ among these nicotinic drugs by >30-fold. The new nicotinic iDrugSnFRs provide insight into the real-time pharmacokinetic properties of nicotinic agonists and provide a methodology whereby iDrugSnFRs can inform both pharmaceutical neuroscience and addiction neuroscience.
Collapse
Affiliation(s)
- Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Zack Blumenfeld
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Chengcheng Fan
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Institute of Biology, Leiden UniversityLeidenNetherlands
| | - Annet EM Blom
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Anand K Muthusamy
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hailey J Knox
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | | | - Jonathan H Wang
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
72
|
Frei MS, Tarnawski M, Roberti MJ, Koch B, Hiblot J, Johnsson K. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat Methods 2022; 19:65-70. [PMID: 34916672 PMCID: PMC8748199 DOI: 10.1038/s41592-021-01341-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022]
Abstract
Self-labeling protein tags such as HaloTag are powerful tools that can label fusion proteins with synthetic fluorophores for use in fluorescence microscopy. Here we introduce HaloTag variants with either increased or decreased brightness and fluorescence lifetime compared with HaloTag7 when labeled with rhodamines. Combining these HaloTag variants enabled live-cell fluorescence lifetime multiplexing of three cellular targets in one spectral channel using a single fluorophore and the generation of a fluorescence lifetime-based biosensor. Additionally, the brightest HaloTag variant showed up to 40% higher brightness in live-cell imaging applications.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
73
|
Ming H, Yuan B, Qu G, Sun Z. Engineering the activity of amine dehydrogenase in the asymmetric reductive amination of hydroxyl ketones. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An engineered AmDH derived from a leucine dehydrogenase was used as the starting enzyme to improve its activity in the synthesis of (R)-3-amino-1-butanol. Preparative-scale synthesis of the (R)-product (90% yield, >99%) was performed on a gram-scale.
Collapse
Affiliation(s)
- Hui Ming
- Department of Life Sciences and Medicine, University of Science and technology of China, Hefei 230022, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
74
|
Zhou Q, Chin M, Fu Y, Liu P, Yang Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 2021; 374:1612-1616. [PMID: 34941416 PMCID: PMC9309897 DOI: 10.1126/science.abk1603] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Naturally occurring enzymes can be a source of unnatural reactivity that can be molded by directed evolution to generate efficient biocatalysts with valuable activities. Owing to the lack of exploitable stereocontrol elements in synthetic systems, steering the absolute and relative stereochemistry of free-radical processes is notoriously difficult in asymmetric catalysis. Inspired by the innate redox properties of first-row transition-metal cofactors, we repurposed cytochromes P450 to catalyze stereoselective atom-transfer radical cyclization. A set of metalloenzymes was engineered to impose substantial stereocontrol over the radical addition step and the halogen rebound step in these unnatural processes, allowing enantio- and diastereodivergent radical catalysis. This evolvable metalloenzyme platform represents a promising solution to tame fleeting radical intermediates for asymmetric catalysis.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Michael Chin
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, USA.,Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California 93106, USA.,Corresponding author.
| |
Collapse
|
75
|
Hanning KR, Minot M, Warrender AK, Kelton W, Reddy ST. Deep mutational scanning for therapeutic antibody engineering. Trends Pharmacol Sci 2021; 43:123-135. [PMID: 34895944 DOI: 10.1016/j.tips.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022]
Abstract
The biophysical and functional properties of monoclonal antibody (mAb) drug candidates are often improved by protein engineering methods to increase the probability of clinical efficacy. One emerging method is deep mutational scanning (DMS) which combines the power of exhaustive protein mutagenesis and functional screening with deep sequencing and bioinformatics. The application of DMS has yielded significant improvements to the affinity, specificity, and stability of several preclinical antibodies alongside novel applications such as introducing multi-specific binding properties. DMS has also been applied directly on target antigens to precisely map antibody-binding epitopes and notably to profile the mutational escape potential of viral targets (e.g., SARS-CoV-2 variants). Finally, DMS combined with machine learning is enabling advances in the computational screening and engineering of therapeutic antibodies.
Collapse
Affiliation(s)
- Kyrin R Hanning
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - Mason Minot
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland
| | - Annmaree K Warrender
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton 3240, New Zealand.
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4058, Switzerland.
| |
Collapse
|
76
|
Saito Y, Oikawa M, Sato T, Nakazawa H, Ito T, Kameda T, Tsuda K, Umetsu M. Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Misaki Oikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takumi Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Koji Tsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
77
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
78
|
Wang J, Anderson K, Yang E, He L, Lidstrom ME. Enzyme engineering and in vivo testing of a formate reduction pathway. Synth Biol (Oxf) 2021; 6:ysab020. [PMID: 34651085 PMCID: PMC8511477 DOI: 10.1093/synbio/ysab020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Formate is an attractive feedstock for sustainable microbial production of fuels and chemicals, but its potential is limited by the lack of efficient assimilation pathways. The reduction of formate to formaldehyde would allow efficient downstream assimilation, but no efficient enzymes are known for this transformation. To develop a 2-step formate reduction pathway, we screened natural variants of acyl-CoA synthetase (ACS) and acylating aldehyde dehydrogenase (ACDH) for activity on one-carbon substrates and identified active and highly expressed homologs of both enzymes. We then performed directed evolution, increasing ACDH-specific activity by 2.5-fold and ACS lysate activity by 5-fold. To test for the in vivo activity of our pathway, we expressed it in a methylotroph which can natively assimilate formaldehyde. Although the enzymes were active in cell extracts, we could not detect formate assimilation into biomass, indicating that further improvement will be required for formatotrophy. Our work provides a foundation for further development of a versatile pathway for formate assimilation.
Collapse
Affiliation(s)
- Jue Wang
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Karl Anderson
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Ellen Yang
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Lian He
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, DC, USA
| |
Collapse
|
79
|
Sana B, Ho T, Kannan S, Ke D, Li EHY, Seayad J, Verma CS, Duong HA, Ghadessy FJ. Engineered RebH Halogenase Variants Demonstrating a Specificity Switch from Tryptophan towards Novel Indole Compounds. Chembiochem 2021; 22:2791-2798. [PMID: 34240527 PMCID: PMC8518859 DOI: 10.1002/cbic.202100210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Indexed: 01/21/2023]
Abstract
Activating industrially important aromatic hydrocarbons by installing halogen atoms is extremely important in organic synthesis and often improves the pharmacological properties of drug molecules. To this end, tryptophan halogenase enzymes are potentially valuable tools for regioselective halogenation of arenes, including various industrially important indole derivatives and similar scaffolds. Although endogenous enzymes show reasonable substrate scope towards indole compounds, their efficacy can often be improved by engineering. Using a structure-guided semi-rational mutagenesis approach, we have developed two RebH variants with expanded biocatalytic repertoires that can efficiently halogenate several novel indole substrates and produce important pharmaceutical intermediates. Interestingly, the engineered enzymes are completely inactive towards their natural substrate tryptophan in spite of their high tolerance to various functional groups in the indole ring. Computational modelling and molecular dynamics simulations provide mechanistic insights into the role of gatekeeper residues in the substrate binding site and the dramatic switch in substrate specificity when these are mutated.
Collapse
Affiliation(s)
- Barindra Sana
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Timothy Ho
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
| | - Ding Ke
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| | - Eunice H. Y. Li
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Chandra S. Verma
- Bioinformatics InstituteAgency for Science Technology And Research (A*STAR)30 Biopolis Street, #07-01 MatrixSingapore138671Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang DriveSingapore637551Singapore
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Hung A. Duong
- Institute of Chemical and Engineering SciencesAgency for Science Technology And Research (A*STAR)8 Biomedical Grove, Neuros, #07-01Singapore138665Singapore
| | - Farid J. Ghadessy
- Disease Intervention Technology LaboratoryInstitute of Molecular and Cell BiologyAgency for Science Technology and Research (A*STAR)8 A Biomedical Grove, #06-04/05 Neuros/ImmunosSingapore138648Singapore
| |
Collapse
|
80
|
Baiyoumy A, Vallapurackal J, Schwizer F, Heinisch T, Kardashliev T, Held M, Panke S, Ward TR. Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein. ACS Catal 2021; 11:10705-10712. [PMID: 34504734 PMCID: PMC8419837 DOI: 10.1021/acscatal.1c02405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Indexed: 12/14/2022]
Abstract
Artificial metalloenzymes (ArMs) combine characteristics of both homogeneous catalysts and enzymes. Merging abiotic and biotic features allows for the implementation of new-to-nature reactions in living organisms. Here, we present the directed evolution of an artificial metalloenzyme based on Escherichia coli surface-displayed streptavidin (SavSD hereafter). Through the binding of a ruthenium-pianostool cofactor to SavSD, an artificial allylic deallylase (ADAse hereafter) is assembled, which displays catalytic activity toward the deprotection of alloc-protected 3-hydroxyaniline. The uncaged aminophenol acts as a gene switch and triggers the overexpression of a fluorescent green fluorescent protein (GFP) reporter protein. This straightforward readout of ADAse activity allowed the simultaneous saturation mutagenesis of two amino acid residues in Sav near the ruthenium cofactor, expediting the screening of 2762 individual clones. A 1.7-fold increase of in vivo activity was observed for SavSD S112T-K121G compared to the wild-type SavSD (wt-SavSD). Finally, the best performing Sav isoforms were purified and tested in vitro (SavPP hereafter). For SavPP S112M-K121A, a total turnover number of 372 was achieved, corresponding to a 5.9-fold increase vs wt-SavPP. To analyze the marked difference in activity observed between the surface-displayed and purified ArMs, the oligomeric state of SavSD was determined. For this purpose, crosslinking experiments of E. coli cells overexpressing SavSD were carried out, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. The data suggest that SavSD is most likely displayed as a monomer on the surface of E. coli. We hypothesize that the difference between the in vivo and in vitro screening results may reflect the difference in the oligomeric state of SavSD vs soluble SavPP (monomeric vs tetrameric). Accordingly, care should be applied when evolving oligomeric proteins using E. coli surface display.
Collapse
Affiliation(s)
- Alain Baiyoumy
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Jaicy Vallapurackal
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Fabian Schwizer
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Tillmann Heinisch
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | | | - Martin Held
- ETH
Zürich, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sven Panke
- ETH
Zürich, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
81
|
Currin A, Parker S, Robinson CJ, Takano E, Scrutton NS, Breitling R. The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnol Adv 2021; 50:107762. [PMID: 34000294 PMCID: PMC8299547 DOI: 10.1016/j.biotechadv.2021.107762] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
The ability to engineer biological systems, whether to introduce novel functionality or improved performance, is a cornerstone of biotechnology and synthetic biology. Typically, this requires the generation of genetic diversity to explore variations in phenotype, a process that can be performed at many levels, from single molecule targets (i.e., in directed evolution of enzymes) to whole organisms (e.g., in chassis engineering). Recent advances in DNA synthesis technology and automation have enhanced our ability to create variant libraries with greater control and throughput. This review highlights the latest developments in approaches to create such a hierarchy of diversity from the enzyme level to entire pathways in vitro, with a focus on the creation of combinatorial libraries that are required to navigate a target's vast design space successfully to uncover significant improvements in function.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| | - Steven Parker
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher J Robinson
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S Scrutton
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
82
|
Stucki A, Jusková P, Nuti N, Schmitt S, Dittrich PS. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression. SMALL METHODS 2021; 5:e2100331. [PMID: 34927870 DOI: 10.1002/smtd.202100331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Indexed: 06/14/2023]
Abstract
Microfluidic methods for the formation of single and double emulsion (DE) droplets allow for the encapsulation and isolation of reactants inside nanoliter compartments. Such methods have greatly enhanced the toolbox for high-throughput screening for cell or enzyme engineering and drug discovery. However, remaining challenges in the supply of reagents into these enclosed compartments limit the applicability of droplet microfluidics. Here, a strategy is introduced for on-demand delivery of reactants in DEs. Lipid vesicles are used as reactant carriers, which are co-encapsulated in double emulsions and release their cargo upon addition of an external trigger, here the anionic surfactant sodium dodecyl sulfate (SDS). The reagent present inside the lipid vesicles stays isolated from the remaining content of the DE vessel until SDS enters the DE lumen and solubilizes the vesicles' lipid bilayer. The versatility of the method is demonstrated with two critical applications chosen as representative assays for high-throughput screening: the induction of gene expression in bacteria and the initiation of an enzymatic reaction. This method not only allows for the release of the lipid vesicle content inside DEs to be synchronized for all DEs but also for the release to be triggered at any desired time.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Nicola Nuti
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
83
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
84
|
Alejaldre L, Pelletier JN, Quaglia D. Methods for enzyme library creation: Which one will you choose?: A guide for novices and experts to introduce genetic diversity. Bioessays 2021; 43:e2100052. [PMID: 34263468 DOI: 10.1002/bies.202100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Enzyme engineering allows to explore sequence diversity in search for new properties. The scientific literature is populated with methods to create enzyme libraries for engineering purposes, however, choosing a suitable method for the creation of mutant libraries can be daunting, in particular for the novices. Here, we address both novices and experts: how can one enter the arena of enzyme library design and what guidelines can advanced users apply to select strategies best suited to their purpose? Section I is dedicated to the novices and presents an overview of established and standard methods for library creation, as well as available commercial solutions. The expert will discover an up-to-date tool to freshen up their repertoire (Section I) and learn of the newest methods that are likely to become a mainstay (Section II). We focus primarily on in vitro methods, presenting the advantages of each method. Our ultimate aim is to offer a selection of methods/strategies that we believe to be most useful to the enzyme engineer, whether a first-timer or a seasoned user.
Collapse
Affiliation(s)
- Lorea Alejaldre
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada
| | - Joelle N Pelletier
- Département de biochimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, Quebec, Canada.,PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, Quebec, Canada.,Département de chimie, Université de Montréal, Montréal, Quebec, Canada
| | - Daniela Quaglia
- Département de chimie, Université de Montréal, Montréal, Quebec, Canada.,School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
85
|
Saroay R, Roiban G, Alkhalaf LM, Challis GL. Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion. Chembiochem 2021; 22:2262-2265. [PMID: 33851500 PMCID: PMC8359946 DOI: 10.1002/cbic.202100145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Aromatic nitration reactions are a cornerstone of organic chemistry, but are challenging to scale due to corrosive reagents and elevated temperatures. The cytochrome P450 TxtE nitrates the indole 4-position of l-tryptophan at room temperature using NO, O2 and NADPH, and has potential to be developed into a useful aromatic nitration biocatalyst. However, its narrow substrate scope (requiring both the α-amino acid and indole functionalities) have hindered this. Screening of an R59 mutant library of a TxtE-reductase fusion protein identified a variant (R59C) that nitrates tryptamine, which is not accepted by native TxtE. This variant exhibits a broader substrate scope than the wild type enzyme and is able to nitrate a range of tryptamine analogues, with significant alterations to the aromatic and aminoethyl moieties.
Collapse
Affiliation(s)
- Rakesh Saroay
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Gheorghe‐Doru Roiban
- Synthetic BiochemistryMedicinal Science & TechnologyGlaxoSmithKlineMedicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | | | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClaytonVIC 3800Australia
| |
Collapse
|
86
|
Leveson-Gower R, Zhou Z, Drienovská I, Roelfes G. Unlocking Iminium Catalysis in Artificial Enzymes to Create a Friedel-Crafts Alkylase. ACS Catal 2021; 11:6763-6770. [PMID: 34168902 PMCID: PMC8218303 DOI: 10.1021/acscatal.1c00996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Indexed: 02/08/2023]
Abstract
The construction and engineering of artificial enzymes consisting of abiological catalytic moieties incorporated into protein scaffolds is a promising strategy to realize non-natural mechanisms in biocatalysis. Here, we show that incorporation of the noncanonical amino acid para-aminophenylalanine (pAF) into the nonenzymatic protein scaffold LmrR creates a proficient and stereoselective artificial enzyme (LmrR_pAF) for the vinylogous Friedel-Crafts alkylation between α,β-unsaturated aldehydes and indoles. pAF acts as a catalytic residue, activating enal substrates toward conjugate addition via the formation of intermediate iminium ion species, while the protein scaffold provides rate acceleration and stereoinduction. Improved LmrR_pAF variants were identified by low-throughput directed evolution advised by alanine-scanning to obtain a triple mutant that provided higher yields and enantioselectivities for a range of aliphatic enals and substituted indoles. Analysis of Michaelis-Menten kinetics of LmrR_pAF and evolved mutants reveals that different activities emerge via evolutionary pathways that diverge from one another and specialize catalytic reactivity. Translating this iminium-based catalytic mechanism into an enzymatic context will enable many more biocatalytic transformations inspired by organocatalysis.
Collapse
Affiliation(s)
- Reuben
B. Leveson-Gower
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | | | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
87
|
Knorrscheidt A, Soler J, Hünecke N, Püllmann P, Garcia-Borràs M, Weissenborn MJ. Accessing Chemo- and Regioselective Benzylic and Aromatic Oxidations by Protein Engineering of an Unspecific Peroxygenase. ACS Catal 2021; 11:7327-7338. [PMID: 34631225 PMCID: PMC8496131 DOI: 10.1021/acscatal.1c00847] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/21/2021] [Indexed: 01/12/2023]
Abstract
![]()
Unspecific
peroxygenases (UPOs) enable oxyfunctionalizations of
a broad substrate range with unparalleled activities. Tailoring these
enzymes for chemo- and regioselective transformations represents a
grand challenge due to the difficulties in their heterologous productions.
Herein, we performed protein engineering in Saccharomyces
cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants
were screened. This protein engineering led to a significant reshaping
of the active site as elucidated by computational modelling. The reshaping
was responsible for the increased oxyfunctionalization activity, with
improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole.
Moreover, variants were identified with high chemo- and regioselectivities
in the oxyfunctionalization of aromatic and benzylic carbons, respectively.
The benzylic hydroxylation was demonstrated to perform with enantioselectivities
of up to 95% ee. The proposed evolutionary protocol
and rationalization of the enhanced activities and selectivities acquired
by MthUPO variants represent a step forward toward
the use and implementation of UPOs in biocatalytic synthetic pathways
of industrial interest.
Collapse
Affiliation(s)
- Anja Knorrscheidt
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jordi Soler
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Nicole Hünecke
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Pascal Püllmann
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Martin J. Weissenborn
- Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
| |
Collapse
|
88
|
Schneider A, Jegl P, Hauer B. Stereoselective Directed Cationic Cascades Enabled by Molecular Anchoring in Terpene Cyclases. Angew Chem Int Ed Engl 2021; 60:13251-13256. [PMID: 33769659 PMCID: PMC8251838 DOI: 10.1002/anie.202101228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Indexed: 01/27/2023]
Abstract
Cascade reactions appeared as a cutting‐edge strategy to streamline the assembly of complex structural scaffolds from naturally available precursors in an atom‐, as well as time, labor‐ and cost‐efficient way. We herein report a strategy to control cationic cyclization cascades by exploiting the ability of anchoring dynamic substrates in the active site of terpene cyclases via designed hydrogen bonding. Thereby, it is possible to induce “directed” cyclizations in contrast to established “non‐stop” cyclizations (99:1) and predestinate cascade termination at otherwise catalytically barely accessible intermediates. As a result, we are able to provide efficient access to naturally widely occurring apocarotenoids, value‐added flavors and fragrances in gram‐scale by replacing multi‐stage synthetic routes to a single step with unprecedented selectivity (>99.5 % ee) and high yields (up to 89 %).
Collapse
Affiliation(s)
- Andreas Schneider
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart-Vaihingen, Germany
| | - Philipp Jegl
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart-Vaihingen, Germany
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart-Vaihingen, Germany
| |
Collapse
|
89
|
Tretyachenko V, Voráček V, Souček R, Fujishima K, Hlouchová K. CoLiDe: Combinatorial Library Design tool for probing protein sequence space. Bioinformatics 2021; 37:482-489. [PMID: 32956450 PMCID: PMC8088326 DOI: 10.1093/bioinformatics/btaa804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/28/2020] [Accepted: 09/07/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Current techniques of protein engineering focus mostly on re-designing small targeted regions or defined structural scaffolds rather than constructing combinatorial libraries of versatile compositions and lengths. This is a missed opportunity because combinatorial libraries are emerging as a vital source of novel functional proteins and are of interest in diverse research areas. RESULTS Here, we present a computational tool for Combinatorial Library Design (CoLiDe) offering precise control over protein sequence composition, length and diversity. The algorithm uses evolutionary approach to provide solutions to combinatorial libraries of degenerate DNA templates. We demonstrate its performance and precision using four different input alphabet distribution on different sequence lengths. In addition, a model design and experimental pipeline for protein library expression and purification is presented, providing a proof-of-concept that our protocol can be used to prepare purified protein library samples of up to 1011-1012 unique sequences. CoLiDe presents a composition-centric approach to protein design towards different functional phenomena. AVAILABILITYAND IMPLEMENTATION CoLiDe is implemented in Python and freely available at https://github.com/voracva1/CoLiDe. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Vyacheslav Tretyachenko
- Department of Cell Biology, Faculty of Science, Charles University, Biocev, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic
| | - Václav Voráček
- Department of Cybernetics, Center for Machine Perception, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague, Czech Republic
| | - Radko Souček
- Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 1528550, Japan
| | - Klára Hlouchová
- Department of Cell Biology, Faculty of Science, Charles University, Biocev, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry IOCB Research Centre & Gilead Sciences, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| |
Collapse
|
90
|
Nattermann M, Burgener S, Pfister P, Chou A, Schulz L, Lee SH, Paczia N, Zarzycki J, Gonzalez R, Erb TJ. Engineering a Highly Efficient Carboligase for Synthetic One-Carbon Metabolism. ACS Catal 2021; 11:5396-5404. [PMID: 34484855 PMCID: PMC8411744 DOI: 10.1021/acscatal.1c01237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Indexed: 12/15/2022]
Abstract
![]()
One of the biggest
challenges to realize a circular carbon economy
is the synthesis of complex carbon compounds from one-carbon (C1)
building blocks. Since the natural solution space of C1–C1
condensations is limited to highly complex enzymes, the development
of more simple and robust biocatalysts may facilitate the engineering
of C1 assimilation routes. Thiamine diphosphate-dependent enzymes
harbor great potential for this task, due to their ability to create
C–C bonds. Here, we employed structure-guided iterative saturation
mutagenesis to convert oxalyl-CoA decarboxylase (OXC) from Methylobacterium extorquens into a glycolyl-CoA synthase
(GCS) that allows for the direct condensation of the two C1 units
formyl-CoA and formaldehyde. A quadruple variant MeOXC4 showed a 100 000-fold
switch between OXC and GCS activities, a 200-fold increase in the
GCS activity compared to the wild type, and formaldehyde affinity
that is comparable to natural formaldehyde-converting enzymes. Notably,
MeOCX4 outcompetes all other natural and engineered enzymes for C1–C1
condensations by more than 40-fold in catalytic efficiency and is
highly soluble in Escherichia coli.
In addition to the increased GCS activity, MeOXC4 showed up to 300-fold
higher activity than the wild type toward a broad range of carbonyl
acceptor substrates. When applied in vivo, MeOXC4 enables the production
of glycolate from formaldehyde, overcoming the current bottleneck
of C1–C1 condensation in whole-cell bioconversions and paving
the way toward synthetic C1 assimilation routes in vivo.
Collapse
Affiliation(s)
- Maren Nattermann
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Simon Burgener
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Pascal Pfister
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Alexander Chou
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Luca Schulz
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Seung Hwan Lee
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Nicole Paczia
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Ramon Gonzalez
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Tobias J. Erb
- Department of Biochemistry & Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
91
|
Schneider A, Jegl P, Hauer B. Stereoselektive gerichtete kationische Kaskaden ermöglicht durch molekulare Verankerung in Terpencyclasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andreas Schneider
- Institut der Biochemie und technischen Biochemie Universität Stuttgart Allmandring 31 70569 Stuttgart-Vaihingen Deutschland
| | - Philipp Jegl
- Institut der Biochemie und technischen Biochemie Universität Stuttgart Allmandring 31 70569 Stuttgart-Vaihingen Deutschland
| | - Bernhard Hauer
- Institut der Biochemie und technischen Biochemie Universität Stuttgart Allmandring 31 70569 Stuttgart-Vaihingen Deutschland
| |
Collapse
|
92
|
Murugayah SA, Evans GB, Tyndall JDA, Gerth ML. A single point mutation converts a glutaryl-7-aminocephalosporanic acid acylase into an N-acyl-homoserine lactone acylase. Biotechnol Lett 2021; 43:1467-1473. [PMID: 33891232 PMCID: PMC8197700 DOI: 10.1007/s10529-021-03135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022]
Abstract
Objective To change the specificity of a glutaryl-7-aminocephalosporanic acid acylase (GCA) towards N-acyl homoserine lactones (AHLs; quorum sensing signalling molecules) by site-directed mutagenesis. Results Seven residues were identified by analysis of existing crystal structures as potential determinants of substrate specificity. Site-saturation mutagenesis libraries were created for each of the seven selected positions. High-throughput activity screening of each library identified two variants—Arg255Ala, Arg255Gly—with new activities towards N-acyl homoserine lactone substrates. Structural modelling of the Arg255Gly mutation suggests that the smaller side-chain of glycine (as compared to arginine in the wild-type enzyme) avoids a key clash with the acyl group of the N-acyl homoserine lactone substrate. Conclusions Mutation of a single amino acid residue successfully converted a GCA (with no detectable activity against AHLs) into an AHL acylase. This approach may be useful for further engineering of ‘quorum quenching’ enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03135-9.
Collapse
Affiliation(s)
| | - Gary B Evans
- The Ferrier Research Institute, Victoria University of Wellington, Petone, 5046, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, 9054, New Zealand
| | - Monica L Gerth
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand. .,School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
93
|
Rapp LR, Marques SM, Zukic E, Rowlinson B, Sharma M, Grogan G, Damborsky J, Hauer B. Substrate Anchoring and Flexibility Reduction in CYP153A M.aq Leads to Highly Improved Efficiency toward Octanoic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05193] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lea R. Rapp
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Erna Zukic
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Benjamin Rowlinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Bernhard Hauer
- Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
94
|
Sauer DF, Wittwer M, Markel U, Minges A, Spiertz M, Schiffels J, Davari MD, Groth G, Okuda J, Schwaneberg U. Chemogenetic engineering of nitrobindin toward an artificial epoxygenase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00609f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemogenetic engineering turned the heme protein nitrobindin into an artificial epoxygenase: MnPPIX was introduced and subsequent protein engineering increased the activity in the epoxidation of styrene derivatives by overall 7-fold.
Collapse
Affiliation(s)
- Daniel F. Sauer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Malte Wittwer
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Markel
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Markus Spiertz
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | | - Mehdi D. Davari
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz Institute for Interactive Materials
| |
Collapse
|
95
|
Acevedo-Rocha CG, Hollmann F, Sanchis J, Sun Z. A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Deft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville 3052, Victoria, Australia
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin, 300308 China
| |
Collapse
|
96
|
Voutilainen S, Heinonen M, Andberg M, Jokinen E, Maaheimo H, Pääkkönen J, Hakulinen N, Rouvinen J, Lähdesmäki H, Kaski S, Rousu J, Penttilä M, Koivula A. Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods. Appl Microbiol Biotechnol 2020; 104:10515-10529. [PMID: 33147349 PMCID: PMC7671976 DOI: 10.1007/s00253-020-10960-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
In this work, deoxyribose-5-phosphate aldolase (Ec DERA, EC 4.1.2.4) from Escherichia coli was chosen as the protein engineering target for improving the substrate preference towards smaller, non-phosphorylated aldehyde donor substrates, in particular towards acetaldehyde. The initial broad set of mutations was directed to 24 amino acid positions in the active site or in the close vicinity, based on the 3D complex structure of the E. coli DERA wild-type aldolase. The specific activity of the DERA variants containing one to three amino acid mutations was characterised using three different substrates. A novel machine learning (ML) model utilising Gaussian processes and feature learning was applied for the 3rd mutagenesis round to predict new beneficial mutant combinations. This led to the most clear-cut (two- to threefold) improvement in acetaldehyde (C2) addition capability with the concomitant abolishment of the activity towards the natural donor molecule glyceraldehyde-3-phosphate (C3P) as well as the non-phosphorylated equivalent (C3). The Ec DERA variants were also tested on aldol reaction utilising formaldehyde (C1) as the donor. Ec DERA wild-type was shown to be able to carry out this reaction, and furthermore, some of the improved variants on acetaldehyde addition reaction turned out to have also improved activity on formaldehyde. KEY POINTS: • DERA aldolases are promiscuous enzymes. • Synthetic utility of DERA aldolase was improved by protein engineering approaches. • Machine learning methods aid the protein engineering of DERA.
Collapse
Affiliation(s)
- Sanni Voutilainen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Markus Heinonen
- Department of Computer Science, Aalto University, Espoo, Finland
- Helsinki Institute for Information Technology, Espoo, Finland
| | - Martina Andberg
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Emmi Jokinen
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Johan Pääkkönen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101, Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101, Joensuu, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101, Joensuu, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Samuel Kaski
- Department of Computer Science, Aalto University, Espoo, Finland
- Helsinki Institute for Information Technology, Espoo, Finland
| | - Juho Rousu
- Department of Computer Science, Aalto University, Espoo, Finland
- Helsinki Institute for Information Technology, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
97
|
Visootsat A, Nakamura A, Wang TW, Iino R. Combined Approach to Engineer a Highly Active Mutant of Processive Chitinase Hydrolyzing Crystalline Chitin. ACS OMEGA 2020; 5:26807-26816. [PMID: 33111007 PMCID: PMC7581260 DOI: 10.1021/acsomega.0c03911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Serratia marcescens chitinase A (SmChiA) processively hydrolyzes recalcitrant biomass crystalline chitin under mild conditions. Here, we combined multiple sequence alignment, site-saturation mutagenesis, and automated protein purification and activity measurement with liquid-handling robot to reduce the number of mutation trials and shorten the screening time for hydrolytic activity improvement of SmChiA. The amino acid residues, which are not conserved in the alignment and are close to the aromatic residues along the substrate-binding sites in the crystal structure, were selected for site-saturation mutagenesis. Using the previously identified highly active F232W/F396W mutant as a template, we identified the F232W/F396W/S538V mutant, which shows further improved hydrolytic activity just by trying eight different sites. Importantly, valine was not found in the multiple sequence alignment at Ser538 site of SmChiA. Our combined approach allows engineering of highly active enzyme mutants, which cannot be identified only by the introduction of predominant amino acid residues in the multiple sequence alignment.
Collapse
Affiliation(s)
- Akasit Visootsat
- Department
of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Department
of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | | | - Ryota Iino
- Department
of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
98
|
Wouters Y, Jaspers T, De Strooper B, Dewilde M. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS 2020; 17:62. [PMID: 33054787 PMCID: PMC7556960 DOI: 10.1186/s12987-020-00226-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Preclinical models to determine blood to brain transport ability of therapeutics are often ambiguous. In this study a method is developed that relies on CNS target-engagement and is able to rank brain-penetrating capacities. This method led to the discovery of an anti-transferrin receptor nanobody that is able to deliver a biologically active peptide to the brain via receptor-mediated transcytosis. Methods Various nanobodies against the mouse transferrin receptor were fused to neurotensin and injected peripherally in mice. Neurotensin is a neuropeptide that causes hypothermia when present in the brain but is unable to reach the brain from the periphery. Continuous body temperature measurements were used as a readout for brain penetration of nanobody-neurotensin fusions after its peripheral administration. Full temperature curves were analyzed using two-way ANOVA with Dunnett multiple comparisons tests. Results One anti-transferrin receptor nanobody coupled to neurotensin elicited a drop in body temperature following intravenous injection. Epitope binning indicated that this nanobody bound a distinct transferrin receptor epitope compared to the non-crossing nanobodies. This brain-penetrating nanobody was used to characterize the in vivo hypothermia model. The hypothermic effect caused by neurotensin is dose-dependent and could be used to directly compare peripheral administration routes and various nanobodies in terms of brain exposure. Conclusion This method led to the discovery of an anti-transferrin receptor nanobody that can reach the brain via receptor-mediated transcytosis after peripheral administration. This method could be used to assess novel proteins for brain-penetrating capabilities using a target-engaging readout.
Collapse
Affiliation(s)
- Y Wouters
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, B-3000, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, B-3000, Leuven, Belgium
| | - T Jaspers
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, B-3000, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, B-3000, Leuven, Belgium
| | - B De Strooper
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, B-3000, Leuven, Belgium. .,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, B-3000, Leuven, Belgium. .,UK Dementia Research Institute, University College London, London, UK.
| | - M Dewilde
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, box 602, B-3000, Leuven, Belgium. .,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, B-3000, Leuven, Belgium. .,VIB Discovery Sciences, B-3000, Leuven, Belgium. .,Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
99
|
Viña-Gonzalez J, Alcalde M. In vivo site-directed recombination (SDR): An efficient tool to reveal beneficial epistasis. Methods Enzymol 2020; 643:1-13. [PMID: 32896276 DOI: 10.1016/bs.mie.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Employing the homologous DNA recombination apparatus of Saccharomyces cerevisiae as a dynamic engineering tool allows mutant libraries to be constructed in a rapid and efficient manner. Among the plethora of methods based on the yeast's splicing apparatus, site-directed recombination (SDR) is often useful to gather information from mutations discovered in directed evolution experiments. When using SDR, the target gene is divided in segments carrying the selected mutation positions so that the resulting PCR fragments show 50% mutated and 50% wild type residues at the codons of interest. The PCR products are then assembled and cloned into yeast through one-pot transformations with the help of homologous overlapping flanking regions. By screening SDR libraries, the effect of the mutations/reversions at the different positions can be rapidly sorted out in a combinatorial manner. As such, SDR can serve as the `final polishing step´ in a laboratory evolution campaign, revealing beneficial synergies among mutations and/or overriding deleterious mutations. In practice, using SDR it is possible to discern between beneficial and negative epistasis, that is, it should be possible to collect positive synergistic mutations while discarding detrimental substitutions that affect the enzyme's fitness.
Collapse
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, Madrid, Spain; EvoEnzyme S.L, C/Marie Curie nº2, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, Madrid, Spain; EvoEnzyme S.L, C/Marie Curie nº2, Madrid, Spain.
| |
Collapse
|
100
|
Bartsch S, Brummund J, Köpke S, Straatman H, Vogel A, Schürmann M. Optimization of Alcohol Dehydrogenase for Industrial Scale Oxidation of Lactols. Biotechnol J 2020; 15:e2000171. [DOI: 10.1002/biot.202000171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Jan Brummund
- InnoSyn B.V. Urmonderbaan 22 Geleen NL‐6167RD The Netherlands
| | | | | | | | | |
Collapse
|