51
|
In vitro toxicological assessment of Arrabidaea brachypoda (DC.) Bureau: Mutagenicity and estrogenicity studies. Regul Toxicol Pharmacol 2017; 90:29-35. [DOI: 10.1016/j.yrtph.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
|
52
|
Fan C, Wang SC. Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products. CHEMOSPHERE 2017; 179:306-315. [PMID: 28376394 DOI: 10.1016/j.chemosphere.2017.03.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The enhanced removal of organic material from municipal waste water containing 50 mg/L of chemical oxygen demand and a given amount of alkyl paraben using a biofilm system was investigated. The parabens used were methyl, ethyl, and propyl paraben. The experiments were conducted at influent paraben concentrations of 10 and 50 mg/L. The influent pH was measured around 4.6 because of paraben hydrolysis. The effluent pH increased due to hydrogen consumption and small molecular acid generation. The higher removal rates were observed for the paraben with longer alkyl chains, which were more hydrophobic and capable of penetrating into microbial cells. The co-existing organic constituents in municipal waste water were found to be competitive with paraben molecules for microbial degradation at low paraben loading (i.e., 10 mg/L). Instead, the co-metabolic effect was observed at a higher paraben loading (i.e., 50 mg/L) due to more active enzymatic catalysis, implying the possible enhancement or organic removal in the presence of high levels of parabens. The difference in BOD and TOC removing ratios for parabens decreased with increasing HRT, implying their better mineralization than that of municipal organic constituents. This was because the microbial organism became more adapted to the reacting system with longer HRT, and more oxygenase was produced to facilitate the catechol formation and ring-opening reactions, causing apparent enhancement in mineralization.
Collapse
Affiliation(s)
- Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Shin-Chih Wang
- Geographic Information Technology Co., Ltd., Taipei, 10694, Taiwan.
| |
Collapse
|
53
|
Soukup ST, Müller DR, Kurrat A, Diel P, Kulling SE. Influence of testosterone on phase II metabolism and availability of soy isoflavones in male Wistar rats. Arch Toxicol 2017; 91:1649-1661. [PMID: 27743010 DOI: 10.1007/s00204-016-1853-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023]
Abstract
Genistein and daidzein are the main isoflavones in soy. Their potential beneficial or adverse effects in males like the prevention of prostate cancer or the impact on reproductive functions are controversially discussed. Major determinants of their bioactivity are the absorption and biotransformation of isoflavones. In this study, we focused on the influence of testosterone on plasma availability and phase II metabolism of isoflavones. Male Wistar rats, receiving an isoflavones rich diet, were randomized into three groups: Two groups were orchiectomized (ORX) at postnatal day (PND) 80 and treated for 11 days with testosterone propionate (TP) (ORX TP group) or a vehicle (ORX group) after a 7 days lasting hormonal decline. The third group served as control and remained intact. Rats were sacrificed at PND 98. ORX rats had reduced isoflavones plasma levels. Differently regulated mRNA expressions of transporters relevant for transport of phase II metabolites in liver and kidney may be responsible for this reduction, more precisely Slc10a1 and Slc21a1 in kidney as well as Slc22a8 in liver. While main phase II metabolites in intact rats were disulfates and sulfoglucuronides, the amount of sulfate conjugates was significantly diminished by ORX. In accordance with that, mRNA expression of different sulfotransferases was reduced in liver by ORX. The observed effects could be almost restored by TP treatment. In conclusion, testosterone, and likely further androgens, has a huge impact on phase II metabolism and availability of isoflavones by influencing the expression of different sulfotransferases and transporters.
Collapse
Affiliation(s)
- Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Dennis R Müller
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Anne Kurrat
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
54
|
Ng F, Couture G, Philippe C, Boutevin B, Caillol S. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials. Molecules 2017; 22:E149. [PMID: 28106795 PMCID: PMC6155700 DOI: 10.3390/molecules22010149] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023] Open
Abstract
The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.
Collapse
Affiliation(s)
- Feifei Ng
- Institut Charles Gerhardt-UMR 5253, CNRS, Université de Montpellier, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier, France.
| | - Guillaume Couture
- Institut Charles Gerhardt-UMR 5253, CNRS, Université de Montpellier, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier, France.
| | - Coralie Philippe
- Institut Charles Gerhardt-UMR 5253, CNRS, Université de Montpellier, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier, France.
| | - Bernard Boutevin
- Institut Charles Gerhardt-UMR 5253, CNRS, Université de Montpellier, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier, France.
| | - Sylvain Caillol
- Institut Charles Gerhardt-UMR 5253, CNRS, Université de Montpellier, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier, France.
| |
Collapse
|
55
|
Lee S, Barron MG. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists. PLoS One 2017; 12:e0169607. [PMID: 28061508 PMCID: PMC5218732 DOI: 10.1371/journal.pone.0169607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 11/18/2022] Open
Abstract
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors.
Collapse
Affiliation(s)
- Sehan Lee
- U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL, United States of America
- * E-mail:
| | - Mace G. Barron
- U.S. Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL, United States of America
| |
Collapse
|
56
|
Gütlein M, Kramer S. Filtered circular fingerprints improve either prediction or runtime performance while retaining interpretability. J Cheminform 2016; 8:60. [PMID: 27853484 PMCID: PMC5088672 DOI: 10.1186/s13321-016-0173-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Even though circular fingerprints have been first introduced more than 50 years ago, they are still widely used for building highly predictive, state-of-the-art (Q)SAR models. Historically, these structural fragments were designed to search large molecular databases. Hence, to derive a compact representation, circular fingerprint fragments are often folded to comparatively short bit-strings. However, folding fingerprints introduces bit collisions, and therefore adds noise to the encoded structural information and removes its interpretability. Both representations, folded as well as unprocessed fingerprints, are often used for (Q)SAR modeling. RESULTS We show that it can be preferable to build (Q)SAR models with circular fingerprint fragments that have been filtered by supervised feature selection, instead of applying folded or all fragments. Compared to folded fingerprints, filtered fingerprints significantly increase predictive performance and remain unambiguous and interpretable. Compared to unprocessed fingerprints, filtered fingerprints reduce the computational effort and are a more compact and less redundant feature representation. Depending on the selected learning algorithm filtering yields about equally predictive (Q)SAR models. We demonstrate the suitability of filtered fingerprints for (Q)SAR modeling by presenting our freely available web service Collision-free Filtered Circular Fingerprints that provides rationales for predictions by highlighting important structural features in the query compound (see http://coffer.informatik.uni-mainz.de). CONCLUSIONS Circular fingerprints are potent structural features that yield highly predictive models and encode interpretable structural information. However, to not lose interpretability, circular fingerprints should not be folded when building prediction models. Our experiments show that filtering is a suitable option to reduce the high computational effort when working with all fingerprint fragments. Additionally, our experiments suggest that the area under precision recall curve is a more sensible statistic for validating (Q)SAR models for virtual screening than the area under ROC or other measures for early recognition. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Martin Gütlein
- Chair of Data Mining, Institute of Computer Science, Johannes Gutenberg - Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Stefan Kramer
- Chair of Data Mining, Institute of Computer Science, Johannes Gutenberg - Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
| |
Collapse
|
57
|
Takenouchi O, Kanno A, Takakura H, Hattori M, Ozawa T. Bioluminescent Indicator for Highly Sensitive Analysis of Estrogenic Activity in a Cell-Based Format. Bioconjug Chem 2016; 27:2689-2694. [PMID: 27690388 DOI: 10.1021/acs.bioconjchem.6b00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Estrogens regulate different physiological systems with wide ranges of concentrations. The rapid analysis of estrogens is crucially important for drug discovery and medical diagnosis, but quantitation of nanomolar estrogens in live cells persists as an important challenge. We herein describe a bioluminescent indicator used to detect low concentrations of estrogens quantitatively with a high signal-to-background ratio. The indicator comprises a ligand-binding domain of an estrogen receptor connected with its binding peptide, which is sandwiched between split fragments of a luciferase mutant. Results show that the indicator recovered its bioluminescence upon binding to 17β-estradiol at concentrations higher than 1.0 × 10-10 M. The indicator was reactive to agonists but did not respond to antagonists. The indicator is expected to be applicable for rapid screening estrogenic compounds and inhibitors, facilitating the discovery of drug candidates in a high-throughput manner.
Collapse
Affiliation(s)
- Osamu Takenouchi
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Kanno
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Takakura
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Hattori
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
58
|
The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms. Nutrients 2016; 8:nu8090581. [PMID: 27657126 PMCID: PMC5037565 DOI: 10.3390/nu8090581] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer.
Collapse
|
59
|
Lemini C, Jaimez R, Avila ME, Franco Y, Larrea F, Lemus AE. In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicol Ind Health 2016; 19:69-79. [PMID: 15697177 DOI: 10.1191/0748233703th177oa] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The alkyl esters of p-hydroxybenzoic acid known as parabens (Pbens) are used as preservatives in food, pharmaceutical and cosmetic formulations. They have been reported as estrogenic. Here, we present evidence for the in vivo and in vitro bioactivities and receptor binding affinities of methylparaben (MePben), ethylparaben (EtPben), propylparaben (PrPben), and butylparaben (BuPben) compared with those of estradiol (E2). Estrogenicity was studied using the uterotrophic assay in immature (Im) and adult ovariectomized (Ovx) CD1 mice, and in immature female Wistar rats (IW). Animals were subcutaneously (sc) treated for three consecutive days with different molar equivalent doses ranging from 3.62 to 1086 mmol/kg body weight of Pbens, E2 (0.036 mmol/kg), or vehicle. Pbens increased uterine weight in Im and Ovx animals and their relative uterotrophic effect to E2 (100) (RUEE2) were from 34 to 91. The relative uterotrophic potencies related to E2 (100) (RUPE2) of these compounds were from 0.003 to 0.007. The E2 ED50 for CD1 animals able to increase the uterine weight was 7 mg/kg (0.9 -55 confidence limits); and that of Pbens ranged from 18 to 74 mg/kg. In IW rats, the ED50 were from 33 to 338 mg/kg. All Pbens, except MePb, competed with [3H]E2 for the estrogen receptor binding sites. The uterotrophic effects of Pbens in Im mice have a positive correlation with the side-chain length of the ester group of these compounds. The E2 and Pbens relative binding affinities (RBA) and Ki values correlated to their estrogenic activity. The NOELs values for Pbens uterotrophic activity in Im were from 0.6 to 6.5 mg/kg per day; and Ovx from 6 to 55 mg/kg. The NOELs IW ranged from 16.5 to 70 mg/kg indicating that Im were more susceptible than Ovx and IW to these effects. The data shown here confirm the estrogenicity of Pbens.
Collapse
Affiliation(s)
- Cristina Lemini
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, D F México.
| | | | | | | | | | | |
Collapse
|
60
|
Usman A, Ahmad M. From BPA to its analogues: Is it a safe journey? CHEMOSPHERE 2016; 158:131-42. [PMID: 27262103 DOI: 10.1016/j.chemosphere.2016.05.070] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 05/19/2023]
Abstract
Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful?
Collapse
Affiliation(s)
- Afia Usman
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
61
|
Pinto CL, Mansouri K, Judson R, Browne P. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites. Chem Res Toxicol 2016; 29:1410-27. [PMID: 27509301 DOI: 10.1021/acs.chemrestox.6b00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The US Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) is using in vitro data generated from ToxCast/Tox21 high-throughput screening assays to assess the endocrine activity of environmental chemicals. Considering that in vitro assays may have limited metabolic capacity, inactive chemicals that are biotransformed into metabolites with endocrine bioactivity may be missed for further screening and testing. Therefore, there is a value in developing novel approaches to account for metabolism and endocrine activity of both parent chemicals and their associated metabolites. We used commercially available software to predict metabolites of 50 parent compounds, out of which 38 chemicals are known to have estrogenic metabolites, and 12 compounds and their metabolites are negative for estrogenic activity. Three ER QSAR models were used to determine potential estrogen bioactivity of the parent compounds and predicted metabolites, the outputs of the models were averaged, and the chemicals were then ranked based on the total estrogenicity of the parent chemical and metabolites. The metabolite prediction software correctly identified known estrogenic metabolites for 26 out of 27 parent chemicals with associated metabolite data, and 39 out of 46 estrogenic metabolites were predicted as potential biotransformation products derived from the parent chemical. The QSAR models estimated stronger estrogenic activity for the majority of the known estrogenic metabolites compared to their parent chemicals. Finally, the three models identified a similar set of parent compounds as top ranked chemicals based on the estrogenicity of putative metabolites. This proposed in silico approach is an inexpensive and rapid strategy for the detection of chemicals with estrogenic metabolites and may reduce potential false negative results from in vitro assays.
Collapse
Affiliation(s)
- Caroline L Pinto
- Office of Chemical Safety and Pollution Prevention, US Environmental Protection Agency , 1200 Pennsylvania Avenue, N.W., Washington, DC 20460, United States.,Oak Ridge Institute for Science and Education , MC-100-44, P.O. Box 117, Oak Ridge, Tennessee 37831-0117, United States
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education , MC-100-44, P.O. Box 117, Oak Ridge, Tennessee 37831-0117, United States.,Office of Research and Development, US Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Richard Judson
- Office of Research and Development, US Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Patience Browne
- Office of Chemical Safety and Pollution Prevention, US Environmental Protection Agency , 1200 Pennsylvania Avenue, N.W., Washington, DC 20460, United States
| |
Collapse
|
62
|
Zhurova EA, Zhurov VV, Kumaradhas P, Cenedese S, Pinkerton AA. Charge Density and Electrostatic Potential Study of 16α,17β-Estriol and the Binding of Estrogen Molecules to the Estrogen Receptors ERα and ERβ. J Phys Chem B 2016; 120:8882-91. [PMID: 27504698 DOI: 10.1021/acs.jpcb.6b05961] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An accurate X-ray diffraction study at 20 K combined with DFT theoretical calculations has been performed for the estriol crystal with two conformationally different molecules in the asymmetric unit. The electron density has been modeled via a multipole expansion, using both experimental and theoretical structure factors, and a topological analysis has been performed. The experimental molecular geometry, hydrogen bonding, atomic charges, dipole moments, and other topological characteristics are compared with those calculated theoretically. In particular, the molecular electrostatic potential has been extracted and compared with those reported for other estrogen molecules exhibiting different binding affinities to the estrogen receptors (ERα and ERβ).
Collapse
Affiliation(s)
- Elizabeth A Zhurova
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | - Vladimir V Zhurov
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | - Poomani Kumaradhas
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States.,Department of Physics, Laboratory of Biocrystallography and Computational Molecular Biology, Periyar University , Salem 636 011, India
| | - Simone Cenedese
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | - A Alan Pinkerton
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| |
Collapse
|
63
|
|
64
|
Mota K, Lima Neto J, Lima Costa A, Oliveira J, Bezerra K, Albuquerque E, Caetano E, Freire V, Fulco U. A quantum biochemistry model of the interaction between the estrogen receptor and the two antagonists used in breast cancer treatment. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
65
|
Leclercq G, Laïos I, Elie-Caille C, Leiber D, Laurent G, Lesniewska E, Tanfin Z, Jacquot Y. ERα dimerization: a key factor for the weak estrogenic activity of an ERα modulator unable to compete with estradiol in binding assays. J Recept Signal Transduct Res 2016; 37:149-166. [PMID: 27400858 DOI: 10.1080/10799893.2016.1203940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Estrothiazine (ESTZ) is a weak estrogen sharing structural similarities with coumestrol. ESTZ failed to compete with [3H]17β-estradiol ([3H]17β-E2) for binding to the estrogen receptor α (ERα), questioning its ability to interact with the receptor. However, detection by atomic force spectroscopy (AFS) of an ESTZ-induced ERα dimerization has eliminated any remaining doubts. The effect of the compound on the proliferation of ERα-positive and negative breast cancer cells confirmed the requirement of the receptor. The efficiency of ESTZ in MCF-7 cells was weak without any potency to modify the proliferation profile of estradiol and coumestrol. Growth enhancement was associated with a proteasomal degradation of ERα without substantial recruitment of LxxLL coactivators. This may be related to an unusual delay between the acquisition by the receptor of an ERE-binding capacity and the subsequent estrogen-dependent transcription. A complementary ability to enhance TPA-induced AP-1 transcription was observed, even at concentrations insufficient to activate the ERα, suggesting a partly independent mechanism. ESTZ also rapidly and transiently activated ERK1/2 likely through membrane estrogenic pathways provoking a reorganization of the actin network. Finally, the systematic absence of biological responses with an ESTZ derivative unable to induce ERα dimerization stresses the importance of this step in the action of the compound, as reported for conventional estrogens. In view of the existence of many other ERα modulators (endocrine disruptors such as, for example, pesticides, environmental contaminants or phytoestrogens) with extremely weak or similar apparent lack of binding ability, our work may appear as pilot investigation for assessing their mechanism of action.
Collapse
Affiliation(s)
- Guy Leclercq
- a Laboratoire J.-C. Heuson de Cancérologie Mammaire , Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet , Brussels , Belgium
| | - Ioanna Laïos
- a Laboratoire J.-C. Heuson de Cancérologie Mammaire , Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet , Brussels , Belgium
| | - Céline Elie-Caille
- b Institut FEMTO-ST, CNRS UMR 6174, Université de Bourgogne Franche-Comté , Besançon , France
| | - Denis Leiber
- c Laboratoire Signalisation et Régulations Cellulaires , Institut de Biochimie et de Biologie Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud , Orsay Cedex , France.,d INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers , Angers , France
| | - Guy Laurent
- e Service d'Histologie et de Cytologie Expérimentale, Faculté de Médecine et de Pharmacie , Université de Mons-Hainaut , Mons , Belgium
| | - Eric Lesniewska
- f ICB, CNRS UMR 6303, Université de Bourgogne Franche-Comté , Dijon , France
| | - Zahra Tanfin
- c Laboratoire Signalisation et Régulations Cellulaires , Institut de Biochimie et de Biologie Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud , Orsay Cedex , France
| | - Yves Jacquot
- g Département de Chimie, CNRS UMR 7203 LBM , Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure, PSL Research University , Paris , France
| |
Collapse
|
66
|
Lemini C, Hernández A, Jaimez R, Franco Y, Avila ME, Castell A. Morphometric analysis of mice uteri treated with the preservatives methyl, ethyl, propyl, and butylparaben. Toxicol Ind Health 2016; 20:123-32. [PMID: 15941009 DOI: 10.1191/0748233704th202oa] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The alkyl esters of p-hydroxybenzoic acid (PHBA) known as parabens (Pbens) are widely used as preservatives in food, pharmaceuticals, and cosmetics. Several in vivo and in vitro studies have shown these compounds to be estrogenic. Here, for the first time, we present evidence of their estrogenicity using a morphometric analysis of uteri from mice treated with the preservatives methylparaben (MePben), ethylparaben (EtPben), propylparaben (PrPben), and butylparaben (BuPben) compared with estradiol (E2). Different groups of adult ovariectomized (Ovx) CD1 mice were subcutaneously (sc) treated daily for three days with two different equimolar doses (362 and 1086 mmol/kg) of the Pbens: MePben (55 and 165 mg/kg), EtPben (60 and 180 mg/kg), PrPben (65 and 195 mg/kg), BuPben (70 and 210 mg/kg), E2 (10 mg/kg; 0.036 mmol/kg), and vehicle (propyleneglycol; V, 10 mL/kg). On the fourth day, uteri were dissected, blotted, weighed, and placed in a fixative solution for 24 h. The paraffin embeded uteri were cut to obtain 7 mm thick transversal sections. Luminal epithelium heights (LEH), glandular epithelium heights (GEH), and myometrium widths (MW) were measured. The highest Pbens dose was able to produce uterotrophic effects (38 to 76%) compared to E2 efects (100%). The relative uterotrophic potency to E2 (100) was from 0.02 to 0.009. Significant increases ( P <0.05) in LEH, GEH, and MW as compared with V were obtained: LEH from 87 to 113% (E2 153%), GEH from 10 to 40% (E2 60%), and MW from 35 to 43% (E2 88%). These results confirm that Pbens at the doses assayed here induce estrogenic histological changes in the uteri of Ovx mice.
Collapse
Affiliation(s)
- C Lemini
- Departamento de Farmacología, Facultad de Medicina, UNAM, Ciudad Universitaria, Mexico.
| | | | | | | | | | | |
Collapse
|
67
|
Molins-Delgado D, Díaz-Cruz MS, Barceló D. Ecological risk assessment associated to the removal of endocrine-disrupting parabens and benzophenone-4 in wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2016; 310:143-151. [PMID: 26905612 DOI: 10.1016/j.jhazmat.2016.02.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
The occurrence of four widely used and endocrine disrupting parabens (PBs) (methylparaben, propylparaben, butylparaben and benzylparaben) and a polar UV filter (benzophenone-4) were determined in influent and effluent wastewater from the 19 major wastewater treatment plants (WWTPs) of Catalonia, Spain. For their analysis an on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS) method was developed and validated. Laboratory analysis revealed high levels for both PBs and BP4, with maximum concentrations of 5700ngL(-1) and 1806ngL(-1), respectively, in influent samples, and 137ngL(-1) and 1080ngL(-1), respectively in effluent wastewaters. Removal rates (RE%) for the target compounds in each WWTPs were calculated. RE% for parabens were almost 100%, whereas for BP4 values where in the range 5-91%. The half-life time (t1/2), hydraulic retention time (HRT), and annual mass load (ML) for each facility was estimated. Results indicated that there was no clear influence of HRT on the RE% of BP4. MLs for BP4 were in the range 0.9-110.1kgy(-1), with the highest values in the most populated areas. Finally, a risk assessment, estimated in terms of hazard quotients (HQs), was carried out for aquatic biota. HQs for the target compounds in effluent wastewaters indicated a negligible effect, whereas for some influent wastewaters' HQs pointed out that some species are at risk.
Collapse
Affiliation(s)
- Daniel Molins-Delgado
- Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Dept. of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain
| |
Collapse
|
68
|
Thakur A, Mandal SC, Banerjee S. Compounds of Natural Origin and Acupuncture for the Treatment of Diseases Caused by Estrogen Deficiency. J Acupunct Meridian Stud 2016; 9:109-17. [DOI: 10.1016/j.jams.2016.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/24/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
|
69
|
Bak MJ, Das Gupta S, Wahler J, Suh N. Role of dietary bioactive natural products in estrogen receptor-positive breast cancer. Semin Cancer Biol 2016; 40-41:170-191. [PMID: 27016037 DOI: 10.1016/j.semcancer.2016.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer, including luminal-A and -B, is the most common type of breast cancer. Extended exposure to estrogen is associated with an increased risk of breast cancer. Both ER-dependent and ER-independent mechanisms have been implicated in estrogen-mediated carcinogenesis. The ER-dependent pathway involves cell growth and proliferation triggered by the binding of estrogen to the ER. The ER-independent mechanisms depend on the metabolism of estrogen to generate genotoxic metabolites, free radicals and reactive oxygen species to induce breast cancer. A better understanding of the mechanisms that drive ER-positive breast cancer will help optimize targeted approaches to prevent or treat breast cancer. A growing emphasis is being placed on alternative medicine and dietary approaches toward the prevention and treatment of breast cancer. Many natural products and bioactive compounds found in foods have been shown to inhibit breast carcinogenesis via inhibition of estrogen induced oxidative stress as well as ER signaling. This review summarizes the role of bioactive natural products that are involved in the prevention and treatment of estrogen-related and ER-positive breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph Wahler
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
70
|
Resveratrol analogue 4,4'-dihydroxy-trans-stilbene potently inhibits cancer invasion and metastasis. Sci Rep 2016; 6:19973. [PMID: 26829331 PMCID: PMC4734289 DOI: 10.1038/srep19973] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/21/2015] [Indexed: 12/04/2022] Open
Abstract
We investigated the preventive effects of resveratrol analogue
4,4′-dihydroxy-trans-stilbene (DHS) on cancer invasion and
metastasis. Two different in vivo approaches of mouse and zebrafish lung
cancer invasion models were employed in our study. The in vitro results
showed that DHS displays potent inhibition on anchorage-dependent or -independent
cell growth of LLC cells, leading to impairment of the cell cycle progression with
reduction of cell numbers arresting at the G1 phase, an evident accumulation of
pre-G1 events correlated with apoptotic behaviour. In addition, DHS induces a marked
inhibition of LLC cell migration and matrigel invasion. In a murine lung cancer
model, tumour volume, cell proliferation, and tumour angiogenesis were significantly
inhibited by DHS. Importantly, liver metastatic lesions were significantly reduced
in DHS-treated mice. Similarly, DHS significantly inhibits lung cancer cell
dissemination, invasion and metastasis in a zebrafish tumour model. These findings
demonstrate that DHS could potentially be developed as a novel therapeutic agent for
treatment of cancer and metastasis.
Collapse
|
71
|
Tarnow P, Hutzler C, Grabiger S, Schön K, Tralau T, Luch A. Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks. PLoS One 2016; 11:e0147239. [PMID: 26771904 PMCID: PMC4714758 DOI: 10.1371/journal.pone.0147239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
The majority of printing inks are based on mineral oils (MOs) which contain complex mixtures of saturated and aromatic hydrocarbons. Consumer exposure to these oils occurs either through direct skin contacts or, more frequently, as a result of MO migration into the contents of food packaging that was made from recycled newspaper. Despite this ubiquitous and frequent exposure little is known about the potential toxicological effects, particularly with regard to the aromatic MO fractions. From a toxicological point of view the huge amount of alkylated and unsubstituted compounds therein is reason for concern as they can harbor genotoxicants as well as potential endocrine disruptors. The aim of this study was to assess both the genotoxic and estrogenic potential of MOs used in printing inks. Mineral oils with various aromatic hydrocarbon contents were tested using a battery of in vitro assays selected to address various endpoints such as estrogen-dependent cell proliferation, activation of estrogen receptor α or transcriptional induction of estrogenic target genes. In addition, the comet assay has been applied to test for genotoxicity. Out of 15 MOs tested, 10 were found to potentially act as xenoestrogens. For most of the oils the effects were clearly triggered by constituents of the aromatic hydrocarbon fraction. From 5 oils tested in the comet assay, 2 showed slight genotoxicity. Altogether it appears that MOs used in printing inks are potential endocrine disruptors and should thus be assessed carefully to what extent they might contribute to the total estrogenic burden in humans.
Collapse
Affiliation(s)
- Patrick Tarnow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
- * E-mail:
| | - Christoph Hutzler
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Stefan Grabiger
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Karsten Schön
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany, Max-Dohrn-Strasse 8–10, 10598, Berlin, Germany
| |
Collapse
|
72
|
Wang P, Dang L, Zhu BT. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors. Steroids 2016; 105:26-41. [PMID: 26639429 DOI: 10.1016/j.steroids.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/08/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Dang
- Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Bao-Ting Zhu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
73
|
Brennan JC, Bassal A, He G, Denison MS. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:91-100. [PMID: 26139245 PMCID: PMC4772679 DOI: 10.1002/etc.3146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/26/2015] [Accepted: 06/26/2015] [Indexed: 05/08/2023]
Abstract
Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals.
Collapse
Affiliation(s)
- Jennifer C. Brennan
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Arzoo Bassal
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
74
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Miyachi Y, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, isoeugenol, CAS Registry Number 97-54-1. Food Chem Toxicol 2015; 97S:S49-S56. [PMID: 26723296 DOI: 10.1016/j.fct.2015.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/20/2015] [Indexed: 12/01/2022]
Abstract
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Repeated dose toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 37.5 mg/kg/day. A gavage 13-week subchronic toxicity study conducted in mice resulted in a MOE of 5769 while considering 38.4% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, Humphrey School of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | - Y Miyachi
- Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996- 4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| |
Collapse
|
75
|
Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, Dekant W, Fryer AD, Kromidas L, La Cava S, Lalko JF, Lapczynski A, Liebler DC, Miyachi Y, Politano VT, Ritacco G, Salvito D, Schultz TW, Shen J, Sipes IG, Wall B, Wilcox DK. RIFM fragrance ingredient safety assessment, Eugenol, CAS Registry Number 97-53-0. Food Chem Toxicol 2015; 97S:S25-S37. [PMID: 26702986 DOI: 10.1016/j.fct.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022]
Abstract
The use of this material under current use conditions is supported by the existing information. This material was evaluated for genotoxicity, repeated dose toxicity, developmental toxicity, reproductive toxicity, local respiratory toxicity, phototoxicity, skin sensitization potential, as well as, environmental safety. Reproductive toxicity was determined to have the most conservative systemic exposure derived NO[A]EL of 230 mg/kg/day. A gavage multigenerational continuous breeding study conducted in rats on a suitable read across analog resulted in a MOE of 12,105 while considering 22.6% absorption from skin contact and 100% from inhalation. A MOE of >100 is deemed acceptable.
Collapse
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA.
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA
| | - S Bhatia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden
| | - P Calow
- Member RIFM Expert Panel, Humphrey School of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo CEP 05508-900, Brazil
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | - L Kromidas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - S La Cava
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - J F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN 37232-0146, USA
| | - Y Miyachi
- Member RIFM Expert Panel, Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - V T Politano
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN 37996-4500, USA
| | - J Shen
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | - B Wall
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - D K Wilcox
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| |
Collapse
|
76
|
Green Tea Catechin, EGCG, Suppresses PCB 102-Induced Proliferation in Estrogen-Sensitive Breast Cancer Cells. Int J Breast Cancer 2015; 2015:163591. [PMID: 26783468 PMCID: PMC4691479 DOI: 10.1155/2015/163591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023] Open
Abstract
The persistence of polychlorinated biphenyls (PCBs) in the environment is of considerable concern since they accumulate in human breast tissue and may stimulate the growth of estrogen-sensitive tumors. Studies have shown that EGCG from green tea can modify estrogenic activity and thus may act as a cancer chemopreventive agent. In the present study, we evaluated the individual and combined effects of PCB 102 and EGCG on cell proliferation using an estrogen-sensitive breast cancer cell line MCF-7/BOS. PCB 102 (1-10 μM) increased cell proliferation in a dose-dependent manner. Furthermore, the proliferative effects of PCB 102 were mediated by ERα and could be abrogated by the selective ERα antagonist MPP. EGCG (10-50 μM) caused a dose-dependent inhibition of PCB 102-induced cell proliferation, with nearly complete inhibition at 25 μM EGCG. The antiproliferative action of EGCG was mediated by ERβ and could be blocked by the ERβ-specific inhibitor PHTPP. In conclusion, EGCG suppressed the proliferation-stimulating activity of the environmental estrogen PCB 102 which may be helpful in the chemoprevention of breast cancer.
Collapse
|
77
|
Mutengwe MT, Aneck-Hahn NH, Korsten L, Van Zijl MC, De Jager C. Pesticide residues and estrogenic activity in fruit and vegetables sampled from major fresh produce markets in South Africa. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 33:95-104. [PMID: 26515782 DOI: 10.1080/19440049.2015.1103905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Food is likely to be one of the major pathways through which people are exposed to endocrine-disrupting chemicals. With the exception of residual effects, there are concerns that a number of naturally occurring and synthetic chemicals exert adverse effects upon endocrine systems in wildlife and humans. The current study reports selected pesticide concentrations and the total estrogenic activity of fruit and vegetables using the recombinant yeast oestrogen screen (YES) and T47D-KBluc reporter gene assays. A total of 53 food samples (27 fruit and 26 vegetables) from Johannesburg and Tshwane fresh produce markets (in South Africa) were analysed. Of these, 17 contained one to three different pesticide residues with concentrations ranging between 0.01 and 0.68 mg kg(-1), whereas in the rest of the samples no residues were detected. All pesticides detected except in one sample were below the maximum residue level (MRL), but others were unauthorised for use in specified fruit and vegetables. Estrogenic activity was detected in 26.4% (14 samples) of the samples tested, and the estradiol equivalents ranged from 0.007 to 2 pg g(-1). Although the estrogenic activity was low, it may contribute to adverse health effects. Continuous monitoring for pesticides in fruit and vegetables is important in view of the unauthorised pesticides detected in produce from South Africa and the endocrine-disrupting chemical activity found.
Collapse
Affiliation(s)
- Mbulaheni Thomas Mutengwe
- a Department of Plant and Crop Sciences, Institute for Food Nutrition and Well-Being , University of Pretoria , Pretoria , South Africa
| | - Natalie Hildegard Aneck-Hahn
- b Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences , University of Pretoria , Pretoria, South Africa
| | - Lise Korsten
- a Department of Plant and Crop Sciences, Institute for Food Nutrition and Well-Being , University of Pretoria , Pretoria , South Africa
| | - Magdalena Catherina Van Zijl
- b Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences , University of Pretoria , Pretoria, South Africa
| | - Christiaan De Jager
- b Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences , University of Pretoria , Pretoria, South Africa
| |
Collapse
|
78
|
Intake of Novel Red Clover Supplementation for 12 Weeks Improves Bone Status in Healthy Menopausal Women. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:689138. [PMID: 26265926 PMCID: PMC4523657 DOI: 10.1155/2015/689138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/05/2015] [Accepted: 06/25/2015] [Indexed: 11/17/2022]
Abstract
Objective. To investigate the effect by which daily consumption of a novel red clover (RC) extract influences bone health, inflammatory status, and cardiovascular health in healthy menopausal women. Design. A 12-week randomized, double-blinded, placebo-controlled trial involving 60 menopausal women receiving a daily dose of 150 mL RC extract containing 37.1 mg isoflavones (33.8 mg as aglycones) or placebo. Methods. Bone parameters were changes in bone mineral density (BMD), bone mineral content (BMC), and T-score at the lumbar spine and femoral neck. Bone turnover (CTx) and inflammatory markers were measured in plasma and finally blood pressure (BP) was evaluated. Results. RC extract had positive effect on bone health, and only the women receiving the placebo experienced a decline in BMD (p < 0.01) at the lumbar spine. T-score at the lumbar spine only decreased in the placebo group (p < 0.01). CTx decreased in the RC group with -9.94 (±4.93)%, although not significant. Conclusion. Daily consumption of RC extract over a 12-week period was found to have a beneficial effect on bone health in menopausal women based on BMD and T-score at the lumbar spine and plasma CTx levels. No changes in BP or inflammation markers were found and no side effects were observed.
Collapse
|
79
|
Xiao HH, Gao QG, Ho MX, Zhang Y, Wong KC, Dai Y, Yao XS, Wong MS. An 8-O-4' norlignan exerts oestrogen-like actions in osteoblastic cells via rapid nongenomic ER signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:39-49. [PMID: 25978953 DOI: 10.1016/j.jep.2015.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sambucus williamsii Hance (SWH), which belongs to the Caprifoliaceae family distributed in various regions of China, Korea and Japan, has been used as a folk medicine for treatment of bone and joint diseases in China for thousands of years. In previous studies, SWH was shown to possess anti-osteoporosis, healing fracture, anti-inflammatory and analgesic activities. Our previous studies showed that SWH extract effectively suppressed ovariectomy-induced increase in bone turnover and improved bone mineral density and bone biomechanical strength in rats as well as in mice. An 8-O-4' norlignan, (7R,8S)-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (PPD) was previously isolated and identified as the bioactive ingredient in SWH. The present study aimed to characterize the bone protective effects as well as its mechanism of actions in osteoblasts. MATERIALS AND METHODS Bone protective actions of PPD on different cells were determined by proliferation assay, alkaline phosphatase (ALP) activity assay, calcium deposition as well as real-time reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, estrogen receptor (ER) antagonist ICI182,780 and mitogen-activated protein kinase kinase (MEK) inhibitor U0126 blocking assays, competitive ER radioligand binding assay, ERE-dependent luciferase reporter assay and immunoblotting were used to determine if PPD activated ER and if the effects of PPD on osteoblastic functions were ER dependent. RESULTS PPD exerted anabolic effects in osteoblasts and its effects were abolished by co-incubation with ICI182,780 or U0126. PPD induced mRNA expressions of Runx2, ALP, osteocalcin, and increased the ratio of osteoprotegerin/receptor activator of nuclear factor κB (OPG/RANKL). PPD failed to bind to either ERα or ERβ and did not activate ERE-luciferase activity via ER. PPD induced the phosphorylation of extracellular regulated kinases (ERK) and its effect was completely abolished by U0126. It also induced the phosphorylation of ERα at serine 118. CONCLUSION These data show that PPD is a bioactive compound in SWH that exerts oestrogen-like actions in osteoblast-like cells via ligand-independent, estrogen response element (ERE)-independent and mitogen-activated protein (MAP) Kinase-mediated rapid nongenomic ER signaling pathway.
Collapse
Affiliation(s)
- Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Quan-Gui Gao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Ming-Xian Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yan Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China; Center for Systems Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ka-Chun Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Man-Sau Wong
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen 518057, PR China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
80
|
Lagarde N, Zagury JF, Montes M. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. J Chem Inf Model 2015; 55:1297-307. [PMID: 26038804 DOI: 10.1021/acs.jcim.5b00090] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Virtual screening methods are commonly used nowadays in drug discovery processes. However, to ensure their reliability, they have to be carefully evaluated. The evaluation of these methods is often realized in a retrospective way, notably by studying the enrichment of benchmarking data sets. To this purpose, numerous benchmarking data sets were developed over the years, and the resulting improvements led to the availability of high quality benchmarking data sets. However, some points still have to be considered in the selection of the active compounds, decoys, and protein structures to obtain optimal benchmarking data sets.
Collapse
Affiliation(s)
- Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| | - Matthieu Montes
- Laboratoire Génomique, Bioinformatique et Applications, EA 4627, Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
| |
Collapse
|
81
|
Pereira SV, Reis T, Souza BS, Dantas RF, Azevedo DA, Dezotti M, Sans C, Esplugas S. Oestrogenicity assessment of s-triazines by-products during ozonation. ENVIRONMENTAL TECHNOLOGY 2015; 36:1538-1546. [PMID: 25491130 DOI: 10.1080/09593330.2014.995235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The triazines are a group of herbicides with a wide range of uses. Atrazine is, in fact, one of the most used agricultural pesticides in the world. The terbuthylazine is applied as a substitute of atrazine in some countries of Europe since 2004, when the European Union announced a ban of atrazine because of ubiquitous water contamination. In this study, both atrazine and terbuthylazine were degraded by the ozone process to estimate the efficiency on pesticide removal in water, the intermediates formed and their potential oestrogenic activity using the yeast oestrogen screen (YES) test. Both pesticides were rapidly eliminated from the medium during ozonation (applied ozone dose 0.083 and 0.02 mmol O3 L(-1), respectively). The results show that both compounds generated similar by-products from ozone degradation. Moreover, significant oestrogenic activity was detected for both atrazine and terbuthylazine intermediates, during the first minutes of ozonation. The YES assay used in this study proved to be a sensitive tool in assessing trace amounts of oestrogenic chemicals, which can represent critical issues influencing the experimental results in environmental applications.
Collapse
Affiliation(s)
- S V Pereira
- a Federal Institute of Education, Science and Technology of Rio de Janeiro , Senador Furtado 124, Rio de Janeiro , Brazil
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Chen Y, Cheng F, Sun L, Li W, Liu G, Tang Y. Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:280-287. [PMID: 25282305 DOI: 10.1016/j.ecoenv.2014.08.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Rapidly and correctly identifying endocrine-disrupting chemicals (EDCs) is an important issue in environmental risk assessment. Major EDCs are associated with the androgen receptor (AR) and oestrogen receptors (ERs). Because of the high cost and time-consuming nature of experimental tests, in silico methods are valuable alternative tools for the identification of EDCs. In this study, a large dataset related to EDCs was constructed. Each molecule was represented with seven fingerprints, and computational models were subsequently developed to predict AR and ER binders via machine learning methods including k-nearest neighbour (kNN), C4.5 decision tree (C4.5 DT), naïve Bayes (NB), and support vector machine (SVM) algorithms. The best model for predicting AR binders was PubChem Fingerprint-SVM, which exhibited an accuracy of 0.84. For ER binders, the best method was Extended Fingerprint-SVM with an accuracy of 0.79. Moreover, several representative substructure alerts for characterizing EDCs, such as phenol, trifluoromethyl, and annelated rings, were identified using the combination of information gain and substructure frequency analysis. Our study involved a systematic computational assessment of EDCs related to AR and ERs, and provides significant information on the structural characteristics of these chemicals, which are a great help in identifying EDCs.
Collapse
Affiliation(s)
- Yingjie Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feixiong Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lu Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
83
|
Hong H, Branham WS, Ng HW, Moland CL, Dial SL, Fang H, Perkins R, Sheehan D, Tong W. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein. Toxicol Sci 2014; 143:333-48. [PMID: 25349334 DOI: 10.1093/toxsci/kfu231] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered.
Collapse
Affiliation(s)
- Huixiao Hong
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - William S Branham
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Hui Wen Ng
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Carrie L Moland
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Stacey L Dial
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Hong Fang
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Roger Perkins
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Daniel Sheehan
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Weida Tong
- *Division of Bioinformatics and Biostatistics, Division of Systems Biology, Division of Genetic and Molecular Toxicology and Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| |
Collapse
|
84
|
Pudenz M, Roth K, Gerhauser C. Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 2014; 6:4218-72. [PMID: 25322458 PMCID: PMC4210915 DOI: 10.3390/nu6104218] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Isoflavones (IF) such as genistein are cancer preventive phytochemicals found in soy and other legumes. Epidemiological studies point to a reduced risk for hormone‑dependent cancers in populations following a typical Asian diet rich in soy products. IF act as phytoestrogens and prevent tumorigenesis in rodent models by a broad spectrum of bioactivities. During the past 10 years, IF were shown to target all major epigenetic mechanisms regulating gene expression, including DNA methylation, histone modifications controlling chromatin accessibility, and non-coding RNAs. These effects have been suggested to contribute to cancer preventive potential in in vitro and in vivo studies, affecting several key processes such as DNA repair, cell signaling cascades including Wnt-signaling, induction of apoptosis, cell cycle progression, cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), metastasis formation and development of drug-resistance. We here summarize the state-of-the-art of IF affecting the epigenome in major hormone-dependent, urogenital, and gastrointestinal tumor types and in in vivo studies on anti-cancer treatment or developmental aspects, and short-term intervention studies in adults. These data, while often requiring replication, suggest that epigenetic gene regulation represents an important novel target of IF and should be taken into consideration when evaluating the cancer preventive potential of IF in humans.
Collapse
Affiliation(s)
- Maria Pudenz
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Kevin Roth
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
85
|
Kennedy DO. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv Nutr 2014; 5:515-33. [PMID: 25469384 PMCID: PMC4188223 DOI: 10.3945/an.114.006320] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Flavonoids and other polyphenols are ubiquitous plant chemicals that fulfill a range of ecologic roles for their home plant, including protection from a range of biotic and abiotic stressors and a pivotal role in the management of pathogenic and symbiotic soil bacteria and fungi. They form a natural part of the human diet, and evidence suggests that their consumption is associated with the beneficial modulation of a number of health-related variables, including those related to cardiovascular and brain function. Over recent years, the consensus as to the mechanisms responsible for these effects in humans has shifted away from polyphenols having direct antioxidant effects and toward their modulation of cellular signal transduction pathways. To date, little consideration has been given to the question of why, rather than how, these plant-derived chemicals might exert these effects. Therefore, this review summarizes the evidence suggesting that polyphenols beneficially affect human brain function and describes the current mechanistic hypotheses explaining these effects. It then goes on to describe the ecologic roles and potential endogenous signaling functions that these ubiquitous phytochemicals play within their home plant and discusses whether these functions drive their beneficial effects in humans via a process of “cross-kingdom” signaling predicated on the many conserved similarities in plant, microbial, and human cellular signal transduction pathways.
Collapse
|
86
|
Gaitonde V, Lee K, Kirschbaum K, Sucheck SJ. Bio-Based Bisfuran: Synthesis, Crystal Structure and Low Molecular Weight Amorphous Polyester. Tetrahedron Lett 2014; 55:4141-4145. [PMID: 25045189 DOI: 10.1016/j.tetlet.2014.05.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Discovery of renewable monomer feedstocks for fabrication of polymeric demand is critical in achieving sustainable materials. In the present work we have synthesized bisfuran diol (BFD) monomer from furfural, over four steps. BFD was examined via X-ray crystallography to understand the molecular arrangement in space, hydrogen bonding and packing of the molecules. This data was further used to compare BFD with structurally related Bisphenol A (BPA), and its known derivatives to predict the potential estrogenic or anti-estrogenic activities in BFD. Further, BFD was reacted with succinic acid to generate polyester material, bisfuran polyester (BFPE-1). MALDI characterization of BFPE-1 indicates low molecular weight polyester and thermal analysis reveals amorphous nature of the material.
Collapse
Affiliation(s)
- Vishwanath Gaitonde
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| | - Kyunghee Lee
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| | - Kristin Kirschbaum
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| | - Steven J Sucheck
- Department of Chemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA
| |
Collapse
|
87
|
Alam MN, Ahmad A, Al-Abbasi FA, Ahmad A. Female ovarian steroids in epilepsy: a cause or remedy. Pharmacol Rep 2014; 65:802-12. [PMID: 24145074 DOI: 10.1016/s1734-1140(13)71061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 02/16/2013] [Indexed: 10/25/2022]
Abstract
In this article, we review published preclinical and clinical studies that examine the role of female ovarian steroids (estrogen and progesterone) in epilepsy. Its effects on the reproductive and endocrine system are well known but a large and growing body of evidences indicates that the hormones also exert neuroprotective effects on the central nervous system. Estrogen crosses the blood-brain barrier due to its low molecular weight and lipophilic properties and easily reaches the neuronal tissue. Estrogens and progesterone influence neuronal activity and are important for normal brain functions. It is commonly accepted that estrogens may increase neuronal excitability and thus mediate proconvulsant effects whereas in case of progesterone, various preclinical and clinical studies have proved that progesterone shows anticonvulsant effects. To concise our review we concluded that the effects of estrogens and progesterone on seizures depend on various factors, such as treatment duration and latency prior to the seizure testing, dose, hormonal status, the seizure type/model used and sex.
Collapse
Affiliation(s)
- Mohammad N Alam
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Postal Code-61466, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
88
|
McRobb FM, Kufareva I, Abagyan R. In silico identification and pharmacological evaluation of novel endocrine disrupting chemicals that act via the ligand-binding domain of the estrogen receptor α. Toxicol Sci 2014; 141:188-97. [PMID: 24928891 DOI: 10.1093/toxsci/kfu114] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting chemicals (EDCs) pose a significant threat to human health, society, and the environment. Many EDCs elicit their toxic effects through nuclear hormone receptors, like the estrogen receptor α (ERα). In silico models can be used to prioritize chemicals for toxicological evaluation to reduce the amount of costly pharmacological testing and enable early alerts for newly designed compounds. However, many of the current computational models are overly dependent on the chemistry of known modulators and perform poorly for novel chemical scaffolds. Herein we describe the development of computational, three-dimensional multi-conformational pocket-field docking, and chemical-field docking models for the identification of novel EDCs that act via the ligand-binding domain of ERα. These models were highly accurate in the retrospective task of distinguishing known high-affinity ERα modulators from inactive or decoy molecules, with minimal training. To illustrate the utility of the models in prospective in silico compound screening, we screened a database of over 6000 environmental chemicals and evaluated the 24 top-ranked hits in an ERα transcriptional activation assay and a differential scanning fluorimetry-based ERα binding assay. Promisingly, six chemicals displayed ERα agonist activity (32nM-3.98μM) and two chemicals had moderately stabilizing effects on ERα. Two newly identified active compounds were chemically related β-adrenergic receptor (βAR) agonists, dobutamine, and ractopamine (a feed additive that promotes leanness in cattle and poultry), which are the first βAR agonists identified as activators of ERα-mediated gene transcription. This approach can be applied to other receptors implicated in endocrine disruption.
Collapse
Affiliation(s)
- Fiona M McRobb
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093
| |
Collapse
|
89
|
Abstract
Endocrine disrupting chemicals (EDC) are ubiquitous and persistent compounds that have the capacity to interfere with normal endocrine homoeostasis. The female reproductive tract is exquisitely sensitive to the action of sex steroids, and oestrogens play a key role in normal reproductive function. Malignancies of the female reproductive tract are the fourth most common cancer in women, with endometrial cancer accounting for most cases. Established risk factors for development of endometrial cancer include high BMI and exposure to oestrogens or synthetic compounds such as tamoxifen. Studies on cell and animal models have provided evidence that many EDC can bind oestrogen receptors and highlighted early life exposure as a window of risk for adverse lifelong effects on the reproductive system. The most robust evidence for a link between early life exposure to EDC and adverse reproductive health has come from studies on women who were exposed in utero to diethylstilbestrol. Demonstration that EDC can alter expression of members of the HOX gene cluster highlights one pathway that might be vulnerable to their actions. In summary, evidence for a direct link between EDC exposure and cancers of the reproductive system is currently incomplete. It will be challenging to attribute causality to any single EDC when exposure and development of malignancy may be separated by many years and influenced by lifestyle factors such as diet (a source of phytoestrogens) and adiposity. This review considers some of the evidence collected to date.
Collapse
Affiliation(s)
- Douglas A Gibson
- Queen's Medical Research Institute, MRC Centre for Reproductive Health, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
90
|
Griffith DR, Kido Soule MC, Matsufuji H, Eglinton TI, Kujawinski EB, Gschwend PM. Measuring free, conjugated, and halogenated estrogens in secondary treated wastewater effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2569-2578. [PMID: 24476066 DOI: 10.1021/es402809u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Steroidal estrogens are potent endocrine-disrupting chemicals that enter natural waters through the discharge of treated and raw sewage. Because estrogens are detrimental to aquatic organisms at sub-nanogram per liter concentrations, many studies have measured so-called "free" estrogen concentrations in wastewater effluents, rivers, and lakes. Other forms of estrogens are also of potential concern because conjugated estrogens can be easily converted to potent free estrogens by bacteria in wastewater treatment plants and receiving waters and halogenated estrogens are likely produced during wastewater disinfection. However, to the best of our knowledge, no studies have concurrently characterized free, conjugated, and halogenated estrogens. We have developed a method that is capable of simultaneously quantifying free, conjugated, and halogenated estrogens in treated wastewater effluent, in which detection limits were 0.13-1.3 ng L(-1) (free), 0.11-1.0 ng L(-1) (conjugated), and 0.18-18 ng L(-1) (halogenated). An aqueous phase additive, ammonium fluoride, was used to increase the electrospray (negative mode) ionization efficiency of free and halogenated estrogens by factors of 20 and 2.6, respectively. The method was validated using treated effluent from the greater Boston metropolitan area, where conjugated and halogenated estrogens made up 60-70% of the steroidal estrogen load on a molar basis.
Collapse
Affiliation(s)
- David R Griffith
- MIT/WHOI Joint Program in Oceanography, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, and Woods Hole Oceanographic Institution , Woods Hole, Massachusetts 02543, United States
| | | | | | | | | | | |
Collapse
|
91
|
Lagari VS, Levis S. Phytoestrogens for menopausal bone loss and climacteric symptoms. J Steroid Biochem Mol Biol 2014; 139:294-301. [PMID: 23246986 DOI: 10.1016/j.jsbmb.2012.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/27/2012] [Accepted: 12/02/2012] [Indexed: 11/24/2022]
Abstract
Women have always looked for non-hormonal options to alleviate menopausal vasomotor symptoms and prevent menopausal bone loss. The use of complementary and alternative medicine for these purposes has particularly increased after the publication of the Women's Health Initiative's results suggesting that there might be more risks than benefits with hormone replacement. Phytoestrogens are plant-derived estrogens that, although less potent than estradiol, bind to the estrogen receptor and can function as estrogen agonists or antagonists. Soy isoflavones extracted from soy are the phytoestrogens most commonly used by menopausal women. Because typical Western diets are low in phytoestrogens and taking into account the general difficulty in changing dietary habits, most clinical trials in Western women have used isoflavone-fortified foods or isoflavone tablets. Although some women might experience a reduction in the frequency or severity of hot flashes, most studies point towards the lack of effectiveness of isoflavones derived from soy or red clover, even in large doses, in the prevention of hot flashes and menopausal bone loss. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Violet S Lagari
- Endocrinology Section, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | |
Collapse
|
92
|
Maltais R, Ayan D, Trottier A, Barbeau X, Lagüe P, Bouchard JE, Poirier D. Discovery of a Non-Estrogenic Irreversible Inhibitor of 17β-Hydroxysteroid Dehydrogenase Type 1 from 3-Substituted-16β-(m-carbamoylbenzyl)-estradiol Derivatives. J Med Chem 2013; 57:204-22. [DOI: 10.1021/jm401639v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- René Maltais
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Diana Ayan
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Alexandre Trottier
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Xavier Barbeau
- Département
de Chimie, Institut de Biologie Intégrative et Des Systèmes
(IBIS), and Centre de Recherche sur la Fonction, la Structure et l’Ingénierie
des Protéines (PROTEO), Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Patrick Lagüe
- Département
de Biochimie Microbiologie et Bio-informatique, Institut de Biologie
Intégrative et des Systèmes (IBIS), and Centre de Recherche
sur la Fonction, la Structure et l’Ingénierie des Protéines
(PROTEO), Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jean-Emmanuel Bouchard
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Donald Poirier
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| |
Collapse
|
93
|
El Kerdawy A, Tautermann CS, Clark T, Fox T. Economical and Accurate Protocol for Calculating Hydrogen-Bond-Acceptor Strengths. J Chem Inf Model 2013; 53:3262-72. [DOI: 10.1021/ci4006222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed El Kerdawy
- Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Christofer S. Tautermann
- Computational Chemistry, Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Timothy Clark
- Computer-Chemie-Centrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
- Interdisciplinary
Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 49, 91052 Erlangen, Germany
- Centre
for Molecular Design, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, United Kingdom
| | - Thomas Fox
- Computational Chemistry, Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| |
Collapse
|
94
|
Wu S, Fisher J, Naciff J, Laufersweiler M, Lester C, Daston G, Blackburn K. Framework for Identifying Chemicals with Structural Features Associated with the Potential to Act as Developmental or Reproductive Toxicants. Chem Res Toxicol 2013; 26:1840-61. [DOI: 10.1021/tx400226u] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shengde Wu
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Joan Fisher
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Jorge Naciff
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Michael Laufersweiler
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Cathy Lester
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - George Daston
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| | - Karen Blackburn
- Central Product Safety Department, The Procter & Gamble Company, 8700 Mason Montgomery Road, Mason, Ohio 45040, United States
| |
Collapse
|
95
|
de Oliveira APS, de Sousa JF, da Silva MA, Hilário F, Resende FA, de Camargo MS, Vilegas W, dos Santos LC, Varanda EA. Estrogenic and chemopreventive activities of xanthones and flavones of Syngonanthus (Eriocaulaceae). Steroids 2013; 78:1053-63. [PMID: 23891669 DOI: 10.1016/j.steroids.2013.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 12/19/2022]
Abstract
The possible benefits of some bioactive flavones and xanthones present in plants of the genus Syngonanthus prompted us to screen them for estrogenic activity. However, scientific research has shown that such substances may have undesirable properties, such as mutagenicity, carcinogenicity and toxicity, which restrict their use as therapeutic agents. Hence, the aim of this study was to assess the estrogenicity and mutagenic and antimutagenic properties. We used recombinant yeast assay (RYA), with the strain BY4741 of Saccharomyces cerevisiae, and Ames test, with strains TA100, TA98, TA97a and TA102 of Salmonella typhimirium, to evaluate estrogenicity, mutagenicity and antimutagenicity of methanolic extracts of Syngonanthus dealbatus (S.d.), Syngonanthus macrolepsis (S.m.), Syngonanthus nitens (S.n.) and Syngonanthus suberosus (S.s.), and of 9 compounds isolated from them (1=luteolin, 2=mix of A-1,3,6-trihydroxy-2-methoxyxanthone and B-1,3,6-trihydroxy-2,5-dimethoxyxanthone, 3=1,5,7-trihydroxy-3,6-dimethoxyxanthone, 4=1,3,6,8-tetrahydroxy-2,5-dimethoxyxanthone, 5=1,3,6,8-tetrahydroxy-5-methoxyxanthone, 6=7-methoxyluteolin-8-C-β-glucopyranoside, 7=7-methoxyluteolin-6-C-β-glucopyranoside, 8=7,3'-dimethoxyluteolin-6-C-β-glucopyranoside and 9=6-hydroxyluteolin). The results indicated the estrogenic potential of the S. nitens methanol extract and four of its isolated xanthones, which exhibited, respectively, 14.74±1.63 nM; 19.54±6.61; 7.20±0.37; 6.71±1.02 e 10.01±4.26 nM of estradiol-equivalents (EEQ). None of the extracts or isolated compounds showed mutagenicity in any of the test strains and all of them showed antimutagenic potential, in particular preventing mutations caused by aflatoxin B1 (AFB1) and benzo[a]pyrene (B[a]P). The results show that the xanthones, only isolated from the methanol extract of S. nitens capitula, probably were the responsible for its estrogenic activity and could be useful as phytoestrogens, providing a new opportunity to develop hormonal agents. In addition, flavones and xanthones could also be used as a new antimutagenic agent. Since, the mutagens are involved in the initiation and promotion of several human diseases, including cancer, the significance of novel bioactive phytocompounds in counteracting these pro-mutagenic and carcinogenic effects is now gaining credence.
Collapse
Key Words
- +S9
- 1
- 1,3,6,8-tetrahydroxy-2,5-dimethoxyxanthone
- 1,3,6,8-tetrahydroxy-5-methoxyxanthone
- 1,5,7-trihydroxy-3,6-dimethoxyxanthone
- 17β-estradiol
- 2
- 3
- 4
- 4-nitro-O-phenylenediamine, B[a]P, benzo[a]pyrene
- 5
- 6
- 6-hydroxyluteolin
- 7
- 7,3′-dimethoxyluteolin-6-C-β-glucopyranoside
- 7-methoxyluteolin-6-C-β-glucopyranoside
- 7-methoxyluteolin-8-C-β-glucopyranoside
- 8
- 9
- AFB(1)
- Antimutagenicity
- BAW
- CNPq
- Conselho Nacional de Desenvolvimento Científico e Tecnológico
- DES
- DMSO
- E(2)
- EEQ
- ER
- ER-RBA
- Eriocaulaceae
- Estrogenicity
- Ex-DCM
- Ex-Hex
- Ex-MeOH
- FAPESP
- Fundação de Amparo à Pesquisa do Estado de São Paulo
- HRT
- HSCCC
- I%
- MI
- Mutagenicity
- NPD
- Phytoestrogens
- RYA
- SA
- SD
- SERMs
- Sd
- Sm
- Sn
- Ss
- Standard Deviation
- UV
- aflatoxin B(1)
- dimethylsulfoxide
- estradiol equivalent
- estrogen diethylstilbestrol
- estrogen receptor
- estrogen receptor relative binding affinity
- hexane extract
- high speed counter current chromatography
- hormone replacement therapy
- luteolin
- methanol extract
- methanolic extract of capitula of Syngonanthus dealbatus
- methanolic extract of capitula of Syngonanthus macrolepsis
- methanolic extract of capitula of Syngonanthus nitens
- methanolic extract of capitula of Syngonanthus suberosus
- methylene chloride extract
- mix of A-1,3,6-trihydroxy-2-methoxyxanthone and B-1,3,6-trihydroxy-2,5-dimethoxyxanthone
- mutagenic index
- n-butanol, acetic acid and water solution
- percent of inhibition of reversion in bacterial strains
- recombinant yeast assay
- selective estrogen receptor modulators
- sodium azide, 2-AA, 2-anthramine, MMC, mitomycin C
- ultraviolet light
- with metabolization
- without metabolization
- −S9
Collapse
Affiliation(s)
- Ana Paula Siqueira de Oliveira
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Rodovia Araraquara-Jaú Km 1, 14801-902 Araraquara, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Resende FA, de Oliveira APS, de Camargo MS, Vilegas W, Varanda EA. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PLoS One 2013; 8:e74881. [PMID: 24098354 PMCID: PMC3788058 DOI: 10.1371/journal.pone.0074881] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/08/2013] [Indexed: 12/03/2022] Open
Abstract
Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.
Collapse
Affiliation(s)
- Flávia A. Resende
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Univ Estadual Paulista, Araraquara, São Paulo, Brazil
- * E-mail:
| | - Ana Paula S. de Oliveira
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Mariana S. de Camargo
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Wagner Vilegas
- Campus do Litoral Paulista-Unidade São Vicente, Univ Estadual Paulista, São Vicente, São Paulo, Brazil
| | - Eliana A. Varanda
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Univ Estadual Paulista, Araraquara, São Paulo, Brazil
| |
Collapse
|
97
|
Zhang SQ, Sawmiller D, Li S, Rezai-Zadeh K, Hou H, Zhou S, Shytle D, Giunta B, Fernandez F, Mori T, Tan J. Octyl gallate markedly promotes anti-amyloidogenic processing of APP through estrogen receptor-mediated ADAM10 activation. PLoS One 2013; 8:e71913. [PMID: 23977176 PMCID: PMC3744472 DOI: 10.1371/journal.pone.0071913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/04/2013] [Indexed: 12/15/2022] Open
Abstract
Our previous studies showed that the green tea-derived polyphenolic compound (-)-epigallocatechin-3 gallate (EGCG) reduces amyloid-β (Aβ) production in both neuronal and mouse Alzheimer's disease (AD) models in concert with activation of estrogen receptor-α/phosphatidylinositide 3-kinase/protein kinase B (ERα/PI3K/Akt) signaling and anti-amyloidogenic amyloid precursor protein (APP) α-secretase (a disintegrin and metallopeptidase domain-10, ADAM10) processing. Since the gallate moiety in EGCG may correspond to the 7α position of estrogen, thereby facilitating ER binding, we extensively screened the effect of other gallate containing phenolic compounds on APP anti-amyloidogenic processing. Octyl gallate (OG; 10 µM), drastically decreased Aβ generation, in concert with increased APP α-proteolysis, in murine neuron-like cells transfected with human wild-type APP or "Swedish" mutant APP. OG markedly increased production of the neuroprotective amino-terminal APP cleavage product, soluble APP-α (sAPPα). In accord with our previous study, these cleavage events were associated with increased ADAM10 maturation and reduced by blockade of ERα/PI3k/Akt signaling. To validate these findings in vivo, we treated Aβ-overproducing Tg2576 mice with OG daily for one week by intracerebroventricular injection and found decreased Aβ levels associated with increased sAPPα. These data indicate that OG increases anti-amyloidogenic APP α-secretase processing by activation of ERα/PI3k/Akt signaling and ADAM10, suggesting that this compound may be an effective treatment for AD.
Collapse
Affiliation(s)
- She-Qing Zhang
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Neurology, Shanghai Changhai Hospital, Shanghai, China
- * E-mail: (JT); (SQZ)
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veteran’s Administration Hospital, Tampa, Florida, United States of America
| | - Song Li
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Biophysics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
| | - Kavon Rezai-Zadeh
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Shufeng Zhou
- Department of Therapeutic Science, School of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | - Douglas Shytle
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Brian Giunta
- James A. Haley Veteran’s Administration Hospital, Tampa, Florida, United States of America
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Frank Fernandez
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Takashi Mori
- Departments of Biomedical Sciences and Pathology, Saitama Medical Center and University, Kawagoe, Saitama, Japan
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- James A. Haley Veteran’s Administration Hospital, Tampa, Florida, United States of America
- * E-mail: (JT); (SQZ)
| |
Collapse
|
98
|
Nendza M, Gabbert S, Kühne R, Lombardo A, Roncaglioni A, Benfenati E, Benigni R, Bossa C, Strempel S, Scheringer M, Fernández A, Rallo R, Giralt F, Dimitrov S, Mekenyan O, Bringezu F, Schüürmann G. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regul Toxicol Pharmacol 2013; 66:301-14. [DOI: 10.1016/j.yrtph.2013.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 11/29/2022]
|
99
|
Lai WC, Tsui YT, Singab ANB, El-Shazly M, Du YC, Hwang TL, Wu CC, Yen MH, Lee CK, Hou MF, Wu YC, Chang FR. Phyto-SERM constitutes from Flemingia macrophylla. Int J Mol Sci 2013; 14:15578-94. [PMID: 23896592 PMCID: PMC3759874 DOI: 10.3390/ijms140815578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/06/2013] [Accepted: 07/15/2013] [Indexed: 11/16/2022] Open
Abstract
The methanolic extract of Flemingia macrophylla roots exhibited significant estrogenic activity in the transgenic plant assay system which was comparable to the activity of soybean extract. Utilizing estrogenic activity-guided fractionation, one new compound, fleminigin, together with 23 known compounds were isolated from F. macrophylla roots' methanolic extract. The structure of the new compound was identified based on intensive spectroscopic analysis and the full spectral data for one of the isolated compounds, flemichin E, was introduced for the first time in the current investigation. The estrogenic and anti-estrogenic activities of the isolated compounds were evaluated revealing that the isolated isoflavonoids may act as partial estrogen agonists, as well as antagonists. Additionally, the anti-inflammatory and the cytotoxic activities of the isolated compounds were studied. These results suggested the potential applications of F. macrophylla extract and its isolated compounds as selective estrogen receptor modulators (SERMs).
Collapse
Affiliation(s)
- Wan-Chun Lai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
| | - Ya-Ting Tsui
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt; E-Mails: (A.N.B.S.); (M.E.-S.)
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt; E-Mails: (A.N.B.S.); (M.E.-S.)
| | - Ying-Chi Du
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan; E-Mail:
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
| | - Ming-Hong Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
| | - Ching-Kuo Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; E-Mail:
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; E-Mail:
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.W.); (F.-R.C.); Tel.: +886-4-2205-3366-1012 (Y.-C.W.); +886-7-3121-101-2162 (F.-R.C.); Fax: +886-4-2206-0248 (Y.-C.W.); +886-7-3114-773 (F.-R.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; E-Mails: (W.-C.L.); (Y.-T.T.); (Y.-C.D.); (C.-C.W.); (M.-H.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (Y.-C.W.); (F.-R.C.); Tel.: +886-4-2205-3366-1012 (Y.-C.W.); +886-7-3121-101-2162 (F.-R.C.); Fax: +886-4-2206-0248 (Y.-C.W.); +886-7-3114-773 (F.-R.C.)
| |
Collapse
|
100
|
A new treatment by dispersive liquid–liquid microextraction for the determination of parabens in human serum samples. Anal Bioanal Chem 2013; 405:7259-67. [DOI: 10.1007/s00216-013-7181-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
|