51
|
Zhang Y, Dong Y, Zhu Y, Sun D, Wang S, Weng J, Zhu Y, Peng W, Yu B, Jiang Y. Microglia-specific transcriptional repression of interferon-regulated genes after prolonged stress in mice. Neurobiol Stress 2022; 21:100495. [DOI: 10.1016/j.ynstr.2022.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
|
52
|
Liu H, Mo H, Yang C, Mei X, Song X, Lu W, Xiao H, Yan J, Wang X, Yan J, Luo T, Lin Y, Wen D, Chen G, Chen A, Ling Y. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 2022; 189:122-135. [PMID: 35843476 DOI: 10.1016/j.freeradbiomed.2022.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Ferroptosis, a newly identified type of programmed cell death type, has been proven to contribute to the progression of myocardial ischemia/reperfusion (I/R) injury. However, little is known about ferroptosis regulation in I/R injury. OBJECTIVES We identified activating transcription factor 3 (ATF3) as a vital regulator of I/R induced ferroptosis and investigated the effects and potential mechanism of ATF3 in cardiac ferroptosis. METHODS In this study, the dynamic RNA-sequencing (RNA-seq) analysis were performed on mouse hearts exposed to different I/R schedules to identify that ATF3 represents an important modulatory molecule in myocardial I/R injury. Then knockout, rescue and overexpression methods were used in mice and neonatal mouse cells (NMCs) to illustrate the effect of ATF3 on myocardial I/R injury. Loss/gain of function techniques were used both in vivo and in vitro to explore the effects of ATF3 on ferroptosis in I/R injury. Furthermore, chromatin immunoprecipitation sequence (ChIP-seq) analysis was performed in the AC16 human cardiomyocyte cell line to investigate potential genes regulated by ATF3. RESULTS ATF3 expression reached highest level at early stage of reperfusion, knockout of ATF3 significantly aggravated I/R injury, which could be rescued by ATF3 re-expression. Knockout and the re-expression of ATF3 changed the transcription levels of multiple ferroptosis genes. In addition, results showed that overexpression of ATF3 inhibits cardiomyocyte ferroptosis triggered by erastin and RSL3. Lastly, ChIP-seq and dual luciferase activity analysis revealed ATF3 could bind to the transcription start site of Fanconi anaemia complementation group D2 (FANCD2) and increased the FANCD2 promoter activity. Furthermore, we first demonstrated that overexpression of FANCD2 exerts significant anti-ferroptosis and cardioprotective effect on AC16 cell H/R injury. CONCLUSION ATF3 inhibits cardiomyocyte ferroptotic death in I/R injury, which might be related with regulating FANCD2. Our study provides new insight into the molecular target for the therapy of myocardial I/R injury.
Collapse
Affiliation(s)
- Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xiheng Mei
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xudong Song
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Hua Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Jianyun Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Xianbao Wang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yuhao Lin
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China
| | - Daojun Wen
- Department of Cardiology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Guiming Chen
- Shenzhen Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China.
| | - Yuanna Ling
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangdong, China; Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangdong, China.
| |
Collapse
|
53
|
He Y, Yu F, Tian Y, Hu Q, Wang B, Wang L, Hu Y, Tao Y, Chen X, Peng M. Single-Cell RNA Sequencing Unravels Distinct Tumor Microenvironment of Different Components of Lung Adenocarcinoma Featured as Mixed Ground-Glass Opacity. Front Immunol 2022; 13:903513. [PMID: 35874770 PMCID: PMC9299373 DOI: 10.3389/fimmu.2022.903513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Lung adenocarcinoma featured as mixed ground-glass opacity (mGGO) doubled its volume half of the time in comparison with that featured as pure ground-glass opacity (pGGO). The mechanisms underlying the heterogeneous appearance of mGGO remain elusive. In this study, we macro-dissected the solid (S) components and ground-glass (GG) components of mGGO and performed single-cell sequencing analyses of six paired components from three mGGO patients. A total of 19,391 single-cell profiles were taken into analysis, and the data of each patient were analyzed independently to obtain a common alteration. Cancer cells and macrophages were the dominant cell types in the S and GG components, respectively. Cancer cells in the S components, which showed relatively malignant phenotypes, were likely to originate from both the GG and S components and monitor the surrounding tumor microenvironment (TME) through an intricate cell interaction network. SPP1hi macrophages were enriched in the S components and showed increased activity of chemoattraction, while macrophages in the GG components displayed an active antimicrobial process with a higher stress-induced state. In addition, the CD47–SIRPA axis was demonstrated to be critical in the maintenance of the GG components. Taken together, our study unraveled the alterations of cell components and transcriptomic features between different components in mGGOs.
Collapse
Affiliation(s)
- Yu He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Tian
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaofeng Chen
- Department of Anaesthesia, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
54
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
55
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
56
|
Li Z, Gurung M, Rodrigues RR, Padiadpu J, Newman NK, Manes NP, Pederson JW, Greer RL, Vasquez-Perez S, You H, Hioki KA, Moulton Z, Fel A, De Nardo D, Dzutsev AK, Nita-Lazar A, Trinchieri G, Shulzhenko N, Morgun A. Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by Mmp12+ macrophages. J Exp Med 2022; 219:213260. [PMID: 35657352 PMCID: PMC9170383 DOI: 10.1084/jem.20220017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023] Open
Abstract
Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce Mmp12 in WAT macrophages in a MYD88-ATF3-dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12, representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin resistance.
Collapse
Affiliation(s)
- Zhipeng Li
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR,Shanghai Mengniu Biotechnology R&D Co., Ltd., Shanghai, China
| | - Manoj Gurung
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Richard R. Rodrigues
- College of Pharmacy, Oregon State University, Corvallis, OR,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Nathan P. Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jacob W. Pederson
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Renee L. Greer
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | | | - Hyekyoung You
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Kaito A. Hioki
- College of Pharmacy, Oregon State University, Corvallis, OR
| | - Zoe Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Anna Fel
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Dominic De Nardo
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Amiran K. Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD,Giorgio Trinchieri:
| | - Natalia Shulzhenko
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR,Correspondence to Natalia Shulzhenko:
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR,Andrey Morgun:
| |
Collapse
|
57
|
Kim SY, Jeong SJ, Park JH, Cho W, Ahn YH, Choi YH, Oh GT, Silverstein RL, Park YM. Plasma Membrane Localization of CD36 Requires Vimentin Phosphorylation; A Mechanism by Which Macrophage Vimentin Promotes Atherosclerosis. Front Cardiovasc Med 2022; 9:792717. [PMID: 35656400 PMCID: PMC9152264 DOI: 10.3389/fcvm.2022.792717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin is a type III intermediate filament protein expressed in cells of mesenchymal origin. Vimentin has been thought to function mainly as a structural protein and roles of vimentin in other cellular processes have not been extensively studied. Our current study aims to reveal functions of vimentin in macrophage foam cell formation, the critical stage of atherosclerosis. We demonstrated that vimentin null (Vim -/ - ) mouse peritoneal macrophages take up less oxidized LDL (oxLDL) than vimentin wild type (Vim +/+) macrophages. Despite less uptake of oxLDL in Vim -/ - macrophages, Vim +/+ and Vim -/ - macrophages did not show difference in expression of CD36 known to mediate oxLDL uptake. However, CD36 localized in plasma membrane was 50% less in Vim -/ - macrophages than in Vim +/+ macrophages. OxLDL/CD36 interaction induced protein kinase A (PKA)-mediated vimentin (Ser72) phosphorylation. Cd36 -/ - macrophages did not exhibit vimentin phosphorylation (Ser72) in response to oxLDL. Experiments using phospho-mimetic mutation of vimentin revealed that macrophages with aspartate-substituted vimentin (V72D) showed more oxLDL uptake and membrane CD36. LDL receptor null (Ldlr -/ - ) mice reconstituted with Vim -/ - bone marrow fed a western diet for 15 weeks showed 43% less atherosclerotic lesion formation than Ldlr -/ - mice with Vim +/+ bone marrow. In addition, Apoe -/ -Vim- / - (double null) mice fed a western diet for 15 weeks also showed 57% less atherosclerotic lesion formation than Apoe -/ - and Vim +/+mice. We concluded that oxLDL via CD36 induces PKA-mediated phosphorylation of vimentin (Ser72) and phosphorylated vimentin (Ser72) directs CD36 trafficking to plasma membrane in macrophages. This study reveals a function of vimentin in CD36 trafficking and macrophage foam cell formation and may guide to establish a new strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Se-Jin Jeong
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, South Korea
| | - Ji-Hae Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Wonkyoung Cho
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Immune and Vascular Cell Network Research Center, National Creative Initiatives, Ewha Womans University, Seoul, South Korea
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Young Mi Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
58
|
Haeusler GM, Garnham AL, Li‐Wai‐Suen CSN, Clark JE, Babl FE, Allaway Z, Slavin MA, Mechinaud F, Smyth GK, Phillips B, Thursky KA, Pellegrini M, Doerflinger M. Blood transcriptomics identifies immune signatures indicative of infectious complications in childhood cancer patients with febrile neutropenia. Clin Transl Immunology 2022; 11:e1383. [PMID: 35602885 PMCID: PMC9113042 DOI: 10.1002/cti2.1383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Objectives Febrile neutropenia (FN) is a major cause of treatment disruption and unplanned hospitalization in childhood cancer patients. This study investigated the transcriptome of peripheral blood mononuclear cells (PBMCs) in children with cancer and FN to identify potential predictors of serious infection. Methods Whole-genome transcriptional profiling was conducted on PBMCs collected during episodes of FN in children with cancer at presentation to the hospital (Day 1; n = 73) and within 8-24 h (Day 2; n = 28) after admission. Differentially expressed genes as well as gene pathways that correlated with clinical outcomes were defined for different infectious outcomes. Results Global differences in gene expression associated with specific immune responses in children with FN and documented infection, compared to episodes without documented infection, were identified at admission. These differences resolved over the subsequent 8-24 h. Distinct gene signatures specific for bacteraemia were identified both at admission and on Day 2. Differences in gene signatures between episodes with bacteraemia and episodes with bacterial infection, viral infection and clinically defined infection were also observed. Only subtle differences in gene expression profiles between non-bloodstream bacterial and viral infections were identified. Conclusion Blood transcriptome immune profiling analysis during FN episodes may inform monitoring and aid in defining adequate treatment for different infectious aetiologies in children with cancer.
Collapse
Affiliation(s)
- Gabrielle M Haeusler
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia,NHMRC National Centre for Infections in CancerSir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,The Victorian Paediatric Integrated Cancer ServiceVictoria State GovernmentMelbourneVICAustralia,Infection Diseases UnitDepartment of General MedicineRoyal Children's HospitalMelbourneVICAustralia
| | - Alexandra L Garnham
- Walter and Eliza Hall Institute for Medical ResearchParkvilleVICAustralia,Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Connie SN Li‐Wai‐Suen
- Walter and Eliza Hall Institute for Medical ResearchParkvilleVICAustralia,Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Julia E Clark
- Queensland Children's HospitalChild Health Research CentreThe University of QueenslandBrisbaneQLDAustralia
| | - Franz E Babl
- Department of Emergency MedicineRoyal Children's HospitalMelbourneVICAustralia,Murdoch Children's Research InstitutePaediatric Research in Emergency Departments International Collaborative (PREDICT)MelbourneVICAustralia,Murdoch Children's Research InstituteMelbourneVICAustralia,Department of PaediatricsFaculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneMelbourneVICAustralia
| | - Zoe Allaway
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia,NHMRC National Centre for Infections in CancerSir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia
| | - Monica A Slavin
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia,NHMRC National Centre for Infections in CancerSir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Infection Diseases UnitDepartment of General MedicineRoyal Children's HospitalMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| | - Francoise Mechinaud
- Children's Cancer CentreThe Royal Children's HospitalMelbourneVICAustralia,Unité d'Hématologie Immunologie PédiatriqueHopital Robert DebréAPHP Nord Université de ParisParisFrance
| | - Gordon K Smyth
- Walter and Eliza Hall Institute for Medical ResearchParkvilleVICAustralia,School of Mathematics and StatisticsUniversity of MelbourneMelbourneVICAustralia
| | - Bob Phillips
- Leeds Children's HospitalLeeds General InfirmaryLeedsUK
| | - Karin A Thursky
- Department of Infectious DiseasesPeter MacCallum Cancer CentreMelbourneVICAustralia,NHMRC National Centre for Infections in CancerSir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Department of Infectious DiseasesNational Centre for Antimicrobial StewardshipUniversity of MelbourneMelbourneVICAustralia
| | - Marc Pellegrini
- NHMRC National Centre for Infections in CancerSir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVICAustralia,Walter and Eliza Hall Institute for Medical ResearchParkvilleVICAustralia,Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute for Medical ResearchParkvilleVICAustralia,Department of Medical BiologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
59
|
Piper C, Hainstock E, Yin-Yuan C, Chen Y, Khatun A, Kasmani MY, Evans J, Miller JA, Gorski J, Cui W, Drobyski WR. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD. Blood Adv 2022; 6:2791-2804. [PMID: 35015822 PMCID: PMC9092418 DOI: 10.1182/bloodadvances.2021006084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft-versus-host disease (GVHD). CD4+ T cells that produce granulocyte-macrophage colony stimulating factor (GM-CSF) have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T-cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if a unique CD4+ GM-CSF+ subset exists that differs from other defined T helper subtypes. Using single-cell RNA sequencing analysis (scRNAseq), we identified two CD4+ GM-CSF+ T-cell populations that arose during GVHD and were distinguishable according to the presence or absence of interferon-γ (IFN-γ) coexpression. CD4+ GM-CSF+ IFN-γ- T cells, which emerged preferentially in the colon, had a distinct transcriptional profile, used unique gene regulatory networks, and possessed a nonoverlapping T-cell receptor repertoire compared with CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T-cell populations in the colon. Functionally, this CD4+ GM-CSF+ T-cell population contributed to pathologic damage in the GI tract that was critically dependent on signaling through the interleukin-17 (IL-7) receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic T helper subtype GM-CSF+ subset that mediates immunopathology.
Collapse
Affiliation(s)
- Clint Piper
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Emma Hainstock
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Cheng Yin-Yuan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Moujtaba Y. Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | | | | | - Jack Gorski
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - William R. Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
60
|
Darabi M, Lhomme M, Dahik VD, Guillas I, Frisdal E, Tubeuf E, Poupel L, Patel M, Gautier EL, Huby T, Guerin M, Rye KA, Lesnik P, Le Goff W, Kontush A. Phosphatidylserine enhances anti-inflammatory effects of reconstituted HDL in macrophages via distinct intracellular pathways. FASEB J 2022; 36:e22274. [PMID: 35416331 DOI: 10.1096/fj.201800810r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
Phosphatidylserine (PS) is a minor phospholipid constituent of high-density lipoprotein (HDL) that exhibits potent anti-inflammatory activity. It remains indeterminate whether PS incorporation can enhance anti-inflammatory effects of reconstituted HDL (rHDL). Human macrophages were treated with rHDL containing phosphatidylcholine alone (PC-rHDL) or PC and PS (PC/PS-rHDL). Interleukin (IL)-6 secretion and expression was more strongly inhibited by PC/PS-rHDL than PC-rHDL in both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated macrophages. siRNA experiments revealed that the enhanced anti-inflammatory effects of PC/PS-rHDL required scavenger receptor class B type I (SR-BI). Furthermore, PC/PS-rHDL induced a greater increase in Akt1/2/3 phosphorylation than PC-rHDL. In addition, PC/PS but not PC-rHDL decreased the abundance of plasma membrane lipid rafts and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Finally, when these rHDL formulations were administered to dyslipidemic low-density lipoprotein (LDL)-receptor knockout mice fed a high-cholesterol diet, circulating IL-6 levels were significantly reduced only in PC/PS-rHDL-treated mice. In parallel, enhanced Akt1/2/3 phosphorylation by PC/PS-rHDL was observed in the mouse aortic tissue using immunohistochemistry. We concluded that the incorporation of PS into rHDLs enhanced their anti-inflammatory activity by modulating Akt1/2/3- and p38 MAPK-mediated signaling through SR-BI in stimulated macrophages. These data identify PS as a potent anti-inflammatory component capable of enhancing therapeutic potential of rHDL-based therapy.
Collapse
Affiliation(s)
- Maryam Darabi
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Marie Lhomme
- ICAN Analytics, Lipidomics Core, Foundation for Innovation in Cardiometabolism and Nutrition (IHU-ICAN, ANR-10-IAHU-05), Paris, France
| | - Veronica D Dahik
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Isabelle Guillas
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Eric Frisdal
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Emilie Tubeuf
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Lucie Poupel
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Mili Patel
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Emmanuel L Gautier
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Thierry Huby
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Maryse Guerin
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Philippe Lesnik
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Wilfried Le Goff
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| | - Anatol Kontush
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Sorbonne Université, Paris, France
| |
Collapse
|
61
|
Du Y, Ma Z, Zheng J, Huang S, Yang X, Song Y, Dong D, Shi L, Xu D. ATF3 Positively Regulates Antibacterial Immunity by Modulating Macrophage Killing and Migration Functions. Front Immunol 2022; 13:839502. [PMID: 35370996 PMCID: PMC8965742 DOI: 10.3389/fimmu.2022.839502] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical severity of Staphylococcus aureus (S. aureus) respiratory infection correlates with antibacterial gene signature. S. aureus infection induces the expression of an antibacterial gene, as well as a central stress response gene, thus activating transcription factor 3 (ATF3). ATF3-deficient mice have attenuated protection against lethal S. aureus pneumonia and have a higher bacterial load. We tested the hypothesis that ATF3-related protection is based on the increased function of macrophages. Primary marrow-derived macrophages (BMDM) were used in vitro to determine the mechanism through which ATF3 alters the bacterial-killing ability. The expression of ATF3 correlated with the expression of antibacterial genes. Mechanistic studies showed that ATF3 upregulated antibacterial genes, while ATF3-deficient cells and lung tissues had a reduced level of antibacterial genes, which was accompanied by changes in the antibacterial process. We identified multiple ATF3 regulatory elements in the antibacterial gene promoters by chromatin immunoprecipitation analysis. In addition, Wild type (WT) mice had higher F4/80 macrophage migration in the lungs compared to ATF3-null mice, which may correlate with actin filament severing through ATF3-targeted actin-modifying protein gelsolin (GSN) for the macrophage cellular motility. Furthermore, ATF3 positively regulated inflammatory cytokines IL-6 and IL-12p40 might be able to contribute to the infection resolution. These data demonstrate a mechanism utilized by S. aureus to induce ATF3 to regulate antibacterial genes for antimicrobial processes within the cell, and to specifically regulate the actin cytoskeleton of F4/80 macrophages for their migration.
Collapse
Affiliation(s)
- Yuzhang Du
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Zheng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Song
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danfeng Dong
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dakang Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Zhou Y, Wu Y. Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS-Induced Signals. Adv Healthc Mater 2022; 11:e2102271. [PMID: 34855279 DOI: 10.1002/adhm.202102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Indexed: 01/18/2023]
Abstract
Macrophages settle in heterogeneous microenvironments rendered by other cells and extracellular matrices. It is well known that chemical stimuli direct macrophage behavior; however, the contributions of viscosity, which increases in inflammatory tissues but not in tumors, are ignored in immune responses including effective activation and timely attenuation. This paper demonstrates that transient lipopolysaccharide (LPS)-treated macrophages benefit from elastic substrates, whereas viscoelastic substrates with similar storage moduli support the inflammatory responses of macrophages under persistent stimulations and consequently amplify the distinctions between the transient and persistent LPS-induced transcriptional programs. Actin filaments (F-actin) fluctuate in line with transcriptional profiles and can be mathematically predicted by a clutch-like model. Moreover, viscosity modifies immune responses through transcription factors NF-κB and C/EBPδ, which act as switches discriminating transient and persistent infections. Interestingly, enhanced immune responses, consistent with the lower activated states, are attenuated promptly by the actin nucleation-related translocation of ATF3 to nuclei. These findings suggest that the substrate viscoelasticity induces more intense inflammation only in the case of persistent infection and promotes more sensitively perceiving the duration of infection through the F-actin correlated transcription factors. In addition, it may facilitate the cognition of immune response in inflammatory and cancerous microenvironments and have a wide range of applications in inflammatory regulations.
Collapse
Affiliation(s)
- Yu‐Wei Zhou
- Department of Engineering Mechanics School of Aeronautics and Astronautics Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yu Wu
- Department of Engineering Mechanics School of Aeronautics and Astronautics Zhejiang University Hangzhou Zhejiang 310027 China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province Zhejiang University Hangzhou Zhejiang 310027 China
- Soft Matter Research Center Zhejiang University Hangzhou Zhejiang 310027 China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
63
|
Wu YL, Lin H, Li HF, Don MJ, King PC, Chen HH. Salvia miltiorrhiza Extract and Individual Synthesized Component Derivatives Induce Activating-Transcription-Factor-3-Mediated Anti-Obesity Effects and Attenuate Obesity-Induced Metabolic Disorder by Suppressing C/EBPα in High-Fat-Induced Obese Mice. Cells 2022; 11:cells11061022. [PMID: 35326476 PMCID: PMC8947163 DOI: 10.3390/cells11061022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacological studies indicate that Salvia miltiorrhiza extract (SME) can improve cardiac and blood vessel function. However, there is limited knowledge regarding the effects (exerted through epigenetic regulation) of SME and newly derived single compounds, with the exception of tanshinone IIA and IB, on obesity-induced metabolic disorders. In this study, we administered SME or dimethyl sulfoxide (DMSO) as controls to male C57BL/J6 mice after they were fed a high-fat diet (HFD) for 4 weeks. SME treatment significantly reduced body weight, fasting plasma glucose, triglyceride levels, insulin resistance, and adipogenesis/lipogenesis gene expression in treated mice compared with controls. Transcriptome array analysis revealed that the expression of numerous transcriptional factors, including activating transcription factor 3 (ATF3) and C/EBPα homologous protein (CHOP), was significantly higher in the SME group. ST32db, a novel synthetic derivative similar in structure to compounds from S. miltiorrhiza extract, ameliorates obesity and obesity-induced metabolic syndrome in HFD-fed wild-type mice but not ATF3−/− mice. ST32db treatment of 3T3-L1 adipocytes suppresses lipogenesis/adipogenesis through the ATF3 pathway to directly inhibit C/EBPα expression and indirectly inhibit the CHOP pathway. Overall, ST32db, a single compound modified from S. miltiorrhiza extract, has anti-obesity effects through ATF3-mediated C/EBPα downregulation and the CHOP pathway. Thus, SME and ST32db may reduce obesity and diabetes in mice, indicating the potential of both SME and ST32db as therapeutic drugs for the treatment of obesity-induced metabolic syndrome.
Collapse
Affiliation(s)
- Yueh-Lin Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli 350, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Heng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei 112, Taiwan;
| | - Pei-Chih King
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (H.-F.L.); (P.-C.K.)
| | - Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (Y.-L.W.); (H.L.)
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-27372181-3903; Fax: 886-2-5558-9890
| |
Collapse
|
64
|
Lee YJ, Kim K, Kim M, Ahn YH, Kang JL. Inhibition of STAT6 Activation by AS1517499 Inhibits Expression and Activity of PPARγ in Macrophages to Resolve Acute Inflammation in Mice. Biomolecules 2022; 12:447. [PMID: 35327639 PMCID: PMC8946515 DOI: 10.3390/biom12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) promotes an anti-inflammatory process by inducing the development of M2 macrophages. We investigated whether modulating STAT6 activity in macrophages using AS1517499, the specific STAT6 inhibitor, affects the restoration of homeostasis after an inflammatory insult by regulating PPARγ expression and activity. Administration of AS1517499 suppressed the enhanced STAT6 phosphorylation and nuclear translocation observed in peritoneal macrophages after zymosan injection. In addition, AS1517499 delayed resolution of acute inflammation as evidenced by enhanced secretion of pro-inflammatory cytokines, reduced secretion of anti-inflammatory cytokines in PLF and supernatants from peritoneal macrophages, and exaggerated neutrophil numbers and total protein levels in PLF. We demonstrate temporal increases in annexin A1 (AnxA1) protein and mRNA levels in peritoneal lavage fluid (PLF), peritoneal macrophages, and spleen in a murine model of zymosan-induced acute peritonitis. In vitro priming of mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages with AnxA1 induced STAT6 activation with enhanced PPARγ expression and activity. Using AS1517499, we demonstrate that inhibition of STAT6 activation delayed recovery of PPARγ expression and activity, as well as impaired efferocytosis. Taken together, these results suggest that activation of the STAT6 signaling pathway mediates PPARγ expression and activation in macrophages to resolve acute inflammation.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Kiyoon Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Minsuk Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| |
Collapse
|
65
|
Natalia P, Zwirchmayr J, Rudžionytė I, Pulsinger A, Breuss JM, Uhrin P, Rollinger JM, de Martin R. Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells. Front Pharmacol 2022; 12:802153. [PMID: 35115943 PMCID: PMC8804362 DOI: 10.3389/fphar.2021.802153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Based on the traditional use and scientific reports on the anti-inflammatory potential of red sandalwood, i.e., the heartwood of Pterocarpus santalinus L., we investigated its activity in a model of IL-1 stimulated endothelial cells. Endothelial cells were stimulated with IL-1 with or without prior incubation with a defined sandalwoodextract (PS), and analyzed for the expression of selected pro-inflammatory genes. The activity of NF-κB, a transcription factor of central importance for inflammatory gene expression was assessed by reporter gene analysis, Western blotting of IκBα, and nuclear translocation studies. In addition, microarray studies were performed followed by verification of selected genes by qPCR and supplemented by bioinformatics analysis. Our results show that PS is able to suppress the induction of E-selectin and VCAM-1, molecules that mediate key steps in the adhesion of leukocytes to the endothelium. It also suppressed the activity of an NF-κB reporter, IκBα phosphorylation and degradation, and the nuclear translocation of NF-κB RelA. In contrast, it stimulated JNK phosphorylation indicating the activation of the JNK signaling pathway. Gene expression profiling revealed that PS inhibits only a specific subset of IL-1 induced genes, while others remain unaffected. Most strongly suppressed genes were the signal transducer TRAF1 and the chemokine CX3CL1, whereas IL-8 was an example of a non-affected gene. Notably, PS also stimulated the expression of certain genes, including ones with negative regulatory function, e.g., members of the NR4A family, the mRNA destabilizing protein TTP as well as the transcription factors ATF3 and BHLHB40. These results provide mechanistic insight into the anti-inflammatory activity of PS, and suggest that it acts through the interplay of negative and positive regulators to achieve a differential inhibition of inflammatory gene expression.
Collapse
Affiliation(s)
- Priscilla Natalia
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia Zwirchmayr
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ieva Rudžionytė
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Alexandra Pulsinger
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- *Correspondence: Rainer de Martin,
| |
Collapse
|
66
|
Chang HH, Sun DS. Emerging role of the itaconate-mediated rescue of cellular metabolic stress. Tzu Chi Med J 2022; 34:134-138. [PMID: 35465285 PMCID: PMC9020237 DOI: 10.4103/tcmj.tcmj_79_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022] Open
Abstract
Metabolic regulations play vital roles on maintaining the homeostasis of our body. Evidence have suggested that ATF3 and nuclear factor erythroid 2–related factor 2 (NRF2) are critical for maintaining cell function, metabolism, and inflammation/anti-inflammation regulations when cells are under stress, while the upstream regulators in the stressed cells remain elusive. Recent findings have shown that tricarboxylic acid cycle metabolites such as itaconate and succinate are not just mitochondrial metabolites, but rather important signaling mediators, involving in the regulations of metabolism, immune modulation. Itaconate exerts anti-inflammatory role through regulating ATF3 and NRF2 pathways under stressed conditions. In addition, itaconate inhibits succinate dehydrogenase, succinate oxidation and thus blocking succinate-mediated inflammatory processes. These findings suggest itaconate-ATF3 and itaconate-NRF2 axes are well-coordinated machineries that facilitate the rescue against cellular stress. Here, we review these fascinating discoveries, a research field may help the development of more effective therapeutic approach to manage stress-induced inflammation, tissue damage, and metabolic disorder.
Collapse
|
67
|
Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021; 12:770066. [PMID: 34777390 PMCID: PMC8581451 DOI: 10.3389/fimmu.2021.770066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient’s history of health, and new therapeutic options identified.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ellesandra C Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa I Labzin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
68
|
Kim BM, Lee YJ, Choi YH, Park EM, Kang JL. Gas6 Ameliorates Inflammatory Response and Apoptosis in Bleomycin-Induced Acute Lung Injury. Biomedicines 2021; 9:1674. [PMID: 34829903 PMCID: PMC8615678 DOI: 10.3390/biomedicines9111674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is characterized by alveolar damage, lung edema, and exacerbated inflammatory response. Growth arrest-specific protein 6 (Gas6) mediates many different functions, including cell survival, proliferation, inflammatory signaling, and apoptotic cell clearance (efferocytosis). The role of Gas6 in bleomycin (BLM)-induced ALI is unknown. We investigated whether exogenous administration of mouse recombinant Gas6 (rGas6) has anti-inflammatory and anti-apoptotic effects on BLM-induced ALI. Compared to mice treated with only BLM, the administration of rGas6 reduced the secretion of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2, and increased the secretion of hepatocyte growth factor in bronchoalveolar lavage (BAL) fluid. rGas6 administration also reduced BLM-induced inflammation and apoptosis as evidenced by reduced neutrophil recruitment into the lungs, total protein levels in BAL fluid, caspase-3 activity, and TUNEL-positive lung cells in lung tissue. Apoptotic cell clearance by alveolar macrophages was also enhanced in mice treated with both BLM and rGas6 compared with mice treated with only BLM. rGas6 also had pro-resolving and anti-apoptotic effects in mouse bone marrow-derived macrophages and alveolar epithelial cell lines stimulated with BLM in vitro. These findings indicate that rGas6 may play a protective role in BLM-induced ALI.
Collapse
Affiliation(s)
- Bo-Min Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Youn-Hee Choi
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea;
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (B.-M.K.); (Y.-J.L.); (Y.-H.C.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
69
|
Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, Zheng Y, Yang J, Zhou Y, Chen L, Shen L. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med 2021; 53:1706-1722. [PMID: 34728784 PMCID: PMC8639750 DOI: 10.1038/s12276-021-00694-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients. New treatments for gastric cancer could involve controlling the activity of a regulatory gene and associated signaling pathway. Over-activation of the Wnt signaling pathway, which regulates many cellular functions, occurs in around half of gastric cancers. Further, the activating transcription factor 3 gene (ATF3) is thought to influence tumorigenesis, although its role in gastric cancer is unclear. Guohua Xie and co-workers at Shanghai Jiao Tong University, China, explored the function of ATF3 in human gastric cancer tissues. Patients with low ATF3 expression had poorer prognosis and shorter life expectancy. The team discovered that reduced expression of ATF3 triggered the increased expression of two of its target genes, which then altered Wnt signaling. Reduced ATF3 expression also boosted the invasiveness of gastric cancer cells. Initial results suggest that overexpression of ATF3 could suppress gastric cancer progression.
Collapse
Affiliation(s)
- Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Faculty of Medical Laboratory Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
70
|
Jha MK, Passero JV, Rawat A, Ament XH, Yang F, Vidensky S, Collins SL, Horton MR, Hoke A, Rutter GA, Latremoliere A, Rothstein JD, Morrison BM. Macrophage monocarboxylate transporter 1 promotes peripheral nerve regeneration after injury in mice. J Clin Invest 2021; 131:e141964. [PMID: 34491913 DOI: 10.1172/jci141964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alban Latremoliere
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
71
|
Xu Y, Hu S, Jadhav K, Zhu Y, Pan X, Bawa FC, Yin L, Zhang Y. Hepatocytic Activating Transcription Factor 3 Protects Against Steatohepatitis via Hepatocyte Nuclear Factor 4α. Diabetes 2021; 70:2506-2517. [PMID: 34475098 PMCID: PMC8564409 DOI: 10.2337/db21-0181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Activating transcription factor 3 (ATF3) has been shown to play an important role in HDL metabolism; yet, the role of hepatocytic ATF3 in the development of steatohepatitis remains elusive. Here we show that adenoassociated virus-mediated overexpression of human ATF3 in hepatocytes prevents diet-induced steatohepatitis in C57BL/6 mice and reverses steatohepatitis in db/db mice. Conversely, global or hepatocyte-specific loss of ATF3 aggravates diet-induced steatohepatitis. Mechanistically, hepatocytic ATF3 induces hepatic lipolysis and fatty acid oxidation and inhibits inflammation and apoptosis. We further show that hepatocyte nuclear factor 4α (HNF4α) is required for ATF3 to improve steatohepatitis. Thus, the current study indicates that ATF3 protects against steatohepatitis through, at least in part, hepatic HNF4α. Targeting hepatic ATF3 may be useful for treatment of steatohepatitis.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
72
|
Xu Q, Li T, Chen H, Kong J, Zhang L, Yin H. Design and optimisation of a small-molecule TLR2/4 antagonist for anti-tumour therapy. RSC Med Chem 2021; 12:1771-1779. [PMID: 34778778 PMCID: PMC8528216 DOI: 10.1039/d1md00175b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
In anti-tumour therapy, the toll-like receptor 2/4 (TLR2/4) signalling pathway has been a double-edged sword. TLR2/4 agonists are commonly considered adjuvants for immune stimulation, whereas TLR2/4 antagonists demonstrate more feasibility for anti-tumour therapy under specific chronic inflammatory situations. In individuals with cancer retaliatory proliferation and metastasis after surgery, blocking the TLR2/4 signalling pathway may produce favourable prognosis for patients. Therefore, here, we developed a small-molecule co-inhibitor that targets the TLR2/4 signalling pathway. After high-throughput screening of a compound library containing 14 400 small molecules, followed by hit-to-lead structural optimisation, we finally obtained the compound TX-33, which has effective inhibitory properties against the TLR2/4 signalling pathways. This compound was found to significantly inhibit multiple pro-inflammatory cytokines released by RAW264.7 cells. This was followed by TX-33 demonstrating promising efficacy in subsequent anti-tumour experiments. The current results provide a novel understanding of the role of TLR2/4 in cancer and a novel strategy for anti-tumour therapy.
Collapse
Affiliation(s)
- Qun Xu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Hekai Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Jun Kong
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University Beijing 100070 China
| | - Hang Yin
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University Beijing 100084 China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University Beijing 100084 China
| |
Collapse
|
73
|
Kardassis D, Thymiakou E, Chroni A. Genetics and regulation of HDL metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159060. [PMID: 34624513 DOI: 10.1016/j.bbalip.2021.159060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The inverse association between plasma HDL cholesterol (HDL-C) levels and risk for cardiovascular disease (CVD) has been demonstrated by numerous epidemiological studies. However, efforts to reduce CVD risk by pharmaceutically manipulating HDL-C levels failed and refused the HDL hypothesis. HDL-C levels in the general population are highly heterogeneous and are determined by a combination of genetic and environmental factors. Insights into the causes of HDL-C heterogeneity came from the study of monogenic HDL deficiency syndromes but also from genome wide association and Μendelian randomization studies which revealed the contribution of a large number of loci to low or high HDL-C cases in the general or in restricted ethnic populations. Furthermore, HDL-C levels in the plasma are under the control of transcription factor families acting primarily in the liver including members of the hormone nuclear receptors (PPARs, LXRs, HNF-4) and forkhead box proteins (FOXO1-4) and activating transcription factors (ATFs). The effects of certain lipid lowering drugs used today are based on the modulation of the activity of specific members of these transcription factors. During the past decade, the roles of small or long non-coding RNAs acting post-transcriptionally on the expression of HDL genes have emerged and provided novel insights into HDL regulation and new opportunities for therapeutic interventions. In the present review we summarize recent progress made in the genetics and the regulation (transcriptional and post-transcriptional) of HDL metabolism.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| |
Collapse
|
74
|
Brocard M, Lu J, Hall B, Borah K, Moller-Levet C, Georgana I, Sorgeloos F, Beste DJV, Goodfellow IG, Locker N. Murine Norovirus Infection Results in Anti-inflammatory Response Downstream of Amino Acid Depletion in Macrophages. J Virol 2021; 95:e0113421. [PMID: 34346771 PMCID: PMC8475529 DOI: 10.1128/jvi.01134-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Murine norovirus (MNV) infection results in a late translation shutoff that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the α subunit of eukaryotic initiation factor 2 (eIF2α) kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signaling during metabolic stress. While viral infection is usually associated with activation of double-stranded RNA (dsRNA) binding pattern recognition receptor PKR, we hypothesized that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterize cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signaling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation. IMPORTANCE During viral infection, host defenses are typically characterized by the secretion of proinflammatory autocrine and paracrine cytokines, potentiation of the interferon (IFN) response, and induction of the antiviral response via activation of JAK and Stat signaling. To avoid these and propagate, viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signaling. This highlights novel tools in the viral countermeasures arsenal and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.
Collapse
Affiliation(s)
- Michèle Brocard
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Jia Lu
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Belinda Hall
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Khushboo Borah
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Carla Moller-Levet
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Iliana Georgana
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Dany J. V. Beste
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
75
|
Li X, Gracilla D, Cai L, Zhang M, Yu X, Chen X, Zhang J, Long X, Ding HF, Yan C. ATF3 promotes the serine synthesis pathway and tumor growth under dietary serine restriction. Cell Rep 2021; 36:109706. [PMID: 34551291 PMCID: PMC8491098 DOI: 10.1016/j.celrep.2021.109706] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
The serine synthesis pathway (SSP) involving metabolic enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) drives intracellular serine biosynthesis and is indispensable for cancer cells to grow in serine-limiting environments. However, how SSP is regulated is not well understood. Here, we report that activating transcription factor 3 (ATF3) is crucial for transcriptional activation of SSP upon serine deprivation. ATF3 is rapidly induced by serine deprivation via a mechanism dependent on ATF4, which in turn binds to ATF4 and increases the stability of this master regulator of SSP. ATF3 also binds to the enhancers/promoters of PHGDH, PSAT1, and PSPH and recruits p300 to promote expression of these SSP genes. As a result, loss of ATF3 expression impairs serine biosynthesis and the growth of cancer cells in the serine-deprived medium or in mice fed with a serine/glycine-free diet. Interestingly, ATF3 expression positively correlates with PHGDH expression in a subset of TCGA cancer samples. Activation of the serine synthesis pathway is important for cancer cell growth, but how this pathway is regulated is not well understood. Li et al. report that ATF3 is an important regulator of this pathway and can promote serine biosynthesis and tumor growth under serine-limiting conditions.
Collapse
Affiliation(s)
- Xingyao Li
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Daniel Gracilla
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Lun Cai
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Mingyi Zhang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China
| | - Xiaolin Yu
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Xiaoguang Chen
- Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China
| | - Junran Zhang
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH 43210, USA
| | - Xiaochun Long
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Han-Fei Ding
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
76
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
77
|
Ferreira-Gomes J, Garcia MM, Nascimento D, Almeida L, Quesada E, Castro-Lopes JM, Pascual D, Goicoechea C, Neto FL. TLR4 Antagonism Reduces Movement-Induced Nociception and ATF-3 Expression in Experimental Osteoarthritis. J Pain Res 2021; 14:2615-2627. [PMID: 34466029 PMCID: PMC8403032 DOI: 10.2147/jpr.s317877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 01/13/2023] Open
Abstract
Introduction Toll-like receptor 4 (TLR4) is a pattern recognition receptor involved in the detection of pathogen-associated molecular patterns (PAMPs), but also a "danger-sensing" receptor that recognizes host-derived endogenous molecules called damage-associated molecular patterns (DAMPs). The involvement of TLR4 in rheumatic diseases is becoming evident, as well as its potential role as a target for therapeutic intervention. Moreover, increasing evidence also suggests that TLR4 is implicated in chronic pain states. Thus, in this study, we evaluated whether a systemic administration of a synthetic antagonist of TLR4 (TLR4-A1) could decrease nociception and cartilage degradation in experimental osteoarthritis (OA). Furthermore, as the activation transcription factor (ATF)-3 serves as a negative regulator for TLR4-stimulated inflammatory response, we also evaluated the effect of TLR4 inhibition on ATF-3 expression in primary afferent neurons at the dorsal root ganglia (DRG). Methods OA was induced in adult male Wistar rats through an intra-articular injection of 2 mg of sodium mono-iodoacetate (MIA) into the left knee. From days 14 to 28 after OA induction, animals received an intraperitoneal injection of either TLR4-A1 (10 mg/kg) or vehicle. Movement- and loading-induced nociception was evaluated in all animals, by the Knee-Bend and CatWalk tests, before and at several time-points after TLR4-A1/vehicle administration. Immunofluorescence for TLR4 and ATF-3 was performed in L3-L5 DRG. Knee joints were processed for histopathological evaluation. Results Administration of TLR4-A1 markedly reduced movement-induced nociception in OA animals, particularly in the Knee-Bend test. Moreover, the increase of ATF-3 expression observed in DRG of OA animals was significantly reduced by TLR4-A1. However, no effect was observed in cartilage loss nor in the neuronal cytoplasmic expression of TLR4 upon antagonist administration. Conclusion The TLR4 antagonist administration possibly interrupts the TLR4 signalling cascade, thus decreasing the neurotoxic environment at the joint, which leads to a reduction in ATF-3 expression and in nociception associated with experimental OA.
Collapse
Affiliation(s)
- Joana Ferreira-Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Miguel M Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Madrid, Spain.,High Performance Experimental Pharmacology research group, Universidad Rey Juan Carlos (PHARMAKOM), Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - Diana Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lígia Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ernesto Quesada
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - José Manuel Castro-Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - David Pascual
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Madrid, Spain.,High Performance Experimental Pharmacology research group, Universidad Rey Juan Carlos (PHARMAKOM), Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - Carlos Goicoechea
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Universidad Rey Juan Carlos, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Madrid, Spain.,High Performance Experimental Pharmacology research group, Universidad Rey Juan Carlos (PHARMAKOM), Alcorcón, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo multidisciplinar de investigación y tratamiento del dolor (i+DOL), Alcorcón, Spain
| | - Fani Lourença Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
78
|
Peng J, Le CY, Xia B, Wang JW, Liu JJ, Li Z, Zhang QJ, Zhang Q, Wang J, Wan CW. Research on the correlation between activating transcription factor 3 expression in the human coronary artery and atherosclerotic plaque stability. BMC Cardiovasc Disord 2021; 21:356. [PMID: 34320932 PMCID: PMC8317287 DOI: 10.1186/s12872-021-02161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background Activating transcription factor 3 (ATF3) is an early response gene that is activated in response to atherosclerotic stimulation and may be an important factor in inhibiting the progression of atherosclerosis. In this study, we directly measured the expression of ATF3 and inflammatory factors in human coronary atherosclerotic plaques to examine the relationship between ATF3 expression, inflammation and structural stability in human coronary atherosclerotic plaques. Methods A total of 68 coronary artery specimens were collected from the autopsy group, including 36 cases of sudden death from coronary heart disease (SCD group) and 32 cases of acute death caused by mechanical injury with coronary atherosclerosis (CHD group). Twenty-two patients who had no coronary heart disease were collected as the control group (Con group). The histological structure of the coronary artery was observed under a light microscope after routine HE staining, and the intimal and lesion thicknesses, thickness of the fibrous cap, thickness of necrosis core, degree of lumen stenosis were assessed by image analysis software. Western blotting and immunohistochemistry were used to measure the expression and distribution of ATF3, inflammatory factors (CD45, IL-1β, TNF-α) and matrix metalloproteinase-9 (MMP-9) and vascular cell adhesion molecule 1 (VCAM1) in the coronary artery. The Pearson correlation coefficient was used to analyse the correlation between ATF3 protein expression and inflammatory factors and between ATF3 protein expression and structure-related indexes in the lesion group. Results Compared with those in the control group, the intima and necrotic core in the coronary artery were thickened, the fibrous cap became thin and the degree of vascular stenosis was increased in the lesion group, while the intima and necrotic core became thicker and the fibrous cap became thinner in the SCD group than in the CHD group (P < 0.05). There was no or low expression of ATF3, inflammatory factors, VCAM1 and MMP-9 in the control group, and the expression of inflammatory factors, VCAM1 and MMP-9 in the SCD group was higher than that in CHD group, while the expression of ATF3 in the SCD group was significantly lower than that in CHD group (P < 0.05). In the lesion group, the expression of ATF3 was negatively correlated with intimal and necrotic focus thickness, positively correlated with fibrous cap thickness (P < 0.01), and negatively correlated with inflammatory factors, VCAM1 and MMP-9 (P < 0.01). Conclusions The expression of ATF3 may be related to the progression and stability of atherosclerotic plaques, and may affect the structural stability of atherosclerotic plaques by regulating the inflammatory response, thus participating in the regulation of atherosclerotic progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02161-9.
Collapse
Affiliation(s)
- J Peng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - C Y Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - B Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - J W Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - J J Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Z Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Q J Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - Q Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China
| | - J Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - C W Wan
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
79
|
Andersen-Civil AIS, Leppä MM, Thamsborg SM, Salminen JP, Williams AR. Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Commun Biol 2021; 4:896. [PMID: 34290357 PMCID: PMC8295316 DOI: 10.1038/s42003-021-02408-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins (PAC) are dietary compounds that have been extensively studied for beneficial health effects due to their anti-inflammatory properties. However, the structure-function relationships of PAC and their mode-of-action remain obscure. Here, we isolated a wide range of diverse PAC polymer mixtures of high purity from plant material. Polymer size was a key factor in determining the ability of PAC to regulate inflammatory cytokine responses in murine macrophages. PAC polymers with a medium (9.1) mean degree of polymerization (mDP) induced substantial transcriptomic changes, whereas PAC with either low (2.6) or high (12.3) mDP were significantly less active. Short-term oral treatment of mice with PAC modulated gene pathways connected to nutrient metabolism and inflammation in ileal tissue in a polymerization-dependent manner. Mechanistically, the bioactive PAC polymers modulated autophagic flux and inhibited lipopolysaccharide-induced autophagy in macrophages. Collectively, our results highlight the importance of defined structural features in the health-promoting effects of PAC-rich foods.
Collapse
Affiliation(s)
| | - Milla Marleena Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
80
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
81
|
Middleton JD, Fehlman J, Sivakumar S, Stover DG, Hai T. Stress-Inducible Gene Atf3 Dictates a Dichotomous Macrophage Activity in Chemotherapy-Enhanced Lung Colonization. Int J Mol Sci 2021; 22:ijms22147356. [PMID: 34298975 PMCID: PMC8304704 DOI: 10.3390/ijms22147356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/17/2023] Open
Abstract
Previously, we showed that chemotherapy paradoxically exacerbated cancer cell colonization at the secondary site in a manner dependent on Atf3, a stress-inducible gene, in the non-cancer host cells. Here, we present evidence that this phenotype is established at an early stage of colonization within days of cancer cell arrival. Using mouse breast cancer models, we showed that, in the wild-type (WT) lung, cyclophosphamide (CTX) increased the ability of the lung to retain cancer cells in the vascular bed. Although CTX did not change the WT lung to affect cancer cell extravasation or proliferation, it changed the lung macrophage to be pro-cancer, protecting cancer cells from death. This, combined with the initial increase in cell retention, resulted in higher lung colonization in CTX-treated than control-treated mice. In the Atf3 knockout (KO) lung, CTX also increased the ability of lung to retain cancer cells. However, the CTX-treated KO macrophage was highly cytotoxic to cancer cells, resulting in no increase in lung colonization-despite the initial increase in cell retention. In summary, the status of Atf3 dictates the dichotomous activity of macrophage: pro-cancer for CTX-treated WT macrophage but anti-cancer for the KO counterpart. This dichotomy provides a mechanistic explanation for CTX to exacerbate lung colonization in the WT but not Atf3 KO lung.
Collapse
MESH Headings
- Activating Transcription Factor 3/physiology
- Animals
- Antimicrobial Cationic Peptides/biosynthesis
- Antimicrobial Cationic Peptides/genetics
- Cell Line, Tumor
- Cyclophosphamide/pharmacology
- Cyclophosphamide/toxicity
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- Genotype
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Macrophage Activation
- Macrophages/physiology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Neoadjuvant Therapy/adverse effects
- Neoplasm Metastasis/genetics
- Neoplasm Metastasis/physiopathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplasm Transplantation/methods
- Neoplastic Stem Cells/pathology
- Stress, Physiological/genetics
- Transendothelial and Transepithelial Migration
- Tumor Microenvironment
- Tumor-Associated Macrophages/drug effects
- Tumor-Associated Macrophages/physiology
- Cathelicidins
Collapse
Affiliation(s)
- Justin D. Middleton
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
| | - Jared Fehlman
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
| | - Subhakeertana Sivakumar
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
| | - Daniel G. Stover
- Department of Internal Medicine, College of Medicine, Ohio State University, Columbus, OH 43210, USA;
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (J.D.M.); (J.F.); (S.S.)
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
82
|
Wang J, Struebing FL, Geisert EE. Commonalities of optic nerve injury and glaucoma-induced neurodegeneration: Insights from transcriptome-wide studies. Exp Eye Res 2021; 207:108571. [PMID: 33844961 PMCID: PMC9890784 DOI: 10.1016/j.exer.2021.108571] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Glaucoma is a collection of diseases that lead to an irreversible vision loss due to damage of retinal ganglion cells (RGCs). Although the underlying events leading to RGC death are not fully understood, recent research efforts are beginning to define the genetic changes that play a critical role in the initiation and progression of glaucomatous injury and RGC death. Several genetic and experimental animal models have been developed to mimic glaucomatous neurodegeneration. These models differ in many respects but all result in the loss of RGCs. Assessing transcriptional changes across different models could provide a more complete perspective on the molecular drivers of RGC degeneration. For the past several decades, changes in the retinal transcriptome during neurodegeneration process were defined using microarray methods, RNA sequencing and now single cell RNA sequencing. It is understood that these methods have strengths and weaknesses due to technical differences and variations in the analytical tools used. In this review, we focus on the use of transcriptome-wide expression profiling of the changes occurring as RGCs are lost across different glaucoma models. Commonalities of optic nerve crush and glaucoma-induced neurodegeneration are identified and discussed.
Collapse
Affiliation(s)
- Jiaxing Wang
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Germany,Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eldon E. Geisert
- Emory Eye Center, Department of Ophthalmology, Emory University, 1365B Clifton Road NE, Atlanta, GA, 30322, USA,Corresponding author: (E.E. Geisert)
| |
Collapse
|
83
|
Zhao TJ, Zhu N, Shi YN, Wang YX, Zhang CJ, Deng CF, Liao DF, Qin L. Targeting HDL in tumor microenvironment: New hope for cancer therapy. J Cell Physiol 2021; 236:7853-7873. [PMID: 34018609 DOI: 10.1002/jcp.30412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that plasma HDL-C levels are closely related to the risk of prostate cancer, breast cancer, and other malignancies. As one of the key carriers of cholesterol regulation, high-density lipoprotein (HDL) plays an important role in tumorigenesis and cancer development through anti-inflammation, antioxidation, immune-modulation, and mediating cholesterol transportation in cancer cells and noncancer cells. In addition, the occurrence and progression of cancer are closely related to the alteration of the tumor microenvironment (TME). Cancer cells synthesize and secrete a variety of cytokines and other factors to promote the reprogramming of surrounding cells and shape the microenvironment suitable for cancer survival. By analyzing the effect of HDL on the infiltrating immune cells in the TME, as well as the relationship between HDL and tumor-associated angiogenesis, it is suggested that a moderate increase in the level of HDL in vivo with consequent improvement of the function of HDL in the TME and induction of intracellular cholesterol efflux may be a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Xiang Wang
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chan-Juan Zhang
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
84
|
Ito Y, Sasaki T, Li Y, Tanoue T, Sugiura Y, Skelly AN, Suda W, Kawashima Y, Okahashi N, Watanabe E, Horikawa H, Shiohama A, Kurokawa R, Kawakami E, Iseki H, Kawasaki H, Iwakura Y, Shiota A, Yu L, Hisatsune J, Koseki H, Sugai M, Arita M, Ohara O, Matsui T, Suematsu M, Hattori M, Atarashi K, Amagai M, Honda K. Staphylococcus cohnii is a potentially biotherapeutic skin commensal alleviating skin inflammation. Cell Rep 2021; 35:109052. [PMID: 33910010 DOI: 10.1016/j.celrep.2021.109052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Host-microbe interactions orchestrate skin homeostasis, the dysregulation of which has been implicated in chronic inflammatory conditions such as atopic dermatitis and psoriasis. Here, we show that Staphylococcus cohnii is a skin commensal capable of beneficially inhibiting skin inflammation. We find that Tmem79-/- mice spontaneously develop interleukin-17 (IL-17)-producing T-cell-driven skin inflammation. Comparative skin microbiome analysis reveals that the disease activity index is negatively associated with S. cohnii. Inoculation with S. cohnii strains isolated from either mouse or human skin microbiota significantly prevents and ameliorates dermatitis in Tmem79-/- mice without affecting pathobiont burden. S. cohnii colonization is accompanied by activation of host glucocorticoid-related pathways and induction of anti-inflammatory genes in the skin and is therefore effective at suppressing inflammation in diverse pathobiont-independent dermatitis models, including chemically induced, type 17, and type 2 immune-driven models. As such, S. cohnii strains have great potential as effective live biotherapeutics for skin inflammation.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Youxian Li
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ashwin N Skelly
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wataru Suda
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Nobuyuki Okahashi
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Eiichiro Watanabe
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Hiroto Horikawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Aiko Shiohama
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rina Kurokawa
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program (MIH), RIKEN, Kanagawa 230-0045, Japan
| | - Hachiro Iseki
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Hiroshi Kawasaki
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Medical Sciences Innovation Hub Program (MIH), RIKEN, Kanagawa 230-0045, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Atsushi Shiota
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Haruhiko Koseki
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Medical Sciences Innovation Hub Program (MIH), RIKEN, Kanagawa 230-0045, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Makoto Arita
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Osamu Ohara
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Takeshi Matsui
- JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahira Hattori
- Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; JSR-Keio University Medical and Chemical Innovation Center, Keio University School of Medicine, Tokyo 160-8582, Japan; Center for Integrative Medical Science (IMS), RIKEN, Kanagawa 230-0045, Japan.
| |
Collapse
|
85
|
Azizi N, Toma J, Martin M, Khalid MF, Mousavi F, Win PW, Borrello MT, Steele N, Shi J, di Magliano MP, Pin CL. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer. Oncogene 2021; 40:3118-3135. [PMID: 33864001 PMCID: PMC8173475 DOI: 10.1038/s41388-021-01771-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3-/-) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3-/- mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3-/- mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.
Collapse
Affiliation(s)
- Nawab Azizi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jelena Toma
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Mickenzie Martin
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Muhammad Faran Khalid
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Fatemeh Mousavi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Phyo Wei Win
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Maria Teresa Borrello
- Centre for Cancer Research Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Nina Steele
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Christopher L Pin
- Children's Health Research Institute, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
- Department of Oncology, University of Western Ontario, London, ON, Canada.
- Department of Paediatrics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
86
|
Ribosome-Profiling Reveals Restricted Post Transcriptional Expression of Antiviral Cytokines and Transcription Factors during SARS-CoV-2 Infection. Int J Mol Sci 2021; 22:ijms22073392. [PMID: 33806254 PMCID: PMC8036502 DOI: 10.3390/ijms22073392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in over 2.2 million deaths. Disease outcomes range from asymptomatic to severe with, so far, minimal genotypic change to the virus so understanding the host response is paramount. Transcriptomics has become incredibly important in understanding host-pathogen interactions; however, post-transcriptional regulation plays an important role in infection and immunity through translation and mRNA stability, allowing tight control over potent host responses by both the host and the invading virus. Here, we apply ribosome profiling to assess post-transcriptional regulation of host genes during SARS-CoV-2 infection of a human lung epithelial cell line (Calu-3). We have identified numerous transcription factors (JUN, ZBTB20, ATF3, HIVEP2 and EGR1) as well as select antiviral cytokine genes, namely IFNB1, IFNL1,2 and 3, IL-6 and CCL5, that are restricted at the post-transcriptional level by SARS-CoV-2 infection and discuss the impact this would have on the host response to infection. This early phase restriction of antiviral transcripts in the lungs may allow high viral load and consequent immune dysregulation typically seen in SARS-CoV-2 infection.
Collapse
|
87
|
Johnson JS, De Veaux N, Rives AW, Lahaye X, Lucas SY, Perot BP, Luka M, Garcia-Paredes V, Amon LM, Watters A, Abdessalem G, Aderem A, Manel N, Littman DR, Bonneau R, Ménager MM. A Comprehensive Map of the Monocyte-Derived Dendritic Cell Transcriptional Network Engaged upon Innate Sensing of HIV. Cell Rep 2021; 30:914-931.e9. [PMID: 31968263 PMCID: PMC7039998 DOI: 10.1016/j.celrep.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/25/2019] [Accepted: 12/13/2019] [Indexed: 01/12/2023] Open
Abstract
Transcriptional programming of the innate immune response is pivotal for host protection. However, the transcriptional mechanisms that link pathogen sensing with innate activation remain poorly under-stood. During HIV-1 infection, human dendritic cells (DCs) can detect the virus through an innate sensing pathway, leading to antiviral interferon and DC maturation. Here, we develop an iterative experimental and computational approach to map the HIV-1 innate response circuitry in monocyte-derived DCs (MDDCs). By integrating genome-wide chromatin accessibility with expression kinetics, we infer a gene regulatory network that links 542 transcription factors with 21,862 target genes. We observe that an interferon response is required, yet insufficient, to drive MDDC maturation and identify PRDM1 and RARA as essential regulators of the interferon response and MDDC maturation, respectively. Our work provides a resource for interrogation of regulators of HIV replication and innate immunity, highlighting complexity and cooperativity in the regulatory circuit controlling the response to infection. Pathogen sensing leads to host transcriptional reprogramming to protect against infection. However, it is unclear how transcription factor activity is coordinated across the genome. Johnson et al. integrate chromatin accessibility and gene expression data to infer and validate a gene regulatory network that directs the innate immune response to HIV.
Collapse
Affiliation(s)
- Jarrod S Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA.
| | - Nicholas De Veaux
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
| | - Alexander W Rives
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Sasha Y Lucas
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Brieuc P Perot
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, INSERM UMR 1163, ATIP-Avenir Team, Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, INSERM UMR 1163, ATIP-Avenir Team, Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Victor Garcia-Paredes
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, INSERM UMR 1163, ATIP-Avenir Team, Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Lynn M Amon
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Aaron Watters
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA
| | - Ghaith Abdessalem
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, INSERM UMR 1163, ATIP-Avenir Team, Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Richard Bonneau
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA; Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Center for Data Science, New York University, New York, NY 10011, USA
| | - Mickaël M Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, INSERM UMR 1163, ATIP-Avenir Team, Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France; The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
88
|
Zhao Q, Luo YF, Tian M, Xiao YL, Cai HR, Li H. Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol Immunol 2021; 133:122-127. [PMID: 33640762 DOI: 10.1016/j.molimm.2021.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (PA) is one of the most prevalent pathogens that cause nosocomial infection in critical patients. Previously, we reported PA induced macrophage to senescence under the circumstance of infection. As an oxidative stress responsiveness element, activating transcription factor 3 (ATF3) might be involved in the macrophage senescence process. To test this presumption, we manipulated the expression of ATF3 in macrophage by using a PAO1 infection system. In the present study, ATF3 expression in macrophage was increased, following the duration and colony counts of PAO1 infection. Knockdown of ATF3 in macrophage resulted in increased percentage of senescent macrophage under PAO1 infection, while overexpressing ATF3 partly blocked PAO1-induced macrophage senescence. In accordance with the senescent phenotype, elevated reactive oxygen species (ROS) production was shown in ATF3 knockdown macrophages. Also, capacity of phagocytosis was also affected by manipulation of ATF3 expression in macrophages, and increased phagocytosed fluorescent beads was found in ATF3 knockdown macrophage. ATF3 might regulate the senescence process through influence on NF-κB translocation. During infection, the overexpression or downregulation of ATF3 in macrophage negatively modulated the translocation of NF-κB p65 and its phosphorylation at Ser-536. As a result, IL-6 and TNFα was elevated, while IL-10 decreased in case of ATF3 knockdown. In conclusion, ATF3 negatively regulates NF-κB translocation and activation, and participates in PA-induced macrophage senescence. As oxidative stress and inflammation induced element, ATF3 may modulate macrophage-related host defense.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Yi-Feng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mi Tian
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Yong-Long Xiao
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hou-Rong Cai
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
89
|
Liu Y, Hu Y, Xiong J, Zeng X. Overexpression of Activating Transcription Factor 3 Alleviates Cardiac Microvascular Ischemia/Reperfusion Injury in Rats. Front Pharmacol 2021; 12:598959. [PMID: 33679395 PMCID: PMC7934060 DOI: 10.3389/fphar.2021.598959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) has been confirmed to be responsive to oxidative stress and to negatively regulate the activity of Toll-like receptor 4 (TLR4). However, the effect of ATF3 on cardiac microvascular ischemia/reperfusion (I/R) injury remains unknown. The GEO2R online tool was employed to obtain differentially expressed genes GSE4105 and GSE122020, in two rat I/R injury microarray datasets. We established a rat myocardial I/R model in vivo, and also generated an in vitro hypoxia/reoxygenation (H/R) model of cardiomyoblast H9c2 cells. Overexpression of ATF3 was achieved by adenoviral-mediated gene transfer (Ad-ATF3). Rats were randomly divided into four groups: sham, I/R, I/R + Ad-Lacz (as a control), and I/R + Ad-ATF3. ELISA, CCK-8, DCFH-DA probe, qRT-PCR and Western blotting were used to determine the expression of ATF3, oxidative indices, cellular injury and TLR4/NF-κB pathway-associated proteins. Transmission electron microscopy, immunohistochemistry and immunofluorescence were used to detect the leukocyte infiltration and the alteration of microvascular morphology and function in vivo. Echocardiographic and hemodynamic data were also obtained. Bioinformatics analysis revealed that ATF3 was upregulated in I/R myocardia in two independent rat myocardial I/R models. Cardiac microvascular I/R injury included leukocyte infiltration, microvascular integrity disruption, and microvascular perfusion defect, which eventually resulted in the deterioration of hemodynamic parameters and heart function. Ad-ATF3 significantly restored microvascular function, increased cardiac microvascular perfusion, and improved hemodynamic parameters and heart function. Mechanistically, Ad-ATF3 ameliorated oxidative stress, inhibited TLR4/NF-κB pathway activation and down-regulated the expression of downstream proinflammatory cytokines in I/R myocardium in vivo and in H/R H9c2 cells in vitro. ATF3 overexpression protects against cardiac microvascular I/R injury in part by inhibiting the TLR4/NF-κB pathway and oxidative stress.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yisen Hu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jingjie Xiong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xiaocong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.,School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
90
|
Huang C, Chen R, Zheng F, Tang Y, Wang X, Chen Z, Lai X. Inhibitory role of ATF3 in gastric cancer progression through regulating cell EMT and stemness. Cancer Cell Int 2021; 21:127. [PMID: 33608016 PMCID: PMC7893881 DOI: 10.1186/s12935-021-01828-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/10/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer related mortality worldwide. The 5-year survival rate is rather low owing to advanced unresectable and distant metastasis. The EMT has been widely implicated in the stemness, metastatic dormancy, and chemoresistance of different solid tumors. Given the fact that activating transcription factor-3 (ATF3) is a member of the ATF/CREB family of transcription factors and its role in regulation of GC recurrence and metastasis remain poorly understood, the aim of the present study was to investigate its potential impact in epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties and GC aggression. METHODS To elucidate the potential role of ATF3 in gastric cancer, we utilized SGC-7901 and MGC-803 gastric cancer cell lines as research models and constructed stable cell lines overexpressing ATF3. We conducted a series of assays including cell proliferation, colony formation, cell migration, tumorsphere formation, and invasion to investigate the functional roles of ATF3 in stemness of gastric cancer. The possible effect of ATF3 on epithelial-mesenchymal transition (EMT) was assessed through flow cytometry and qRT-PCR. In vivo functional effect of upregulation of ATF3 on tumor growth was examined in a mouse xenograft model. RESULTS We found that overexpression of ATF3 inhibited cell proliferation, colony formation, cell migration and invasion. In addition, up-regulation of ATF3 attenuated tumorsphere formation, cell stemness, and potentially decreased expression of EMT markers. Moreover, ATF3 overexpression inhibited tumorigenesis in mouse xenograft model. CONCLUSION Our data suggest a suppressive role of ATF3 in gastric cancer development. Our findings will provide a potential therapeutic strategy and novel drug target for gastric cancer.
Collapse
Affiliation(s)
- Chuanqian Huang
- Department of Medical Oncology and Radiotherapy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China
| | - Renli Chen
- Department of Hematology and Rheumatism, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China
| | - Fangjing Zheng
- Department of Medical Oncology and Radiotherapy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China
| | - Yirong Tang
- Department of Hematology and Rheumatism, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China
| | - Xiukang Wang
- Department of Hematology and Rheumatism, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China.
| | - Xiaolan Lai
- Department of Hematology and Rheumatism, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, 352000, Fujian, China.
| |
Collapse
|
91
|
Ge L, Zhang Y, Zhao X, Wang J, Zhang Y, Wang Q, Yu H, Zhang Y, You Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol 2021; 132:132-141. [PMID: 33588244 DOI: 10.1016/j.molimm.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PKR, also known as EIF2AK2, is an IFN-stimulated gene (ISG) and shows a higher expression in probands with systemic lupus erythematosus (SLE), which is likely responsible for the impaired translational and proliferative responses to mitogens in T cells from SLE patients. In this study, we overexpressed EIF2AK2 in HeLa cells to study EIF2AK2-regulated genes using RNA-seq technology, followed by bioinformatic analysis of target genes of EIF2AK2-regulated transcriptional factors (TFs). Overexpression of EIF2AK2 promotes HeLa cell apoptosis. EIF2AK2 selectively represses the transcription of histone protein genes associated with SLE, immune response genes and TF genes, which was validated by RT-qPCR experiments. Analysis of motifs overrepresented in the promoter regions of EIF2AK2-regulated genes revealed eighteen EIF2AK2-regulated TFs involved in establishing the EIF2AK2 network. Eight out of these predicted EIF2AK2-regulated TFs were further verified by RT-qPCR selectively in both HeLa and Jurkat cells, and most such as HEY2, TFEC, BATF2, GATA3 and ATF3 and FOXO6 are known to regulate immune response. Our results suggest that the dsRNA-dependent kinase EIF2AK2 selectively regulates the transcription of immune response and SLE-associated histone protein genes, and such a selectivity is likely to be operated by EIF2AK2-targeted TFs. The EIF2AK2-TFs axis potentially offers new therapeutic targets for counteracting immunological disease in the future.
Collapse
Affiliation(s)
- Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
92
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
93
|
Li L, Song S, Fang X, Cao D. Role of ATF3 as a prognostic biomarker and correlation of ATF3 expression with macrophage infiltration in hepatocellular carcinoma. BMC Med Genomics 2021; 14:8. [PMID: 33407456 PMCID: PMC7789720 DOI: 10.1186/s12920-020-00852-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The abnormal expression of activating transcription factor 3 (ATF3), a member of the basic leucine zipper (bZIP) family of transcription factors, is associated with carcinogenesis. However, the expression pattern and exact role of ATF3 in the development and progression of hepatocellular carcinoma (HCC) remain unclear. METHODS We used UALCAN, ONCOMINE, Kaplan-Meier plotter, and cBioPortal databases to investigate the prognostic value of ATF3 expression in HCC. RESULTS ATF3 was found to be expressed at low levels in multiple HCC tumor tissues. Moreover, low ATF3 expression was significantly associated with clinical cancer stage and pathological tumor grade in patients with HCC. Therefore, low expression of ATF3 was significantly associated with poor overall survival in patients with HCC. Functional network analysis showed that ATF3 regulates cytokine receptors and signaling pathways via various cancer-related kinases, miRNAs, and transcription factors. ATF3 expression was found to be correlated with macrophage infiltration levels and with macrophage immune marker sets in HCC patients. CONCLUSIONS Using data mining methods, we clarified the role of ATF3 expression and related regulatory networks in HCC, laying a foundation for further functional research. Future research will validate our findings and establish clinical applications of ATF3 in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Shaohua Song
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Xiaoling Fang
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, Guangdong Province, China.
| |
Collapse
|
94
|
Kim TH, Yang K, Kim M, Kim HS, Kang JL. Apoptosis inhibitor of macrophage (AIM) contributes to IL-10-induced anti-inflammatory response through inhibition of inflammasome activation. Cell Death Dis 2021; 12:19. [PMID: 33414479 PMCID: PMC7791024 DOI: 10.1038/s41419-020-03332-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Apoptosis inhibitor of macrophage (AIM) modulates the signaling in inflammatory responses, including infection, cancer, or other immune diseases. Recent studies suggest that like interleukin-10 (IL-10), AIM is involved in alternatively activated (M2) macrophage polarization. We aimed to understand whether and how AIM is involved in IL-10-induced inhibition of inflammasome activation and resolution of inflammation. First, we demonstrated that IL-10 induced increases in mRNA and protein expression of AIM in murine bone marrow-derived macrophages (BMDM). In addition, genetic and pharmacologic inhibition of STAT3 (signal transducer and activator of transcription 3) reduced IL-10-induced AIM expression. We also found that IL-10-induced STAT3 activity enhanced the AIM promoter activity by directly binding the promoter of the AIM gene. Additionally, reduction of LPS/adenosine triphosphate (ATP)-induced IL-1β production and caspase-1 activation by IL-10 was reversed in BMDM from AIM-/- mice. Treatment of BMDM from both wild type (WT) and IL-10-/- mice with recombinant AIM showed the inhibitory effects on IL-1β and IL-18 production and caspase-1 activation. Endogenous and exogenous AIM inhibited apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) speck formation. In LPS-induced acute peritonitis, inhibition of IL-1β and IL-18 production in peritoneal lavage fluid (PLF) and serum, reduction of caspase-1 activation in peritoneal macrophages, and reduction of numbers of neutrophils and peritoneal macrophages in PLF by administration of IL-10 were not evident in AIM-/- mice. Our in vitro and in vivo data reveal a novel role of AIM in the inhibition of inflammasome-mediated caspase-1 activation and IL-1β and IL-18 production.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- grid.255649.90000 0001 2171 7754Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Kyungwon Yang
- grid.255649.90000 0001 2171 7754Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea ,grid.255649.90000 0001 2171 7754Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Minsuk Kim
- grid.255649.90000 0001 2171 7754Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804 Korea ,grid.255649.90000 0001 2171 7754Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Hee-Sun Kim
- grid.255649.90000 0001 2171 7754Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| | - Jihee Lee Kang
- grid.255649.90000 0001 2171 7754Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07804 Korea ,grid.255649.90000 0001 2171 7754Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, 07804 Korea
| |
Collapse
|
95
|
Xu Y, Li Y, Jadhav K, Pan X, Zhu Y, Hu S, Chen S, Chen L, Tang Y, Wang HH, Yang L, Wang DQH, Yin L, Zhang Y. Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism. Nat Metab 2021; 3:59-74. [PMID: 33462514 PMCID: PMC7856821 DOI: 10.1038/s42255-020-00331-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Activating transcription factor (ATF)3 is known to have an anti-inflammatory function, yet the role of hepatic ATF3 in lipoprotein metabolism or atherosclerosis remains unknown. Here we show that overexpression of human ATF3 in hepatocytes reduces the development of atherosclerosis in Western-diet-fed Ldlr-/- or Apoe-/- mice, whereas hepatocyte-specific ablation of Atf3 has the opposite effect. We further show that hepatic ATF3 expression is inhibited by hydrocortisone. Mechanistically, hepatocyte ATF3 enhances high-density lipoprotein (HDL) uptake, inhibits intestinal fat and cholesterol absorption and promotes macrophage reverse cholesterol transport by inducing scavenger receptor group B type 1 (SR-BI) and repressing cholesterol 12α-hydroxylase (CYP8B1) in the liver through its interaction with p53 and hepatocyte nuclear factor 4α, respectively. Our data demonstrate that hepatocyte ATF3 is a key regulator of HDL and bile acid metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Divison of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Liuying Chen
- Divison of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Tang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Helen H Wang
- Department of Medicine and Genetics, Marion Bessin Liver Research Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ling Yang
- Divison of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Q-H Wang
- Department of Medicine and Genetics, Marion Bessin Liver Research Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
96
|
Park JW, Kim KH, Choi JK, Park TS, Song KD, Cho BW. Regulation of Toll-like receptors Expression in Muscle cells by Exercise-induced Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 34:1590-1599. [PMID: 33332945 PMCID: PMC8495349 DOI: 10.5713/ab.20.0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Objective This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung-Hwan Kim
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National Univ., City of Cheong-Ju, Republic of Korea
| | - Tae Sub Park
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.,Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
97
|
Trinder M, Wang Y, Madsen CM, Ponomarev T, Bohunek L, Daisely BA, Julia Kong H, Blauw LL, Nordestgaard BG, Tybjærg-Hansen A, Wurfel MM, Russell JA, Walley KR, Rensen PCN, Boyd JH, Brunham LR. Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis. Circulation 2020; 143:921-934. [PMID: 33228395 DOI: 10.1161/circulationaha.120.048568] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The high-density lipoprotein hypothesis of atherosclerosis has been challenged by clinical trials of cholesteryl ester transfer protein (CETP) inhibitors, which failed to show significant reductions in cardiovascular events. Plasma levels of high-density lipoprotein cholesterol (HDL-C) decline drastically during sepsis, and this phenomenon is explained, in part, by the activity of CETP, a major determinant of plasma HDL-C levels. We tested the hypothesis that genetic or pharmacological inhibition of CETP would preserve high-density lipoprotein levels and decrease mortality in clinical cohorts and animal models of sepsis. METHODS We examined the effect of a gain-of-function variant in CETP (rs1800777, p.Arg468Gln) and a genetic score for decreased CETP function on 28-day sepsis survival using Cox proportional hazard models adjusted for age and sex in the UK Biobank (n=5949), iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk; n=882), Copenhagen General Population Study (n=2068), Copenhagen City Heart Study (n=493), Early Infection (n=200), St Paul's Intensive Care Unit 2 (n=203), and Vasopressin Versus Norepinephrine Infusion in Patients With Septic Shock studies (n=632). We then studied the effect of the CETP inhibitor, anacetrapib, in adult female APOE*3-Leiden mice with or without human CETP expression using the cecal-ligation and puncture model of sepsis. RESULTS A fixed-effect meta-analysis of all 7 cohorts found that the CETP gain-of-function variant was significantly associated with increased risk of acute sepsis mortality (hazard ratio, 1.44 [95% CI, 1.22-1.70]; P<0.0001). In addition, a genetic score for decreased CETP function was associated with significantly decreased sepsis mortality in the UK Biobank (hazard ratio, 0.77 [95% CI, 0.59-1.00] per 1 mmol/L increase in HDL-C) and iSPAAR cohorts (hazard ratio, 0.60 [95% CI, 0.37-0.98] per 1 mmol/L increase in HDL-C). APOE*3-Leiden.CETP mice treated with anacetrapib had preserved levels of HDL-C and apolipoprotein-AI and increased survival relative to placebo treatment (70.6% versus 35.3%, Log-rank P=0.03), whereas there was no effect of anacetrapib on the survival of APOE*3-Leiden mice that did not express CETP (50.0% versus 42.9%, Log-rank P=0.87). CONCLUSIONS Clinical genetics and humanized mouse models suggest that inhibiting CETP may preserve high-density lipoprotein levels and improve outcomes for individuals with sepsis.
Collapse
Affiliation(s)
- Mark Trinder
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Experimental Medicine Program (M.T., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada
| | - Yanan Wang
- Department of Medicine, Division of Endocrinology (Y.W., L.L.B., P.C.N.R.), Leiden University Medical Center, The Netherlands
| | - Christian M Madsen
- Department of Clinical Biochemistry (C.M.M., B.G.N., J.A.R.), Copenhagen University Hospital, Denmark.,The Copenhagen General Population Study (C.M.M., B.G.N., A.T.-H.), Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (C.M.M., B.G.N., A.T.-H.)
| | - Tatjana Ponomarev
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada
| | | | - Brendan A Daisely
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada (B.A.D.)
| | - HyeJin Julia Kong
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada
| | - Lisanne L Blauw
- Department of Medicine, Division of Endocrinology (Y.W., L.L.B., P.C.N.R.), Leiden University Medical Center, The Netherlands
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry (C.M.M., B.G.N., J.A.R.), Copenhagen University Hospital, Denmark.,The Copenhagen General Population Study (C.M.M., B.G.N., A.T.-H.), Copenhagen University Hospital, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital (B.G.N., A.T.-H.), Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (C.M.M., B.G.N., A.T.-H.)
| | - Anne Tybjærg-Hansen
- The Copenhagen General Population Study (C.M.M., B.G.N., A.T.-H.), Copenhagen University Hospital, Denmark.,Herlev Gentofte Hospital, Department of Clinical Biochemistry, Rigshospitalet (A.T.-H.), Copenhagen University Hospital, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital (B.G.N., A.T.-H.), Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (C.M.M., B.G.N., A.T.-H.)
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle (M.M.W., K.R.W.)
| | - James A Russell
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Department of Clinical Biochemistry (C.M.M., B.G.N., J.A.R.), Copenhagen University Hospital, Denmark
| | - Keith R Walley
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle (M.M.W., K.R.W.)
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology (Y.W., L.L.B., P.C.N.R.), Leiden University Medical Center, The Netherlands
| | - John H Boyd
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Experimental Medicine Program (M.T., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Department of Medicine (J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation (M.T., T.P., L.B., H.J.K., J.A.R., K.R.W., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Experimental Medicine Program (M.T., J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada.,Department of Medicine (J.H.B., L.R.B.), University of British Columbia, Vancouver, Canada
| |
Collapse
|
98
|
Zhang H, Madi A, Yosef N, Chihara N, Awasthi A, Pot C, Lambden C, Srivastava A, Burkett PR, Nyman J, Christian E, Etminan Y, Lee A, Stroh H, Xia J, Karwacz K, Thakore PI, Acharya N, Schnell A, Wang C, Apetoh L, Rozenblatt-Rosen O, Anderson AC, Regev A, Kuchroo VK. An IL-27-Driven Transcriptional Network Identifies Regulators of IL-10 Expression across T Helper Cell Subsets. Cell Rep 2020; 33:108433. [PMID: 33238123 PMCID: PMC7771052 DOI: 10.1016/j.celrep.2020.108433] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin-27 (IL-27) is an immunoregulatory cytokine that suppresses inflammation through multiple mechanisms, including induction of IL-10, but the transcriptional network mediating its diverse functions remains unclear. Combining temporal RNA profiling with computational algorithms, we predict 79 transcription factors induced by IL-27 in T cells. We validate 11 known and discover 5 positive (Cebpb, Fosl2, Tbx21, Hlx, and Atf3) and 2 negative (Irf9 and Irf8) Il10 regulators, generating an experimentally refined regulatory network for Il10. We report two central regulators, Prdm1 and Maf, that cooperatively drive the expression of signature genes induced by IL-27 in type 1 regulatory T cells, mediate IL-10 expression in all T helper cells, and determine the regulatory phenotype of colonic Foxp3+ regulatory T cells. Prdm1/Maf double-knockout mice develop spontaneous colitis, phenocopying ll10-deficient mice. Our work provides insights into IL-27-driven transcriptional networks and identifies two shared Il10 regulators that orchestrate immunoregulatory programs across T helper cell subsets. Zhang et al. construct a transcriptional network for IL-27-mediated Il10 production in CD4 T cells, characterize the function of 16 Il10 regulators, and uncover the role of two transcription factors, Prdm1 and Maf, in driving Il10 production in all T helper cells and in maintaining immune homeostasis in the colon.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Asaf Madi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Nir Yosef
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Norio Chihara
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Amit Awasthi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Center for Human Microbial Ecology, Translational Health Science and Technology Institute(an autonomous institute of the Department of Biotechnology, Government of India), NCR Biotech Science Cluster, Faridabad, India
| | - Caroline Pot
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Laboratories of Neuroimmunology, Division of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Conner Lambden
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Biogen, 300 Binney St., Cambridge, MA, USA
| | - Jackson Nyman
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elena Christian
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasaman Etminan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Annika Lee
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Helene Stroh
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Junrong Xia
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Katarzyna Karwacz
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nandini Acharya
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lionel Apetoh
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; INSERM, U1231, Dijon, France
| | | | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Department of Biology, Koch Institute and Ludwig Center, Massachusetts Institute of Technology, Cambridge, MA, USA; Genentech, 1 DNA Way, South San Francisco, CA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
99
|
Huerga Encabo H, Traveset L, Argilaguet J, Angulo A, Nistal-Villán E, Jaiswal R, Escalante CR, Gekas C, Meyerhans A, Aramburu J, López-Rodríguez C. The transcription factor NFAT5 limits infection-induced type I interferon responses. J Exp Med 2020; 217:132619. [PMID: 31816635 PMCID: PMC7062515 DOI: 10.1084/jem.20190449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
Huerga Encabo et al. show that NFAT5, previously characterized as a pro-inflammatory transcription factor, limits the IFN-I response to control antiviral defenses and preserve HSC quiescence. NFAT5 represses IFN-I and ISG expression through an evolutionarily conserved DNA element that prevents IRF3 recruitment to the IFNB1 enhanceosome. Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells. Mice lacking NFAT5 exhibit increased IFN-I production and better control of viral burden upon LCMV infection but show exacerbated HSC activation under systemic poly(I:C)-induced inflammation. We identify IFNβ as a primary target repressed by NFAT5, which opposes the master IFN-I inducer IRF3 by binding to an evolutionarily conserved sequence in the IFNB1 enhanceosome that overlaps a key IRF site. These findings illustrate how IFN-I responses are balanced by simultaneously opposing transcription factors.
Collapse
Affiliation(s)
- Hector Huerga Encabo
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Traveset
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento de Ciencias, Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Madrid, Spain
| | - Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Christos Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
100
|
Iwasaki Y, Ikemura T, Kurokawa K, Okada N. Implication of a new function of human tDNAs in chromatin organization. Sci Rep 2020; 10:17440. [PMID: 33060757 PMCID: PMC7567086 DOI: 10.1038/s41598-020-74499-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/14/2020] [Indexed: 02/03/2023] Open
Abstract
Transfer RNA genes (tDNAs) are essential genes that encode tRNAs in all species. To understand new functions of tDNAs, other than that of encoding tRNAs, we used ENCODE data to examine binding characteristics of transcription factors (TFs) for all tDNA regions (489 loci) in the human genome. We divided the tDNAs into three groups based on the number of TFs that bound to them. At the two extremes were tDNAs to which many TFs bound (Group 1) and those to which no TFs bound (Group 3). Several TFs involved in chromatin remodeling such as ATF3, EP300 and TBL1XR1 bound to almost all Group 1 tDNAs. Furthermore, almost all Group 1 tDNAs included DNase I hypersensitivity sites and may thus interact with other chromatin regions through their bound TFs, and they showed highly conserved synteny across tetrapods. In contrast, Group 3 tDNAs did not possess these characteristics. These data suggest the presence of a previously uncharacterized function of these tDNAs. We also examined binding of CTCF to tDNAs and their involvement in topologically associating domains (TADs) and lamina-associated domains (LADs), which suggest a new perspective on the evolution and function of tDNAs.
Collapse
Affiliation(s)
- Yuki Iwasaki
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Toshimichi Ikemura
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Ken Kurokawa
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Norihiro Okada
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.
- School of Pharmacy, Kitasato University, Sagamihara, Kanagawa, Japan.
| |
Collapse
|