51
|
Pi M, Zhong R, Hu S, Cai Z, Plunkert M, Zhang W, Liu Z, Kang C. A GT-1 and PKc domain-containing transcription regulator SIMPLE LEAF1 controls compound leaf development in woodland strawberry. THE NEW PHYTOLOGIST 2023; 237:1391-1404. [PMID: 36319612 DOI: 10.1111/nph.18589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Leaves are strikingly diverse in terms of shapes and complexity. The wild and cultivated strawberry plants mostly develop trifoliate compound leaves, yet the underlying genetic basis remains unclear in this important fruit crop in Rosaceae. Here, we identified two EMS mutants designated simple leaf1 (sl1-1 and sl1-2) and one natural simple-leafed mutant monophylla in Fragaria vesca. Their causative mutations all reside in SL1 (FvH4_7g28640) causing premature stop codon at different positions in sl1-1 and sl1-2 and an eight-nucleotide insertion (GTTCATCA) in monophylla. SL1 encodes a transcription regulator with the conserved DNA-binding domain GT-1 and the catalytic domain of protein kinases PKc. Expression of SL1pro::SL1 in sl1-1 completely restored compound leaf formation. The 35S::SL1 lines developed palmate-like leaves with four or five leaflets at a low penetrance. However, overexpressing the truncated SL1ΔPK caused no phenotypes, probably due to the disruption of homodimerization. SL1 is preferentially expressed at the tips of leaflets and serrations. Moreover, SL1 is closely associated with the auxin pathway and works synergistically with FveLFYa in leaf morphogenesis. Overall, our work uncovered a new type of transcription regulator that promotes compound leaf formation in the woodland strawberry and shed new lights on the diversity of leaf complexity control.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
52
|
Zhang L, Guo Y, Zhang Y, Li Y, Pei Y, Zhang M. Regulation of PIN-FORMED Protein Degradation. Int J Mol Sci 2023; 24:ijms24010843. [PMID: 36614276 PMCID: PMC9821320 DOI: 10.3390/ijms24010843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Auxin action largely depends on the establishment of auxin concentration gradient within plant organs, where PIN-formed (PIN) auxin transporter-mediated directional auxin movement plays an important role. Accumulating studies have revealed the need of polar plasma membrane (PM) localization of PIN proteins as well as regulation of PIN polarity in response to developmental cues and environmental stimuli, amongst which a typical example is regulation of PIN phosphorylation by AGCVIII protein kinases and type A regulatory subunits of PP2A phosphatases. Recent findings, however, highlight the importance of PIN degradation in reestablishing auxin gradient. Although the underlying mechanism is poorly understood, these findings provide a novel aspect to broaden the current knowledge on regulation of polar auxin transport. In this review, we summarize the current understanding on controlling PIN degradation by endosome-mediated vacuolar targeting, autophagy, ubiquitin modification and the related E3 ubiquitin ligases, cytoskeletons, plant hormones, environmental stimuli, and other regulators, and discuss the possible mechanisms according to recent studies.
Collapse
Affiliation(s)
- Liuqin Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yifan Guo
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yujie Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yuxin Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel./Fax: +86-023-68251883
| |
Collapse
|
53
|
Wang Y, Zhou G, Luo H, Li X, Zhang K, Wan Y. Genome-Wide Identification of PIN and PILS Gene Families in Areca catechu and the Potential Role of AcPIN6 in Lateral Brace Root Formation. PLANTS (BASEL, SWITZERLAND) 2022; 12:33. [PMID: 36616161 PMCID: PMC9824567 DOI: 10.3390/plants12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
PIN-FORMED (PIN) and PIN-LIKES (PILS) are two families of auxin transporters that control the directional cell-to-cell transport and intracellular accumulation of auxin, thereby influencing plant growth and development. Most knowledge of PINs and PILSs was obtained from the dicot model plant Arabidopsis thaliana. Here, we focus on the distribution and expression of the PIN and PILS gene families in areca palm (Areca catechu), a monocot tree. The whole genomic dataset of areca palm was used to identify twelve AcPINs and eight AcPILSs, and a phylogenetic tree was constructed of PINS and PILS together with several other palm species, including the date palm (Phoenix dactylifera), oil palm (Elaeis guineensis), and coconut (Cocos nucifera). We further analyzed the expression patterns of AcPIN and AcPILS in areca palm, and found that AcPIN6 displayed an extremely high transcriptional abundance in the brace roots and was extremely stimulated in the lateral root primordium. This result implies that AcPIN6 plays an important role in the growth and formation of brace roots, especially in lateral root initiation. We also overexpressed AcPIN6 and AcPIN6-eGFP in Arabidopsis, and the results revealed that the PIN6 localized on the plasma membrane and affected auxin-related phenomena. Taken together, we analyzed the evolutionary relationships of PINs and PILSs in palm species, and the roles of PIN6 in areca palm root formation. The results will improve the understanding of root system construction in large palm trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
54
|
Hao M, Wang W, Liu J, Wang H, Zhou R, Mei D, Fu L, Hu Q, Cheng H. Auxin Biosynthesis Genes in Allotetraploid Oilseed Rape Are Essential for Plant Development and Response to Drought Stress. Int J Mol Sci 2022; 23:15600. [PMID: 36555242 PMCID: PMC9778849 DOI: 10.3390/ijms232415600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Crucial studies have verified that IAA is mainly generated via the two-step pathway in Arabidopsis, in which tryptophan aminotransferase (TAA) and YUCCA (YUC) are the two crucial enzymes. However, the role of the TAA (or TAR) and YUC genes in allotetraploid oilseed rape underlying auxin biosynthesis and development regulation remains elusive. In the present study, all putative TAR and YUC genes were identified in B. napus genome. Most TAR and YUC genes were tissue that were specifically expressed. Most YUC and TAR proteins contained trans-membrane regions and were confirmed to be endoplasmic reticulum localizations. Enzymatic activity revealed that YUC and TAR protein members were involved in the conversion of IPA to IAA and Trp to IPA, respectively. Transgenic plants overexpressing BnaYUC6a in both Arabidopsis and B. napus displayed high auxin production and reduced plant branch angle, together with increased drought resistance. Moreover, mutation in auxin biosynthesis BnaTARs genes by CRISPR/Cas9 caused development defects. All these results suggest the convergent role of BnaYUC and BnaTAR genes in auxin biosynthesis. Different homoeologs of BnaYUC and BnaTAR may be divergent according to sequence and expression variation. Auxin biosynthesis genes in allotetraploid oilseed rape play a pivotal role in coordinating plant development processes and stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
55
|
Grones P, De Meyer A, Pleskot R, Mylle E, Kraus M, Vandorpe M, Yperman K, Eeckhout D, Dragwidge JM, Jiang Q, Nolf J, Pavie B, De Jaeger G, De Rybel B, Van Damme D. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. NATURE PLANTS 2022; 8:1467-1483. [PMID: 36456802 PMCID: PMC7613989 DOI: 10.1038/s41477-022-01280-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.
Collapse
Affiliation(s)
- Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonathan Michael Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Benjamin Pavie
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
56
|
Kanapin A, Rozhmina T, Bankin M, Surkova S, Duk M, Osyagina E, Samsonova M. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci 2022; 23:14536. [PMID: 36498863 PMCID: PMC9738745 DOI: 10.3390/ijms232314536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Ekaterina Osyagina
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
57
|
Long Y, Chen Q, Qu Y, Liu P, Jiao Y, Cai Y, Deng X, Zheng K. Identification and functional analysis of PIN family genes in Gossypium barbadense. PeerJ 2022; 10:e14236. [PMID: 36275460 PMCID: PMC9586078 DOI: 10.7717/peerj.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023] Open
Abstract
Background PIN proteins are an important class of auxin polar transport proteins that play an important regulatory role in plant growth and development. However, their characteristics and functions have not been identified in Gossypium barbadense. Methods PIN family genes were identified in the cotton species G. barbadense, Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum, and detailed bioinformatics analyses were conducted to explore the roles of these genes in G. barbadense using transcriptome data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) technology. Functional verification of the genes was performed using virus-induced gene silencing (VIGS) technology. Results A total of 138 PIN family genes were identified in the four cotton species; the genes were divided into seven subgroups. GbPIN gene family members were widely distributed on 20 different chromosomes, and most had repeated duplication events. Transcriptome analysis showed that some genes had differential expression patterns in different stages of fiber development. According to 'PimaS-7' and '5917' transcript component association analysis, the transcription of five genes was directly related to endogenous auxin content in cotton fibers. qRT-PCR analysis showed that the GbPIN7 gene was routinely expressed during fiber development, and there were significant differences among materials. Transient silencing of the GbPIN7 gene by VIGS led to significantly higher cotton plant growth rates and significantly lower endogenous auxin content in leaves and stems. This study provides comprehensive analyses of the roles of PIN family genes in G. barbadense and their expression during cotton fiber development. Our results will form a basis for further PIN auxin transporter research.
Collapse
Affiliation(s)
- Yilei Long
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Pengfei Liu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yang Jiao
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China,Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China,Postdoctoral Research Station, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
58
|
Yang Y, Mei J, Chen J, Yang Y, Gu Y, Tang X, Lu H, Yang K, Sharma A, Wang X, Yan D, Wu R, Zheng B, Yuan H. Expression analysis of PIN family genes in Chinese hickory reveals their potential roles during grafting and salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:999990. [PMID: 36247577 PMCID: PMC9557188 DOI: 10.3389/fpls.2022.999990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Grafting is an effective way to improve Chinese hickory while salt stress has caused great damage to the Chinese hickory industry. Grafting and salt stress have been regarded as the main abiotic stress types for Chinese hickory. However, how Chinese hickory responds to grafting and salt stress is less studied. Auxin has been proved to play an essential role in the stress response through its re-distribution regulation mediated by polar auxin transporters, including PIN-formed (PIN) proteins. In this study, the PIN gene family in Chinese hickory (CcPINs) was identified and structurally characterized for the first time. The expression profiles of the genes in response to grafting and salt stress were determined. A total of 11 CcPINs with the open reading frames (ORFs) of 1,026-1,983 bp were identified. Transient transformation in tobacco leaves demonstrated that CcPIN1a, CcPIN3, and CcPIN4 were localized in the plasma membrane. There were varying phylogenetic relationships between CcPINs and homologous genes in different species, but the closest relationships were with those in Carya illinoinensis and Juglans regia. Conserved N- and C-terminal transmembrane regions as well as sites controlling the functions of CcPINs were detected in CcPINs. Five types of cis-acting elements, including hormone- and stress-responsive elements, were detected on the promoters of CcPINs. CcPINs exhibited different expression profiles in different tissues, indicating their varied roles during growth and development. The 11 CcPINs responded differently to grafting and salt stress treatment. CcPIN1a might be involved in the regulation of the grafting process, while CcPIN1a and CcPIN8a were related to the regulation of salt stress in Chinese hickory. Our results will lay the foundation for understanding the potential regulatory functions of CcPIN genes during grafting and under salt stress treatment in Chinese hickory.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Juanjuan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Yujie Gu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Huijie Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Kangbiao Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Rongling Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
59
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
60
|
BrWAX3, Encoding a β-ketoacyl-CoA Synthase, Plays an Essential Role in Cuticular Wax Biosynthesis in Chinese Cabbage. Int J Mol Sci 2022; 23:ijms231810938. [PMID: 36142850 PMCID: PMC9501823 DOI: 10.3390/ijms231810938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome of Brassica rapa, Bra024749 (BrCER60.A09), encoding a β-ketoacyl-CoA synthase, was identified as the candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09 in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09 enzyme. Moreover, comparative transcriptome analysis revealed that the ‘cutin, suberine, and wax biosynthesis’ pathway was significantly enriched, and genes involved in this pathway were almost upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1, were developed and validated. Overall, these results provide a new information for the cuticular wax biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of Brassica rapa.
Collapse
|
61
|
Zheng H, Dong Y, Nong H, Huang L, Liu J, Yu X, Zhang Y, Yang L, Hong B, Wang W, Tao J. VvSUN may act in the auxin pathway to regulate fruit shape in grape. HORTICULTURE RESEARCH 2022; 9:uhac200. [PMID: 36382226 PMCID: PMC9647697 DOI: 10.1093/hr/uhac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Fruit shape is an essential agronomic feature in many crops. We identified and functionally characterized an auxin pathway-related gene, VvSUN. VvSUN, which belongs to the SUN/IQ67-DOMAIN (IQD) family, localizes to the plasma membrane and chloroplast and may be involved in controlling fruit shape through auxin. It is highly expressed in the ovary, and the expression level 1 week before the anthesis stage is positively correlated with the fruit shape index. Functional analyses illustrated that VvSUN gene overexpression in tomato and tobacco plants changed fruit/pod shape. The VvSUN promoter directly bound to VvARF6 in yeast and activated ß-glucuronidase (GUS) activity by indole-3-acetic acid (IAA) treatments in grapevine leaves, indicating that VvSUN functions are in coordination with auxin. Further analysis of 35S::VvSUN transgenic tomato ovaries showed that the fruit shape changes caused by VvSUN were predominantly caused by variations in cell number in longitudinal directions by regulating endogenous auxin levels via polar transport and/or auxin signal transduction process variations. Moreover, enrichment of the 35S::VvSUN transgenic tomato differentially expressed genes was found in a variety of biological processes, including primary metabolic process, transmembrane transport, calcium ion binding, cytoskeletal protein binding, tubulin binding, and microtubule-based movement. Using weighted gene co-expression network analysis (WGCNA), we confirmed that this plant hormone signal transduction may play a crucial role in controlling fruit shape. As a consequence, it is possible that VvSUN acts as a hub gene, altering cellular auxin levels and the plant hormone signal transduction pathway, which plays a role in cell division patterns, leading to anisotropic growth of the ovary and, ultimately, an elongated fruit shape.
Collapse
Affiliation(s)
- Huan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilan Nong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyuan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaguan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Yang
- Charles River Laboratories International, Inc., Michigan, 49071, USA
| | - Ben Hong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wu Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | | |
Collapse
|
62
|
Genome-Wide Characterization of PIN Auxin Efflux Carrier Gene Family in Mikania micrantha. Int J Mol Sci 2022; 23:ijms231710183. [PMID: 36077586 PMCID: PMC9456128 DOI: 10.3390/ijms231710183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mikania micrantha, recognized as one of the world's top 10 pernicious weeds, is a rapidly spreading tropical vine that has invaded the coastal areas of South China, causing serious economic losses and environmental damage. Rapid stem growth is an important feature of M. micrantha which may be related to its greater number of genes involved in auxin signaling and transport pathways and its ability to synthesize more auxin under adverse conditions to promote or maintain stem growth. Plant growth and development is closely connected to the regulation of endogenous hormones, especially the polar transport and asymmetric distribution of auxin. The PIN-FORMED (PIN) auxin efflux carrier gene family plays a key role in the polar transport of auxin and then regulates the growth of different plant tissues, which could indicate that the rapid growth of M. micrantha is closely related to this PIN-dependent auxin regulation. In this study, 11 PIN genes were identified and the phylogenetic relationship and structural compositions of the gene family in M. micrantha were analyzed by employing multiple bioinformatic methods. The phylogenetic analysis indicated that the PIN proteins could be divided into five distinct clades. The structural analysis revealed that three putative types of PIN (canonical, noncanonical and semi-canonical) exist among the proteins according to the length and the composition of the hydrophilic domain. The majority of the PINs were involved in the process of axillary bud differentiation and stem response under abiotic stress, indicating that M. micrantha may regulate its growth, development and stress response by regulating PIN expression in the axillary bud and stem, which may help explain its strong growth ability and environmental adaptability. Our study emphasized the structural features and stress response patterns of the PIN gene family and provided useful insights for further study into the molecular mechanism of auxin-regulated growth and control in M. micrantha.
Collapse
|
63
|
Edwards MB, Ballerini ES, Kramer EM. Complex developmental and transcriptional dynamics underlie pollinator-driven evolutionary transitions in nectar spur morphology in Aquilegia (columbine). AMERICAN JOURNAL OF BOTANY 2022; 109:1360-1381. [PMID: 35971626 DOI: 10.1002/ajb2.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Determining the developmental programs underlying morphological variation is key to elucidating the evolutionary processes that generated the stunning biodiversity of the angiosperms. Here, we characterized the developmental and transcriptional dynamics of the elaborate petal nectar spur of Aquilegia (columbine) in species with contrasting pollination syndromes and spur morphologies. METHODS We collected petal epidermal cell number and length data across four Aquilegia species, two with short, curved nectar spurs of the bee-pollination syndrome and two with long, straight spurs of the hummingbird-pollination syndrome. We also performed RNA-seq on A. brevistyla (bee) and A. canadensis (hummingbird) distal and proximal spur compartments at multiple developmental stages. Finally, we intersected these data sets with a previous QTL mapping study on spur length and shape to identify new candidate loci. RESULTS The differential growth between the proximal and distal surfaces of curved spurs is primarily driven by differential cell division. However, independent transitions to straight spurs in the hummingbird syndrome have evolved by increasing differential cell elongation between spur surfaces. The RNA-seq data reveal these tissues to be transcriptionally distinct and point to auxin signaling as being involved with the differential cell elongation responsible for the evolution of straight spurs. We identify several promising candidate genes for future study. CONCLUSIONS Our study, taken together with previous work in Aquilegia, reveals the complexity of the developmental mechanisms underlying trait variation in this system. The framework we established here will lead to exciting future work examining candidate genes and processes involved in the rapid radiation of the genus.
Collapse
Affiliation(s)
- Molly B Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Evangeline S Ballerini
- Department of Biological Sciences, California State University Sacramento, 6000 J St., Sacramento, CA, 95819, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| |
Collapse
|
64
|
Bela K, Riyazuddin R, Csiszár J. Plant Glutathione Peroxidases: Non-Heme Peroxidases with Large Functional Flexibility as a Core Component of ROS-Processing Mechanisms and Signalling. Antioxidants (Basel) 2022; 11:antiox11081624. [PMID: 36009343 PMCID: PMC9404953 DOI: 10.3390/antiox11081624] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
65
|
Zhai L, Yang L, Xiao X, Jiang J, Guan Z, Fang W, Chen F, Chen S. PIN and PILS family genes analyses in Chrysanthemum seticuspe reveal their potential functions in flower bud development and drought stress. Int J Biol Macromol 2022; 220:67-78. [PMID: 35970365 DOI: 10.1016/j.ijbiomac.2022.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Auxin affects almost all plant growth and developmental processes. The PIN-FORMED (PIN) and PIN-LIKES (PILS) family genes determine the direction and distribution gradient of auxin flow by polar localization on the cell membrane. However, there are no systematic studies on PIN and PILS family genes in chrysanthemum. Here, 18 PIN and 13 PILS genes were identified in Chrysanthemum seticuspe. The evolutionary relationships, physicochemical properties, conserved motifs, cis-acting elements, chromosome localization, collinearity, and expression characteristics of these genes were analyzed. CsPIN10a, CsPIN10b, and CsPIN10c are unique PIN genes in C. seticuspe. Expression pattern analysis showed that these genes had different tissue specificities, and the expression levels of CsPIN8, CsPINS1, CsPILS6, and CsPILS10 were linearly related to the developmental period of the flower buds. In situ hybridization assay showed that CsPIN1a, CsPIN1b, and CsPILS8 were expressed in floret primordia and petal tips, and CsPIN1a was specifically expressed in the middle of the bract primordia, which might regulate lateral expansion of the bracts. CsPIN and CsPILS family genes are also involved in drought stress responses. This study provides theoretical support for the cultivation of new varieties with attractive flower forms and high drought tolerance.
Collapse
Affiliation(s)
- Lisheng Zhai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuhui Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyu Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
66
|
Huang X, Maisch J, Hayashi KI, Nick P. Fluorescent Auxin Analogs Report Two Auxin Binding Sites with Different Subcellular Distribution and Affinities: A Cue for Non-Transcriptional Auxin Signaling. Int J Mol Sci 2022; 23:ijms23158593. [PMID: 35955725 PMCID: PMC9369420 DOI: 10.3390/ijms23158593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The complexity of auxin signaling is partially due to multiple auxin receptors that trigger differential signaling. To obtain insight into the subcellular localization of auxin-binding sites, we used fluorescent auxin analogs that can undergo transport but do not deploy auxin signaling. Using fluorescent probes for different subcellular compartments, we can show that the fluorescent analog of 1-naphthaleneacetic acid (NAA) associates with the endoplasmic reticulum (ER) and tonoplast, while the fluorescent analog of indole acetic acid (IAA) binds to the ER. The binding of the fluorescent NAA analog to the ER can be outcompeted by unlabeled NAA, which allows us to estimate the affinity of NAA for this binding site to be around 1 μM. The non-transportable auxin 2,4-dichlorophenoxyacetic acid (2,4-D) interferes with the binding site for the fluorescent NAA analog at the tonoplast but not with the binding site for the fluorescent IAA analog at the ER. We integrate these data into a working model, where the tonoplast hosts a binding site with a high affinity for 2,4-D, while the ER hosts a binding site with high affinity for NAA. Thus, the differential subcellular localization of binding sites reflects the differential signaling in response to these artificial auxins.
Collapse
Affiliation(s)
- Xiang Huang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan;
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
- Correspondence: ; Tel.: +49-721-608-42144
| |
Collapse
|
67
|
Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, Sun L. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 2022; 609:611-615. [PMID: 35917925 PMCID: PMC9477737 DOI: 10.1038/s41586-022-05143-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development. Structures of the Arabidopsis thaliana auxin exporter PIN1 in the apo state, bound to the natural auxin or bound to an inhibitor provide insights into the polar auxin transport mechanisms mediated by PIN family transporters.
Collapse
Affiliation(s)
- Zhisen Yang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Xia
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Hong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chenxi Zhang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Wei
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ying
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunqiao Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianghanxiao Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanbo Mao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Cryo-EM Center, Core Facility Center for Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Linfeng Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
68
|
Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, Zhang Y, Zhao C, Chen Q, Wang J, Zhou CY, Guo Y, Jiao S, Zhang S, Wen H, Ma L, Ye S, Zheng SJ, Yang F, Wu S, Guo J. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature 2022; 609:616-621. [PMID: 35917926 DOI: 10.1038/s41586-022-05142-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
The PIN-FORMED (PIN) protein family of auxin transporters mediates the polar auxin transport and plays crucial roles in plant growth and development1,2. Here we present cryo-EM structures of PIN3 from Arabidopsis thaliana (AtPIN3) in the apo state and in complex with its substrate indole-3-acetic acid (IAA) and the inhibitor N-1-naphthylphthalamic acid (NPA) at 2.6-3.0 Å resolution. AtPIN3 exists as a homodimer, with the transmembrane helices (TMs) 1, 2, and 7 in the scaffold domain involved in dimerization. The dimeric AtPIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of IAA and NPA and elucidate the molecular mechanism of NPA inhibition on the PIN-mediated auxin transport. The AtPIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.
Collapse
Affiliation(s)
- Nannan Su
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aiqin Zhu
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Ye
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhao
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Chen
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangqin Wang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Yu Zhou
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Sufen Zhang
- College of agriculture and biotechnology, Zhejiang University, Hangzhou, China
| | - Han Wen
- DP Technology, Beijing, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Shao Jian Zheng
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
69
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
70
|
Understanding the Role of PIN Auxin Carrier Genes under Biotic and Abiotic Stresses in Olea europaea L. BIOLOGY 2022; 11:biology11071040. [PMID: 36101418 PMCID: PMC9312197 DOI: 10.3390/biology11071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
The PIN-FORMED (PIN) proteins represent the most important polar auxin transporters in plants. Here, we characterized the PIN gene family in two olive genotypes, the Olea europaea subsp. europaea var. sylvestris and the var. europaea (cv. ‘Farga’). Twelve and 17 PIN genes were identified for vars. sylvestris and europaea, respectively, being distributed across 6 subfamilies. Genes encoding canonical OePINs consist of six exons, while genes encoding non-canonical OePINs are composed of five exons, with implications at protein specificities and functionality. A copia-LTR retrotransposon located in intron 4 of OePIN2b of var. europaea and the exaptation of partial sequences of that element as exons of the OePIN2b of var. sylvestris reveals such kind of event as a driving force in the olive PIN evolution. RNA-seq data showed that members from the subfamilies 1, 2, and 3 responded to abiotic and biotic stress factors. Co-expression of OePINs with genes involved in stress signaling and oxidative stress homeostasis were identified. This study highlights the importance of PIN genes on stress responses, contributing for a holistic understanding of the role of auxins in plants.
Collapse
|
71
|
Feraru E, Feraru MI, Moulinier-Anzola J, Schwihla M, Ferreira Da Silva Santos J, Sun L, Waidmann S, Korbei B, Kleine-Vehn J. PILS proteins provide a homeostatic feedback on auxin signaling output. Development 2022; 149:275949. [PMID: 35819066 PMCID: PMC9340555 DOI: 10.1242/dev.200929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Multiple internal and external signals modulate the metabolism, intercellular transport and signaling of the phytohormone auxin. Considering this complexity, it remains largely unknown how plant cells monitor and ensure the homeostasis of auxin responses. PIN-LIKES (PILS) intracellular auxin transport facilitators at the endoplasmic reticulum are suitable candidates to buffer cellular auxin responses because they limit nuclear abundance and signaling of auxin. We used forward genetics to identify gloomy and shiny pils (gasp) mutants that define the PILS6 protein abundance in a post-translational manner. Here, we show that GASP1 encodes an uncharacterized RING/U-box superfamily protein that impacts on auxin signaling output. The low auxin signaling in gasp1 mutants correlates with reduced abundance of PILS5 and PILS6 proteins. Mechanistically, we show that high and low auxin conditions increase and reduce PILS6 protein levels, respectively. Accordingly, non-optimum auxin concentrations are buffered by alterations in PILS6 abundance, consequently leading to homeostatic auxin output regulation. We envision that this feedback mechanism provides robustness to auxin-dependent plant development. Summary: Auxin exerts a posttranslational feedback regulation on the PILS proteins, contributing to cellular auxin homeostasis and providing robustness to plant growth and development.
Collapse
Affiliation(s)
- Elena Feraru
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Mugurel I. Feraru
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Jeanette Moulinier-Anzola
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Maximilian Schwihla
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Jonathan Ferreira Da Silva Santos
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Freiburg 2 Faculty of Biology, Department of Molecular Plant Physiology (MoPP) , , 79104 Freiburg , Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg 3 , 79104 Freiburg , Germany
| | - Lin Sun
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Sascha Waidmann
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Freiburg 2 Faculty of Biology, Department of Molecular Plant Physiology (MoPP) , , 79104 Freiburg , Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg 3 , 79104 Freiburg , Germany
| | - Barbara Korbei
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Jürgen Kleine-Vehn
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Freiburg 2 Faculty of Biology, Department of Molecular Plant Physiology (MoPP) , , 79104 Freiburg , Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg 3 , 79104 Freiburg , Germany
| |
Collapse
|
72
|
Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, Pedersen BP. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 2022; 609:605-610. [PMID: 35768502 PMCID: PMC9477730 DOI: 10.1038/s41586-022-04883-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1–3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4–9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline–proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development. Structural and biophysical analysis of the Arabidopsis thaliana auxin transporter PIN8 reveal that PIN transporters export auxin using an elevator mechanism.
Collapse
Affiliation(s)
- Kien Lam Ung
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mikael Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | | |
Collapse
|
73
|
Yue X, Su T, Xin X, Li P, Wang W, Yu Y, Zhang D, Zhao X, Wang J, Sun L, Jin G, Yu S, Zhang F. The Adaxial/Abaxial Patterning of Auxin and Auxin Gene in Leaf Veins Functions in Leafy Head Formation of Chinese Cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:918112. [PMID: 35755702 PMCID: PMC9224592 DOI: 10.3389/fpls.2022.918112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Leaf curling is an essential prerequisite for the formation of leafy heads in Chinese cabbage. However, the part or tissue that determines leaf curvature remains largely unclear. In this study, we first introduced the auxin-responsive marker DR5::GUS into the Chinese cabbage genome and visualized its expression during the farming season. We demonstrated that auxin response is adaxially/abaxially distributed in leaf veins. Together with the fact that leaf veins occupy considerable proportions of the Chinese cabbage leaf, we propose that leaf veins play a crucial supporting role as a framework for heading. Then, by combining analyses of QTL mapping and a time-course transcriptome from heading Chinese cabbage and non-heading pak choi during the farming season, we identified the auxin-related gene BrPIN5 as a strong candidate for leafy head formation. PIN5 displays an adaxial/abaxial expression pattern in leaf veins, similar to that of DR5::GUS, revealing an involvement of BrPIN5 in leafy head development. The association of BrPIN5 function with heading was further confirmed by its haplo-specificity to heading individuals in both a natural population and two segregating populations. We thus conclude that the adaxial/abaxial patterning of auxin and auxin genes in leaf veins functions in the formation of the leafy head in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaozhen Yue
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of the Vegetable Postharvest Treatment of Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-Food Processing and Nutrition (IAPN), Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Jiao Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Liling Sun
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Guihua Jin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, China
- National Engineering Research Center for Vegetables, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| |
Collapse
|
74
|
Bilanovičová V, Rýdza N, Koczka L, Hess M, Feraru E, Friml J, Nodzyński T. The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein. Int J Mol Sci 2022; 23:6352. [PMID: 35683031 PMCID: PMC9181416 DOI: 10.3390/ijms23116352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors.
Collapse
Affiliation(s)
- Veronika Bilanovičová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Nikola Rýdza
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Lilla Koczka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martin Hess
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Elena Feraru
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; (E.F.); (J.F.)
- VIB-UGent Center for Plant Systems, Technologiepark 71, 9052 Ghent, Belgium
- Department of Applied Genetics and Cell Biology (DAGZ), Institute of Molecular Plant Biology (IMPB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jiří Friml
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; (E.F.); (J.F.)
- VIB-UGent Center for Plant Systems, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Science and Technology (IST), 3400 Klosterneuburg, Austria
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
| |
Collapse
|
75
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
76
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
77
|
Abstract
The study of fruit development in zucchini via gene expression has proven to be applicable in breeding programs. Phenotypic and transcriptomic studies of fruit set and parthenocarpy have been previously developed and some relevant genes have been reported. From these studies, three genotypes (MUCU-16, Whitaker, and Cavili) and six genes (CpAUX22, CpIAA4, CpIAMT-1, CpPIN5, CpCYCD6-1, and CpEXPLB1) were selected. The expression of these genes was analyzed in each genotype under three different treatments (pollination, auxin-treatment and non-treatment) during one week post anthesis. Also, a phenotyping analysis was conducted. The different nature of the samples and the genes selected allowed associations between different fruit traits and fruit development stages. There was a rapid response of CpAUX22 and CpIAA4 to the auxin treatment. Also, these genes and the CpIAMT-1 became more overexpressed in pollinated samples over time. The CpPIN5 gene increased its expression over time in all genotypes while CpCYCD6-1 was overexpressed in the early stages of fruit development in all samples. The CpEXPLB1 was highly up-regulated in non-treated samples, suggesting a relationship with fruit abortion. The overexpression of CpAUX22 and the non-overexpression of CpEXPLB1 in early stages may be associated with fruit growth in zucchini.
Collapse
|
78
|
PIN3 from Liriodendron May Function in Inflorescence Development and Root Elongation. FORESTS 2022. [DOI: 10.3390/f13040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Auxin, the first discovered phytohormone, is important for the growth and development of plants through the establishment of homeostasis and asymmetry. Here, we cloned the auxin transporter gene PIN-FORMED3 (PIN3) from the valuable timber tree hybrid Liriodendron (Liriodendron chinense × Liriodendron tulipifera). The gene contained a complete open reading frame of 1917 bp that encoded 638 amino acids. Phylogenetic analysis indicated that LhPIN3 exhibited the highest sequence similarity to the PIN3 of Vitis vinifera. Quantitative real-time PCR analysis showed that LhPIN3 was broadly expressed across different tissues/organs of Liriodendron, with the highest expression level in the roots. Heterologous overexpression of LhPIN3 in Arabidopsis thaliana caused considerable phenotypic changes, such as the root length and number of flowers. Genetic complementation of Arabidopsis pin1 mutants by LhPIN3, driven by the cauliflower mosaic virus 35S promoter, fully restored the root length and number of flowers of the pin1 mutant. Overall, our findings reveal that LhPIN3 has similar capacities to regulate the root length and number of flowers of Arabidopsis with AtPIN1.
Collapse
|
79
|
Ma X, Zhao X, Zhang H, Zhang Y, Sun S, Li Y, Long Z, Liu Y, Zhang X, Li R, Tan L, Jiang L, Zhu JK, Li L. MAG2 and MAL Regulate Vesicle Trafficking and Auxin Homeostasis With Functional Redundancy. FRONTIERS IN PLANT SCIENCE 2022; 13:849532. [PMID: 35371137 PMCID: PMC8966843 DOI: 10.3389/fpls.2022.849532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Auxin is a central phytohormone and controls almost all aspects of plant development and stress response. Auxin homeostasis is coordinately regulated by biosynthesis, catabolism, transport, conjugation, and deposition. Endoplasmic reticulum (ER)-localized MAIGO2 (MAG2) complex mediates tethering of arriving vesicles to the ER membrane, and it is crucial for ER export trafficking. Despite important regulatory roles of MAG2 in vesicle trafficking, the mag2 mutant had mild developmental abnormalities. MAG2 has one homolog protein, MAG2-Like (MAL), and the mal-1 mutant also had slight developmental phenotypes. In order to investigate MAG2 and MAL regulatory function in plant development, we generated the mag2-1 mal-1 double mutant. As expected, the double mutant exhibited serious developmental defects and more alteration in stress response compared with single mutants and wild type. Proteomic analysis revealed that signaling, metabolism, and stress response in mag2-1 mal-1 were affected, especially membrane trafficking and auxin biosynthesis, signaling, and transport. Biochemical and cell biological analysis indicated that the mag2-1 mal-1 double mutant had more serious defects in vesicle transport than the mag2-1 and mal-1 single mutants. The auxin distribution and abundance of auxin transporters were altered significantly in the mag2-1 and mal-1 single mutants and mag2-1 mal-1 double mutant. Our findings suggest that MAG2 and MAL regulate plant development and auxin homeostasis by controlling membrane trafficking, with functional redundancy.
Collapse
Affiliation(s)
- Xiaohui Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhengbiao Long
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xiaomeng Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Rongxia Li
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, College of Life Sciences, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
80
|
Tissue specificity and responses to abiotic stresses and hormones of PIN genes in rice. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01031-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
81
|
Jiang L, Zhang D, Liu C, Shen W, He J, Yue Q, Niu C, Yang F, Li X, Shen X, Hou N, Chen P, Ma F, Guan Q. MdGH3.6 is targeted by MdMYB94 and plays a negative role in apple water-deficit stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1271-1289. [PMID: 34918398 DOI: 10.1111/tpj.15631] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Drought significantly limits apple fruit production and quality. Decoding the key genes involved in drought stress tolerance is important for breeding varieties with improved drought resistance. Here, we identified GRETCHEN HAGEN3.6 (GH3.6), an indole-3-acetic acid (IAA) conjugating enzyme, to be a negative regulator of water-deficit stress tolerance in apple. Overexpressing MdGH3.6 reduced IAA content, adventitious root number, root length and water-deficit stress tolerance, whereas knocking down MdGH3.6 and its close paralogs increased IAA content, adventitious root number, root length and water-deficit stress tolerance. Moreover, MdGH3.6 negatively regulated the expression of wax biosynthetic genes under water-deficit stress and thus negatively regulated cuticular wax content. Additionally, MdGH3.6 negatively regulated reactive oxygen species scavengers, including antioxidant enzymes and metabolites involved in the phenylpropanoid and flavonoid pathway in response to water-deficit stress. Further study revealed that the homolog of transcription factor AtMYB94, rather than AtMYB96, could bind to the MdGH3.6 promoter and negatively regulated its expression under water-deficit stress conditions in apple. Overall, our results identify a candidate gene for the improvement of drought resistance in fruit trees.
Collapse
Affiliation(s)
- Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
82
|
Kantharaj V, Ramasamy NK, Yoon YE, Cheong MS, Kim YN, Lee KA, Kumar V, Choe H, Kim SY, Chohra H, Lee YB. Auxin-Glucose Conjugation Protects the Rice ( Oryza sativa L.) Seedlings Against Hydroxyurea-Induced Phytotoxicity by Activating UDP-Glucosyltransferase Enzyme. FRONTIERS IN PLANT SCIENCE 2022; 12:767044. [PMID: 35251058 PMCID: PMC8888425 DOI: 10.3389/fpls.2021.767044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/27/2021] [Indexed: 05/02/2023]
Abstract
Hydroxyurea (HU) is the replication stress known to carry out cell cycle arrest by inhibiting ribonucleotide reductase (RNR) enzyme upon generating excess hydrogen peroxide (H2O2) in plants. Phytohormones undergo synergistic and antagonistic interactions with reactive oxygen species (ROS) and redox signaling to protect plants against biotic and abiotic stress. Therefore, in this study, we investigated the protective role of Indole-3-acetic acid (IAA) in mitigating HU-induced toxicity in rice seedlings. The results showed that IAA augmentation improved the growth of the seedlings and biomass production by maintaining photosynthesis metabolism under HU stress. This was associated with reduced H2O2 and malondialdehyde (MDA) contents and improved antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity that was significantly affected under HU stress. Furthermore, we showed that the HU stress-induced DNA damage leads to the activation of uridine 5'-diphosphate-glucosyltransferase (UGT), which mediates auxin homeostasis by catalyzing IAA-glucose conjugation in rice. This IAA-glucose conjugation upregulates the RNR, transcription factor 2 (E2F2), cyclin-dependent kinase (CDK), and cyclin (CYC) genes that are vital for DNA replication and cell division. As a result, perturbed IAA homeostasis significantly enhanced the key phytohormones, such as abscisic acid (ABA), salicylic acid (SA), cytokinin (CTK), and gibberellic acid (GA), that alter plant architecture by improving growth and development. Collectively, our results contribute to a better understanding of the physiological and molecular mechanisms underpinning improved growth following the HU + IAA combination, activated by phytohormone and ROS crosstalk upon hormone conjugation via UGT.
Collapse
Affiliation(s)
- Vimalraj Kantharaj
- Division of Applied Life Science (BK 21 Four), Gyeongsang National University, Jinju, South Korea
| | | | - Young-Eun Yoon
- Division of Applied Life Science (BK 21 Four), Gyeongsang National University, Jinju, South Korea
| | - Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Young-Nam Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Keum-Ah Lee
- Department of Smart Agro-Industry, Gyeongsang National University, Jinju, South Korea
| | - Vikranth Kumar
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Hyeonji Choe
- Division of Applied Life Science (BK 21 Four), Gyeongsang National University, Jinju, South Korea
| | - Song Yeob Kim
- Division of Applied Life Science (BK 21 Four), Gyeongsang National University, Jinju, South Korea
| | - Hadjer Chohra
- Division of Applied Life Science (BK 21 Four), Gyeongsang National University, Jinju, South Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK 21 Four), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
83
|
Templalexis D, Tsitsekian D, Liu C, Daras G, Šimura J, Moschou P, Ljung K, Hatzopoulos P, Rigas S. Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. PLANT PHYSIOLOGY 2022; 188:1043-1060. [PMID: 34633458 PMCID: PMC8825323 DOI: 10.1093/plphys/kiab472] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 05/09/2023]
Abstract
In plants, auxin transport and development are tightly coupled, just as hormone and growth responses are intimately linked in multicellular systems. Here we provide insights into uncoupling this tight control by specifically targeting the expression of TINY ROOT HAIR 1 (TRH1), a member of plant high-affinity potassium (K+)/K+ uptake/K+ transporter (HAK/KUP/KT) transporters that facilitate K+ uptake by co-transporting protons, in Arabidopsis root cell files. Use of this system pinpointed specific root developmental responses to acropetal versus basipetal auxin transport. Loss of TRH1 function shows TRHs and defective root gravitropism, associated with auxin imbalance in the root apex. Cell file-specific expression of TRH1 in the central cylinder rescued trh1 root agravitropism, whereas positional TRH1 expression in peripheral cell layers, including epidermis and cortex, restored trh1 defects. Applying a system-level approach, the role of RAP2.11 and ROOT HAIR DEFECTIVE-LIKE 5 transcription factors (TFs) in root hair development was verified. Furthermore, ERF53 and WRKY51 TFs were overrepresented upon restoration of root gravitropism supporting involvement in gravitropic control. Auxin has a central role in shaping root system architecture by regulating multiple developmental processes. We reveal that TRH1 jointly modulates intracellular ionic gradients and cell-to-cell polar auxin transport to drive root epidermal cell differentiation and gravitropic response. Our results indicate the developmental importance of HAK/KUP/KT proton-coupled K+ transporters.
Collapse
Affiliation(s)
- Dimitris Templalexis
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | - Panagiotis Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-756 61, Sweden
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion GR 70 013, Greece
- Department of Biology, University of Crete, Heraklion GR 71 500, Greece
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 83, Sweden
| | | | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Athens 118 55, Greece
- Author for communication:
| |
Collapse
|
84
|
Abstract
The auxin-binding protein 1 (ABP1) has endured a history of undulating prominence as a candidate receptor for this important phytohormone. Its capacity for binding auxin has not been in doubt, a feature adequately explained by its crystal structure, but any relevance of this to auxin signaling and plant development has been far more demanding to define. Over its research lifetime, it has been associated with many auxin-induced activities, including ion fluxes across the plasma membrane, rearrangement of the cytoskeleton and cell shape, and the abundance of PIN proteins at the plasma membrane via control of endocytosis, all of which required its presence in the apoplast. Yet, ABP1 has a KDEL sequence that targets it to the endoplasmic reticulum, where most of it remains. This mismatch has been more than adequately compensated for by the need for an auxin receptor to account for responses far too rapid to be executed through transcription and translation and the TIR1/AuxIAA coreceptor system. However, discoveries showing that abp1-null mutants are not compromised for auxin signaling or development, that TIR1 or AFB1 are necessarily involved with very rapid responses at the plasma membrane, and that these rapid responses are mediated with intracellular auxin all suggest that ABP1's auxin-binding capacity is not physiologically relevant. Nevertheless, ABP1 is ubiquitous in higher plants and throughout plant tissues. We need to complete its history by defining its function inside plant cells.
Collapse
Affiliation(s)
- Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AS, United Kingdom
| |
Collapse
|
85
|
Ding Y, Gardiner DM, Powell JJ, Colgrave ML, Park RF, Kazan K. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. PLANT, CELL & ENVIRONMENT 2021; 44:3526-3544. [PMID: 34591319 DOI: 10.1111/pce.14195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.
Collapse
Affiliation(s)
- Yi Ding
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Jonathan J Powell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Australian Research Council, Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Robert F Park
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
86
|
Li J, Dong R, Jia Y, Huang J, Zou X, An N, Song J, Chen Z. Characterization of Metal Tolerance Proteins and Functional Analysis of GmMTP8.1 Involved in Manganese Tolerance in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:683813. [PMID: 34912352 PMCID: PMC8666509 DOI: 10.3389/fpls.2021.683813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2021] [Indexed: 05/31/2023]
Abstract
Manganese is an essential micronutrient for plant growth but can be toxic to plants when it reaches excessive levels. Although metal tolerance proteins (MTPs), which belong to the cation diffusion facilitator (CDF) family, have been demonstrated to play critical roles in manganese (Mn) tolerance in plants, the characteristics and functions of GmMTP members in the response of soybean (Glycine max) to Mn toxicity have not been documented. In this study, growth inhibition was observed in soybean plants that were exposed to a toxic level of Mn in hydroponics, as reflected by the generation of brown spots, and decreased leaf chlorophyll concentration and plant fresh weight. Subsequent genome-wide analysis resulted in the identification of a total of 14 GmMTP genes in the soybean genome. Among these GmMTPs, 9 and 12 were found to be regulated by excess Mn in leaves and roots, respectively. Furthermore, the function of GmMTP8.1, a Mn-CDF homologue of ShMTP8 identified in the legume Stylosanthes hamata that is involved in Mn detoxification, was characterized. Subcellular localization analysis showed that GmMTP8.1 was localized to the endoplasmic reticulum (ER). Heterologous expression of GmMTP8.1 led to the restoration of growth of the Mn-hypersensitive yeast (Saccharomyces cerevisiae) mutant Δpmr1, which is made defective in Mn transport into the Golgi apparatus by P-type Ca/Mn-ATPase. Furthermore, GmMTP8.1 overexpression conferred tolerance to the toxic level of Mn in Arabidopsis (Arabidopsis thaliana). Under excess Mn conditions, concentrations of Mn in shoots but not roots were decreased in transgenic Arabidopsis, overexpressing GmMTP8.1 compared to the wild type. The overexpression of GmMTP8.1 also led to the upregulation of several transporter genes responsible for Mn efflux and sequestration in Arabidopsis, such as AtMTP8/11. Taken together, these results suggest that GmMTP8.1 is an ER-localized Mn transporter contributing to confer Mn tolerance by stimulating the export of Mn out of leaf cells and increasing the sequestration of Mn into intracellular compartments.
Collapse
Affiliation(s)
- Jifu Li
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yidan Jia
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jie Huang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaoyan Zou
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Na An
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jianling Song
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhijian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
87
|
Skalický V, Vojtková T, Pěnčík A, Vrána J, Juzoń K, Koláčková V, Sedlářová M, Kubeš MF, Novák O. Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei. Int J Mol Sci 2021; 22:12369. [PMID: 34830250 PMCID: PMC8620152 DOI: 10.3390/ijms222212369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The plant nucleus plays an irreplaceable role in cellular control and regulation by auxin (indole-3-acetic acid, IAA) mainly because canonical auxin signaling takes place here. Auxin can enter the nucleus from either the endoplasmic reticulum or cytosol. Therefore, new information about the auxin metabolome (auxinome) in the nucleus can illuminate our understanding of subcellular auxin homeostasis. Different methods of nuclear isolation from various plant tissues have been described previously, but information about auxin metabolite levels in nuclei is still fragmented and insufficient. Herein, we tested several published nucleus isolation protocols based on differential centrifugation or flow cytometry. The optimized sorting protocol leading to promising yield, intactness, and purity was then combined with an ultra-sensitive mass spectrometry analysis. Using this approach, we can present the first complex report on the auxinome of isolated nuclei from cell cultures of Arabidopsis and tobacco. Moreover, our results show dynamic changes in auxin homeostasis at the intranuclear level after treatment of protoplasts with free IAA, or indole as a precursor of auxin biosynthesis. Finally, we can conclude that the methodological procedure combining flow cytometry and mass spectrometry offers new horizons for the study of auxin homeostasis at the subcellular level.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (V.S.); (T.V.); (A.P.)
| | - Tereza Vojtková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (V.S.); (T.V.); (A.P.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (V.S.); (T.V.); (A.P.)
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (J.V.); (V.K.)
| | - Katarzyna Juzoń
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;
| | - Veronika Koláčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (J.V.); (V.K.)
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic;
| | - Martin F. Kubeš
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (V.S.); (T.V.); (A.P.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (V.S.); (T.V.); (A.P.)
| |
Collapse
|
88
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
89
|
Gomes GLB, Scortecci KC. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:894-904. [PMID: 34396657 DOI: 10.1111/plb.13303] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/04/2021] [Indexed: 05/28/2023]
Abstract
Auxins are plant hormones that play a central role in controlling plant growth and development across different environmental conditions. Even at low concentrations, auxins can regulate gene expression through specific transcription factors and proteins that are modulated to environmental responses in the signalling cascade. Auxins are synthesized in tissues with high cell division activity and distributed by specific transmembrane proteins that regulate efflux and influx. This review presents recent advances in understanding the biosynthetic pathways, both dependent and independent of tryptophan, highlighting the intermediate indole compounds (indole-3-acetamide, indole-3-acetaldoxime, indole-3-pyruvic acid and tryptamine) and the key enzymes for auxin biosynthesis, such as YUCs and TAAs. In relation to the signalling cascade, it has been shown that auxins influence gene expression regulation by the connection between synthesis and distribution. Moreover, the molecular action of the auxin response factors and auxin/indole-3-acetic acid transcription factors with the F-box TIR1/AFB auxin receptors regulates gene expression. In addition, the importance of microRNAs in the auxin signalling pathway and their influence on plant plasticity to environmental fluctuations is also demonstrated. Finally, this review describes the chemical and biological processes involving auxins in plants.
Collapse
Affiliation(s)
- G L B Gomes
- Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Laboratório de Transformação de Plantas e Análises em Microscopia, Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - K C Scortecci
- Programa de Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Laboratório de Transformação de Plantas e Análises em Microscopia, Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
90
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
91
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
92
|
Yamoune A, Cuyacot AR, Zdarska M, Hejatko J. Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6768-6788. [PMID: 34343283 DOI: 10.1093/jxb/erab360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plant hormones are key regulators of a number of developmental and adaptive responses in plants, integrating the control of intrinsic developmental regulatory circuits with environmental inputs. Here we provide an overview of the molecular mechanisms underlying hormonal regulation of root development. We focus on key events during both embryonic and post-embryonic development, including specification of the hypophysis as a future organizer of the root apical meristem (RAM), hypophysis asymmetric division, specification of the quiescent centre (QC) and the stem cell niche (SCN), RAM maturation and maintenance of QC/SCN activity, and RAM size. We address both well-established and newly proposed concepts, highlight potential ambiguities in recent terminology and classification criteria of longitudinal root zonation, and point to contrasting results and alternative scenarios for recent models. In the concluding remarks, we summarize the common principles of hormonal control during root development and the mechanisms potentially explaining often antagonistic outputs of hormone action, and propose possible future research directions on hormones in the root.
Collapse
Affiliation(s)
- Amel Yamoune
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Abigail Rubiato Cuyacot
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
93
|
Chopra D, Hasan MS, Matera C, Chitambo O, Mendy B, Mahlitz SV, Naz AA, Szumski S, Janakowski S, Sobczak M, Mithöfer A, Kyndt T, Grundler FMW, Siddique S. Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidase-mediated ROS to promote infection. THE NEW PHYTOLOGIST 2021; 232:318-331. [PMID: 34133755 DOI: 10.1111/nph.17559] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROS) generated in response to infections often activate immune responses in eukaryotes including plants. In plants, ROS are primarily produced by plasma membrane-bound NADPH oxidases called respiratory burst oxidase homologue (Rboh). Surprisingly, Rbohs can also promote the infection of plants by certain pathogens, including plant parasitic cyst nematodes. The Arabidopsis genome contains 10 Rboh genes (RbohA-RbohJ). Previously, we showed that cyst nematode infection causes a localised ROS burst in roots, mediated primarily by RbohD and RbohF. We also found that plants deficient in RbohD and RbohF (rbohD/F) exhibit strongly decreased susceptibility to cyst nematodes, suggesting that Rboh-mediated ROS plays a role in promoting infection. However, little information is known of the mechanism by which Rbohs promote cyst nematode infection. Here, using detailed genetic and biochemical analyses, we identified WALLS ARE THIN1 (WAT1), an auxin transporter, as a downstream target of Rboh-mediated ROS during parasitic infections. We found that WAT1 is required to modulate the host's indole metabolism, including indole-3-acetic acid levels, in infected cells and that this reprogramming is necessary for successful establishment of the parasite. In conclusion, this work clarifies a unique mechanism that enables cyst nematodes to use the host's ROS for their own benefit.
Collapse
Affiliation(s)
- Divykriti Chopra
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
- Department of Plant Pathology, Faculty of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Christiane Matera
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Oliver Chitambo
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Sina-Valerie Mahlitz
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Ali Ahmad Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, D-53115, Germany
| | - Shelly Szumski
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Slawomir Janakowski
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, PL-02-787, Poland
| | - Miroslaw Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, PL-02-787, Poland
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Plank Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Tina Kyndt
- Department Biotechnology, Research Group Epigenetics & Defence, Coupure links 653, Gent, B-9000, Belgium
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, Bonn, D-53115, Germany
- Department of Entomology and Nematology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
94
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
95
|
Zheng S, He J, Lin Z, Zhu Y, Sun J, Li L. Two MADS-box genes regulate vascular cambium activity and secondary growth by modulating auxin homeostasis in Populus. PLANT COMMUNICATIONS 2021; 2:100134. [PMID: 34746756 PMCID: PMC8553971 DOI: 10.1016/j.xplc.2020.100134] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
In trees, stem secondary growth depends on vascular cambium proliferation activity and subsequent cell differentiation, in which an auxin concentration gradient across the cambium area plays a crucial role in regulating the process. However, the underlying molecular mechanism for the establishment of auxin concentration is not fully understood. In this study, we identified two function-unknown MADS-box genes, VCM1 and VCM2, which are expressed specifically in the vascular cambium and modulate the subcellular homeostasis of auxin. Simultaneous knockdown of both VCM1 and VCM2 enhanced vascular cambium proliferation activity and subsequent xylem differentiation. Overexpression of VCM1 suppressed vascular cambium activity and wood formation by regulating PIN5 expression, which tuned the soluble auxin concentration in the vascular cambium area. This study reveals the role of VCM1 and VCM2 in regulating the proliferation activity of the vascular cambium and secondary growth by modulating the subcellular auxin homeostasis in Populus.
Collapse
Affiliation(s)
- Shuai Zheng
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia He
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zengshun Lin
- Hunan Agricultural University, Hunan 4101287, China
| | | | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author
| |
Collapse
|
96
|
Li M, Yu G, Cao C, Liu P. Metabolism, signaling, and transport of jasmonates. PLANT COMMUNICATIONS 2021; 2:100231. [PMID: 34746762 PMCID: PMC8555440 DOI: 10.1016/j.xplc.2021.100231] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 05/16/2023]
Abstract
Biosynthesis/metabolism, perception/signaling, and transport are three essential aspects of the actions of phytohormones. Jasmonates (JAs), including jasmonic acid (JA) and related oxylipins, are implicated in the regulation of a range of ecological interactions, as well as developmental programs to integrate these interactions. Jasmonoyl-isoleucine (JA-Ile) is the most bioactive JAs, and perception of JA-Ile by its coreceptor, the Skp1-Cullin1-F-box-type (SCF) protein ubiquitin ligase complex SCFCOI1-JAZ, in the nucleus derepresses the transcriptional repression of target genes. The biosynthesis and metabolism of JAs occur in the plastid, peroxisome, cytosol, endoplasmic reticulum, and vacuole, whereas sensing of JA-Ile levels occurs in the nucleus. It is increasingly apparent that a number of transporters, particularly members of the jasmonates transporter (JAT) family, located at endomembranes as well as the plasma membrane, constitute a network for modulating and coordinating the metabolic flux and signaling of JAs. In this review, we discuss recent advances in the metabolism, signaling, and especially the transport of JAs, focusing on intracellular compartmentation of these processes. The roles of transporter-mediated cell-cell transport in driving long-distance transport and signaling of JAs are also discussed.
Collapse
Affiliation(s)
- Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Guanghui Yu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Congli Cao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
- Corresponding author
| |
Collapse
|
97
|
Müller K, Dobrev PI, Pěnčík A, Hošek P, Vondráková Z, Filepová R, Malínská K, Brunoni F, Helusová L, Moravec T, Retzer K, Harant K, Novák O, Hoyerová K, Petrášek J. DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. PLANT PHYSIOLOGY 2021; 187:103-115. [PMID: 34618129 PMCID: PMC8418401 DOI: 10.1093/plphys/kiab242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 05/15/2023]
Abstract
Together with auxin transport, auxin metabolism is a key determinant of auxin signaling output by plant cells. Enzymatic machinery involved in auxin metabolism is subject to regulation based on numerous inputs, including the concentration of auxin itself. Therefore, experiments characterizing altered auxin availability and subsequent changes in auxin metabolism could elucidate the function and regulatory role of individual elements in the auxin metabolic machinery. Here, we studied auxin metabolism in auxin-dependent tobacco BY-2 cells. We revealed that the concentration of N-(2-oxindole-3-acetyl)-l-aspartic acid (oxIAA-Asp), the most abundant auxin metabolite produced in the control culture, dramatically decreased in auxin-starved BY-2 cells. Analysis of the transcriptome and proteome in auxin-starved cells uncovered significant downregulation of all tobacco (Nicotiana tabacum) homologs of Arabidopsis (Arabidopsis thaliana) DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1), at both transcript and protein levels. Auxin metabolism profiling in BY-2 mutants carrying either siRNA-silenced or CRISPR-Cas9-mutated NtDAO1, as well as in dao1-1 Arabidopsis plants, showed not only the expected lower levels of oxIAA, but also significantly lower abundance of oxIAA-Asp. Finally, ability of DAO1 to oxidize IAA-Asp was confirmed by an enzyme assay in AtDAO1-producing bacterial culture. Our results thus represent direct evidence of DAO1 activity on IAA amino acid conjugates.
Collapse
Affiliation(s)
- Karel Müller
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Petre Ivanov Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Hošek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Zuzana Vondráková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Kateřina Malínská
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Federica Brunoni
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Lenka Helusová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Tomáš Moravec
- Laboratory of Virology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec 252 42, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Klára Hoyerová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Jan Petrášek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Praha 6, Czech Republic
| |
Collapse
|
98
|
Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:10-19. [PMID: 34087741 DOI: 10.1016/j.plaphy.2021.05.023] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids are a special category of hydroxylated phenolic compounds having an aromatic ring structure. Quercetin is aspecial subclass of flavonoid. It is a bioactive natural compound built upon the flavon structure nC6(ring A)-C3(ring C)-C6(ring B). Quercetin facilitates several plant physiological processes, such as seed germination, pollen growth, antioxidant machinery, and photosynthesis, as well as induces proper plant growth and development. Quercetin is a powerful antioxidant, so it potently provides plant tolerance against several biotic and abiotic stresses. This review highlights quercetin's role in increasing several physiological and biochemical processes under stress and non-stress environments. Additionally, this review briefly assesses quercetin's role in mitigating biotic and abiotic stresses (e.g., salt, heavy metal, and UV stress). The biosynthesis of flavonoids, their signaling pathways, and quercetin's role in plant signaling are also discussed.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 1J Ciolkowskiego St., 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
99
|
Wu B, Li N, Deng Z, Luo F, Duan Y. Selection and Evaluation of a Thornless and HLB-Tolerant Bud-Sport of Pummelo Citrus With an Emphasis on Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:739108. [PMID: 34531892 PMCID: PMC8438139 DOI: 10.3389/fpls.2021.739108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 06/01/2023]
Abstract
The selection of elite bud-sports is an important breeding approach in horticulture. We discovered and evaluated a thornless pummelo bud-sport (TL) that grew more vigorously and was more tolerant to Huanglongbing (HLB) than the thorny wild type (W). To reveal the underlying molecular mechanisms, we carried out whole-genome sequencing of W, and transcriptome comparisons of W, TL, and partially recovered thorny "mutants" (T). The results showed W, TL, and T varied in gene expression, allelic expression, and alternative splicing. Most genes/pathways with significantly altered expression in TL compared to W remained similarly altered in T. Pathway and gene ontology enrichment analysis revealed that the expression of multiple pathways, including photosynthesis and cell wall biosynthesis, was altered among the three genotypes. Remarkably, two polar auxin transporter genes, PIN7 and LAX3, were expressed at a significantly lower level in TL than in both W and T, implying alternation of polar auxin transport in TL may be responsible for the vigorous growth and thornless phenotype. Furthermore, 131 and 68 plant defense-related genes were significantly upregulated and downregulated, respectively, in TL and T compared with W. These genes may be involved in enhanced salicylic acid (SA) dependent defense and repression of defense inducing callose deposition and programmed cell death. Overall, these results indicated that the phenotype changes of the TL bud-sport were associated with tremendous transcriptome alterations, providing new clues and targets for breeding and gene editing for citrus improvement.
Collapse
Affiliation(s)
- Bo Wu
- School of Computing, Clemson University, Clemson, SC, United States
| | - Na Li
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL, United States
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, IFAS, University of Florida, Wimauma, FL, United States
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Yongping Duan
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL, United States
| |
Collapse
|
100
|
Auxin Metabolome Profiling in the Arabidopsis Endoplasmic Reticulum Using an Optimised Organelle Isolation Protocol. Int J Mol Sci 2021; 22:ijms22179370. [PMID: 34502279 PMCID: PMC8431077 DOI: 10.3390/ijms22179370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is an extensive network of intracellular membranes. Its major functions include proteosynthesis, protein folding, post-transcriptional modification and sorting of proteins within the cell, and lipid anabolism. Moreover, several studies have suggested that it may be involved in regulating intracellular auxin homeostasis in plants by modulating its metabolism. Therefore, to study auxin metabolome in the ER, it is necessary to obtain a highly enriched (ideally, pure) ER fraction. Isolation of the ER is challenging because its biochemical properties are very similar to those of other cellular endomembranes. Most published protocols for ER isolation use density gradient ultracentrifugation, despite its suboptimal resolving power. Here we present an optimised protocol for ER isolation from Arabidopsis thaliana seedlings for the subsequent mass spectrometric determination of ER-specific auxin metabolite profiles. Auxin metabolite analysis revealed highly elevated levels of active auxin form (IAA) within the ER compared to whole plants. Moreover, samples prepared using our optimised isolation ER protocol are amenable to analysis using various “omics” technologies including analyses of both macromolecular and low molecular weight compounds from the same sample.
Collapse
|