51
|
Bayat A, Grimes H, de Boer E, Herlin MK, Dahl RS, Lund ICB, Bayat M, Bolund ACS, Gjerulfsen CE, Gregersen PA, Zilmer M, Juhl S, Cebula K, Rahikkala E, Maystadt I, Peron A, Vignoli A, Alfano RM, Stanzial F, Benedicenti F, Currò A, Luk HM, Jouret G, Zurita E, Heuft L, Schnabel F, Busche A, Veenstra-Knol HE, Tkemaladze T, Vrielynck P, Lederer D, Platzer K, Ockeloen CW, Goel H, Low KJ. Natural history of adults with KBG syndrome: A physician-reported experience. Genet Med 2024; 26:101170. [PMID: 38818797 DOI: 10.1016/j.gim.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
PURPOSE KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptoms included mild/borderline intellectual disability (n = 22); gross and/or fine motor difficulties (n = 15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n = 26); nonverbal (n = 3), seizures with various seizure types and treatment responses (n = 10); ophthalmological comorbidities (n = 20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n = 2) and autoimmune conditions (n = 4). Education, work, and residence varied, and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both data sets. CONCLUSION Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Hannah Grimes
- Department of Clinical Genetics, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands; Department of Clinical Genetics, Erasmus Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Rebekka Staal Dahl
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Ida Charlotte Bay Lund
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Bayat
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; Center for Rare Diseases, Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Pernille Axél Gregersen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Center for Rare Diseases, Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Monica Zilmer
- Department of Child Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | - Stefan Juhl
- Department of Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | - Katarzyna Cebula
- Department of Neurology, Danish Epilepsy Center, Dianalund, Denmark
| | - Elisa Rahikkala
- Dept of Clinical Genetics, Research Unit of Clinical Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Isabelle Maystadt
- Center for Human Genetics, Institute for Pathology and Genetics, Gosselies, Belgium; URPhyM, Faculty of Medicine, University of Namur, Namur, Belgium
| | - Angela Peron
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy; Division of Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio," Università degli Studi di Firenze, Florence, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit, Grande Ospedale Metropolitano Niguarda, University of Milan, Milan, Italy
| | - Rosa Maria Alfano
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Franco Stanzial
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Benedicenti
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Aurora Currò
- Genetic Counseling Service, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Ho-Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, HKSAR, Hong Kong
| | - Guillaume Jouret
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Ella Zurita
- Hunter Genetics, New South Wales Health, Waratah, NSW, Australia
| | - Lara Heuft
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Franziska Schnabel
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Andreas Busche
- Department of Medical Genetics, University Hospital Münster, Germany
| | | | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia; Givi Zhvania Pediatric Academic Clinic, Tbilisi State Medical University, Tbilisi, Georgia
| | - Pascal Vrielynck
- Reference Center for Refractory Epilepsy, Catholic University of Louvain, William Lennox Neurological Hospital, Ottignies, Belgium
| | - Damien Lederer
- Institute for Pathology and Genetics, 6040, Gosselies, Belgium
| | - Konrad Platzer
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Himanshu Goel
- Hunter Genetics, New South Wales Health, Waratah, NSW, Australia
| | - Karen Jaqueline Low
- Department of Clinical Genetics, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom; Centre for Academic Child Health, Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
52
|
Demidov G, Laurie S, Torella A, Piluso G, Scala M, Morleo M, Nigro V, Graessner H, Banka S, Lohmann K, Ossowski S. Structural variant calling and clinical interpretation in 6224 unsolved rare disease exomes. Eur J Hum Genet 2024; 32:998-1004. [PMID: 38822122 PMCID: PMC11291474 DOI: 10.1038/s41431-024-01637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed. However, detection of other types of SVs in ES data is hampered by the difficulty of identifying breakpoints in off-target (intergenic or intronic) regions, which makes robust identification of SVs challenging. In this paper, we demonstrate the utility of SV calling in ES resulting in a diagnostic yield of 0.4% (23 out of 5825 probands) for a large cohort of unsolved patients collected by the Solve-RD consortium. Remarkably, 8 out of 23 pathogenic SV were not found by comprehensive read-depth-based CNV analysis, resulting in a 0.13% increased diagnostic value.
Collapse
Affiliation(s)
- German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Manuela Morleo
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
53
|
Jiang Y, Wu B, Zhang X, Yang L, Wang S, Li H, Zhou S, Qian Y, Wang H. Thirteen New Patients of PPP2R5D Gene Mutation and the Fine Profile of Genotype-Phenotype Correlation Unraveling the Pathogenic Mechanism Underlying Macrocephaly Phenotype. CHILDREN (BASEL, SWITZERLAND) 2024; 11:897. [PMID: 39201832 PMCID: PMC11352527 DOI: 10.3390/children11080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of diseases that severely affect the physical and mental health of children. The PPP2R5D gene encodes B56δ, the regulatory subunit of protein phosphatase 2A (PP2A). NDDs related to the PPP2R5D gene have recently been defined as Houge-Janssens syndrome 1. METHODS Clinical/whole exome sequencing was performed on approximately 3000 patients with NDDs from 2017 to 2023. In vitro experiments were performed to assess the impairment of variants to protein expression and the assembly of PP2A holoenzyme. The genetic information and phenotypes of the reported patients, as well as patients in this study, were summarized, and the genotype-phenotype relationship was analyzed. The probability of pathogenic missense variants in PPP2R5D was predicted using AlphaMissense (AM), and the relationship between certain phenotype and 3D protein structural features were analyzed. RESULTS Thirteen new patients carrying twelve PPP2R5D gene variants were detected, including five novel missense variants and one novel frameshift variant. In vitro experiments revealed that the frameshift variant p.H463Mfs*3 resulted in a ~50 kDa truncated protein with lower expression level. Except for E420K and T536R, other missense variants impaired holoenzyme assembly. Furthermore, we found that pathogenic/likely pathogenic (P/LP) variants that have been reported so far were all missense variants and clustered in three conserved regions, and the likelihood of P/LP mutations located in these conserved regions was extremely high. In addition, the macrocephaly phenotype was related to negatively charged residues involved in substrate recruitment. CONCLUSIONS We reported thirteen new patients with PPP2R5D gene variants and expanded the PPP2R5D variant spectrum. We confirmed the pathogenicity of novel variants through in vitro experiments. Our findings in genotype-phenotype relationship provide inspiration for genetic counseling and interpretation of variants. We also provide directions for further research on the mechanism of macrocephaly phenotype.
Collapse
Affiliation(s)
- Yinmo Jiang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Bingbing Wu
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Xi Zhang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Lin Yang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Sujuan Wang
- Department of Rehabilitation, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Shuizhen Zhou
- Neurology Department, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Yanyan Qian
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| | - Huijun Wang
- Center for Molecular Medicine, Pediatrics Research Institute, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China; (Y.J.); (X.Z.)
| |
Collapse
|
54
|
Murthy S, Nongthomba U. Role of the BCL11A/B Homologue Chronophage (Cph) in Locomotor Behaviour of Drosophila melanogaster. Neuroscience 2024; 551:1-16. [PMID: 38763224 DOI: 10.1016/j.neuroscience.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
55
|
van der Westhuizen ET. Single nucleotide variations encoding missense mutations in G protein-coupled receptors may contribute to autism. Br J Pharmacol 2024; 181:2158-2181. [PMID: 36787962 DOI: 10.1111/bph.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Autism is a neurodevelopmental condition with a range of symptoms that vary in intensity and severity from person to person. Genetic sequencing has identified thousands of genes containing mutations in autistic individuals, which may contribute to the development of autistic symptoms. Several of these genes encode G protein-coupled receptors (GPCRs), which are cell surface expressed proteins that transduce extracellular messages to the intracellular space. Mutations in GPCRs can impact their function, resulting in aberrant signalling within cells and across neurotransmitter systems in the brain. This review summarises the current knowledge on autism-associated single nucleotide variations encoding missense mutations in GPCRs and the impact of these genetic mutations on GPCR function. For some autism-associated mutations, changes in GPCR expression levels, ligand affinity, potency and efficacy have been observed. However, for many the functional consequences remain unknown. Thus, further work to characterise the functional impacts of the genetically identified mutations is required. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
|
56
|
Wang X, Wang Y, Cai Q, Zhang M. AIDA-1/ANKS1B Binds to the SynGAP Family RasGAPs with High Affinity and Specificity. J Mol Biol 2024; 436:168608. [PMID: 38759928 DOI: 10.1016/j.jmb.2024.168608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
AIDA-1, encoded by ANKS1B, is an abundant postsynaptic scaffold protein essential for brain development. Mutations of ANKS1B are closely associated with various psychiatric disorders. However, very little is known regarding the molecular mechanisms underlying AIDA-1's involvements under physiological and pathophysiological conditions. Here, we discovered an interaction between AIDA-1 and the SynGAP family Ras-GTPase activating protein (GAP) via affinity purification using AIDA-1d as the bait. Biochemical studies showed that the PTB domain of AIDA-1 binds to an extended NPx[F/Y]-motif of the SynGAP family proteins with high affinities. The high-resolution crystal structure of AIDA-1 PTB domain in complex with the SynGAP NPxF-motif revealed the molecular mechanism governing the specific interaction between AIDA-1 and SynGAP. Our study not only explains why patients with ANKS1B or SYNGAP1 mutations share overlapping clinical phenotypes, but also allows identification of new AIDA-1 binding targets such as Ras and Rab interactors.
Collapse
Affiliation(s)
- Xueqian Wang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Yu Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
57
|
Schengrund CL. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int J Mol Sci 2024; 25:6312. [PMID: 38928016 PMCID: PMC11203820 DOI: 10.3390/ijms25126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
58
|
Zhang J, Xu Y, Liu Y, Yue L, Jin H, Chen Y, Wang D, Wang M, Chen G, Yang L, Zhang G, Zhang X, Li S, Zhao H, Zhao Y, Niu G, Gao Y, Cai Z, Yang F, Zhu C, Zhu D. Genetic Testing for Global Developmental Delay in Early Childhood. JAMA Netw Open 2024; 7:e2415084. [PMID: 38837156 PMCID: PMC11154162 DOI: 10.1001/jamanetworkopen.2024.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Importance Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.
Collapse
Affiliation(s)
- Jiamei Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Liu
- Kunming Children’s Hospital, Kunming, China
| | - Ling Yue
- Department of Neurological Rehabilitation, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Hongfang Jin
- Qinghai Provincial Women and Children’s Hospital, Xining, China
| | | | - Dong Wang
- Department of Pediatric Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Mingmei Wang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongxun Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatric Neurology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sansong Li
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxia Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijun Cai
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Dengna Zhu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
59
|
Xia QQ, Singh A, Wang J, Xuan ZX, Singer JD, Powell CM. Autism risk gene Cul3 alters neuronal morphology via caspase-3 activity in mouse hippocampal neurons. Front Cell Neurosci 2024; 18:1320784. [PMID: 38803442 PMCID: PMC11129687 DOI: 10.3389/fncel.2024.1320784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders (NDDs) in which children display differences in social interaction/communication and repetitive stereotyped behaviors along with variable associated features. Cul3, a gene linked to ASD, encodes CUL3 (CULLIN-3), a protein that serves as a key component of a ubiquitin ligase complex with unclear function in neurons. Cul3 homozygous deletion in mice is embryonic lethal; thus, we examine the role of Cul3 deletion in early synapse development and neuronal morphology in hippocampal primary neuronal cultures. Homozygous deletion of Cul3 significantly decreased dendritic complexity and dendritic length, as well as axon formation. Synaptic spine density significantly increased, mainly in thin and stubby spines along with decreased average spine volume in Cul3 knockouts. Both heterozygous and homozygous knockout of Cul3 caused significant reductions in the density and colocalization of gephyrin/vGAT puncta, providing evidence of decreased inhibitory synapse number, while excitatory synaptic puncta vGulT1/PSD95 density remained unchanged. Based on previous studies implicating elevated caspase-3 after Cul3 deletion, we demonstrated increased caspase-3 in our neuronal cultures and decreased neuronal cell viability. We then examined the efficacy of the caspase-3 inhibitor Z-DEVD-FMK to rescue the decrease in neuronal cell viability, demonstrating reversal of the cell viability phenotype with caspase-3 inhibition. Studies have also implicated caspase-3 in neuronal morphological changes. We found that caspase-3 inhibition largely reversed the dendrite, axon, and spine morphological changes along with the inhibitory synaptic puncta changes. Overall, these data provide additional evidence that Cul3 regulates the formation or maintenance of cell morphology, GABAergic synaptic puncta, and neuronal viability in developing hippocampal neurons in culture.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anju Singh
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Wang
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhong Xin Xuan
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States
| | - Craig M. Powell
- Department of Neurobiology, Marnix E. Heersink School of Medicine & Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
60
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 PMCID: PMC11867214 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
61
|
Woods E, Holmes N, Albaba S, Evans IR, Balasubramanian M. ASXL3-related disorder: Molecular phenotyping and comprehensive review providing insights into disease mechanism. Clin Genet 2024; 105:470-487. [PMID: 38420660 DOI: 10.1111/cge.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
ASXL3-related disorder, sometimes referred to as Bainbridge-Ropers syndrome, was first identified as a distinct neurodevelopmental disorder by Bainbridge et al. in 2013. Since then, there have been a number of case series and single case reports published worldwide. A comprehensive review of the literature was carried out. Abstracts were screened, relevant literature was analysed, and descriptions of common phenotypic features were quantified. ASXL3 variants were collated and categorised. Common phenotypic features comprised global developmental delay or intellectual disability (97%), feeding problems (76%), hypotonia (88%) and characteristic facial features (93%). The majority of genetic variants were de novo truncating variants in exon 11 or 12 of the ASXL3 gene. Several gaps in our knowledge of this disorder were identified, namely, underlying pathophysiology and disease mechanism, disease contribution of missense variants, relevance of variant location, prevalence and penetrance data. Clinical information is currently limited by patient numbers and lack of longitudinal data, which this review aims to address.
Collapse
Affiliation(s)
- Emily Woods
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Nicola Holmes
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Shadi Albaba
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Iwan R Evans
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
62
|
Schuetz RJ, Antoniou AA, Lammi GE, Gordon DM, Kuck HC, Chaudhari BP, White P. CAVaLRi: An Algorithm for Rapid Identification of Diagnostic Germline Variation. Hum Mutat 2024; 2024:6411444. [PMID: 40225936 PMCID: PMC11918498 DOI: 10.1155/2024/6411444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2025]
Abstract
Clinical exome and genome sequencing (ES/GS) have become indispensable diagnostic tools for rare genetic diseases (RGD). However, the interpretation of ES/GS presents a substantial operational challenge in clinical settings. Test interpretation requires the review of hundreds of genetic variants, a task that has become increasingly challenging given the rising use of ES/GS. In response, we present Clinical Assessment of Variants by Likelihood Ratios (CAVaLRi), which employ a modified likelihood ratio (LR) framework to assign diagnostic probabilities to candidate germline disease genes. CAVaLRi models aspects of the clinical variant assessment process, taking into consideration the predicted impact of the variant, the proband and parental genotypes, and the proband's clinical characteristics. It also factors in computational phenotype noise and weighs the relative significance of genotype, phenotype, and variant segregation information. We trained and tested CAVaLRi on variant and phenotype data from an internal cohort of 655 clinical ES cases. For validation, CAVaLRi's performance was benchmarked against four leading gene prioritization algorithms (Exomiser's hiPHIVE and PhenIX prioritizers, LIRICAL, and XRare) using a distinct cohort of 12,832 ES cases. Our findings reveal that CAVaLRi significantly outperforms its counterparts when clinician-curated phenotype sets are used, as evidenced by its superior precision-recall curve (PR AUC: 0.701) and average diagnostic gene rank (1.59). Notably, even when substituting highly focused clinician-curated phenotype sets with large and potentially nonspecific computationally derived phenotypes, CAVaLRi retains its precision (PR AUC: 0.658; diagnostic gene average rank: 1.68) and markedly outperforms other tools. In a large, heterogeneous validation cohort, CAVaLRi stood out as the most precise prioritization algorithm (PR AUC: 0.335; average diagnostic rank: 1.91). In conclusion, CAVaLRi presents a robust solution for prioritizing diagnostic genes, surpassing current methods. It demonstrates resilience to noisy, computationally-derived phenotypes, providing a scalable strategy to help labs focus on the most diagnostically relevant variants, thus addressing the growing demand for ES/GS interpretation.
Collapse
Affiliation(s)
- Robert J. Schuetz
- The Office of Data Sciences, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Austin A. Antoniou
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Grant E. Lammi
- The Office of Data Sciences, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - David M. Gordon
- The Office of Data Sciences, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Harkness C. Kuck
- The Office of Data Sciences, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bimal P. Chaudhari
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Divisions of Neonatology, Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Clinical and Translational Science, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter White
- The Office of Data Sciences, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
63
|
Wigdor EM, Samocha KE, Eberhardt RY, Chundru VK, Firth HV, Wright CF, Hurles ME, Martin HC. Investigating the role of common cis-regulatory variants in modifying penetrance of putatively damaging, inherited variants in severe neurodevelopmental disorders. Sci Rep 2024; 14:8708. [PMID: 38622173 PMCID: PMC11018828 DOI: 10.1038/s41598-024-58894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Recent work has revealed an important role for rare, incompletely penetrant inherited coding variants in neurodevelopmental disorders (NDDs). Additionally, we have previously shown that common variants contribute to risk for rare NDDs. Here, we investigate whether common variants exert their effects by modifying gene expression, using multi-cis-expression quantitative trait loci (cis-eQTL) prediction models. We first performed a transcriptome-wide association study for NDDs using 6987 probands from the Deciphering Developmental Disorders (DDD) study and 9720 controls, and found one gene, RAB2A, that passed multiple testing correction (p = 6.7 × 10-7). We then investigated whether cis-eQTLs modify the penetrance of putatively damaging, rare coding variants inherited by NDD probands from their unaffected parents in a set of 1700 trios. We found no evidence that unaffected parents transmitting putatively damaging coding variants had higher genetically-predicted expression of the variant-harboring gene than their child. In probands carrying putatively damaging variants in constrained genes, the genetically-predicted expression of these genes in blood was lower than in controls (p = 2.7 × 10-3). However, results for proband-control comparisons were inconsistent across different sets of genes, variant filters and tissues. We find limited evidence that common cis-eQTLs modify penetrance of rare coding variants in a large cohort of NDD probands.
Collapse
Affiliation(s)
- Emilie M Wigdor
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Kaitlin E Samocha
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
| | - Ruth Y Eberhardt
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - V Kartik Chundru
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Helen V Firth
- Department of Medical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
64
|
Pan X, Tao AM, Lu S, Ma M, Hannan SB, Slaugh R, Drewes Williams S, O'Grady L, Kanca O, Person R, Carter MT, Platzer K, Schnabel F, Abou Jamra R, Roberts AE, Newburger JW, Revah-Politi A, Granadillo JL, Stegmann APA, Sinnema M, Accogli A, Salpietro V, Capra V, Ghaloul-Gonzalez L, Brueckner M, Simon MEH, Sweetser DA, Glinton KE, Kirk SE, Wangler MF, Yamamoto S, Chung WK, Bellen HJ. De novo variants in FRYL are associated with developmental delay, intellectual disability, and dysmorphic features. Am J Hum Genet 2024; 111:742-760. [PMID: 38479391 PMCID: PMC11023917 DOI: 10.1016/j.ajhg.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/07/2024] Open
Abstract
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alice M Tao
- Vagelos School of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shabab B Hannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Sarah Drewes Williams
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren O'Grady
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; MGH Institute of Health Professions, Charlestown, MA, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Medicine, Division of Genetics, Boston Children's Hospital, Boston, MA, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Anya Revah-Politi
- Institute for Genomic Medicine and Precision Genomics Laboratory, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Center, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London, UK
| | - Valeria Capra
- Unit of Medical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Marleen E H Simon
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A Sweetser
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Susan E Kirk
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K Chung
- Departments of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
65
|
Kim JH, Chen W, Chao ES, Rivera A, Kaku HN, Jiang K, Lee D, Chen H, Vega JM, Chin TV, Jin K, Nguyen KT, Zou SS, Moin Z, Nguyen S, Xue 薛名杉 M. GABAergic/Glycinergic and Glutamatergic Neurons Mediate Distinct Neurodevelopmental Phenotypes of STXBP1 Encephalopathy. J Neurosci 2024; 44:e1806232024. [PMID: 38360746 PMCID: PMC10993039 DOI: 10.1523/jneurosci.1806-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
An increasing number of pathogenic variants in presynaptic proteins involved in the synaptic vesicle cycle are being discovered in neurodevelopmental disorders. The clinical features of these synaptic vesicle cycle disorders are diverse, but the most prevalent phenotypes include intellectual disability, epilepsy, movement disorders, cerebral visual impairment, and psychiatric symptoms ( Verhage and Sørensen, 2020; Bonnycastle et al., 2021; John et al., 2021; Melland et al., 2021). Among this growing list of synaptic vesicle cycle disorders, the most frequent is STXBP1 encephalopathy caused by de novo heterozygous pathogenic variants in syntaxin-binding protein 1 (STXBP1, also known as MUNC18-1; Verhage and Sørensen, 2020; John et al., 2021). STXBP1 is an essential protein for presynaptic neurotransmitter release. Its haploinsufficiency is the main disease mechanism and impairs both excitatory and inhibitory neurotransmitter release. However, the disease pathogenesis and cellular origins of the broad spectrum of neurological phenotypes are poorly understood. Here we generate cell type-specific Stxbp1 haploinsufficient male and female mice and show that Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons causes developmental delay, epilepsy, and motor, cognitive, and psychiatric deficits, recapitulating majority of the phenotypes observed in the constitutive Stxbp1 haploinsufficient mice and STXBP1 encephalopathy. In contrast, Stxbp1 haploinsufficiency in glutamatergic neurons results in a small subset of cognitive and seizure phenotypes distinct from those caused by Stxbp1 haploinsufficiency in GABAergic/glycinergic neurons. Thus, the contrasting roles of excitatory and inhibitory signaling reveal GABAergic/glycinergic dysfunction as a key disease mechanism of STXBP1 encephalopathy and suggest the possibility to selectively modulate disease phenotypes by targeting specific neurotransmitter systems.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Wu Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Eugene S Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Armando Rivera
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Heet Naresh Kaku
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Dongwon Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Hongmei Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Jaimie M Vega
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Teresa V Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Jin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kelly T Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Sheldon S Zou
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Zain Moin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Shawn Nguyen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Mingshan Xue 薛名杉
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
66
|
Ung DC, Pietrancosta N, Badillo EB, Raux B, Tapken D, Zlatanovic A, Doridant A, Pode-Shakked B, Raas-Rothschild A, Elpeleg O, Abu-Libdeh B, Hamed N, Papon MA, Marouillat S, Thépault RA, Stevanin G, Elegheert J, Letellier M, Hollmann M, Lambolez B, Tricoire L, Toutain A, Hepp R, Laumonnier F. GRID1/GluD1 homozygous variants linked to intellectual disability and spastic paraplegia impair mGlu1/5 receptor signaling and excitatory synapses. Mol Psychiatry 2024; 29:1205-1215. [PMID: 38418578 PMCID: PMC11176079 DOI: 10.1038/s41380-024-02469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.
Collapse
Affiliation(s)
- Dévina C Ung
- UMR 1253, iBrain, Université de Tours, Inserm, 37032, Tours, France
| | - Nicolas Pietrancosta
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
- Laboratoire des biomolécules, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | | | - Brigitt Raux
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Daniel Tapken
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Andjela Zlatanovic
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Adrien Doridant
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Ben Pode-Shakked
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hahsomer, 5262000, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5262000, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Annick Raas-Rothschild
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hahsomer, 5262000, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Faculty of Medicine, Al-Quds University, East Jerusalem, Jerusalem, Palestine
| | - Nasrin Hamed
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hahsomer, 5262000, Israel
| | | | | | | | - Giovanni Stevanin
- Univ. Bordeaux, INCIA, UMR 5287 CNRS EPHE, F-33000, Bordeaux, France
| | | | | | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Bertrand Lambolez
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Ludovic Tricoire
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Annick Toutain
- UMR 1253, iBrain, Université de Tours, Inserm, 37032, Tours, France.
- Unité fonctionnelle de Génétique Médicale, Centre Hospitalier Universitaire, 37044, Tours, France.
| | - Régine Hepp
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032, Tours, France.
- Service de Génétique, Centre Hospitalier Universitaire, 37044, Tours, France.
| |
Collapse
|
67
|
Qu HQ, Glessner JT, Qu J, Liu Y, Watson D, Chang X, Saeidian AH, Qiu H, Mentch FD, Connolly JJ, Hakonarson H. High Comorbidity of Pediatric Cancers in Patients with Birth Defects: Insights from Whole Genome Sequencing Analysis of Copy Number Variations. Transl Res 2024; 266:49-56. [PMID: 37989391 DOI: 10.1016/j.trsl.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Patients with birth defects (BD) exhibit an elevated risk of cancer. We aimed to investigate the potential link between pediatric cancers and BDs, exploring the hypothesis of shared genetic defects contributing to the coexistence of these conditions. METHODS This study included 1454 probands with BDs (704 females and 750 males), including 619 (42.3%) with and 845 (57.7%) without co-occurrence of pediatric onset cancers. Whole genome sequencing (WGS) was done at 30X coverage through the Kids First/Gabriella Miller X01 Program. RESULTS 8211 CNV loci were called from the 1454 unrelated individuals. 191 CNV loci classified as pathogenic/likely pathogenic (P/LP) were identified in 309 (21.3%) patients, with 124 (40.1%) of these patients having pediatric onset cancers. The most common group of CNVs are pathogenic deletions covering the region ChrX:52,863,011-55,652,521, seen in 162 patients including 17 males. Large recurrent P/LP duplications >5MB were detected in 33 patients. CONCLUSIONS This study revealed that P/LP CNVs were common in a large cohort of BD patients with high rate of pediatric cancers. We present a comprehensive spectrum of P/LP CNVs in patients with BDs and various cancers. Notably, deletions involving E2F target genes and genes implicated in mitotic spindle assembly and G2/M checkpoint were identified, potentially disrupting cell-cycle progression and providing mechanistic insights into the concurrent occurrence of BDs and cancers.
Collapse
Affiliation(s)
- Hui-Qi Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph T Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Yichuan Liu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Deborah Watson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Amir Hossein Saeidian
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Haijun Qiu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - John J Connolly
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
68
|
Kassabian B, Levy AM, Gardella E, Aledo-Serrano A, Ananth AL, Brea-Fernández AJ, Caumes R, Chatron N, Dainelli A, De Wachter M, Denommé-Pichon AS, Dye TJ, Fazzi E, Felt R, Fernández-Jaén A, Fernández-Prieto M, Gantz E, Gasperowicz P, Gil-Nagel A, Gómez-Andrés D, Greiner HM, Guerrini R, Haanpää MK, Helin M, Hoyer J, Hurst ACE, Kallish S, Karkare SN, Khan A, Kleinendorst L, Koch J, Kothare SV, Koudijs SM, Lagae L, Lakeman P, Leppig KA, Lesca G, Lopergolo D, Lusk L, Mackenzie A, Mei D, Møller RS, Pereira EM, Platzer K, Quelin C, Revah-Politi A, Rheims S, Rodríguez-Palmero A, Rossi A, Santorelli F, Seinfeld S, Sell E, Stephenson D, Szczaluba K, Trinka E, Umair M, Van Esch H, van Haelst MM, Veenma DCM, Weber S, Weckhuysen S, Zacher P, Tümer Z, Rubboli G. Developmental epileptic encephalopathy in DLG4-related synaptopathy. Epilepsia 2024; 65:1029-1045. [PMID: 38135915 DOI: 10.1111/epi.17876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.
Collapse
Affiliation(s)
- Benedetta Kassabian
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Neurology Unit, Department of Neurosciences, University of Padua, Padua, Italy
| | - Amanda M Levy
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Angel Aledo-Serrano
- Epilepsy and Neurogenetics Unit, Vithas la Milagrosa University Hospital, Vithas Hospital Group, Madrid, Spain
| | - Amitha L Ananth
- Division of Pediatric Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alejandro J Brea-Fernández
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Biomédica de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Nicolas Chatron
- Service de Genetique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Centre National de la recherche scientifique (CNRS) Unité mixte de recherche (UMR) 5261- L'Institut national de la santé et de la recherche médicale (INSERM) U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Alice Dainelli
- Neuroscience Department, Meyer Children's Hospital IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), member of the European Reference Network EpiCARE, Florence, Italy
| | - Matthias De Wachter
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Anne-Sophie Denommé-Pichon
- Functional Unit for Diagnostic Innovation in Rare Diseases, Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement (FHU-TRANSLAD), Dijon Bourgogne University Hospital, Dijon, France
- L'Institut national de la santé et de la recherche médicale (INSERM) Unité mixte de recherche (UMR) 1231, Génétique des Anomalies du Développement (GAD), Fédération Hospitalo-Universitaire Médecine TRANSLationnelle et Anomalies du Développement (FHU-TRANSLAD), University of Burgundy, Dijon, France
| | - Thomas J Dye
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Roxanne Felt
- Department of Neurology, Kaiser Permanente Bellevue Medical Center, Bellevue, Washington, USA
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Neurogenetics Section, Hospital Universitario Quirónsalud, Madrid, Spain
- Facultad de Medicina, Universidad Europea, Madrid, Spain
| | - Montse Fernández-Prieto
- Grupo de Genómica y Bioinformática, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Centro de Investigación Biomédica en Red de Enfermedades Raras del Instituto de Salud Carlos III (CIBERER-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Genética, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Biomédica de Santiago (IDIS), Santiago de Compostela, Spain
| | - Emily Gantz
- Division of Pediatric Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Piotr Gasperowicz
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Antonio Gil-Nagel
- Neurology Department, Epilepsy Program, Ruber Internacional Hospital, Madrid, Spain
| | - David Gómez-Andrés
- Child Neurology Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), member of the European Reference Network EpiCARE, Florence, Italy
| | - Maria K Haanpää
- Department of Genomics, Turku University Hospital, Turku, Finland
| | - Minttu Helin
- Department of Pediatric Neurology, Turku University Hospital, Turku, Finland
| | - Juliane Hoyer
- Friedrich-Alexander-Universität Erlangen Nürnberg, Institute of Human Genetics, Erlangen, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Staci Kallish
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shefali N Karkare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Amjad Khan
- Department of Zoology, Faculty of Biological Sciences, University of Lakki Marwat, Lakki Marwat, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lotte Kleinendorst
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes Koch
- University Children's Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Sanjeev V Kothare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Suzanna M Koudijs
- Department of Neurology, Erasmus Medical Center (MC) Sophia Children's Hospital, Rotterdam, the Netherlands
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Rotterdam, Erasmus Medical Center (ENCORE)-GRIN Expertise Center, Rotterdam, the Netherlands
| | - Lieven Lagae
- Department of Development and Regeneration, Section Paediatric Neurology, member of the European Reference Network EpiCARE, University Hospitals Leuven, Leuven, Belgium
| | - Phillis Lakeman
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Kathleen A Leppig
- Genetic Services, Kaiser Permanente of Washington, Seattle, Washington, USA
| | - Gaetan Lesca
- Service de Genetique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Centre National de la recherche scientifique (CNRS) Unité mixte de recherche (UMR) 5261- L'Institut national de la santé et de la recherche médicale (INSERM) U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Diego Lopergolo
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Stella Maris Foundation, Pisa, Italy
| | - Laina Lusk
- Division of Neurology, Epilepsy Neurogenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Alex Mackenzie
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), member of the European Reference Network EpiCARE, Florence, Italy
| | - Rikke S Møller
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chloe Quelin
- Department of Medical Genetics, CHU de Rennes, Rennes, France
| | - Anya Revah-Politi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, member of the European Reference Network EpiCARE, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Agustí Rodríguez-Palmero
- Paediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
- Grupo de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Rossi
- Unit of Child Neurology and Psychiatry, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili of Brescia, Brescia, Italy
| | - Filippo Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Stella Maris Foundation, Pisa, Italy
| | - Syndi Seinfeld
- Department of Pediatric Neurology, Neuroscience Center, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA
| | - Erick Sell
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Donna Stephenson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
- Center of Excellence for Rare and Undiagnosed Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Eugen Trinka
- Department of Neurology, Neurointensive Care and Neurorehabilitation, Christian Doppler University Hospital, member of the European Reference Network EpiCARE, Paracelsus Medical University, Center for Cognitive Neuroscience, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, member of the European Reference Network EpiCARE, Paracelsus Medical University, Center for Cognitive Neuroscience, Salzburg, Austria
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Danielle C M Veenma
- Erfelijke Neuro-Cognitieve Ontwikkelingsstoornissen, Rotterdam, Erasmus Medical Center (ENCORE)-GRIN Expertise Center, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus Medical Center (MC)-Sophia Hospital, Rotterdam, the Netherlands
| | - Sacha Weber
- Service de Génétique, Centre Hospitalier Universitaire (CHU) de Caen-Normandie, Caen, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) de Caen-Normandie, Caen, France
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Pia Zacher
- Center for Adults with Disability (MZEB), Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, Danish Epilepsy Center Filadelfia, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
69
|
Hiatt SM, Lawlor JM, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Nunez IR, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304633. [PMID: 38585854 PMCID: PMC10996728 DOI: 10.1101/2024.03.22.24304633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Donald R. Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | | | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Michael A. Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Anna C. E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | |
Collapse
|
70
|
Kim HH, Kim DW, Woo J, Lee K. Explicable prioritization of genetic variants by integration of rule-based and machine learning algorithms for diagnosis of rare Mendelian disorders. Hum Genomics 2024; 18:28. [PMID: 38509596 PMCID: PMC10956189 DOI: 10.1186/s40246-024-00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND In the process of finding the causative variant of rare diseases, accurate assessment and prioritization of genetic variants is essential. Previous variant prioritization tools mainly depend on the in-silico prediction of the pathogenicity of variants, which results in low sensitivity and difficulty in interpreting the prioritization result. In this study, we propose an explainable algorithm for variant prioritization, named 3ASC, with higher sensitivity and ability to annotate evidence used for prioritization. 3ASC annotates each variant with the 28 criteria defined by the ACMG/AMP genome interpretation guidelines and features related to the clinical interpretation of the variants. The system can explain the result based on annotated evidence and feature contributions. RESULTS We trained various machine learning algorithms using in-house patient data. The performance of variant ranking was assessed using the recall rate of identifying causative variants in the top-ranked variants. The best practice model was a random forest classifier that showed top 1 recall of 85.6% and top 3 recall of 94.4%. The 3ASC annotates the ACMG/AMP criteria for each genetic variant of a patient so that clinical geneticists can interpret the result as in the CAGI6 SickKids challenge. In the challenge, 3ASC identified causal genes for 10 out of 14 patient cases, with evidence of decreased gene expression for 6 cases. Among them, two genes (HDAC8 and CASK) had decreased gene expression profiles confirmed by transcriptome data. CONCLUSIONS 3ASC can prioritize genetic variants with higher sensitivity compared to previous methods by integrating various features related to clinical interpretation, including features related to false positive risk such as quality control and disease inheritance pattern. The system allows interpretation of each variant based on the ACMG/AMP criteria and feature contribution assessed using explainable AI techniques.
Collapse
Affiliation(s)
- Ho Heon Kim
- Research and Development Center, 3billion, 14th floor, 416 Teheran-ro, Gangnam-gu, Seoul, 06193, Republic of Korea
| | - Dong-Wook Kim
- Research and Development Center, 3billion, 14th floor, 416 Teheran-ro, Gangnam-gu, Seoul, 06193, Republic of Korea
| | - Junwoo Woo
- Research and Development Center, 3billion, 14th floor, 416 Teheran-ro, Gangnam-gu, Seoul, 06193, Republic of Korea
| | - Kyoungyeul Lee
- Research and Development Center, 3billion, 14th floor, 416 Teheran-ro, Gangnam-gu, Seoul, 06193, Republic of Korea.
| |
Collapse
|
71
|
Xie Y, Wu R, Li H, Dong W, Zhou G, Zhao H. Statistical methods for assessing the effects of de novo variants on birth defects. Hum Genomics 2024; 18:25. [PMID: 38486307 PMCID: PMC10938830 DOI: 10.1186/s40246-024-00590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
With the development of next-generation sequencing technology, de novo variants (DNVs) with deleterious effects can be identified and investigated for their effects on birth defects such as congenital heart disease (CHD). However, statistical power is still limited for such studies because of the small sample size due to the high cost of recruiting and sequencing samples and the low occurrence of DNVs. DNV analysis is further complicated by genetic heterogeneity across diseased individuals. Therefore, it is critical to jointly analyze DNVs with other types of genomic/biological information to improve statistical power to identify genes associated with birth defects. In this review, we discuss the general workflow, recent developments in statistical methods, and future directions for DNV analysis.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Ruoxuan Wu
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
72
|
Yoganathan S, Whitney R, Thomas M, Danda S, Chettali AM, Prasad AN, Farhan SMK, AlSowat D, Abukhaled M, Aldhalaan H, Gowda VK, Kinhal UV, Bylappa AY, Konanki R, Lingappa L, Parchuri BM, Appendino JP, Scantlebury MH, Cunningham J, Hadjinicolaou A, El Achkar CM, Kamate M, Menon RN, Jose M, Riordan G, Kannan L, Jain V, Manokaran RK, Chau V, Donner EJ, Costain G, Minassian BA, Jain P. KCTD7-related progressive myoclonic epilepsy: Report of 42 cases and review of literature. Epilepsia 2024; 65:709-724. [PMID: 38231304 DOI: 10.1111/epi.17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
OBJECTIVE KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.
Collapse
Affiliation(s)
- Sangeetha Yoganathan
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Robyn Whitney
- Comprehensive Pediatric Epilepsy Program, Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Asuri N Prasad
- Division of Pediatric Neurology and Clinical Neurosciences, Department of Pediatrics, Children's Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, and Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daad AlSowat
- Division of Pediatric Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musaad Abukhaled
- Division of Pediatric Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Division of Pediatric Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Uddhava V Kinhal
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Arun Y Bylappa
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Ramesh Konanki
- Department of Pediatric Neurology, Rainbow Children's Hospital, Hyderabad, Telangana, India
| | - Lokesh Lingappa
- Department of Pediatric Neurology, Rainbow Children's Hospital, Hyderabad, Telangana, India
| | | | - Juan P Appendino
- Pediatric Neurology Service, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessie Cunningham
- Hospital Library and Archives, Learning Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, Department of Pediatrics, CHU (Centre Hospitalier Universitaire) Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Christelle Moufawad El Achkar
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahesh Kamate
- Department of Pediatric Neurology, Jawaharlal Nehru Medical College, KLE (Karnataka Lingayat Education) Academy of Higher Education and Research, KLE's Dr Prabhakar Kore (PK) Hospital, Belagavi, Karnataka, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Manna Jose
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Gillian Riordan
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Vivek Jain
- Department of Pediatric Neurology, Neoclinic Children's Hospital, Jaipur, Rajasthan, India
| | - Ranjith Kumar Manokaran
- Division of Pediatric neurology, Department of Neurology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Vann Chau
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Donner
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, and Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
73
|
Adams DJ, Barlas B, McIntyre RE, Salguero I, van der Weyden L, Barros A, Vicente JR, Karimpour N, Haider A, Ranzani M, Turner G, Thompson NA, Harle V, Olvera-León R, Robles-Espinoza CD, Speak AO, Geisler N, Weninger WJ, Geyer SH, Hewinson J, Karp NA, Fu B, Yang F, Kozik Z, Choudhary J, Yu L, van Ruiten MS, Rowland BD, Lelliott CJ, Del Castillo Velasco-Herrera M, Verstraten R, Bruckner L, Henssen AG, Rooimans MA, de Lange J, Mohun TJ, Arends MJ, Kentistou KA, Coelho PA, Zhao Y, Zecchini H, Perry JRB, Jackson SP, Balmus G. Genetic determinants of micronucleus formation in vivo. Nature 2024; 627:130-136. [PMID: 38355793 PMCID: PMC10917660 DOI: 10.1038/s41586-023-07009-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.
Collapse
Affiliation(s)
- D J Adams
- Wellcome Sanger Institute, Cambridge, UK.
| | - B Barlas
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - I Salguero
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - A Barros
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - J R Vicente
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - N Karimpour
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Haider
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Ranzani
- Wellcome Sanger Institute, Cambridge, UK
| | - G Turner
- Wellcome Sanger Institute, Cambridge, UK
| | | | - V Harle
- Wellcome Sanger Institute, Cambridge, UK
| | | | - C D Robles-Espinoza
- Wellcome Sanger Institute, Cambridge, UK
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - A O Speak
- Wellcome Sanger Institute, Cambridge, UK
| | - N Geisler
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - W J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - S H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - J Hewinson
- Wellcome Sanger Institute, Cambridge, UK
| | - N A Karp
- Wellcome Sanger Institute, Cambridge, UK
| | - B Fu
- Wellcome Sanger Institute, Cambridge, UK
| | - F Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Z Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - J Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - L Yu
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - M S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - L Bruckner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - A G Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M A Rooimans
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J de Lange
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - T J Mohun
- Division of Developmental Biology, MRC, National Institute for Medical Research, London, UK
| | - M J Arends
- Division of Pathology, Cancer Research UK Scotland Centre, Institute of Genetics & Cancer The University of Edinburgh, Edinburgh, UK
| | - K A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - P A Coelho
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Y Zhao
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - H Zecchini
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - J R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - S P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - G Balmus
- Wellcome Sanger Institute, Cambridge, UK.
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
74
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
75
|
Geller E, Noble MA, Morales M, Gockley J, Emera D, Uebbing S, Cotney JL, Noonan JP. Massively parallel disruption of enhancers active in human neural stem cells. Cell Rep 2024; 43:113693. [PMID: 38271204 PMCID: PMC11078116 DOI: 10.1016/j.celrep.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.
Collapse
Affiliation(s)
- Evan Geller
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mark A Noble
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matheo Morales
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Justin L Cotney
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
76
|
Yuan X, Su J, Wang J, Dai B, Sun Y, Zhang K, Li Y, Chuan J, Tang C, Yu Y, Gong Q. Refined preferences of prioritizers improve intelligent diagnosis for Mendelian diseases. Sci Rep 2024; 14:2845. [PMID: 38310124 PMCID: PMC10838329 DOI: 10.1038/s41598-024-53461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
Phenotype-guided gene prioritizers have proved a highly efficient approach to identifying causal genes for Mendelian diseases. In our previous study, we preliminarily evaluated the performance of ten prioritizers. However, all the selected software was run based on default settings and singleton mode. With a large-scale family dataset from Deciphering Developmental Disorders (DDD) project (N = 305) and an in-house trio cohort (N = 152), the four optimal performers in our prior study including Exomiser, PhenIX, AMELIE, and LIRCIAL were further assessed through parameter optimization and/or the utilization of trio mode. The in-depth assessment revealed high diagnostic yields of the four prioritizers with refined preferences, each alone or together: (1) 83.3-91.8% of the causal genes were presented among the first ten candidates in the final ranking lists of the four tools; (2) Over 97.7% of the causal genes were successfully captured within the top 50 by either of the four software. Exomiser did best in directly hitting the target (ranking the causal gene at the very top) while LIRICAL displayed a predominant overall detection capability. Besides, cases affected by low-penetrance and high-frequency pathogenic variants were found misjudged during the automated prioritization process. The discovery of the limitations shed light on the specific directions of future enhancement for causal-gene ranking tools.
Collapse
Affiliation(s)
- Xiao Yuan
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Jieqiong Su
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Jing Wang
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Bing Dai
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Yanfang Sun
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Keke Zhang
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Yinghua Li
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, Guangdong, China
| | - Jun Chuan
- Genetalks Biotech. Co., Ltd., Changsha, Hunan, China
| | - Chunyan Tang
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China
| | - Yan Yu
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China.
| | - Qiang Gong
- Changsha Kingmed Center for Clinical Laboratory, Lutian Road 28, Changsha, 410000, Hunan, China.
| |
Collapse
|
77
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
78
|
Jeffries L, Mis EK, McWalter K, Donkervoort S, Brodsky NN, Carpier JM, Ji W, Ionita C, Roy B, Morrow JS, Darbinyan A, Iyer K, Aul RB, Banka S, Chao KR, Cobbold L, Cohen S, Custodio HM, Drummond-Borg M, Elmslie F, Finanger E, Hainline BE, Helbig I, Hewson S, Hu Y, Jackson A, Josifova D, Konstantino M, Leach ME, Mak B, McCormick D, McGee E, Nelson S, Nguyen J, Nugent K, Ortega L, Goodkin HP, Roeder E, Roy S, Sapp K, Saade D, Sisodiya SM, Stals K, Towner S, Wilson W, Khokha MK, Bönnemann CG, Lucas CL, Lakhani SA. Biallelic CRELD1 variants cause a multisystem syndrome, including neurodevelopmental phenotypes, cardiac dysrhythmias, and frequent infections. Genet Med 2024; 26:101023. [PMID: 37947183 PMCID: PMC10932913 DOI: 10.1016/j.gim.2023.101023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.
Collapse
Affiliation(s)
- Lauren Jeffries
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT
| | - Emily K Mis
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT
| | | | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Nina N Brodsky
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT; Yale University School of Medicine, Department of Immunobiology, New Haven, CT
| | - Jean-Marie Carpier
- Yale University School of Medicine, Department of Immunobiology, New Haven, CT
| | - Weizhen Ji
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT
| | - Cristian Ionita
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT
| | - Bhaskar Roy
- Yale University School of Medicine, Department of Neurology, New Haven, CT
| | - Jon S Morrow
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | - Armine Darbinyan
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | - Krishna Iyer
- Yale University School of Medicine, Department of Pathology, New Haven, CT
| | - Ritu B Aul
- Hospital for Sick Children, Division of Clinical and Metabolic Genetics, Toronto, Ontario, Canada
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Katherine R Chao
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Laura Cobbold
- South West Thames Regional Genetics Service, St George's, University of London, London, United Kingdom
| | - Stacey Cohen
- Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, PA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA; University of Pennsylvania Perelman School of Medicine, Department of Neurology, Philadelphia, PA
| | - Helena M Custodio
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom; Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | | | - Frances Elmslie
- South West Thames Regional Genetics Service, St George's, University of London, London, United Kingdom
| | | | - Bryan E Hainline
- Indiana University School of Medicine, Indiana University Health Physicians, Indianapolis, IN
| | - Ingo Helbig
- Children's Hospital of Philadelphia, Division of Neurology, Philadelphia, PA; University of Pennsylvania Perelman School of Medicine, Department of Neurology, Philadelphia, PA
| | - Stacy Hewson
- Hospital for Sick Children, Division of Clinical and Metabolic Genetics, Toronto, Ontario, Canada
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dragana Josifova
- Guys and St Thomas NHS Trust, Clinical Genetics, London, United Kingdom
| | | | | | - Bryan Mak
- University of California Los Angeles, David Geffen School of Medicine, Department of Human Genetics, Los Angeles, CA; Current affiliation: Genome Medical, South San Francisco, CA
| | - David McCormick
- King's College Hospital, Paediatric Neurosciences, London, United Kingdom
| | - Elisabeth McGee
- University of California Los Angeles, David Geffen School of Medicine, Department of Human Genetics, Los Angeles, CA; University of California Los Angeles, Clinical Genomics Center, Los Angeles, CA; University of California Los Angeles, Center for Duchenne Muscular Dystrophy, Los Angeles, CA
| | - Stanley Nelson
- University of California Los Angeles, David Geffen School of Medicine, Department of Human Genetics, Los Angeles, CA; University of California Los Angeles, Clinical Genomics Center, Los Angeles, CA; University of California Los Angeles, Center for Duchenne Muscular Dystrophy, Los Angeles, CA
| | - Joanne Nguyen
- Cook Children's Medical Center, Division of Genetics, Fort Worth, TX
| | - Kimberly Nugent
- Baylor College of Medicine, Department of Pediatrics, Houston, TX; Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX; Current affiliation: Cooper Surgical, Trumbull, CT
| | - Lucy Ortega
- Cook Children's Medical Center, Division of Genetics, Fort Worth, TX
| | | | - Elizabeth Roeder
- Baylor College of Medicine, Department of Pediatrics, Houston, TX; Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX
| | - Sani Roy
- Cook Children's Medical Center, Division of Endocrinology and Diabetes, Fort Worth, TX
| | - Katie Sapp
- Indiana University School of Medicine, Indiana University Health Physicians, Indianapolis, IN
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD; Current affiliation: University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom; Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | - Karen Stals
- Royal Devon & Exeter NHS Foundation Trust, Exeter Genomics Laboratory, Exeter, United Kingdom
| | - Shelley Towner
- University of Virginia School of Medicine, Charlottesville, VA
| | - William Wilson
- University of Virginia School of Medicine, Charlottesville, VA
| | - Mustafa K Khokha
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT; Yale University School of Medicine, Department of Genetics, New Haven, CT
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Carrie L Lucas
- Yale Pediatric Genomics Discovery Program, New Haven, CT; Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Saquib A Lakhani
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT; Yale Pediatric Genomics Discovery Program, New Haven, CT.
| |
Collapse
|
79
|
Danecek P, Gardner EJ, Fitzgerald TW, Gallone G, Kaplanis J, Eberhardt RY, Wright CF, Firth HV, Hurles ME. Detection and characterization of copy-number variants from exome sequencing in the DDD study. GENETICS IN MEDICINE OPEN 2024; 2:101818. [PMID: 39669630 PMCID: PMC11613862 DOI: 10.1016/j.gimo.2024.101818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 12/14/2024]
Abstract
Purpose Structural variants such as multiexon deletions and duplications are an important cause of disease but are often overlooked in standard exome/genome sequencing analysis. We aimed to evaluate the detection of copy-number variants (CNVs) from exome sequencing (ES) in comparison with genome-wide low-resolution and exon-resolution chromosomal microarrays (CMAs) and to characterize the properties of de novo CNVs in a large clinical cohort. Methods We performed CNV detection using ES of 9859 parent-offspring trios in the Deciphering Developmental Disorders (DDD) study and compared them with CNVs detected from exon-resolution array comparative genomic hybridization in 5197 probands from the DDD study. Results Integrating calls from multiple ES-based CNV algorithms using random forest machine learning generated a higher quality data set than using individual algorithms. Both ES- and array comparative genomic hybridization-based approaches had the same sensitivity of 89% and detected the same number of unique pathogenic CNVs not called by the other approach. Of DDD probands prescreened with low-resolution CMAs, 2.6% had a pathogenic CNV detected by higher-resolution assays. De novo CNVs were strongly enriched in known DD-associated genes and exhibited no bias in parental age or sex. Conclusion ES-based CNV calling has higher sensitivity than low-resolution CMAs currently in clinical use and comparable sensitivity to exon-resolution CMA. With sufficient investment in bioinformatic analysis, exome-based CNV detection could replace low-resolution CMA for detecting pathogenic CNVs.
Collapse
Affiliation(s)
- Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Eugene J. Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ruth Y. Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Caroline F. Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Helen V. Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Matthew E. Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
80
|
Ge C, Tian Y, Hu C, Mei L, Li D, Dong P, Zhang Y, Li H, Sun D, Peng W, Xu X, Jiang Y, Xu Q. Clinical impact and in vitro characterization of ADNP variants in pediatric patients. Mol Autism 2024; 15:5. [PMID: 38254177 PMCID: PMC10804707 DOI: 10.1186/s13229-024-00584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome (HVDAS) is a rare genetic disorder caused by variants in the activity-dependent neuroprotector homeobox (ADNP) gene; hence, it is also called ADNP syndrome. ADNP is a multitasking protein with the function as a transcription factor, playing a critical role in brain development. Furthermore, ADNP variants have been identified as one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability. METHODS We assembled a cohort of 15 Chinese pediatric patients, identified 13 variants in the coding region of ADNP gene, and evaluated their clinical phenotypes. Additionally, we constructed the corresponding ADNP variants and performed western blotting and immunofluorescence analysis to examine their protein expression and subcellular localization in human HEK293T and SH-SY5Y cells. RESULTS Our study conducted a thorough characterization of the clinical manifestations in 15 children with ADNP variants, and revealed a broad spectrum of symptoms including global developmental delay, intellectual disability, ASD, facial abnormalities, and other features. In vitro studies were carried out to check the expression of ADNP with identified variants. Two cases presented missense variants, while the remainder exhibited nonsense or frameshift variants, leading to truncated mutants in in vitro overexpression systems. Both overexpressed wildtype ADNP and all the different mutants were found to be confined to the nuclei in HEK293T cells; however, the distinctive pattern of nuclear bodies formed by the wildtype ADNP was either partially or entirely disrupted by the mutant proteins. Moreover, two variants of p.Y719* on the nuclear localization signal (NLS) of ADNP disrupted the nuclear expression pattern, predominantly manifesting in the cytoplasm in SH-SY5Y cells. LIMITATIONS Our study was limited by a relatively small sample size and the absence of a longitudinal framework to monitor the progression of patient conditions over time. Additionally, we lacked in vivo evidence to further indicate the causal implications of the identified ADNP variants. CONCLUSIONS Our study reported the first cohort of HVDAS patients in the Chinese population and provided systematic clinical presentations and laboratory examinations. Furthermore, we identified multiple genetic variants and validated them in vitro. Our findings offered valuable insights into the diverse genetic variants associated with HVDAS.
Collapse
Affiliation(s)
- Chuanhui Ge
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuxin Tian
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Chunchun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lianni Mei
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Dongyun Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ping Dong
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ying Zhang
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Huiping Li
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Daijing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Wenzhu Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Xu
- Department of Child Health Care, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
81
|
Farley KO, Forbes CA, Shaw NC, Kuzminski E, Ward M, Baynam G, Lassmann T, Fear VS. CRISPR-Cas9-generated PTCHD1 2489T>G stem cells recapitulate patient phenotype when undergoing neural induction. HGG ADVANCES 2024; 5:100257. [PMID: 38007613 PMCID: PMC10787298 DOI: 10.1016/j.xhgg.2023.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
An estimated 3.5%-5.9% of the global population live with rare diseases, and approximately 80% of these diseases have a genetic cause. Rare genetic diseases are difficult to diagnose, with some affected individuals experiencing diagnostic delays of 5-30 years. Next-generation sequencing has improved clinical diagnostic rates to 33%-48%. In a majority of cases, novel variants potentially causing the disease are discovered. These variants require functional validation in specialist laboratories, resulting in a diagnostic delay. In the interim, the finding is classified as a genetic variant of uncertain significance (VUS) and the affected individual remains undiagnosed. A VUS (PTCHD1 c. 2489T>G) was identified in a child with autistic behavior, global developmental delay, and hypotonia. Loss of function mutations in PTCHD1 are associated with autism spectrum disorder and intellectual disability; however, the molecular function of PTCHD1 and its role in neurodevelopmental disease is unknown. Here, we apply CRISPR gene editing and induced pluripotent stem cell (iPSC) neural disease modeling to assess the variant. During differentiation from iPSCs to neural progenitors, we detect subtle but significant gene signatures in synaptic transmission and muscle contraction pathways. Our work supports the causal link between the genetic variant and the child's phenotype, providing evidence for the variant to be considered a pathogenic variant according to the American College of Medical Genetics and Genomics guidelines. In addition, our study provides molecular data on the role of PTCHD1 in the context of other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kathryn O Farley
- Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia; Translational Genetics, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia; Centre for Child Health Research, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Catherine A Forbes
- Translational Genetics, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Nicole C Shaw
- Translational Genetics, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Emma Kuzminski
- Translational Genetics, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia; Centre for Child Health Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Michelle Ward
- Undiagnosed Diseases Program, Genetic Services of WA, Subiaco WA 6008, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA 6008, Australia; Undiagnosed Diseases Program, Genetic Services of WA, Subiaco WA 6008, Australia; Rare Care Centre, Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Timo Lassmann
- Computational Biology, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia; Centre for Child Health Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Vanessa S Fear
- Translational Genetics, Precision Health, Telethon Kids Institute, Perth Children's Hospital, Nedlands, WA 6009, Australia; Centre for Child Health Research, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
82
|
Tokunaga S, Shimomura H, Taniguchi N, Yanagi K, Kaname T, Okamoto N, Takeshima Y. A novel DLG4 variant causes DLG4-related synaptopathy with intellectual regression. Hum Genome Var 2024; 11:1. [PMID: 38182567 PMCID: PMC10770362 DOI: 10.1038/s41439-023-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
DLG4-related synaptopathy is a neurodevelopmental disorder caused by a DLG4 variant. We identified a novel de novo heterozygous frameshift variant, NM_001321075.3(DLG4):c.554_563del, in a Japanese girl. Intellectual regression without motor delay was observed at 2 years of age, and she was diagnosed with autism spectrum disorder and attention-deficit/hyperactivity disorder. Recognizing the possibility of DLG4-related synaptopathy in patients with intellectual regression is important for ensuring an accurate diagnosis.
Collapse
Affiliation(s)
- Sachi Tokunaga
- Department of Pediatrics, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan.
| | - Hideki Shimomura
- Department of Pediatrics, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Naoko Taniguchi
- Department of Pediatrics, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
83
|
Orenbuch R, Kollasch AW, Spinner HD, Shearer CA, Hopf TA, Franceschi D, Dias M, Frazer J, Marks DS. Deep generative modeling of the human proteome reveals over a hundred novel genes involved in rare genetic disorders. RESEARCH SQUARE 2024:rs.3.rs-3740259. [PMID: 38260496 PMCID: PMC10802723 DOI: 10.21203/rs.3.rs-3740259/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Identifying causal mutations accelerates genetic disease diagnosis, and therapeutic development. Missense variants present a bottleneck in genetic diagnoses as their effects are less straightforward than truncations or nonsense mutations. While computational prediction methods are increasingly successful at prediction for variants in known disease genes, they do not generalize well to other genes as the scores are not calibrated across the proteome1-6. To address this, we developed a deep generative model, popEVE, that combines evolutionary information with population sequence data7 and achieves state-of-the-art performance at ranking variants by severity to distinguish patients with severe developmental disorders8 from potentially healthy individuals9. popEVE identifies 442 genes in patients this developmental disorder cohort, including evidence of 123 novel genetic disorders, many without the need for gene-level enrichment and without overestimating the prevalence of pathogenic variants in the population. A majority of these variants are close to interacting partners in 3D complexes. Preliminary analyses on child exomes indicate that popEVE can identify candidate variants without the need for inheritance labels. By placing variants on a unified scale, our model offers a comprehensive perspective on the distribution of fitness effects across the entire proteome and the broader human population. popEVE provides compelling evidence for genetic diagnoses even in exceptionally rare single-patient disorders where conventional techniques relying on repeated observations may not be applicable.
Collapse
Affiliation(s)
- Rose Orenbuch
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron W. Kollasch
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hansen D. Spinner
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Courtney A. Shearer
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Dinko Franceschi
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mafalda Dias
- Dias & Frazer Group, Centre for Genomic Regulation (CRG),The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Jonathan Frazer
- Dias & Frazer Group, Centre for Genomic Regulation (CRG),The Barcelona Institute of Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
| | - Debora S. Marks
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
84
|
Harris EL, Roy V, Montagne M, Rose AMS, Livesey H, Reijnders MRF, Hobson E, Sansbury FH, Willemsen MH, Pfundt R, Warren D, Long V, Carr IM, Brunner HG, Sheridan EG, Firth HV, Lavigne P, Poulter JA. A recurrent de novo MAX p.Arg60Gln variant causes a syndromic overgrowth disorder through differential expression of c-Myc target genes. Am J Hum Genet 2024; 111:119-132. [PMID: 38141607 PMCID: PMC10806738 DOI: 10.1016/j.ajhg.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.
Collapse
Affiliation(s)
- Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Vincent Roy
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Montagne
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada
| | - Ailsa M S Rose
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Helen Livesey
- Leeds Teaching Hospitals NHS Trust, Leeds, UK; All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Cardiff, UK
| | - Margot R F Reijnders
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emma Hobson
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Cardiff, UK
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Vernon Long
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ian M Carr
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamonn G Sheridan
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Helen V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Pierre Lavigne
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada.
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
85
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
86
|
Patrício Rodrigues I, Teixeira B, Capela AM, Almeida M, Falcão Reis C. Acute Lymphoblastic Leukemia in a Pediatric Patient With Turnpenny-Fry Syndrome. Cureus 2024; 16:e53099. [PMID: 38283775 PMCID: PMC10822196 DOI: 10.7759/cureus.53099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 01/30/2024] Open
Abstract
Turnpenny-Fry Syndrome (TPFS) is a rare genetic disorder characterized by a severe developmental delay and a distinctive facial gestalt. It is caused by mutations in the Polycomb Group Ring Finger Protein 2 (PCGF2) gene, which is also known to play a role in numerous tumor types. Up to date, there have been no published case reports of patients with TPFS and concomitant malignancies. The present case describes the clinical evaluation and follow-up of a male infant with severe global developmental delay (GDD) and a distinctive phenotype. At 4 years of age, clinical exome sequencing confirmed the diagnosis of TPFS. Posteriorly, at 5 years of age, the patient was also diagnosed with T-cell acute lymphoblastic leukemia (ALL). Given the scarce literature regarding this syndrome, the authors expect that this case report will provide valuable information that could improve the follow-up of patients with TPFS. Furthermore, this case highlights the necessity for the appropriate diagnosis of developmental disorders, to ensure adequate care, surveillance of comorbidities and proper genetic counselling.
Collapse
Affiliation(s)
| | - Beatriz Teixeira
- Pediatrics, Centro Materno-Infantil do Norte, Centro Hospitalar e Universitário de Santo António, Porto, PRT
| | - Ana Miguel Capela
- Medical Genetics, Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, PRT
| | - Marta Almeida
- Pediatric Oncology, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, PRT
| | - Cláudia Falcão Reis
- Medical Genetics, Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, PRT
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, PRT
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Braga, PRT
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, PRT
| |
Collapse
|
87
|
Schmetz A, Lüdecke HJ, Surowy H, Sivalingam S, Bruel AL, Caumes R, Charles P, Chatron N, Chrzanowska K, Codina-Solà M, Colson C, Cuscó I, Denommé-Pichon AS, Edery P, Faivre L, Green A, Heide S, Hsieh TC, Hustinx A, Kleinendorst L, Knopp C, Kraft F, Krawitz PM, Lasa-Aranzasti A, Lesca G, López-González V, Maraval J, Mignot C, Neuhann T, Netzer C, Oehl-Jaschkowitz B, Petit F, Philippe C, Posmyk R, Putoux A, Reis A, Sánchez-Soler MJ, Suh J, Tkemaladze T, Tran Mau Them F, Travessa A, Trujillano L, Valenzuela I, van Haelst MM, Vasileiou G, Vincent-Delorme C, Walther M, Verde P, Bramswig NC, Wieczorek D. Delineation of the adult phenotype of Coffin-Siris syndrome in 35 individuals. Hum Genet 2024; 143:71-84. [PMID: 38117302 DOI: 10.1007/s00439-023-02622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up.
Collapse
Affiliation(s)
- Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Hermann-Josef Lüdecke
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sugirtahn Sivalingam
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Ange-Line Bruel
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | | | - Perrine Charles
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261-INSERM U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marta Codina-Solà
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Cindy Colson
- CHU Lille, Clinique de Génétique, 59000, Lille, France
| | - Ivon Cuscó
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Anne-Sophie Denommé-Pichon
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Faivre
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo-Universitaire TRANSLAD et Institut GIMI, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, and University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Solveig Heide
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alexander Hustinx
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Amaia Lasa-Aranzasti
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261-INSERM U1315, Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Vanesa López-González
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), IMIB-Arrixaca, El Palmar, Murcia, Spain
| | - Julien Maraval
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - Cyril Mignot
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Christian Netzer
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - Christophe Philippe
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
- Laboratory of Human Genetics, CHR Metz Thionville, Hôpital Mercy, Metz, France
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, Bialystok, Poland
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Centre de Recherche en Neurosciences de Lyon, Equipe GENDEV, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Lyon, France
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), 91054, Erlangen, Germany
| | - María José Sánchez-Soler
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), IMIB-Arrixaca, El Palmar, Murcia, Spain
| | - Julia Suh
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University Hospital, 52074, Aachen, Germany
- Centre for Rare Diseases Aachen (ZSEA), 52076, Aachen, Germany
| | - Tinatin Tkemaladze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Frédéric Tran Mau Them
- Inserm UMR1231 Team GAD, University of Burgundy and Franche-Comté, 21000, Dijon, France
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, 21000, Dijon, France
| | - André Travessa
- Medical Genetics Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Laura Trujillano
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Irene Valenzuela
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, 08035, Barcelona, Spain
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), 91054, Erlangen, Germany
| | | | - Mona Walther
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Pablo Verde
- Coordination Centre for Clinical Trials, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
- Center for Rare Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
88
|
Tolonen JP, Parolin Schnekenberg R, McGowan S, Sims D, McEntagart M, Elmslie F, Shears D, Stewart H, Tofaris GK, Dabir T, Morrison PJ, Johnson D, Hadjivassiliou M, Ellard S, Shaw‐Smith C, Znaczko A, Dixit A, Suri M, Sarkar A, Harrison RE, Jones G, Houlden H, Ceravolo G, Jarvis J, Williams J, Shanks ME, Clouston P, Rankin J, Blumkin L, Lerman‐Sagie T, Ponger P, Raskin S, Granath K, Uusimaa J, Conti H, McCann E, Joss S, Blakes AJ, Metcalfe K, Kingston H, Bertoli M, Kneen R, Lynch SA, Martínez Albaladejo I, Moore AP, Jones WD, Genomics England Research Consortium, Becker EB, Németh AH. Detailed Analysis of ITPR1 Missense Variants Guides Diagnostics and Therapeutic Design. Mov Disord 2024; 39:141-151. [PMID: 37964426 PMCID: PMC10952845 DOI: 10.1002/mds.29651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jussi Pekka Tolonen
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Ricardo Parolin Schnekenberg
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| | - Simon McGowan
- Centre for Computational Biology, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - David Sims
- Centre for Computational Biology, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Meriel McEntagart
- South West Regional Genetics ServiceSt. George's University HospitalsLondonUK
| | - Frances Elmslie
- South West Regional Genetics ServiceSt. George's University HospitalsLondonUK
| | - Debbie Shears
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| | - Helen Stewart
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| | - George K. Tofaris
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Tabib Dabir
- Northern Ireland Regional Genetics ServiceBelfast City HospitalBelfastUK
| | - Patrick J. Morrison
- Patrick G. Johnston Centre for Cancer Research and Cell BiologyQueen's University BelfastBelfastUK
| | - Diana Johnson
- Sheffield Clinical Genetics ServiceSheffield Children's NHS Foundation TrustSheffieldUK
| | - Marios Hadjivassiliou
- Department of NeurologyRoyal Hallamshire Hospital, Sheffield Teaching Hospital NHS Foundation TrustSheffieldUK
| | - Sian Ellard
- Exeter Genomics LaboratoryRoyal Devon University Healthcare NHS Foundation TrustUK
| | - Charles Shaw‐Smith
- Peninsula Clinical Genetics Service, Royal Devon University HospitalRoyal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Anna Znaczko
- Peninsula Clinical Genetics Service, Royal Devon University HospitalRoyal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Abhijit Dixit
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Mohnish Suri
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Ajoy Sarkar
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Rachel E. Harrison
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Gabriela Jones
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Henry Houlden
- Department of Neuromuscular DisordersUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Giorgia Ceravolo
- Department of Neuromuscular DisordersUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Unit of Pediatric Emergency, Department of Adult and Childhood Human PathologyUniversity Hospital of MessinaMessinaItaly
| | - Joanna Jarvis
- Birmingham Women's and Children's NHS Foundation TrustBirminghamUK
| | - Jonathan Williams
- Oxford Regional Genetics Laboratory, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Morag E. Shanks
- Oxford Regional Genetics Laboratory, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Penny Clouston
- Oxford Regional Genetics Laboratory, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Julia Rankin
- Department of Clinical GeneticsRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Lubov Blumkin
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Movement Disorders Service, Pediatric Neurology UnitEdith Wolfson Medical CenterHolonIsrael
| | - Tally Lerman‐Sagie
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Magen Center for Rare Diseases‐Metabolic, NeurogeneticWolfson Medical CenterHolonIsrael
| | - Penina Ponger
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Movement Disorders Unit, Department of NeurologyTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Salmo Raskin
- Genetika Centro de Aconselhamento e LaboratórioCuritibaBrazil
| | - Katariina Granath
- Research Unit of Clinical MedicineMedical Research Center, Oulu University Hospital and University of OuluOuluFinland
| | - Johanna Uusimaa
- Research Unit of Clinical MedicineMedical Research Center, Oulu University Hospital and University of OuluOuluFinland
| | - Hector Conti
- All Wales Medical Genomics ServiceWrexham Maelor HospitalWrexhamUK
| | - Emma McCann
- Liverpool Women's Hospital Foundation TrustLiverpoolUK
| | - Shelagh Joss
- West of Scotland Centre for Genomic MedicineQueen Elizabeth University HospitalGlasgowUK
| | - Alexander J.M. Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of BiologyMedicine and Health, University of ManchesterManchesterUK
- Manchester Centre for Genomic MedicineUniversity of Manchester, St. Mary's Hospital, Manchester Academic Health Science CentreManchesterUK
| | - Kay Metcalfe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of BiologyMedicine and Health, University of ManchesterManchesterUK
- Manchester Centre for Genomic MedicineUniversity of Manchester, St. Mary's Hospital, Manchester Academic Health Science CentreManchesterUK
| | - Helen Kingston
- Manchester Centre for Genomic MedicineUniversity of Manchester, St. Mary's Hospital, Manchester Academic Health Science CentreManchesterUK
| | - Marta Bertoli
- Northern Genetics ServiceInternational Centre for LifeNewcastle upon TyneUK
| | - Rachel Kneen
- Department of NeurologyAlder Hey Children's NHS Foundation TrustLiverpoolUK
| | - Sally Ann Lynch
- Department of Clinical GeneticsChildren's Health Ireland (CHI) at CrumlinDublinIreland
| | | | | | - Wendy D. Jones
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for Children, Great Ormond Street NHS Foundation TrustLondonUK
| | | | - Esther B.E. Becker
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Andrea H. Németh
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| |
Collapse
|
89
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|
90
|
Frank D, Bergamasco M, Mlodzianoski MJ, Kueh A, Tsui E, Hall C, Kastrappis G, Voss AK, McLean C, Faux M, Rogers KL, Tran B, Vincan E, Komander D, Dewson G, Tran H. Trabid patient mutations impede the axonal trafficking of adenomatous polyposis coli to disrupt neurite growth. eLife 2023; 12:RP90796. [PMID: 38099646 PMCID: PMC10723793 DOI: 10.7554/elife.90796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.
Collapse
Affiliation(s)
- Daniel Frank
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Maria Bergamasco
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Michael J Mlodzianoski
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew Kueh
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Melbourne Advanced Genome Editing Centre, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Ellen Tsui
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Histology Facility, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Cathrine Hall
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Georgios Kastrappis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anne Kathrin Voss
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Maree Faux
- Neuro-Oncology Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Kelly L Rogers
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bang Tran
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- The Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David Komander
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Grant Dewson
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hoanh Tran
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
91
|
Botos L, Szatmári E, Nagy GR. Prenatal and postnatal genetic testing toward personalized care: The non-invasive perinatal testing. Mol Cell Probes 2023; 72:101942. [PMID: 37951513 DOI: 10.1016/j.mcp.2023.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This article investigates how non-invasive prenatal testing and the incorporation of genomic sequencing into newborn screening postnatally are transforming perinatal care. They improve the accuracy of prenatal and neonatal screening, allowing for early interventions and personalized therapies. Non-invasive prenatal testing before birth and saliva-sample-based newborn genomic sequencing after birth can be collectively referred to as non-invasive perinatal testing. Non-invasive prenatal testing is particularly useful for aneuploidy, whereas performance markers worsen as DNA abnormalities shrink in size. Screening for clinically actionable diseases in childhood would be crucial to personalized medical therapy, as the postnatal period remains appropriate for screening for the great majority of monogenic disorders. While genomic data can help diagnose uncommon diseases, challenges like ethics and equity necessitate joint approaches for appropriate integration in this revolutionary journey toward personalized care.
Collapse
Affiliation(s)
- Lilla Botos
- Department of Obstetrics and Gynecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Erzsébet Szatmári
- Department of Obstetrics and Gynecology, Baross Street Division, Semmelweis University, Budapest, Hungary
| | - Gyula Richárd Nagy
- Department of Obstetrics and Gynecology, Baross Street Division, Semmelweis University, Budapest, Hungary; Intelligenetic Healthcare Services Ltd., Budapest, Hungary.
| |
Collapse
|
92
|
Rong M, Benke T, Zulfiqar Ali Q, Aledo-Serrano Á, Bayat A, Rossi A, Devinsky O, Qaiser F, Ali AS, Fasano A, Bassett AS, Andrade DM. Adult Phenotype of SYNGAP1-DEE. Neurol Genet 2023; 9:e200105. [PMID: 38045990 PMCID: PMC10692795 DOI: 10.1212/nxg.0000000000200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives SYNGAP1 variants are associated with rare developmental and epileptic encephalopathies (DEEs). Although SYNGAP1-related childhood phenotypes are well characterized, the adult phenotype remains ill-defined. We sought to investigate phenotypes and outcomes in adults with SYNGAP1 variants and epilepsy. Methods Patients 18 years or older with DEE carrying likely pathogenic and pathogenic (LP/P) SYNGAP1 variants were recruited through physicians' practices and patient organization groups. We used standardized questionnaires to evaluate current seizures, medication use, sleep, gastrointestinal symptoms, pain response, gait, social communication disorder and adaptive skills of patients. We also assessed caregiver burden. Results Fourteen unrelated adult patients (median: 21 years, range: 18-65 years) with SYNGAP1-DEE were identified, 11 with novel and 3 with known LP/P SYNGAP1 de novo variants. One patient with a partial exon 3 deletion had greater daily living skills and social skills than others with single-nucleotide variants. Ten of 14 (71%) patients had drug-resistant seizures, treated with a median of 2 antiseizure medications. All patients (100%) had abnormal pain processing. Sleep disturbances, social communication disorders, and aggressive/self-injurious behaviors were each reported in 86% of patients. Only half of adults could walk with minimal or no assistance. Toileting was normal in 29%, and 71% had constipation. No adult patients could read or understand verbal material at a sixth-grade level or higher. Aggressive/self-injurious behaviors were leading cause of caregiver burden. The oldest patient was aged 65 years; although nonambulant, she had walked independently when younger. Discussion Seventy-one percent of patients with SYNGAP1-DEEs continue to have seizures when adults. Nonseizure comorbidities, especially aggression and self-injurious behaviors, are major management challenges in adults with SYNGAP1-DEE. Only 50% of adults can ambulate with minimal or no assistance. Almost all adult patients depend on caregivers for many activities of daily living. Prompt diagnostic genetic testing of adults with DEE can inform clinical care and guide outcomes of precision therapies.
Collapse
Affiliation(s)
- Marlene Rong
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Tim Benke
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Quratulain Zulfiqar Ali
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Ángel Aledo-Serrano
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Allan Bayat
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Alessandra Rossi
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Orrin Devinsky
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Farah Qaiser
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Anum S Ali
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Anne S Bassett
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| | - Danielle M Andrade
- From the Institute of Medical Science (M.R.), University of Toronto; Adult Genetic Epilepsy (AGE) Program (M.R., Q.Z.A., F.Q., A.S.A., D.M.A.), Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Ontario, Canada; Department of Pediatrics, Neurology, Pharmacology and Otolaryngology (T.B.), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora; Epilepsy and Neurogenetics Program (A.A.-S.), Neurology Department, Ruber Internacional Hospital, and Initiative for Neuroscience (INCE) Foundation, Madrid, Spain; Department of Drug Design and Pharmacology (A. Bayat), University of Copenhagen; Department for Genetics and Personalized Medicine (A. Bayat), Danish Epilepsy Centre, Dianalund; Institute for Regional Health Services (A. Bayat), University of Southern Denmark, Odense; Department of Epilepsy Genetics and Personalized Medicine (A.R.), Danish Epilepsy Centre, Dianalund, Denmark; Pediatric Clinic (A.R.), IRCCS San Matteo Hospital Foundation, University of Pavia, Italy; NYU Langone Epilepsy Center (O.D.), NY; Edmond J. Safra Program in Parkinson's Disease (A.F.), Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital; Division of Neurology (A.F.), University of Toronto; Krembil Brain Institute (A.F.); Clinical Genetics Research Program (A.S.B.), Centre for Addiction and Mental Health; The Dalglish Family 22q Clinic (A.S.B.), Toronto General Hospital, University Health Network; Department of Psychiatry (A.S.B.), University of Toronto; Toronto Congenital Cardiac Centre for Adults (A.S.B.), Division of Cardiology, Department of Medicine, and Department of Psychiatry, University Health Network; Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute (A.S.B.); Division of Neurology (D.M.A.), Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
93
|
Stefaniak U, Malak R, Kaczmarek A, Samborski W, Mojs E. DDX3X Syndrome Behavioral Manifestations with Particular Emphasis on Psycho-Pathological Symptoms-A Review. Biomedicines 2023; 11:3046. [PMID: 38002045 PMCID: PMC10669308 DOI: 10.3390/biomedicines11113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Identification of typical behavioral manifestations in patients with DEAD-Box Helicase 3 X-linked gene (DDX3X) variants plays a crucial role in accurately diagnosing and managing the syndrome. The objective of this paper was to carry out a review of medical and public databases and assess the behavioral features of the DDX3X syndrome (DDX3X), with a particular focus on psycho-pathological symptoms. (2) Methods: An extensive computerized search was conducted in various databases, including PubMed, Medline Complete, Science Direct, Scopus, and Web of Science. Specific keywords and Medical Subject Headings were used to ensure the inclusion of relevant studies. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied to assess the methodological quality of the manuscripts. (3) Results: Only nine papers out of the 272 assessed met the inclusion criteria. These articles revealed various psycho-pathological manifestations in patients with the DDX3X syndrome. Intellectual disability (ID) or developmental disability (DD), speech delay, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), generalized anxiety disorder (GAD), self-injurious behaviors (SIBs), sensory symptoms and sleep disturbance were demonstrated to be the most common psycho-pathological behavior manifestations. (4) Conclusions: Patients with the DDX3X syndrome manifest a wide spectrum of psycho-pathological symptoms. A comprehensive investigation of these symptoms in patients is essential for early diagnosis and effective therapy.
Collapse
Affiliation(s)
- Urszula Stefaniak
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, 61-545 Poznan, Poland; (R.M.); (W.S.)
| | - Ada Kaczmarek
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation and Internal Medicine, Poznan University of Medical Sciences, 61-545 Poznan, Poland; (R.M.); (W.S.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
94
|
Vanoye CG, Abramova TV, DeKeyser JM, Ghabra NF, Oudin MJ, Burge CB, Helbig I, Thompson CH, George AL. Molecular and Cellular Context Influences SCN8A Variant Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566702. [PMID: 38014225 PMCID: PMC10680676 DOI: 10.1101/2023.11.11.566702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pathogenic variants in SCN8A , which encodes the voltage-gated sodium (Na V ) channel Na V 1.6, are associated with neurodevelopmental disorders including epileptic encephalopathy. Previous approaches to determine SCN8A variant function may be confounded by the use of a neonatal-expressed alternatively spliced isoform of Na V 1.6 (Na V 1.6N), and engineered mutations to render the channel tetrodotoxin (TTX) resistant. In this study, we investigated the impact of SCN8A alternative splicing on variant function by comparing the functional attributes of 15 variants expressed in two developmentally regulated splice isoforms (Na V 1.6N, Na V 1.6A). We employed automated patch clamp recording to enhance throughput, and developed a novel neuronal cell line (ND7/LoNav) with low levels of endogenous Na V current to obviate the need for TTX-resistance mutations. Expression of Na V 1.6N or Na V 1.6A in ND7/LoNav cells generated Na V currents that differed significantly in voltage-dependence of activation and inactivation. TTX-resistant versions of both isoforms exhibited significant functional differences compared to the corresponding wild-type (WT) channels. We demonstrated that many of the 15 disease-associated variants studied exhibited isoform-dependent functional effects, and that many of the studied SCN8A variants exhibited functional properties that were not easily classified as either gain- or loss-of-function. Our work illustrates the value of considering molecular and cellular context when investigating SCN8A variants.
Collapse
|
95
|
Guo CC, Xu HE, Ma X. ARID3a from the ARID family: structure, role in autoimmune diseases and drug discovery. Acta Pharmacol Sin 2023; 44:2139-2150. [PMID: 37488425 PMCID: PMC10618457 DOI: 10.1038/s41401-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
The AT-rich interaction domain (ARID) family of DNA-binding proteins is a group of transcription factors and chromatin regulators with a highly conserved ARID domain that recognizes specific AT-rich DNA sequences. Dysfunction of ARID family members has been implicated in various human diseases including cancers and intellectual disability. Among them, ARID3a has gained increasing attention due to its potential involvement in autoimmunity. In this article we provide an overview of the ARID family, focusing on the structure and biological functions of ARID3a. It explores the role of ARID3a in autoreactive B cells and its contribution to autoimmune diseases such as systemic lupus erythematosus and primary biliary cholangitis. Furthermore, we also discuss the potential for drug discovery targeting ARID3a and present a plan for future research in this field.
Collapse
Affiliation(s)
- Cheng-Cen Guo
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Xiong Ma
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
96
|
Gombosh M, Yogev Y, Hadar N, Proskorovski-Ohayon R, Aharoni S, Gradstein L, Birk OS. De-novo "germline second hit" loss-of-heterozygosity RBP3 deletion mutation causing recessive high myopia. Clin Genet 2023; 104:571-576. [PMID: 37308324 DOI: 10.1111/cge.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
Knudson's "two hit" hypothesis, mostly associated with cancer, relates to a primary heterozygous germline mutation complemented by a somatic mutation in the second allele. When the somatic "second hit" is a deletion mutation, the heterozygosity due to the first hit is lost ("loss of heterozygosity"). As the rate of germline mutations is almost two orders of magnitude lower than that of somatic mutations, de-novo germline mutations causing autosomal recessive diseases in carriers of inherited heterozygous mutations are not common. We delineate a case of high myopia presenting at infancy with mild diminution of retinal responses. Exome sequencing identified a paternally inherited apparently homozygous missense mutation in RBP3. Chromosomal microarrays delineated a de-novo germline heterozygous deletion encompassing RBP3, verified through revision of WES data. Thus, we demonstrate an inherited RBP3 missense mutation complemented by a de-novo germline RBP3 deletion, causing loss of heterozygosity of the inherited mutation. We describe a novel RBP3 missense mutation, report the first isolated RBP3 deletion, and demonstrate infantile high myopia as an initial presentation of RBP3 disease. Notably, we highlight de-novo germline deletion mutations causing "loss of heterozygosity" of inherited heterozygous mutations, culminating in autosomal recessive diseases, and discuss the scarce literature.
Collapse
Affiliation(s)
- Maya Gombosh
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Hadar
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Regina Proskorovski-Ohayon
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Sarit Aharoni
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Ben-Gurion University, Beer-Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Genetics Institute, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
97
|
Yadav D, Patil-Takbhate B, Khandagale A, Bhawalkar J, Tripathy S, Khopkar-Kale P. Next-Generation sequencing transforming clinical practice and precision medicine. Clin Chim Acta 2023; 551:117568. [PMID: 37839516 DOI: 10.1016/j.cca.2023.117568] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the field of genomics and is rapidly transforming clinical diagnosis and precision medicine. This advanced sequencing technology enables the rapid and cost-effective analysis of large-scale genomic data, allowing comprehensive exploration of the genetic landscape of diseases. In clinical diagnosis, NGS has proven to be a powerful tool for identifying disease-causing variants, enabling accurate and early detection of genetic disorders. Additionally, NGS facilitates the identification of novel disease-associated genes and variants, aiding in the development of targeted therapies and personalized treatment strategies. NGS greatly benefits precision medicine by enhancing our understanding of disease mechanisms and enabling the identification of specific molecular markers for disease subtypes, thus enabling tailored medical interventions based on individual characteristics. Furthermore, NGS contributes to the development of non-invasive diagnostic approaches, such as liquid biopsies, which can monitor disease progression and treatment response. The potential of NGS in clinical diagnosis and precision medicine is vast, yet challenges persist in data analysis, interpretation, and protocol standardization. This review highlights NGS applications in disease diagnosis, prognosis, and personalized treatment strategies, while also addressing challenges and future prospects in fully harnessing genomic potential within clinical practice.
Collapse
Affiliation(s)
- Deepali Yadav
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India; Department of Biotechnology, Dr. D. Y. Patil Arts Science and Commerce College, Pimpri Pune 411018, India
| | - Bhagyashri Patil-Takbhate
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India
| | - Anil Khandagale
- Department of Biotechnology, Dr. D. Y. Patil Arts Science and Commerce College, Pimpri Pune 411018, India
| | - Jitendra Bhawalkar
- Department of Community Medicine, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India
| | - Srikanth Tripathy
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India.
| | - Priyanka Khopkar-Kale
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India.
| |
Collapse
|
98
|
Cao Y, Liu H, Lu SS, Jones KA, Govind AP, Jeyifous O, Simmons CQ, Tabatabaei N, Green WN, Holder JL, Tahmasebi S, George AL, Dickinson BC. RNA-based translation activators for targeted gene upregulation. Nat Commun 2023; 14:6827. [PMID: 37884512 PMCID: PMC10603104 DOI: 10.1038/s41467-023-42252-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Technologies capable of programmable translation activation offer strategies to develop therapeutics for diseases caused by insufficient gene expression. Here, we present "translation-activating RNAs" (taRNAs), a bifunctional RNA-based molecular technology that binds to a specific mRNA of interest and directly upregulates its translation. taRNAs are constructed from a variety of viral or mammalian RNA internal ribosome entry sites (IRESs) and upregulate translation for a suite of target mRNAs. We minimize the taRNA scaffold to 94 nucleotides, identify two translation initiation factor proteins responsible for taRNA activity, and validate the technology by amplifying SYNGAP1 expression, a haploinsufficiency disease target, in patient-derived cells. Finally, taRNAs are suitable for delivery as RNA molecules by lipid nanoparticles (LNPs) to cell lines, primary neurons, and mouse liver in vivo. taRNAs provide a general and compact nucleic acid-based technology to upregulate protein production from endogenous mRNAs, and may open up possibilities for therapeutic RNA research.
Collapse
Affiliation(s)
- Yang Cao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Shannon S Lu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Krysten A Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Anitha P Govind
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Okunola Jeyifous
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Christine Q Simmons
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - William N Green
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jimmy L Holder
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
99
|
Kim YM, Lim HH, Kim E, Kim G, Kim M, So H, Lee BK, Kwon Y, Min J, Lee YS. Exploring the Genetic Causes for Postnatal Growth Failure in Children Born Non-Small for Gestational Age. J Clin Med 2023; 12:6508. [PMID: 37892645 PMCID: PMC10607479 DOI: 10.3390/jcm12206508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The most common causes of short stature (SS) in children are familial short stature (FSS) and idiopathic short stature (ISS). Recently, growth plate dysfunction has been recognized as the genetic cause of FSS or ISS. The aim of this study was to investigate monogenic growth failure in patients with ISS and FSS. Targeted exome sequencing was performed in patients categorized as ISS or FSS and the subsequent response to growth hormone (GH) therapy was analyzed. We found 17 genetic causes involving 12 genes (NPR2, IHH, BBS1, COL1A1, COL2A1, TRPS1, MASP1, SPRED1, PTPTN11, ADNP, NADSYN1, and CERT1) and 2 copy number variants. A genetic cause was found in 45.5% and 35.7% of patients with FSS and ISS, respectively. The genetic yield in patients with syndromic and non-syndromic SS was 90% and 23.1%, respectively. In the 11 genetically confirmed patients, a gain in height from -2.6 to -1.3 standard deviations after 2 years of GH treatment was found. The overall diagnostic yield in this study was 41.7%. We identified several genetic causes involving paracrine signaling, the extracellular matrix, and basic intracellular processes. Identification of the causative gene may provide prognostic evidence for the use of GH therapy in non-SGA children.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han-Hyuk Lim
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eunhee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Geena Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyejin So
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Byoung Kook Lee
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoowon Kwon
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jeesu Min
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Young Seok Lee
- Department of Radiology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
100
|
Dugger SA, Dhindsa RS, Sampaio GDA, Ressler AK, Rafikian EE, Petri S, Letts VA, Teoh J, Ye J, Colombo S, Peng Y, Yang M, Boland MJ, Frankel WN, Goldstein DB. Neurodevelopmental deficits and cell-type-specific transcriptomic perturbations in a mouse model of HNRNPU haploinsufficiency. PLoS Genet 2023; 19:e1010952. [PMID: 37782669 PMCID: PMC10569524 DOI: 10.1371/journal.pgen.1010952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/12/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.
Collapse
Affiliation(s)
- Sarah A. Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, Texas, United States of America
| | - Gabriela De Almeida Sampaio
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew K. Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Elizabeth E. Rafikian
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Verity A. Letts
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mu Yang
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|