51
|
Jennings E, Elliot TAE, Thawait N, Kanabar S, Yam-Puc JC, Ono M, Toellner KM, Wraith DC, Anderson G, Bending D. Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Rep 2021; 33:108328. [PMID: 33147449 PMCID: PMC7653457 DOI: 10.1016/j.celrep.2020.108328] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Nr4a receptors are activated by T cell receptor (TCR) signaling and play key roles in T cell differentiation. Which TCR signaling pathways regulate Nr4a receptors and their sensitivities to TCR signal strength and duration remains unclear. Using Nr4a1/Nur77-GFP and Nr4a3-Timer of cell kinetics and activity (Tocky) mice, we elucidate the signaling pathways governing Nr4a receptor expression. We reveal that Nr4a1–Nr4a3 are Src family kinase dependent. Moreover, Nr4a2 and Nr4a3 are attenuated by calcineurin inhibitors and bind nuclear factor of activated T cells 1 (NFAT1), highlighting a necessary and sufficient role for NFAT1 in the control of Nr4a2 and Nr4a3, but redundancy for Nr4a1. Nr4a1-GFP is activated by tonic and cognate signals during T cell development, whereas Nr4a3-Tocky requires cognate peptide:major histocompatibility complex (MHC) interactions for expression. Compared to Nr4a3-Tocky, Nr4a1-GFP is approximately 2- to 3-fold more sensitive to TCR signaling and is detectable by shorter periods of TCR signaling. These findings suggest that TCR signal duration may be an underappreciated aspect influencing the developmental fate of T cells in vivo. Nr4a1 and Nr4a3 show differential dependency on the calcineurin/NFAT pathway Nr4a1-GFP is expressed in developing Tcon and Treg within the thymus Nr4a3-Timer expression is largely restricted to thymic and peripheral CD25+ Treg Nr4a3-Timer requires a stronger and/or longer TCR signal for its expression
Collapse
Affiliation(s)
- Emma Jennings
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Natasha Thawait
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shivani Kanabar
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
52
|
Sakai R, Ito M, Komai K, Iizuka-Koga M, Matsuo K, Nakayama T, Yoshie O, Amano K, Nishimasu H, Nureki O, Kubo M, Yoshimura A. Kidney GATA3 + regulatory T cells play roles in the convalescence stage after antibody-mediated renal injury. Cell Mol Immunol 2021; 18:1249-1261. [PMID: 32917984 PMCID: PMC8093306 DOI: 10.1038/s41423-020-00547-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
FoxP3+ regulatory T cells (Tregs) play crucial roles in peripheral immune tolerance. In addition, Tregs that reside or accumulate in nonlymphoid tissues, called tissue Tregs, exhibit tissue-specific functions and contribute to the maintenance of tissue homeostasis and repair. In an experimental mouse model of crescentic glomerulonephritis induced by an anti-glomerular basement membrane antibody, Tregs started to accumulate in the kidney on day 10 of disease onset and remained at high levels (~30-35% of CD4+ T cells) during the late stage (days 21-90), which correlated with stable disease control. Treg depletion on day 21 resulted in the relapse of renal dysfunction and an increase in Th1 cells, suggesting that Tregs are essential for disease control during the convalescence stage. The Tregs that accumulated in the kidney showed tissue Treg phenotypes, including high expression of GATA3, ST2 (the IL33 receptor subunit), amphiregulin (Areg), and PPARγ. Although T-bet+ Tregs and RORγt+ Tregs were observed in the kidney, GATA3+ Tregs were predominant during the convalescence stage, and a PPARγ agonist enhanced the accumulation of GATA3+ Tregs in the kidney. To understand the function of specific genes in kidney Tregs, we developed a novel T cell transfer system to T cell-deficient mice. This experiment demonstrates that ST2, Areg, and CCR4 in Tregs play important roles in the accumulation of GATA3+ Tregs in the kidney and in the amelioration of renal injury. Our data suggest that GATA3 is important for the recruitment of Tregs into the kidney, which is necessary for convalescence after renal tissue destruction.
Collapse
Affiliation(s)
- Ryota Sakai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, 350-8550, Japan.
| | - Minako Ito
- Medical Institute of Bioregulation Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kyoko Komai
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Matsuo
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | - Osamu Yoshie
- The Health and Kampo Institute, Sendai, Miyagi, 981-3205, Japan
| | - Koichi Amano
- Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, 350-8550, Japan
| | - Hiroshi Nishimasu
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Kubo
- Center for Animal Disease Models, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
53
|
Renoux F, Stellato M, Haftmann C, Vogetseder A, Huang R, Subramaniam A, Becker MO, Blyszczuk P, Becher B, Distler JHW, Kania G, Boyman O, Distler O. The AP1 Transcription Factor Fosl2 Promotes Systemic Autoimmunity and Inflammation by Repressing Treg Development. Cell Rep 2021; 31:107826. [PMID: 32610127 DOI: 10.1016/j.celrep.2020.107826] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory T cells (Tregs) represent a major population in the control of immune homeostasis and autoimmunity. Here we show that Fos-like 2 (Fosl2), a TCR-induced AP1 transcription factor, represses Treg development and controls autoimmunity. Mice overexpressing Fosl2 (Fosl2tg) indeed show a systemic inflammatory phenotype, with immune infiltrates in multiple organs. This phenotype is absent in Fosl2tg × Rag2-/- mice lacking T and B cells, and Fosl2 induces T cell-intrinsic reduction of Treg development that is responsible for the inflammatory phenotype. Fosl2tg T cells can transfer inflammation, which is suppressed by the co-delivery of Tregs, while Fosl2 deficiency in T cells reduces the severity of autoimmunity in the EAE model. We find that Fosl2 could affect expression of FoxP3 and other Treg development genes. Our data highlight the importance of AP1 transcription factors, in particular Fosl2, during T cell development to determine Treg differentiation and control autoimmunity.
Collapse
Affiliation(s)
- Florian Renoux
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Mara Stellato
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Riyun Huang
- Sanofi, Immunology and Inflammation Research TA, Cambridge, MA 02139, USA
| | - Arun Subramaniam
- Sanofi, Immunology and Inflammation Research TA, Cambridge, MA 02139, USA
| | - Mike O Becker
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Przemyslaw Blyszczuk
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland; Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
54
|
Hepatic stellate cells promote intrahepatic cholangiocarcinoma progression via NR4A2/osteopontin/Wnt signaling axis. Oncogene 2021; 40:2910-2922. [PMID: 33742120 DOI: 10.1038/s41388-021-01705-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly fatal malignancy characterized by a vast amount of intra-tumoral fibroblasts. These fibroblasts are potentially implicated in maintaining the high aggressiveness of ICC, whereas its pro-cancer mechanisms remain scarcely reported. Here, by establishing co-culture models of ICC cells and hepatic stellate cells (HSCs), we identified that HSCs triggered the expression of nuclear receptor family 4 subgroup A member 2 (NR4A2), a transcription factor previously reported as a molecular switch between inflammation and cancer, in ICC cells. Functionally, NR4A2 promotes tumor proliferation, metastatic potentiality and represents an independent prognostic indicator for overall survival in ICC patients. Mechanistically, NR4A2 upregulates osteopontin (OPN) expression through transcriptional activation and thereby augments the activity of Wnt/β-catenin signaling. Intriguingly, in the context of co-culture, vascular endothelial growth factor (VEGF), a previously proved NR4A2 stimulus, not only enhances NR4A2 expression, but also can be blunted by the interference of the NR4A2-OPN axis. Altogether, this study suggests the NR4A2/OPN/Wnt signaling axis to be a pivotal executor of HSC-instigated cancer-promoting roles in ICC, and the NR4A2/OPN/VEGF positive feedback loop may help to reinforce the effect.
Collapse
|
55
|
Sekiya T, Kagawa S, Masaki K, Fukunaga K, Yoshimura A, Takaki S. Regulation of peripheral Th/Treg differentiation and suppression of airway inflammation by Nr4a transcription factors. iScience 2021; 24:102166. [PMID: 33665581 PMCID: PMC7907427 DOI: 10.1016/j.isci.2021.102166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/08/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
Helper T (Th) and regulatory T (Treg) cell differentiation programs promote the eradication of pathogens, while minimizing adverse immune reactions. Here, we found that Nr4a family of nuclear receptors supports Treg cell induction and represses Th1 and Th2 cell differentiation from naive CD4+ T cells. Nr4a factors are transiently induced in CD4+ T cells immediately after antigen stimulation, thereby mediating epigenetic changes. In differentiating Treg cells, Nr4a factors mainly upregulated the early responsive genes in the Treg cell-specifying gene set, either directly or in cooperation with Ets family transcription factors. In contrast, Nr4a factors repressed AP-1 activity by interrupting a positive feedback loop for Batf factor expression, thus suppressing Th2 cell-associated genes. In an allergic airway inflammation model, Nr4a factors suppressed the pathogenesis, mediating oral tolerance. Lastly, pharmacological activation of an engineered Nr4a molecule prevented allergic airway inflammation, indicating that Nr4a factors may be novel therapeutic targets for inflammatory diseases. Among “Treg signature genes”, Nr4a factors mainly induce early responsive ones Nr4a activate target genes directly or by supporting Ets factors' function Nr4a factors repress Th2-driving positive feedback loop for Batf factor expression Pharmacological activation of Nr4a factors' activity prevented airway inflammation
Collapse
Affiliation(s)
- Takashi Sekiya
- Section of Immune Response Modification, Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan.,Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satoshi Takaki
- Department of Immune Regulation, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba 272-8516, Japan
| |
Collapse
|
56
|
Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1. Exp Mol Med 2021; 53:19-29. [PMID: 33479411 PMCID: PMC8080818 DOI: 10.1038/s12276-021-00555-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Until recently, Nurr1 (NR4A2) was known as an orphan nuclear receptor without a canonical ligand-binding domain, featuring instead a narrow and tight cavity for small molecular ligands to bind. In-depth characterization of its ligand-binding pocket revealed that it is highly dynamic, with its structural conformation changing more than twice on the microsecond-to-millisecond timescale. This observation suggests the possibility that certain ligands are able to squeeze into this narrow space, inducing a conformational change to create an accessible cavity. The cocrystallographic structure of Nurr1 bound to endogenous ligands such as prostaglandin E1/A1 and 5,6-dihydroxyindole contributed to clarifying the crucial roles of Nurr1 and opening new avenues for therapeutic interventions for neurodegenerative and/or inflammatory diseases related to Nurr1. This review introduces novel endogenous and synthetic Nurr1 agonists and discusses their potential effects in Nurr1-related diseases.
Collapse
|
57
|
YOSHIMURA A, AKI D, ITO M. SOCS, SPRED, and NR4a: Negative regulators of cytokine signaling and transcription in immune tolerance. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:277-291. [PMID: 34121041 PMCID: PMC8403526 DOI: 10.2183/pjab.97.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.
Collapse
Affiliation(s)
- Akihiko YOSHIMURA
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- Correspondence should be addressed: A. Yoshimura, Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan (e-mail: )
| | - Daisuke AKI
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako ITO
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
58
|
Munoz-Tello P, Lin H, Khan P, de Vera IMS, Kamenecka TM, Kojetin DJ. Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1. J Med Chem 2020; 63:15639-15654. [PMID: 33289551 PMCID: PMC8006468 DOI: 10.1021/acs.jmedchem.0c00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nurr1/NR4A2 is an orphan nuclear receptor transcription factor implicated as a drug target for neurological disorders including Alzheimer's and Parkinson's diseases. Previous studies identified small-molecule NR4A nuclear receptor modulators, but it remains unclear if these ligands affect transcription via direct binding to Nurr1. We assessed 12 ligands reported to affect NR4A activity for Nurr1-dependent and Nurr1-independent transcriptional effects and the ability to bind the Nurr1 ligand-binding domain (LBD). Protein NMR structural footprinting data show that amodiaquine, chloroquine, and cytosporone B bind the Nurr1 LBD; ligands that do not bind include C-DIM12, celastrol, camptothecin, IP7e, isoalantolactone, ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), and three high-throughput screening hit derivatives. Importantly, ligands that modulate Nurr1 transcription also show Nurr1-independent effects on transcription in a cell type-specific manner, indicating that care should be taken when interpreting the functional response of these ligands in transcriptional assays. These findings should help focus medicinal chemistry efforts that desire to optimize Nurr1-binding ligands.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Pasha Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ian Mitchelle S. de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
59
|
Scheer S, Runting J, Bramhall M, Russ B, Zaini A, Ellemor J, Rodrigues G, Ng J, Zaph C. The Methyltransferase DOT1L Controls Activation and Lineage Integrity in CD4 + T Cells during Infection and Inflammation. Cell Rep 2020; 33:108505. [PMID: 33326781 DOI: 10.1016/j.celrep.2020.108505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T helper (Th) cell differentiation is controlled by lineage-specific expression of transcription factors and effector proteins, as well as silencing of lineage-promiscuous genes. Lysine methyltransferases (KMTs) comprise a major class of epigenetic enzymes that are emerging as important regulators of Th cell biology. Here, we show that the KMT DOT1L regulates Th cell function and lineage integrity. DOT1L-dependent dimethylation of lysine 79 of histone H3 (H3K79me2) is associated with lineage-specific gene expression. However, DOT1L-deficient Th cells overproduce IFN-γ under lineage-specific and lineage-promiscuous conditions. Consistent with the increased IFN-γ response, mice with a T-cell-specific deletion of DOT1L are susceptible to infection with the helminth parasite Trichuris muris and are resistant to the development of allergic lung inflammation. These results identify a central role for DOT1L in Th2 cell lineage commitment and stability and suggest that inhibition of DOT1L may provide a therapeutic strategy to limit type 2 immune responses.
Collapse
Affiliation(s)
- Sebastian Scheer
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.
| | - Jessica Runting
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Michael Bramhall
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Brendan Russ
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Microbiology, Monash University, Clayton VIC 3800, Australia
| | - Aidil Zaini
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Jessie Ellemor
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Grace Rodrigues
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Judy Ng
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia
| | - Colby Zaph
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
60
|
Jennings E, Elliot TAE, Thawait N, Kanabar S, Yam-Puc JC, Ono M, Toellner KM, Wraith DC, Anderson G, Bending D. Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Rep 2020. [PMID: 33147449 DOI: 10.1016/j.celrep.2020.108328.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nr4a receptors are activated by T cell receptor (TCR) signaling and play key roles in T cell differentiation. Which TCR signaling pathways regulate Nr4a receptors and their sensitivities to TCR signal strength and duration remains unclear. Using Nr4a1/Nur77-GFP and Nr4a3-Timer of cell kinetics and activity (Tocky) mice, we elucidate the signaling pathways governing Nr4a receptor expression. We reveal that Nr4a1-Nr4a3 are Src family kinase dependent. Moreover, Nr4a2 and Nr4a3 are attenuated by calcineurin inhibitors and bind nuclear factor of activated T cells 1 (NFAT1), highlighting a necessary and sufficient role for NFAT1 in the control of Nr4a2 and Nr4a3, but redundancy for Nr4a1. Nr4a1-GFP is activated by tonic and cognate signals during T cell development, whereas Nr4a3-Tocky requires cognate peptide:major histocompatibility complex (MHC) interactions for expression. Compared to Nr4a3-Tocky, Nr4a1-GFP is approximately 2- to 3-fold more sensitive to TCR signaling and is detectable by shorter periods of TCR signaling. These findings suggest that TCR signal duration may be an underappreciated aspect influencing the developmental fate of T cells in vivo.
Collapse
Affiliation(s)
- Emma Jennings
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Natasha Thawait
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shivani Kanabar
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
61
|
Stéphan P, Lautraite R, Voisin A, Grinberg-Bleyer Y. Transcriptional Control of Regulatory T Cells in Cancer: Toward Therapeutic Targeting? Cancers (Basel) 2020; 12:E3194. [PMID: 33143070 PMCID: PMC7693300 DOI: 10.3390/cancers12113194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive research in the past decades has highlighted the tight link between immunity and cancer, leading to the development of immunotherapies that have revolutionized cancer care. However, only a fraction of patients display durable responses to these treatments, and a deeper understanding of the cellular and mechanisms orchestrating immune responses to tumors is mandatory for the discovery of novel therapeutic targets. Among the most scrutinized immune cells, Forkhead Box Protein P3 (Foxp3)+ Regulatory T cells (Treg cells) are central inhibitors of protective anti-tumor immunity. These tumor-promoting functions render Treg cells attractive immunotherapy targets, and multiple strategies are being developed to inhibit their recruitment, survival, and function in the tumor microenvironment. In this context, it is critical to decipher the complex and multi-layered molecular mechanisms that shape and stabilize the Treg cell transcriptome. Here, we provide a global view of the transcription factors, and their upstream signaling pathways, involved in the programming of Treg cell homeostasis and functions in cancer. We also evaluate the feasibility and safety of novel therapeutic approaches aiming at targeting specific transcriptional regulators.
Collapse
Affiliation(s)
| | | | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (R.L.); (A.V.)
| |
Collapse
|
62
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
63
|
Safe S, Karki K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol Cancer Res 2020; 19:180-191. [PMID: 33106376 DOI: 10.1158/1541-7786.mcr-20-0707] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The three-orphan nuclear receptor 4A genes are induced by diverse stressors and stimuli, and there is increasing evidence that NR4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (Nor1) play an important role in maintaining cellular homeostasis and in pathophysiology. In blood-derived tumors (leukemias and lymphomas), NR4A expression is low and NR4A1-/-/NR4A3-/- double knockout mice rapidly develop acute myelocytic leukemia, suggesting that these receptors exhibit tumor suppressor activity. Treatment of leukemia and most lymphoma cells with drugs that induce expression of NR4A1and NR4A3 enhances apoptosis, and this represents a potential clinical application for treating this disease. In contrast, most solid tumor-derived cell lines express high levels of NR4A1 and NR4A2, and both receptors exhibit pro-oncogenic activities in solid tumors, whereas NR4A3 exhibits tumor-specific activities. Initial studies with retinoids and apoptosis-inducing agents demonstrated that their cytotoxic activity is NR4A1 dependent and involved drug-induced nuclear export of NR4A1 and formation of a mitochondrial proapoptotic NR4A1-bcl-2 complex. Drug-induced nuclear export of NR4A1 has been reported for many agents/biologics and involves interactions with multiple mitochondrial and extramitochondrial factors to induce apoptosis. Synthetic ligands for NR4A1, NR4A2, and NR4A3 have been identified, and among these compounds, bis-indole derived (CDIM) NR4A1 ligands primarily act on nuclear NR4A1 to inhibit NR4A1-regulated pro-oncogenic pathways/genes and similar results have been observed for CDIMs that bind NR4A2. Based on results of laboratory animal studies development of NR4A inducers (blood-derived cancers) and NR4A1/NR4A2 antagonists (solid tumors) may be promising for cancer therapy and also for enhancing immune surveillance.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
64
|
Role of Nurr1 in Carcinogenesis and Tumor Immunology: A State of the Art Review. Cancers (Basel) 2020; 12:cancers12103044. [PMID: 33086676 PMCID: PMC7590204 DOI: 10.3390/cancers12103044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Nuclear receptor related-1 protein (Nurr1) emerges as a therapeutic target in multiple malignancies and immunotherapies. Previous studies have highlighted its association with clinicopathological parameters, tumorigenesis and therapeutic resistance in cancers. In addition, recent studies unraveled its contribution to the suppression of antitumor immunity, suggesting that inhibition of Nurr1 is a potential method to repress cancer aggressiveness and disrupt tumor immune tolerance. In line with this evidence, the present review provides the roles of Nurr1 in tumor progression and the associated underlying molecular mechanisms. Moreover, the significance of Nurr1 in promoting immune tolerance and potential strategies for Nurr1 inhibition are highlighted. Abstract Nuclear receptor related-1 protein (Nurr1), coded by an early response gene, is involved in multiple cellular and physiological functions, including proliferation, survival, and self-renewal. Dysregulation of Nurr1 has been frequently observed in many cancers and is attributed to multiple transcriptional and post-transcriptional mechanisms. Besides, Nurr1 exhibits extensive crosstalk with many oncogenic and tumor suppressor molecules, which contribute to its potential pro-malignant behaviors. Furthermore, Nurr1 is a key player in attenuating antitumor immune responses. It not only potentiates immunosuppressive functions of regulatory T cells but also dampens the activity of cytotoxic T cells. The selective accessibility of chromatin by Nurr1 in T cells is closely associated with cell exhaustion and poor efficacy of cancer immunotherapy. In this review, we summarize the reported findings of Nurr1 in different malignancies, the mechanisms that regulate Nurr1 expression, and the downstream signaling pathways that Nurr1 employs to promote a wide range of malignant phenotypes. We also give an overview of the association between Nurr1 and antitumor immunity and discuss the inhibition of Nurr1 as a potential immunotherapeutic strategy.
Collapse
|
65
|
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: its genetic anomalies or variations in autoimmune diseases. Cell Res 2020; 30:465-474. [PMID: 32367041 PMCID: PMC7264322 DOI: 10.1038/s41422-020-0324-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Naturally arising regulatory CD4+ T (Treg) cells, which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a T-cell subpopulation specialized for immune suppression, playing a key role in maintaining immunological self-tolerance and homeostasis. FoxP3 is required for Treg function, especially for its suppressive activity. However, FoxP3 expression per se is not necessary for Treg cell lineage commitment in the thymus and insufficient for full Treg-type gene expression in mature Treg cells. It is Treg-specific epigenetic changes such as CpG demethylation and histone modification that can confer a stable and heritable pattern of Treg type gene expression on developing Treg cells in a FoxP3-independent manner. Anomalies in the formation of Treg-specific epigenome, in particular, Treg-specific super-enhancers, which largely include Treg-specific DNA demethylated regions, are indeed able to cause autoimmune diseases in rodents. Furthermore, in humans, single nucleotide polymorphisms in Treg-specific DNA demethylated regions associated with Treg signature genes, such as IL2RA (CD25) and CTLA4, can affect the development and function of naïve Treg cells rather than effector T cells. Such genetic variations are therefore causative of polygenic common autoimmune diseases including type 1 diabetes and rheumatoid arthritis via affecting endogenous natural Treg cells. These findings on the transcription factor network with FoxP3 at a key position as well as Treg-specific epigenetic landscape facilitate our understanding of Treg cell development and function, and can be exploited to prepare functionally stable FoxP3-expressing Treg cells from antigen-specific conventional T cells to treat autoimmune diseases.
Collapse
Affiliation(s)
- Naganari Ohkura
- Experimental immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shimon Sakaguchi
- Experimental immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
66
|
Valsecchi V, Boido M, Montarolo F, Guglielmotto M, Perga S, Martire S, Cutrupi S, Iannello A, Gionchiglia N, Signorino E, Calvo A, Fuda G, Chiò A, Bertolotto A, Vercelli A. The transcription factor Nurr1 is upregulated in amyotrophic lateral sclerosis patients and SOD1-G93A mice. Dis Model Mech 2020; 13:dmm043513. [PMID: 32188741 PMCID: PMC7240304 DOI: 10.1242/dmm.043513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons (MNs) in the central nervous system. ALS etiology is highly multifactorial and multifarious, and an effective treatment is still lacking. Neuroinflammation is a hallmark of ALS and could be targeted to develop new therapeutic approaches. Interestingly, the transcription factor Nurr1 has been demonstrated to have an important role in the inflammatory process in several neurological disorders, such as Parkinson's disease and multiple sclerosis. In the present paper, we demonstrate for the first time that Nurr1 expression levels are upregulated in the peripheral blood of ALS patients. Moreover, we investigated Nurr1 function in the SOD1-G93A mouse model of ALS. Nurr1 was strongly upregulated in the spinal cord during the asymptomatic and early symptomatic phases of the disease, where it promoted the expression of brain-derived neurotrophic factor mRNA and the repression of NFκB pro-inflammatory targets, such as inducible nitric oxide synthase. Therefore, we hypothesize that Nurr1 is activated in an early phase of the disease as a protective endogenous anti-inflammatory mechanism, although not sufficient to reverse disease progression. On the basis of these observations, Nurr1 could represent a potential biomarker for ALS and a promising target for future therapies.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/blood
- Amyotrophic Lateral Sclerosis/genetics
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain-Derived Neurotrophic Factor/metabolism
- Female
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Motor Neurons/metabolism
- Motor Neurons/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/blood
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Superoxide Dismutase-1/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Valeria Valsecchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples "Federico II", via S. Pansini 5, 80131, Naples, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Michela Guglielmotto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Simona Perga
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Andrea Iannello
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Nadia Gionchiglia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Elena Signorino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Andrea Calvo
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Giuseppe Fuda
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Adriano Chiò
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
67
|
Kurd NS, He Z, Louis TL, Milner JJ, Omilusik KD, Jin W, Tsai MS, Widjaja CE, Kanbar JN, Olvera JG, Tysl T, Quezada LK, Boland BS, Huang WJ, Murre C, Goldrath AW, Yeo GW, Chang JT. Early precursors and molecular determinants of tissue-resident memory CD8 + T lymphocytes revealed by single-cell RNA sequencing. Sci Immunol 2020; 5:eaaz6894. [PMID: 32414833 PMCID: PMC7341730 DOI: 10.1126/sciimmunol.aaz6894] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023]
Abstract
During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.
Collapse
Affiliation(s)
- Nadia S Kurd
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Zhaoren He
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tiani L Louis
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Justin Milner
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyla D Omilusik
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Matthew S Tsai
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Jad N Kanbar
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jocelyn G Olvera
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tiffani Tysl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren K Quezada
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wendy J Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cornelis Murre
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ananda W Goldrath
- Division of Biologic Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Gastroenterology, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
68
|
Delacher M, Barra MM, Herzig Y, Eichelbaum K, Rafiee MR, Richards DM, Träger U, Hofer AC, Kazakov A, Braband KL, Gonzalez M, Wöhrl L, Schambeck K, Imbusch CD, Abramson J, Krijgsveld J, Feuerer M. Quantitative Proteomics Identifies TCF1 as a Negative Regulator of Foxp3 Expression in Conventional T Cells. iScience 2020; 23:101127. [PMID: 32422593 PMCID: PMC7229326 DOI: 10.1016/j.isci.2020.101127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells are important regulators of the immune system and have versatile functions for the homeostasis and repair of tissues. They express the forkhead box transcription factor Foxp3 as a lineage-defining protein. Negative regulators of Foxp3 expression are not well understood. Here, we generated double-stranded DNA probes complementary to the Foxp3 promoter sequence and performed a pull-down with nuclear protein in vitro, followed by elution of bound proteins and quantitative mass spectrometry. Of the Foxp3-promoter-binding transcription factors identified with this approach, one was T cell factor 1 (TCF1). Using viral over-expression, we identified TCF1 as a repressor of Foxp3 expression. In TCF1-deficient animals, increased levels of Foxp3intermediateCD25negative T cells were identified. CRISPR-Cas9 knockout studies in primary human and mouse conventional CD4 T (Tconv) cells revealed that TCF1 protects Tconv cells from inadvertent Foxp3 expression. Our data implicate a role of TCF1 in suppressing Foxp3 expression in activated T cells.
Collapse
Affiliation(s)
- Michael Delacher
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Melanie M Barra
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Katrin Eichelbaum
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Mahmoud-Reza Rafiee
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David M Richards
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Träger
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alexander Kazakov
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kathrin L Braband
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marina Gonzalez
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lukas Wöhrl
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Kathrin Schambeck
- Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Charles D Imbusch
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100 Rehovot, Israel
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Markus Feuerer
- Chair for Immunology, Regensburg University, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Regensburg Center for Interventional Immunology (RCI), Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
69
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
70
|
Lu DR, Wu H, Driver I, Ingersoll S, Sohn S, Wang S, Li CM, Phee H. Dynamic changes in the regulatory T-cell heterogeneity and function by murine IL-2 mutein. Life Sci Alliance 2020; 3:3/5/e201900520. [PMID: 32269069 PMCID: PMC7156283 DOI: 10.26508/lsa.201900520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA-seq analysis reveals that IL-2 mutein treatment expands multiple sub-states of regulatory T cells with superior suppressive function in mice. The therapeutic expansion of Foxp3+ regulatory T cells (Tregs) shows promise for treating autoimmune and inflammatory disorders. Yet, how this treatment affects the heterogeneity and function of Tregs is not clear. Using single-cell RNA-seq analysis, we characterized 31,908 Tregs from the mice treated with a half-life extended mutant form of murine IL-2 (IL-2 mutein, IL-2M) that preferentially expanded Tregs, or mouse IgG Fc as a control. Cell clustering analysis revealed that IL-2M specifically expands multiple sub-states of Tregs with distinct expression profiles. TCR profiling with single-cell analysis uncovered Treg migration across tissues and transcriptional changes between clonally related Tregs after IL-2M treatment. Finally, we identified IL-2M–expanded Tnfrsf9+Il1rl1+ Tregs with superior suppressive function, highlighting the potential of IL-2M to expand highly suppressive Foxp3+ Tregs.
Collapse
Affiliation(s)
- Daniel R Lu
- Genome Analysis Unit, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Hao Wu
- Department of Oncology and Inflammation, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Ian Driver
- Genome Analysis Unit, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Sarah Ingersoll
- Department of Oncology and Inflammation, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Sue Sohn
- Department of Oncology and Inflammation, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Chi-Ming Li
- Genome Analysis Unit, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| | - Hyewon Phee
- Department of Oncology and Inflammation, Amgen Research, Amgen Inc, South San Francisco, CA, USA
| |
Collapse
|
71
|
Lv Q, Yang A, Shi W, Chen F, Liu Y, Liu Y, Wang D. Calcipotriol and iBRD9 reduce obesity in Nur77 knockout mice by regulating the gut microbiota, improving intestinal mucosal barrier function. Int J Obes (Lond) 2020; 44:1052-1061. [PMID: 32203112 PMCID: PMC7188666 DOI: 10.1038/s41366-020-0564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
Objective The orphan nuclear receptor Nur77 is an important factor regulating metabolism. Nur77 knockout mice become obese with age, but the cause of obesity in these mice has not been fully ascertained. We attempted to explain the cause of obesity in Nur77 knockout mice from the perspective of the gut microbiota and to investigate the inhibitory effect of calcipotriol combined with BRD9 inhibitor (iBRD9) on obesity. Methods Eight-week-old wild-type mice and Nur77 knockout C57BL/6J mice were treated with calcipotriol combined with iBRD9 for 12 weeks. Mouse feces were collected and the gut microbiota was assessed by analyzing 16S rRNA gene sequences. The bacterial abundance difference was analyzed, and the intestinal mucosal tight junction protein, antimicrobial peptide, and inflammatory cytokine mRNA levels of the colon and serum LPS and inflammatory cytokine levels were measured. Results Calcipotriol combined with iBRD9 treatment reduced the body weight and body fat percentage in Nur77 knockout mice. In the gut microbiota of Nur77 knockout mice, the relative abundances of Lachnospiraceae and Prevotellaceae decreased, and Rikenellaceae increased; while Rikenellaceae decreased after treatment (p < 0.05). Correspondingly, the mRNA levels of intestinal mucosal tight junction proteins (occludin (Ocln), claudin3 (Cldn3)) in the colons of Nur77 knockout mice were significantly decreased, and they increased significantly after treatment (p < 0.001). The mRNA levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)) were significantly increased in Nur77 knockout mice, and TNF-α and IL-6 levels were significantly decreased after treatment (p < 0.05, <0.01, or <0.001). The levels of serum LPS, TNF-α, and IL-1β in Nur77 knockout mice were significantly increased (p < 0.05). Serum LPS, TNF-α, and IL-6 levels were significantly decreased after treatment (p < 0.05 or <0.01). Conclusions Calcipotriol combined with iBRD9 can regulate the gut microbiota, improve intestinal mucosal barrier function, reduce LPS absorption into the blood, and alleviate obesity in Nur77 knockout mice.
Collapse
Affiliation(s)
- Qingqing Lv
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aolin Yang
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanying Shi
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Chen
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yixuan Liu
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China
| | - Difei Wang
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
72
|
Chen M, Li Q, Cao N, Deng Y, Li L, Zhao Q, Wu M, Ye M. Profiling of histone 3 lysine 27 acetylation reveals its role in a chronic DSS-induced colitis mouse model. Mol Omics 2020; 15:296-307. [PMID: 31147658 DOI: 10.1039/c9mo00070d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract. In current dogma, pathogenesis of IBD is attributed to the dysregulated mucosal immune response to gut flora in genetically susceptible individuals, but the genetics evidence from GWAS studies so far is insufficient to explain the observed heritability in IBD. For this discordance, epigenetics has emerged to be one of the important causes. Recent studies have reported that histone acetylation is correlated with the development of IBD, whereas its role and underlying molecular mechanism in the disease still remain elusive. Here, we established a dextran sulfate sodium (DSS)-induced chronic colitis model and performed RNA-sequencing (RNA-seq) and Chromatin Immunoprecipitation followed by NGS sequencing (ChIP-seq) for H3K27ac in the mice colon tissues to investigate whether H3K27ac is involved in the development of intestinal inflammation. We found that the global H3K27ac level and distribution in colon tissue had no significant difference after DSS treatment, while H3K27ac signals were significantly enriched in the typical-enhancers of the DSS group compared with the control. By combining with RNA-seq data (fold change >2), we identified 56 candidate genes as potential target genes for H3K27ac change upon DSS treatment. We further predicted transcription factors (TFs) involved in DSS-induced colitis according to the enhancers with increased H3K27ac. H3K27ac increase in special typical-enhancers in the DSS group is possibly related to the development of intestinal inflammation by up-regulating adjacent gene expression and shifting TF networks, which will provide new insight into the pathogenesis and therapy of IBD.
Collapse
Affiliation(s)
- Meng Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Zhao L, Gimple RC, Yang Z, Wei Y, Gustafsson JÅ, Zhou S. Immunoregulatory Functions of Nuclear Receptors: Mechanisms and Therapeutic Implications. Trends Endocrinol Metab 2020; 31:93-106. [PMID: 31706690 DOI: 10.1016/j.tem.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Members of the nuclear receptor superfamily serve as master regulators in signaling by either positively or negatively regulating gene expression. Accumulating evidence has suggested that nuclear receptors are actively involved in immune responses, with specific roles in different immune cell compartments that contribute to both normal function and to disease development. The druggable properties of nuclear receptors have made them ideal modulatory therapeutic targets. Here, we revisit nuclear receptor biology, summarize recent advances in our understanding of the immunological functions of nuclear receptors, describe cell-type-specific roles and specific nuclear receptors in disease pathogenesis, and explore their potential as novel therapeutic targets. These nuclear receptor-dependent alterations in the immune system are amenable to pharmacological manipulation and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
74
|
Zhao L, Hu H, Gustafsson JÅ, Zhou S. Nuclear Receptors in Cancer Inflammation and Immunity. Trends Immunol 2020; 41:172-185. [PMID: 31982345 DOI: 10.1016/j.it.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Members of the nuclear receptor (NR) superfamily orchestrate cellular processes that can impact on numerous cancer hallmarks. NR activity plays important roles in the tumor microenvironment by controlling inflammation and immune responses. We summarize recent insights into the diverse mechanisms by which NR activity can control tumor inflammation, the roles of different NRs in modulating tumor immunity, and the biological features of immune cells that express specific NRs in the context of cancer. NR-dependent alterations in tumor inflammation and immunity may be amenable to pharmacological manipulation and offer new clues regarding the development of novel cancer therapeutic regimens.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education (MOE), and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, PR China
| | - Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education (MOE), and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
75
|
Odagiu L, May J, Boulet S, Baldwin TA, Labrecque N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Front Endocrinol (Lausanne) 2020; 11:624122. [PMID: 33597928 PMCID: PMC7883379 DOI: 10.3389/fendo.2020.624122] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear orphan receptors NR4A1, NR4A2, and NR4A3 are immediate early genes that are induced by various signals. They act as transcription factors and their activity is not regulated by ligand binding and are thus regulated via their expression levels. Their expression is transiently induced in T cells by triggering of the T cell receptor following antigen recognition during both thymic differentiation and peripheral T cell responses. In this review, we will discuss how NR4A family members impact different aspects of the life of a T cell from thymic differentiation to peripheral response against infections and cancer.
Collapse
Affiliation(s)
- Livia Odagiu
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Julia May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Salix Boulet
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
| | - Troy A. Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| | - Nathalie Labrecque
- Laboratory of Immunology, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
- Département de Médecine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Troy A. Baldwin, ; Nathalie Labrecque,
| |
Collapse
|
76
|
Systems Vaccinology for a Live Attenuated Tularemia Vaccine Reveals Unique Transcriptional Signatures That Predict Humoral and Cellular Immune Responses. Vaccines (Basel) 2019; 8:vaccines8010004. [PMID: 31878161 PMCID: PMC7158697 DOI: 10.3390/vaccines8010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses.
Collapse
|
77
|
Abstract
CD8+T cells are important in protective immunity against intracellular pathogens and tumors. In chronic infections or cancer, CD8+T cells are constantly exposed to antigens and inflammatory signals. Such excessive and constitutive signals lead to the deterioration of T cell function, called 'exhaustion'. Exhausted T cells are characterized by low proliferation in response to antigen stimulation, progressive loss of effector function (cytokine production and killing function), expression of multiple inhibitory receptors such as PD-1, Tim3, and LAG3, and metabolic alterations from oxidative phosphorylation to glycolysis. These dysfunctions are associated with altered transcriptional programs and epigenetic regulations and recent studies suggested that NR4a and TOX transcription factors are deeply involved in exhaustion phenotypes. However, an increase the early memory T cells including stem cell memory T (TSCM) cells is critical for T cell persistence and efficient tumor killing especially for adoptive cancer immunotherapy such as CAR-T cell therapy. An increasing amount of evidence supports the therapeutic potential of targeting exhausted T cells and TSCM cells. We have begun to understand the molecular mechanisms of T cell exhaustion and early memory formation, and the clinical application of converting exhausted T cells to rejuvenated early memory T cells is the goal of our study.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tanakorn Srirat
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
78
|
Plotnikova MA, Klotchenko SA, Kiselev AA, Gorshkov AN, Shurygina APS, Vasilyev KA, Uciechowska-Kaczmarzyk U, Samsonov SA, Kovalenko AL, Vasin AV. Meglumine acridone acetate, the ionic salt of CMA and N-methylglucamine, induces apoptosis in human PBMCs via the mitochondrial pathway. Sci Rep 2019; 9:18240. [PMID: 31796757 PMCID: PMC6890692 DOI: 10.1038/s41598-019-54208-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
Meglumine acridone acetate (MA) is used in Russia for the treatment of influenza and other acute respiratory viral infections. It was assumed, until recently, that its antiviral effect was associated with its potential ability to induce type I interferon. Advanced studies, however, have shown the failure of 10-carboxymethyl-9-acridanone (CMA) to activate human STING. As such, MA's antiviral properties are still undergoing clarification. To gain insight into MA's mechanisms of action, we carried out RNA-sequencing analysis of global transcriptomes in MA-treated (MA+) human peripheral blood mononuclear cells (PBMCs). In response to treatment, approximately 1,223 genes were found to be differentially expressed, among which 464 and 759 were identified as either up- or down-regulated, respectively. To clarify the cellular and molecular processes taking place in MA+ cells, we performed a functional analysis of those genes. We have shown that evident MA subcellular localizations are: at the nuclear envelope; inside the nucleus; and diffusely in perinuclear cytoplasm. Postulating that MA may be a nuclear receptor agonist, we carried out docking simulations with PPARα and RORα ligand binding domains including prediction and molecular dynamics-based analysis of potential MA binding poses. Finally, we confirmed that MA treatment enhanced nuclear apoptosis in human PBMCs. The research presented here, in our view, indicates that: (i) MA activity is mediated by nuclear receptors; (ii) MA is a possible PPARα and/or RORα agonist; (iii) MA has an immunosuppressive effect; and (iv) MA induces apoptosis through the mitochondrial signaling pathway.
Collapse
Affiliation(s)
| | | | - Artem A Kiselev
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | - Kirill A Vasilyev
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | | | | | - Alexey L Kovalenko
- Institute of Toxicology, Federal Medical-Biological Agency of Russia, St. Petersburg, Russia
| | - Andrey V Vasin
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
- Institute of Biomedical Systems and Botechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Saint Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| |
Collapse
|
79
|
Kondo T, Ando M, Nagai N, Tomisato W, Srirat T, Liu B, Mise-Omata S, Ikeda M, Chikuma S, Nishimasu H, Nureki O, Ohmura M, Hayakawa N, Hishiki T, Uchibori R, Ozawa K, Yoshimura A. The NOTCH–FOXM1 Axis Plays a Key Role in Mitochondrial Biogenesis in the Induction of Human Stem Cell Memory–like CAR-T Cells. Cancer Res 2019; 80:471-483. [DOI: 10.1158/0008-5472.can-19-1196] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
80
|
Park TY, Jang Y, Kim W, Shin J, Toh HT, Kim CH, Yoon HS, Leblanc P, Kim KS. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep 2019; 9:15559. [PMID: 31664129 PMCID: PMC6820774 DOI: 10.1038/s41598-019-52085-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
For over a half-century the anti-malarial drug chloroquine (CQ) has been used as a therapeutic agent, alone or in combination, to treat autoimmune diseases. However, neither the underlying mechanism(s) of action nor their molecular target(s) are well defined. The orphan nuclear receptor Nurr1 (also known as NR4A2) is an essential transcription factor affecting the development and maintenance of midbrain dopaminergic neurons. In this study, using in vitro T cell differentiation models, we demonstrate that CQ activates TREG cell differentiation and induces Foxp3 gene expression in a Nurr1-dependent manner. Remarkably, CQ appears to induce Nurr1 function by two distinct mechanisms: firstly, by direct binding to Nurr1’s ligand-binding domain and promoting its transcriptional activity and secondly by upregulation of Nurr1 expression through the CREB signaling pathway. In contrast, CQ suppressed gene expression and differentiation of pathogenic TH17 cells. Importantly, using a valid animal model of inflammatory bowel disease (IBD), we demonstrated that CQ promotes Foxp3 expression and differentiation of TREG cells in a Nurr1-dependent manner, leading to significant improvement of IBD-related symptoms. Taken together, these data suggest that CQ ameliorates autoimmune diseases via regulating Nurr1 function/expression and that Nurr1 is a promising target for developing effective therapeutics of human inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA. .,Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
81
|
Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2031-2041. [PMID: 31591259 PMCID: PMC6910132 DOI: 10.4049/jimmunol.1900662] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Development of a comprehensive regulatory T (Treg) cell compartment in the thymus is required to maintain immune homeostasis and prevent autoimmunity. In this study, we review cellular and molecular determinants of Treg cell development in the thymus. We focus on the evidence for a self-antigen-focused Treg cell repertoire as well as the APCs responsible for presenting self-antigens to developing thymocytes. We also cover the contribution of different cytokines to thymic Treg development and the cellular populations that produce these cytokines. Finally, we update the originally proposed "two-step" model of thymic Treg differentiation by incorporating new evidence demonstrating that Treg cells develop from two Treg progenitor populations and discuss the functional importance of Treg cells generated via either progenitor pathway.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Louisa E Sjaastad
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
82
|
NURR1 Impairment in Multiple Sclerosis. Int J Mol Sci 2019; 20:ijms20194858. [PMID: 31574937 PMCID: PMC6801584 DOI: 10.3390/ijms20194858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
The transcription factor NURR1 is a constitutively active orphan receptor belonging to the steroid hormone receptor class NR4A. Although a genetic association between NURR1 and autoimmune inflammatory diseases has never emerged from genome-wide association studies (GWAS), alterations in the expression of NURR1 have been observed in various autoimmune diseases. Specifically, its role in autoimmune inflammatory diseases is mainly related to its capability to counteract inflammation. In fact, NURR1 exerts anti-inflammatory functions inhibiting the transcription of the molecules involved in proinflammatory pathways, not only in the peripheral blood compartment, but also in the cerebral parenchyma acting in microglial cells and astrocytes. In parallel, NURR1 has been also linked to dopamine-associated brain disorders, such as Parkinson’s disease (PD) and schizophrenia, since it is involved in the development and in the maintenance of midbrain dopaminergic neurons (mDA). Considering its role in neuro- and systemic inflammatory processes, here we review the evidences supporting its contribution to multiple sclerosis (MS), a chronic inflammatory autoimmune disease affecting the central nervous system (CNS). To date, the specific role of NURR1 in MS is still debated and few authors have studied this topic. Here, we plan to clarify this issue analyzing the reported association between NURR1 and MS in human and murine model studies.
Collapse
|
83
|
Preventative delivery of IL-35 by Lactococcus lactis ameliorates DSS-induced colitis in mice. Appl Microbiol Biotechnol 2019; 103:7931-7941. [PMID: 31456001 DOI: 10.1007/s00253-019-10094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC) is one of the two major forms of inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhea, and abdominal pain. Anti-inflammatory and immunosuppressive drugs have been used in the therapy of human UC. Interleukin (IL)-35, which functions as an anti-inflammatory cytokine, has been shown to play a potential therapeutic role in a UC-like mouse colitis induced by dextran sodium sulfate (DSS). However, the contribution of IL-35 via oral administration to colitis prevention has not been determined. In order to explore its preventative potentiality, a dairy Lactococcus lactis NZ9000 strain was engineered to express murine IL-35 (NZ9000/IL-35), and this recombinant bacteria was applied to prevent and limit the development of DSS-induced mouse colitis. We found that oral administration of NZ9000/IL-35 induced the accumulation of IL-35 in the gut lumen of normal mice. When administrated preventatively, NZ9000/IL-35-gavaged mice exhibited decreased weight loss, DAI score, colon shortening as well as colitis-associated histopathological changes in colon, indicating that the oral administration of NZ9000/35 contributed to the suppression of DSS-induced colitis progression. Moreover, much less Th17 cells and higher level of Treg cells in lamina propria, as well as increased colon and serum levels of IL-10 with a concomitant reduced pro-inflammatory cytokines, IL-6, IL-17A, IFN-γ, and TNF-α were apparently regulated by NZ9000/IL-35 in colitis mice. Together, we put forward direct evidence pinpointing the effectiveness of NZ9000/IL-35 in preventing UC-like mouse colitis, implying a potential candidate of this recombinant Lactococcus lactis that prevent the progression of IBD.
Collapse
|
84
|
Hojo MA, Masuda K, Hojo H, Nagahata Y, Yasuda K, Ohara D, Takeuchi Y, Hirota K, Suzuki Y, Kawamoto H, Kawaoka S. Identification of a genomic enhancer that enforces proper apoptosis induction in thymic negative selection. Nat Commun 2019; 10:2603. [PMID: 31197149 PMCID: PMC6565714 DOI: 10.1038/s41467-019-10525-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/19/2019] [Indexed: 12/23/2022] Open
Abstract
During thymic negative selection, autoreactive thymocytes carrying T cell receptor (TCR) with overtly strong affinity to self-MHC/self-peptide are removed by Bim-dependent apoptosis, but how Bim is specifically regulated to link TCR activation and apoptosis induction is unclear. Here we identify a murine T cell-specific genomic enhancer EBAB (Bub1-Acoxl-Bim), whose deletion leads to accumulation of thymocytes expressing high affinity TCRs. Consistently, EBAB knockout mice have defective negative selection and fail to delete autoreactive thymocytes in various settings, with this defect accompanied by reduced Bim expression and apoptosis induction. By contrast, EBAB is dispensable for maintaining peripheral T cell homeostasis via Bim-dependent pathways. Our data thus implicate EBAB as an important, developmental stage-specific regulator of Bim expression and apoptosis induction to enforce thymic negative selection and suppress autoimmunity. Our study unravels a part of genomic enhancer codes that underlie complex and context-dependent gene regulation in TCR signaling.
Collapse
Affiliation(s)
- Miki Arai Hojo
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa-shi, Chiba, 277-8562, Japan
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Soraku-gun, Kyoto, 619-0237, Japan
| | - Kyoko Masuda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Hiroaki Hojo
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Soraku-gun, Kyoto, 619-0237, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
- ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Soraku-gun, Kyoto, 619-0237, Japan
| | - Yosuke Nagahata
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Keiko Yasuda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Daiya Ohara
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Yusuke Takeuchi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Keiji Hirota
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Hiroshi Kawamoto
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Shinpei Kawaoka
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Soraku-gun, Kyoto, 619-0237, Japan.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan.
- ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Soraku-gun, Kyoto, 619-0237, Japan.
| |
Collapse
|
85
|
Klepsch V, Moschen AR, Tilg H, Baier G, Hermann-Kleiter N. Nuclear Receptors Regulate Intestinal Inflammation in the Context of IBD. Front Immunol 2019; 10:1070. [PMID: 31139192 PMCID: PMC6527601 DOI: 10.3389/fimmu.2019.01070] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/26/2022] Open
Abstract
Gastrointestinal (GI) homeostasis is strongly dependent on nuclear receptor (NR) functions. They play a variety of roles ranging from nutrient uptake, sensing of microbial metabolites, regulation of epithelial intestinal cell integrity to shaping of the intestinal immune cell repertoire. Several NRs are associated with GI pathologies; therefore, systematic analysis of NR biology, the underlying molecular mechanisms, and regulation of target genes can be expected to help greatly in uncovering the course of GI diseases. Recently, an increasing number of NRs has been validated as potential drug targets for therapeutic intervention in patients with inflammatory bowel disease (IBD). Besides the classical glucocorticoids, especially PPARγ, VDR, or PXR-selective ligands are currently being tested with promising results in clinical IBD trials. Also, several pre-clinical animal studies are being performed with NRs. This review focuses on the complex biology of NRs and their context-dependent anti- or pro-inflammatory activities in the regulation of gastrointestinal barrier with special attention to NRs already pharmacologically targeted in clinic and pre-clinical IBD treatment regimens.
Collapse
Affiliation(s)
- Victoria Klepsch
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
86
|
Cao S, Wylie KM, Wyczalkowski MA, Karpova A, Ley J, Sun S, Mashl RJ, Liang WW, Wang X, Johnson K, DiPersio JF, Gay H, Ratner L, Chen F, Adkins DR, Ding L. Dynamic host immune response in virus-associated cancers. Commun Biol 2019; 2:109. [PMID: 30911684 PMCID: PMC6430765 DOI: 10.1038/s42003-019-0352-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/07/2019] [Indexed: 02/06/2023] Open
Abstract
Viruses drive carcinogenesis in human cancers through diverse mechanisms that have not been fully elucidated but include promoting immune escape. Here we investigated associations between virus-positivity and immune pathway alteration for 2009 tumors across six virus-related cancer types. Analysis revealed that for 3 of 72 human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSC) the HPV genome integrated in immune checkpoint genes PD-L1 or PD-L2, driving elevated expression in the corresponding gene. In addition to the previously described upregulation of the PD-1 immunosuppressive pathway in Epstein-Barr virus (EBV)-positive stomach tumors, we also observed upregulation of the PD-1 pathway in cytomegalovirus (CMV)-positive tumors. Furthermore, we found signatures of T-cell and B-cell response in HPV-positive HNSC and EBV-positive stomach tumors and HPV-positive HNSC patients were associated with better survival when T-cell signals were detected. Our work reveals that viral infection may recruit immune effector cells, and upregulate PD-1 and CTLA-4 immunosuppressive pathways.
Collapse
Affiliation(s)
- Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Kristine M. Wylie
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Matt A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Jessica Ley
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Sam Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - R. Jay Mashl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Kimberly Johnson
- Brown School Master of Public Health Program, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - John F. DiPersio
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Hiram Gay
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Lee Ratner
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Douglas R. Adkins
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110 USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110 USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108 USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110 USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110 USA
| |
Collapse
|
87
|
Nagai Y, Ji MQ, Zhu F, Xiao Y, Tanaka Y, Kambayashi T, Fujimoto S, Goldberg MM, Zhang H, Li B, Ohtani T, Greene MI. PRMT5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted p185 erbB2/neu Tumor Immunotherapy. Front Immunol 2019; 10:174. [PMID: 30800128 PMCID: PMC6375878 DOI: 10.3389/fimmu.2019.00174] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subpopulation of T cells that are specialized in suppressing immune responses. Here we show that the arginine methyl transferase protein PRMT5 can complex with FOXP3 transcription factors in Tregs. Mice with conditional knock out (cKO) of PRMT5 expression in Tregs develop severe scurfy-like autoimmunity. In these PRMT5 cKO mice, the spleen has reduced numbers of Tregs, but normal numbers of Tregs are found in the peripheral lymph nodes. These peripheral Tregs that lack PRMT5, however, display a limited suppressive function. Mass spectrometric analysis showed that FOXP3 can be di-methylated at positions R27, R51, and R146. A point mutation of Arginine (R) 51 to Lysine (K) led to defective suppressive functions in human CD4 T cells. Pharmacological inhibition of PRMT5 by DS-437 also reduced human Treg functions and inhibited the methylation of FOXP3. In addition, DS-437 significantly enhanced the anti-tumor effects of anti-erbB2/neu monoclonal antibody targeted therapy in Balb/c mice bearing CT26Her2 tumors by inhibiting Treg function and induction of tumor immunity. Controlling PRMT5 activity is a promising strategy for cancer therapy in situations where host immunity against tumors is attenuated in a FOXP3 dependent manner.
Collapse
Affiliation(s)
- Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fuxiang Zhu
- Unit of Molecular Immunology, Key Laboratory of Molecular Virology & Immunology, CAS Center for Excellence in Molecular Cell Science, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Xiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yukinori Tanaka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bin Li
- The Department of Immunology and Microbiology & Shanghai, Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Takuya Ohtani
- Penn Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
88
|
|
89
|
Development and Functional Modulation of Regulatory T Cells by Transcription Factors and Epigenetics. Cornea 2018; 37 Suppl 1:S42-S49. [PMID: 30211750 DOI: 10.1097/ico.0000000000001720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of immune homeostasis. Studies of Treg are not only necessary for understanding the mechanism of immune homeostasis but also extremely useful for the development of treatments of various immune diseases. Forkhead box P3 (Foxp3) was identified as the master gene responsible for the immune-suppressing activity of Tregs. The promoter region and several intronic enhancers, designated conserved noncoding sequence (CNS) 0, 1, 2, and 3, at the Foxp3 gene locus have important roles in Foxp3 expression and Treg development. We demonstrated that transcription factors Nr4a and Smad2/3 are required for development of thymic Tregs and induced Tregs, respectively. In addition to transcription factors, Treg-specific DNA demethylation has been shown to be important for Treg stability. In particular, DNA demethylation of CNS2 was implicated in Treg stability, and members of the ten-eleven translocation family of demethylation factors were recently demonstrated to have important roles in 5'-C-phosphate-G-3' demethylation at CNS2. This article summarizes recent findings regarding the roles of transcription factors and epigenetic modifications in the differentiation, maintenance, and function of Tregs. This review will facilitate clinical application of Tregs to diseases in the field of ophthalmology, including uveitis and age-related macular degeneration.
Collapse
|
90
|
Kumar P, Saini S, Khan S, Surendra Lele S, Prabhakar BS. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol 2018; 339:41-49. [PMID: 30482489 DOI: 10.1016/j.cellimm.2018.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
Self-tolerance, the state of unresponsiveness to self-tissues/antigens, is maintained through central and peripheral tolerance mechanisms, and a breach of these mechanisms leads to autoimmune diseases. Foxp3 + T-regulatory cells (Tregs) play an essential role in suppressing autoimmune response directed against self-antigens and thereby regulate self-tolerance. Natural Tregs are differentiated in the thymus on the basis of their higher TCR-affinity to self-antigens and migrate to the periphery where they maintain peripheral tolerance. In addition, extra-thymic differentiation of induced Tregs can occur in the periphery which can control abrupt immune responses under inflammatory conditions. A defect in Treg cell numbers and/or function is found to be associated with the development of autoimmune disease in several experimental models and human autoimmune diseases. Moreover, augmentation of Tregs has been shown to be beneficial in treating autoimmunity in preclinical models, and Treg based cellular therapy has shown initial promise in clinical trials. However, emerging studies have identified an unstable subpopulation of Tregs which expresses pro-inflammatory cytokines under both homeostatic and autoimmune conditions, as well as in ex vivo cultures. In addition, clinical translation of Treg cellular therapy is impeded by limitations such as lack of easier methods for selective expansion of Tregs and higher cost associated with GMP-facilities required for cell sorting, ex vivo expansion and infusion of ex vivo expanded Tregs. Here, we discuss the recent advances in molecular mechanisms regulating Treg differentiation, Foxp3 expression and lineage stability, the role of Tregs in the prevention of various autoimmune diseases, and critically review their clinical utility for treating human autoimmune diseases.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Shikha Saini
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Saad Khan
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Swarali Surendra Lele
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, USA.
| |
Collapse
|
91
|
Bending D, Ono M. From stability to dynamics: understanding molecular mechanisms of regulatory T cells through Foxp3 transcriptional dynamics. Clin Exp Immunol 2018; 197:14-23. [PMID: 30076771 PMCID: PMC6591142 DOI: 10.1111/cei.13194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Studies on regulatory T cells (Treg) have focused on thymic Treg as a stable lineage of immunosuppressive T cells, the differentiation of which is controlled by the transcription factor forkhead box protein 3 (Foxp3). This lineage perspective, however, may constrain hypotheses regarding the role of Foxp3 and Tregin vivo, particularly in clinical settings and immunotherapy development. In this review, we synthesize a new perspective on the role of Foxp3 as a dynamically expressed gene, and thereby revisit the molecular mechanisms for the transcriptional regulation of Foxp3. In particular, we introduce a recent advancement in the study of Foxp3‐mediated T cell regulation through the development of the Timer of cell kinetics and activity (Tocky) system, and show that the investigation of Foxp3 transcriptional dynamics can reveal temporal changes in the differentiation and function of Tregin vivo. We highlight the role of Foxp3 as a gene downstream of T cell receptor (TCR) signalling and show that temporally persistent TCR signals initiate Foxp3 transcription in self‐reactive thymocytes. In addition, we feature the autoregulatory transcriptional circuit for the Foxp3 gene as a mechanism for consolidating Treg differentiation and activating their suppressive functions. Furthermore, we explore the potential mechanisms behind the dynamic regulation of epigenetic modifications and chromatin architecture for Foxp3 transcription. Lastly, we discuss the clinical relevance of temporal changes in the differentiation and activation of Treg.
Collapse
Affiliation(s)
- D Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - M Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
92
|
Chalmin F, Humblin E, Ghiringhelli F, Végran F. Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:1-61. [PMID: 30262030 DOI: 10.1016/bs.ircmb.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the basis of cellular differentiation is a fundamental issue in developmental biology but also for the comprehension of pathological processes. In fact, the palette of developmental decisions for naive CD4 T cells is a critical aspect of the development of appropriate immune responses which could control infectious processes or cancer growth. However, the current accumulation of data on CD4 T cells biology reveals a complex world with different helper populations. Naive CD4 T cells can differentiate into different subtypes in response to cytokine stimulation. This stimulation involves a complex transcriptional network implicating the activation of Signal Transducer and Activator of Transcription but also master regulator transcription factors allowing the functions of each helper T lymphocyte subtype. In this review, we will present an overview of the transcriptional regulation which controls process of helper T cells differentiation. We will focus on the role of initiator transcriptional factors and on master regulators but also on other nonspecific transcriptional factors which refine the T helper polarization to stabilize or modulate the differentiation program.
Collapse
Affiliation(s)
- Fanny Chalmin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - Etienne Humblin
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France; Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| | - Frédérique Végran
- Centre de Recherche INSERM LNC-UMR1231, Dijon, France; Univ. Bourgogne Franche-Comté, Dijon, France; Platform of Transfer in Cancer Biology, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|
93
|
Tel-Karthaus N, Kers-Rebel ED, Looman MW, Ichinose H, de Vries CJ, Ansems M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front Immunol 2018; 9:1797. [PMID: 30123220 PMCID: PMC6085422 DOI: 10.3389/fimmu.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system. Proper function of DCs is crucial to elicit an effective immune response against pathogens and to induce antitumor immunity. Different members of the nuclear receptor (NR) family of transcription factors have been reported to affect proper function of immune cells. Nur77 is a member of the NR4A subfamily of orphan NRs that is expressed and has a function within the immune system. We now show that Nur77 is expressed in different murine DCs subsets in vitro and ex vivo, in human monocyte-derived DCs (moDCs) and in freshly isolated human BDCA1+ DCs, but its expression is dispensable for DC development in the spleen and lymph nodes. We show, by siRNA-mediated knockdown of Nur77 in human moDCs and by using Nur77-/- murine DCs, that Nur77-deficient DCs have enhanced inflammatory responses leading to increased T cell proliferation. Treatment of human moDCs with 6-mercaptopurine, an activator of Nur77, leads to diminished DC activation resulting in an impaired capacity to induce IFNγ production by allogeneic T cells. Altogether, our data show a yet unexplored role for Nur77 in modifying the activation status of murine and human DCs. Ultimately, targeting Nur77 may prove to be efficacious in boosting or diminishing the activation status of DCs and may lead to the development of improved DC-based immunotherapies in, respectively, cancer treatment or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nina Tel-Karthaus
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Esther D Kers-Rebel
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maaike W Looman
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Carlie J de Vries
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Marleen Ansems
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
94
|
Sekiya T, Hibino S, Saeki K, Kanamori M, Takaki S, Yoshimura A. Nr4a Receptors Regulate Development and Death of Labile Treg Precursors to Prevent Generation of Pathogenic Self-Reactive Cells. Cell Rep 2018; 24:1627-1638.e6. [DOI: 10.1016/j.celrep.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 07/01/2018] [Indexed: 02/01/2023] Open
|
95
|
Hibino S, Chikuma S, Kondo T, Ito M, Nakatsukasa H, Omata-Mise S, Yoshimura A. Inhibition of Nr4a Receptors Enhances Antitumor Immunity by Breaking Treg-Mediated Immune Tolerance. Cancer Res 2018; 78:3027-3040. [PMID: 29559474 DOI: 10.1158/0008-5472.can-17-3102] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/17/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Enhanced infiltration of regulatory T cells (Treg) into tumor tissue is detrimental to patients with cancer and is closely associated with poor prognosis as they create an immunosuppressive state that suppresses antitumor immune responses. Therefore, breaking Treg-mediated immune tolerance is important when considering cancer immunotherapy. Here, we show that the Nr4a nuclear receptors, key transcription factors maintaining Treg genetic programs, contribute to Treg-mediated suppression of antitumor immunity in the tumor microenvironment. Mice lacking Nr4a1 and Nr4a2 genes specifically in Tregs showed resistance to tumor growth in transplantation models without exhibiting any severe systemic autoimmunity. The chemotherapeutic agent camptothecin and a common cyclooxygenase-2 inhibitor were found to inhibit transcriptional activity and induction of Nr4a factors, and they synergistically exerted antitumor effects. Genetic inactivation or pharmacologic inhibition of Nr4a factors unleashed effector activities of CD8+ cytotoxic T cells and evoked potent antitumor immune responses. These findings demonstrate that inactivation of Nr4a in Tregs breaks immune tolerance toward cancer, and pharmacologic modulation of Nr4a activity may be a novel cancer treatment strategy targeting the immunosuppressive tumor microenvironment.Significance: This study reveals the role of Nr4a transcription factors in Treg-mediated tolerance to antitumor immunity, with possible therapeutic implications for developing effective anticancer therapies. Cancer Res; 78(11); 3027-40. ©2018 AACR.
Collapse
Affiliation(s)
- Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Setsuko Omata-Mise
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
96
|
NR4A1 and NR4A3 restrict HSC proliferation via reciprocal regulation of C/EBPα and inflammatory signaling. Blood 2018; 131:1081-1093. [PMID: 29343483 DOI: 10.1182/blood-2017-07-795757] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the NR4A subfamily of nuclear receptors have complex, overlapping roles during hematopoietic cell development and also function as tumor suppressors of hematologic malignancies. We previously identified NR4A1 and NR4A3 (NR4A1/3) as functionally redundant suppressors of acute myeloid leukemia (AML) development. However, their role in hematopoietic stem cell (HSC) homeostasis remains to be disclosed. Using a conditional Nr4a1/Nr4a3 knockout mouse (CDKO), we show that codepletion of NR4A1/3 promotes acute changes in HSC homeostasis including loss of HSC quiescence, accumulation of oxidative stress, and DNA damage while maintaining stem cell regenerative and differentiation capacity. Molecular profiling of CDKO HSCs revealed widespread upregulation of genetic programs governing cell cycle and inflammation and an aberrant activation of the interferon and NF-κB signaling pathways in the absence of stimuli. Mechanistically, we demonstrate that NR4A1/3 restrict HSC proliferation in part through activation of a C/EBPα-driven antiproliferative network by directly binding to a hematopoietic-specific Cebpa enhancer and activating Cebpa transcription. In addition, NR4A1/3 occupy the regulatory regions of NF-κB-regulated inflammatory cytokines, antagonizing the activation of NF-κB signaling. Taken together, our results reveal a novel coordinate control of HSC quiescence by NR4A1/3 through direct activation of C/EBPα and suppression of activation of NF-κB-driven proliferative inflammatory responses.
Collapse
|
97
|
Mumau MD, Vanderbeck AN, Lynch ED, Golec SB, Emerson SG, Punt JA. Identification of a Multipotent Progenitor Population in the Spleen That Is Regulated by NR4A1. THE JOURNAL OF IMMUNOLOGY 2017; 200:1078-1087. [PMID: 29282309 DOI: 10.4049/jimmunol.1701250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
The developmental fate of hematopoietic stem and progenitor cells is influenced by their physiological context. Although most hematopoietic stem and progenitor cells are found in the bone marrow of the adult, some are found in other tissues, including the spleen. The extent to which the fate of stem cells is determined by the tissue in which they reside is not clear. In this study, we identify a new progenitor population, which is enriched in the mouse spleen, defined by cKit+CD71lowCD24high expression. This previously uncharacterized population generates exclusively myeloid lineage cells, including erythrocytes, platelets, monocytes, and neutrophils. These multipotent progenitors of the spleen (MPPS) develop from MPP2, a myeloid-biased subset of hematopoietic progenitors. We find that NR4A1, a transcription factor expressed by myeloid-biased long term-hematopoietic stem cells, guides the lineage specification of MPPS. In vitro, NR4A1 expression regulates the potential of MPPS to differentiate into erythroid cells. MPPS that express NR4A1 differentiate into a variety of myeloid lineages, whereas those that do not express NR4A1 primarily develop into erythroid cells. Similarly, in vivo, after adoptive transfer, Nr4a1-deficient MPPS contribute more to erythrocyte and platelet populations than do wild-type MPPS. Finally, unmanipulated Nr4a1-/- mice harbor significantly higher numbers of erythroid progenitors in the spleen compared with wild-type mice. Together, our data show that NR4A1 expression by MPPS limits erythropoiesis and megakaryopoeisis, permitting development to other myeloid lineages. This effect is specific to the spleen, revealing a unique molecular pathway that regulates myeloid bias in an extramedullary niche.
Collapse
Affiliation(s)
- Melanie D Mumau
- Herbert Irving Comprehensive Cancer Research Center, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Ashley N Vanderbeck
- Herbert Irving Comprehensive Cancer Research Center, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Elizabeth D Lynch
- Herbert Irving Comprehensive Cancer Research Center, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Sophia B Golec
- Herbert Irving Comprehensive Cancer Research Center, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Stephen G Emerson
- Herbert Irving Comprehensive Cancer Research Center, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Jennifer A Punt
- Herbert Irving Comprehensive Cancer Research Center, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
98
|
Adurthi S, Kumar MM, Vinodkumar HS, Mukherjee G, Krishnamurthy H, Acharya KK, Bafna UD, Uma DK, Abhishekh B, Krishna S, Parchure A, Alka M, Jayshree RS. Oestrogen Receptor-α binds the FOXP3 promoter and modulates regulatory T-cell function in human cervical cancer. Sci Rep 2017; 7:17289. [PMID: 29229929 PMCID: PMC5725534 DOI: 10.1038/s41598-017-17102-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Oestrogen controls Foxp3 expression in regulatory T cells (Treg cells) via a mechanism thought to involve oestrogen receptor alpha (ERα), but the molecular basis and functional impact of ERα signalling in Treg cells remain unclear. We report that ERα ligand oestradiol (E2) is significantly increased in human cervical cancer (CxCa) tissues and tumour-infiltrating Treg cells (CD4+CD25hiCD127low), whereas blocking ERα with the antagonist ICI 182,780 abolishes FOXP3 expression and impairs the function of CxCa infiltrating Treg cells. Using a novel approach of co-immunoprecipitation with antibodies to E2 for capture, we identified binding of E2:ERα complexes to FOXP3 protein in CxCa-derived Treg cells. Chromatin immunoprecipitation analyses of male blood Treg cells revealed ERα occupancy at the FOXP3 promoter and conserved non-coding DNA elements 2 and 3. Accordingly, computational analyses of the enriched regions uncovered eight putative oestrogen response elements predicted to form a loop that can activate the FOXP3 promoter. Together, these data suggest that E2-mediated ERα signalling is critical for the sustenance of FOXP3 expression and Treg cell function in human CxCa via direct interaction of ERα with FOXP3 promoter. Overall, our work gives a molecular insight into ERα signalling and highlights a fundamental role of E2 in controlling human Treg cell physiology.
Collapse
Affiliation(s)
- Sreenivas Adurthi
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Mahesh M Kumar
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - H S Vinodkumar
- Shodhaka Life Sciences Private Limited, Bangalore, India
- Structural Biology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Geetashree Mukherjee
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - H Krishnamurthy
- National Center for Biological Sciences, TIFR, Bangalore, India
| | - K Kshitish Acharya
- Shodhaka Life Sciences Private Limited, Bangalore, India
- Institute of Bioinformatics And Applied Biotechnology, Bangalore, India
| | - U D Bafna
- Department of Gynecology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Devi K Uma
- Department of Gynecology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - B Abhishekh
- Department of Immunohematology, Kidwai Memorial Institute of Oncology, Bangalore, India
- Department of Transfusion Medicine, JIPMER, Puducherry, India
| | - Sudhir Krishna
- National Center for Biological Sciences, TIFR, Bangalore, India
| | - A Parchure
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Murali Alka
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - R S Jayshree
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India.
| |
Collapse
|
99
|
Benko AL, McAloose CA, Becker PM, Wright D, Sunyer T, Kawasawa YI, Olsen NJ, Kovacs WJ. Repository corticotrophin injection exerts direct acute effects on human B cell gene expression distinct from the actions of glucocorticoids. Clin Exp Immunol 2017; 192:68-81. [PMID: 29205315 DOI: 10.1111/cei.13089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
Repository corticotrophin injection (RCI, H.P Acthar® gel) has been approved for use in the management of multiple autoimmune and inflammatory diseases for more than a half-century, but its mechanism of action is not well understood. We used RNA-Seq methods to define RCI-regulated mRNAs in cultured human B cells under conditions of activation by interleukin (IL)-4 and CD40 ligand. Following IL-4/CD40L activation and RCI treatment we found up-regulation of 115 unique mRNA transcripts and down-regulation of 80 unique mRNAs. The effect on these RNA levels was dose-dependent for RCI and was distinct from changes in mRNA expression induced by treatment with a potent synthetic glucocorticoid. RCI down-regulated mRNAs were observed to include a significant over-representation of genes critical for B cell proliferation under activating conditions. These data confirm that RCI exerts direct effects on human B cells to modulate mRNA expression in specific pathways of importance to B cell function and that, at the molecular level, the effects of RCI are distinct from those exerted by glucocorticoids.
Collapse
Affiliation(s)
- A L Benko
- Division of Endocrinology, Diabetes, and Metabolism, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - C A McAloose
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - P M Becker
- Science and Technology, Mallinckrodt ARD, Inc., Hampton, NJ, USA
| | - D Wright
- Science and Technology, Mallinckrodt ARD, Inc., Hampton, NJ, USA
| | - T Sunyer
- Science and Technology, Mallinckrodt ARD, Inc., Hampton, NJ, USA
| | - Y I Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - N J Olsen
- Division of Rheumatology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - W J Kovacs
- Division of Endocrinology, Diabetes, and Metabolism, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
100
|
Won HY, Shin JH, Oh S, Jeong H, Hwang ES. Enhanced CD25 +Foxp3 + regulatory T cell development by amodiaquine through activation of nuclear receptor 4A. Sci Rep 2017; 7:16946. [PMID: 29208963 PMCID: PMC5717225 DOI: 10.1038/s41598-017-17073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023] Open
Abstract
CD4+ T cells play key roles in the regulation of immune responses against pathogenic infectious antigens via development into effector T helper and induced regulatory T (iTreg) cells. Particularly, CD4+CD25+Foxp3+ iTreg cells are crucial for maintaining immune homeostasis and controlling inflammatory diseases. Anti-inflammatory drugs that enhance iTreg cell generation would be effective at preventing and treating inflammatory and autoimmune diseases. In this study, we examined whether anti-malarial and anti-arthritic amodiaquine (AQ) could affect iTreg cell development. Despite the anti-proliferative activity of AQ, AQ only moderately decreased iTreg cell proliferation but substantially increased IL-2 production by iTreg cells. Furthermore, AQ dose-dependently increased iTreg cell development and significantly upregulated iTreg cell markers including CD25. Interestingly, CD25 expression was decreased at later stages of iTreg cell development but was sustained in the presence of AQ, which was independent of IL-2 signaling pathway. AQ directly increased CD25 gene transcription by enhancing the DNA-binding and transcriptional activity of nuclear receptor 4 A. Most importantly, in vivo administration of AQ attenuated inflammatory colitis, resulted in the increased iTreg cells and decreased inflammatory cytokines. The ability of anti-malarial AQ to potentiate iTreg cell development makes it a promising drug for preventing and treating inflammatory and autoimmune diseases.
Collapse
MESH Headings
- Amodiaquine/pharmacology
- Animals
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colitis/etiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Forkhead Transcription Factors/metabolism
- Interleukin-2/metabolism
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Receptors, Interleukin-2/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/physiology
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Ji Hyun Shin
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Sera Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Hana Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|