51
|
Jung ES, Choi H, Mook-Jung I. Decoding microglial immunometabolism: a new frontier in Alzheimer's disease research. Mol Neurodegener 2025; 20:37. [PMID: 40149001 PMCID: PMC11948825 DOI: 10.1186/s13024-025-00825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) involves a dynamic interaction between neuroinflammation and metabolic dysregulation, where microglia play a central role. These immune cells undergo metabolic reprogramming in response to AD-related pathology, with key genes such as TREM2, APOE, and HIF-1α orchestrating these processes. Microglial metabolism adapts to environmental stimuli, shifting between oxidative phosphorylation and glycolysis. Hexokinase-2 facilitates glycolytic flux, while AMPK acts as an energy sensor, coordinating lipid and glucose metabolism. TREM2 and APOE regulate microglial lipid homeostasis, influencing Aβ clearance and immune responses. LPL and ABCA7, both associated with AD risk, modulate lipid processing and cholesterol transport, linking lipid metabolism to neurodegeneration. PPARG further supports lipid metabolism by regulating microglial inflammatory responses. Amino acid metabolism also contributes to microglial function. Indoleamine 2,3-dioxygenase controls the kynurenine pathway, producing neurotoxic metabolites linked to AD pathology. Additionally, glucose-6-phosphate dehydrogenase regulates the pentose phosphate pathway, maintaining redox balance and immune activation. Dysregulated glucose and lipid metabolism, influenced by genetic variants such as APOE4, impair microglial responses and exacerbate AD progression. Recent findings highlight the interplay between metabolic regulators like REV-ERBα, which modulates lipid metabolism and inflammation, and Syk, which influences immune responses and Aβ clearance. These insights offer promising therapeutic targets, including strategies aimed at HIF-1α modulation, which could restore microglial function depending on disease stage. By integrating metabolic, immune, and genetic factors, this review underscores the importance of microglial immunometabolism in AD. Targeting key metabolic pathways could provide novel therapeutic strategies for mitigating neuroinflammation and restoring microglial function, ultimately paving the way for innovative treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun Sun Jung
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Hayoung Choi
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Inhee Mook-Jung
- Convergence Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
- Korea Dementia Research Center, Seoul, South Korea.
| |
Collapse
|
52
|
Korologou-Linden R, Xu B, Coulthard E, Walton E, Wearn A, Hemani G, White T, Cecil C, Sharp T, Tiemeier H, Banaschewski T, Bokde A, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Paillère Martinot ML, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Millenet S, Fröhner JH, Smolka M, Walter H, Winterer J, Whelan R, Schumann G, Howe LD, Ben-Shlomo Y, Davies NM, Anderson EL. Genetics impact risk of Alzheimer's disease through mechanisms modulating structural brain morphology in late life. J Neurol Neurosurg Psychiatry 2025; 96:350-360. [PMID: 38663994 PMCID: PMC7616849 DOI: 10.1136/jnnp-2023-332969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.
Collapse
Affiliation(s)
- Roxanna Korologou-Linden
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Bing Xu
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, UK
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elizabeth Coulthard
- Bristol Medical School, University of Bristol, Bristol, UK
- North Bristol NHS Trust, Bristol, UK
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Alfie Wearn
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Tonya White
- The Generation R Study Group, Erasmus MC University Medical Center, Rotterdam, UK
- Department of Radiology and Nuclear Medicine, Erasmus University School of Medicine, Rotterdam, UK
| | - Charlotte Cecil
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tamsin Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Biostatistics and Health Informatics Department, King's College London, Boston, UK
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Heidelberg University, Heidelberg, Germany
| | - Arun Bokde
- Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Kings College London, Centre for Population Neuroscience and Precision Medicine (PONS), London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Mannheim, Mannheim, Germany
- Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | | | | | | | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299, Paris, France
- Centre Borelli, Cachan, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299, Paris, France
- Centre Borelli, Cachan, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299, Paris, France
- Centre Borelli, Cachan, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Heidelberg University, Heidelberg, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, University of Mannheim, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Montreal, Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Heidelberg University, Heidelberg, Germany
| | - Juliane H Fröhner
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charite, Berlin, Germany
| | - Jeanne Winterer
- Department of Psychiatry and Psychotherapy CCM, Berlin Institute of Health, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Robert Whelan
- Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Kings College London, Centre for Population Neuroscience and Precision Medicine (PONS), London, UK
- Fudan University, Shanghai, People's Republic of China
- PONS Centre, Dept. of Psychiatry and Clinical Neuroscience, CCM, Berlin, Germany
| | - Laura D Howe
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
- University College London Division of Psychiatry, London, UK
| | - Emma Louise Anderson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
- University College London Division of Psychiatry, London, UK
| |
Collapse
|
53
|
Sun Y, Liu Z, Zhang Z, Kang Y, Wang X, Zhang Y, Liu Y, Zhao P. Human induced pluripotent stem cell models for Alzheimer's disease research: a bibliometric analysis. Front Hum Neurosci 2025; 19:1548701. [PMID: 40177166 PMCID: PMC11962003 DOI: 10.3389/fnhum.2025.1548701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD), the leading cause of dementia, remains without adequate treatment. Current models do not fully replicate human physiology and pathology. The advent of human induced pluripotent stem cell (hiPSC) technology offers a novel approach to studying AD. Methods Our study conducted a bibliometric analysis to assess the application and development of hiPSC technology in AD research. We retrieved 531 articles on hiPSC models of AD from the Web of Science Core Collection, published between January 2010 and June 2024. CiteSpace and VOSviewer were used to analyze authorship, geographic contributions, journal influence, and citation patterns. Results Our findings reveal a steady increase in publications over 14 years, with the United States leading in contributions, followed by China. Li-Huei Tsai from the Massachusetts Institute of Technology is a prominent researcher. PLoS One emerges as the most influential journal. Research trends have focused on inflammation, astrocytes, microglia, apolipoprotein E (ApoE), and tau. Discussion Bibliometric analysis is crucial in identifying research gaps and trends and guiding future studies to address unmet needs in understanding and modeling human physiology and pathology. Leveraging hiPSC models to investigate the molecular mechanisms of familial and sporadic AD is expected to provide a crucial foundation for developing future treatment strategies. Conclusion In summary, the bibliometric findings from this study provide a comprehensive overview of the current research landscape in hiPSC models for AD. It also highlights emerging trends and research gaps, crucial for guiding future research efforts, particularly in exploring novel therapeutic targets and improving understanding of disease mechanisms.
Collapse
Affiliation(s)
- Yuning Sun
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Zhilong Liu
- Gansu Provincial People’s Hospital, Lanzhou, China
| | - Zongbo Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yufeng Kang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinlian Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yiping Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Pei Zhao
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial People’s Hospital, Lanzhou, China
| |
Collapse
|
54
|
Miller JB, Brandon JA, Harmon LM, Sabra HW, Lucido CC, Murcia JDG, Nations KA, Payne SH, Ebbert MTW, Kauwe JSK, Ridge PG. Ramp Sequence May Explain Synonymous Variant Association with Alzheimer's Disease in the Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA). Biomedicines 2025; 13:739. [PMID: 40149715 PMCID: PMC11940050 DOI: 10.3390/biomedicines13030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The synonymous variant NC_000007.14:g.100373690T>C (rs2405442:T>C) in the Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) gene was previously associated with decreased risk for Alzheimer's disease (AD) in genome-wide association studies, but its biological impact is largely unknown. Objective: We hypothesized that rs2405442:T>C decreases mRNA and protein levels by destroying a ramp of slowly translated codons at the 5' end of PILRA. Methods: We assessed rs2405442:T>C predicted effects on PILRA through quantitative polymerase chain reactions (qPCRs) and enzyme-linked immunosorbent assays (ELISAs) using Chinese hamster ovary (CHO) cells. RESULTS: Both mRNA (p = 1.9184 × 10-13) and protein (p = 0.01296) levels significantly decreased in the mutant versus the wildtype in the direction that we predicted based on the destruction of a ramp sequence. Conclusions: We show that rs2405442:T>C alone directly impacts PILRA mRNA and protein expression, and ramp sequences may play a role in regulating AD-associated genes without modifying the protein product.
Collapse
Affiliation(s)
- Justin B. Miller
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
| | - Lauren M. Harmon
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Hady W. Sabra
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Chloe C. Lucido
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Josue D. Gonzalez Murcia
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
| | - Samuel H. Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA (M.T.W.E.)
- Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40506, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40506, USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; (L.M.H.); (J.D.G.M.); (J.S.K.K.)
| |
Collapse
|
55
|
Meng X, Li X, Cao M, Dong J, Wang H, Cao W, Liu D, Wang Y. Summarizing attributable factors and evaluating risk of bias of Mendelian randomization studies for Alzheimer's dementia and cognitive status: a systematic review and meta-analysis. Syst Rev 2025; 14:61. [PMID: 40082927 PMCID: PMC11905674 DOI: 10.1186/s13643-025-02792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND No effective treatment is available to delay or reverse the onset and progression of Alzheimer's dementia (AD). Mild cognitive impairment, a clinical state between normal aging and AD, may offer the proper window for AD intervention and treatment. This systematic review aimed to summarize evidence from Mendelian randomization (MR) studies exploring factors attributable to AD and related cognitive status and to assess its credibility. METHODS We searched PubMed, Embase, MEDLINE, and the Cochrane Library to identify MR studies investigating the associations between any factor and AD and related cognitive status. The risk of bias in MR studies was evaluated using nine signaling questions tailored to identify potential biases based on the STROBE-MR guidelines. RESULTS A total of 125 eligible publications were examined, including 106 AD-related MR studies reporting 674 records and 28 cognition-related MR studies reporting 141 records. We identified 185 unique causal risk factors for AD and 49 for cognitive status. More than half of the MR studies reporting AD or cognitive status outcomes exhibited poor methodological quality, with a high risk of bias observed in 59% of the AD-related studies and 64% of the cognitive-related studies. CONCLUSIONS This systematic review summarized modifiable factors and omics signatures, providing a database of MR studies on AD and related cognitive status. The evaluation of bias risk in MR studies serves to raise awareness and improve overall quality. A critical appraisal checklist for assessing the risk of bias may pave the way for the development of a standardized tool. SYSTEMATIC REVIEW REGISTRATION The review protocol was registered with the Prospective Register of Systematic Reviews (PROSPERO) under the registration number CRD42023213990.
Collapse
Affiliation(s)
- Xiaoni Meng
- Department of Clinical Epidemiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xiaochun Li
- School of Public Health, Capital Medical University, Beijing, 100069, China
- The Medical Department, Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Meiling Cao
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Jing Dong
- Health Management Center, Xuanwu Hospital, Capital Medical University, Beijing, 100050, China
| | - Haotian Wang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Weijie Cao
- Centre for Precision Medicine, Edith Cowan University, Perth, WA, 7027, Australia
| | - Di Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, China.
| | - Youxin Wang
- Centre for Precision Medicine, Edith Cowan University, Perth, WA, 7027, Australia.
- School of Public Health, North China University of Science and Technology, 21 Bohaidadao, Caofeidian District, Tangshan, 063210, China.
| |
Collapse
|
56
|
Chaar DL, Li Z, Shang L, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Smith JA. Multi-Ancestry Transcriptome-Wide Association Studies of Cognitive Function, White Matter Hyperintensity, and Alzheimer's Disease. Int J Mol Sci 2025; 26:2443. [PMID: 40141087 PMCID: PMC11942532 DOI: 10.3390/ijms26062443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Genetic variants increase the risk of neurocognitive disorders in later life, including vascular dementia (VaD) and Alzheimer's disease (AD), but the precise relationships between genetic risk factors and underlying disease etiologies are not well understood. Transcriptome-wide association studies (TWASs) can be leveraged to better characterize the genes and biological pathways underlying genetic influences on disease. To date, almost all existing TWASs on VaD and AD have been conducted using expression studies from individuals of a single genetic ancestry, primarily European. Using the joint likelihood-based inference framework in Multi-ancEstry TRanscriptOme-wide analysis (METRO), we leveraged gene expression data from European ancestry (EA) and African ancestry (AA) samples to identify genes associated with general cognitive function, white matter hyperintensity (WMH), and AD. Regions were fine-mapped using Fine-mapping Of CaUsal gene Sets (FOCUS). We identified 266, 23, 69, and 2 genes associated with general cognitive function, WMH, AD (using EA GWAS summary statistics), and AD (using AA GWAS), respectively (Bonferroni-corrected alpha = p < 2.9 × 10-6), some of which had been previously identified. Enrichment analysis showed that many of the identified genes were in pathways related to innate immunity, vascular dysfunction, and neuroinflammation. Further, the downregulation of ICA1L was associated with a higher WMH and with AD, indicating its potential contribution to overlapping AD and VaD neuropathology. To our knowledge, our study is the first TWAS on cognitive function and neurocognitive disorders that used expression mapping studies for multiple ancestries. This work may expand the benefits of TWASs beyond a single ancestry group and help to identify gene targets for pharmaceuticals or preventative treatments for dementia.
Collapse
Affiliation(s)
- Dima L. Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Lulu Shang
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Thomas H. Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (Z.L.); (X.Z.)
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (D.L.C.); (S.M.R.); (S.L.R.K.); (W.Z.)
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
57
|
Mitsumori R, Asanomi Y, Morizono T, Shigemizu D, Niida S, Ozaki K. A genome-wide association study identifies a novel East Asian-specific locus for dementia with Lewy bodies in Japanese subjects. Mol Med 2025; 31:87. [PMID: 40045203 PMCID: PMC11884146 DOI: 10.1186/s10020-025-01115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is the second most common type of degenerative dementia in older patients. As with other multifactorial diseases, the pathogenesis results from interactions of environmental and genetic factors. The genetic basis of DLB is not yet fully understood. Recent genomic analyses of DLB in Caucasian cohorts identified genetic susceptibility loci for DLB, but the comprehensive genomic analysis in Asians was still not performed. METHODS We conducted a genome-wide association study (GWAS) in Japanese subjects (211 DLB cases and 6113 controls) to clarify the genetic architecture of DLB pathogenesis. RESULTS We identified the East Asian-specific DHTKD1 locus (rs138587229) on chromosome 10 with genome-wide significance (GWS; P = 3.27 × 10-8) and the ICOS/PARD3B locus on chromosome 2 with suggestive significance (P = 3.95 × 10-7) as novel DLB genetic risk loci. We also confirmed the APOE locus (rs429358, P < 5.0 × 10-8), a known risk locus for DLB and Alzheimer's disease in Caucasians. The DHTKD1 locus was associated with the gene expression of SEC61A2 and showed a causal relationship with cholinesterase levels. In a trans-ethnic meta-analysis that included Japanese, UK Biobank, and other Caucasian GWAS, we confirmed the risk for DLB at APOE and SNCA loci with GWS. Transcriptome-wide association analysis identified ZNF155 and ZNF284 in the brain cortex and GPRIN3 in the substantia nigra as putative causal genes for DLB. CONCLUSIONS This is the first GWAS for DLB in East Asians, and our findings provide new biological and clinical insights into the pathogenesis of DLB.
Collapse
Affiliation(s)
- Risa Mitsumori
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Yuya Asanomi
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Takashi Morizono
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Daichi Shigemizu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shumpei Niida
- National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Kouichi Ozaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Research Institute, 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
58
|
Zelek WM, Bevan RJ, Nimmo J, Dewilde M, De Strooper B, Morgan BP. Brain-penetrant complement inhibition mitigates neurodegeneration in an Alzheimer's disease mouse model. Brain 2025; 148:941-954. [PMID: 39215579 PMCID: PMC11884734 DOI: 10.1093/brain/awae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Complement activation is implicated in driving brain inflammation, self-cell damage and progression of injury in Alzheimer's disease and other neurodegenerative diseases. Here, we investigate the impact of brain delivery of a complement-blocking antibody on neurodegeneration in an Alzheimer's mouse model. We engineered a brain-penetrant recombinant antibody targeting the pro-inflammatory membrane attack complex. Systemic administration of this antibody in APPNL-G-F mice reduced brain levels of complement activation products, demonstrating successful brain entry and target engagement. Prolonged treatment decreased synapse loss, amyloid burden and brain inflammatory cytokine levels, concomitant with cognitive improvement compared to controls. These results underscore the potential of brain-penetrant complement-inhibiting drugs as promising therapeutics, targeting downstream of amyloid plaques in Alzheimer's disease.
Collapse
Affiliation(s)
- Wioleta M Zelek
- School of Medicine, UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF14 4XN, UK
| | - Ryan J Bevan
- School of Medicine, UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF14 4XN, UK
| | - Jacqui Nimmo
- School of Medicine, UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF14 4XN, UK
| | - Maarten Dewilde
- Therapeutic and Diagnostic Antibodies, Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven 3000, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Leuven 3000, Belgium
| | - Bart De Strooper
- Centre for Brain and Disease Research, KU Leuven and VIB Leuven, Leuven 3000, Belgium
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Bryan Paul Morgan
- School of Medicine, UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
59
|
Fang SC, Wang L, Cheng MT, Xu D, Chen ZP, Wang J, Liao W, Li Y, Zhou CZ, Hou WT, Chen Y. Structural insights into human ABCA7-mediated lipid transport. Structure 2025; 33:583-593.e5. [PMID: 39826550 DOI: 10.1016/j.str.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
The human ATP-binding cassette (ABC) transporter ABCA7 participates in the lipidation of apolipoprotein ApoE, a commonly recognized risk factor for Alzheimer's disease (AD). How ABCA7 is involved in the molecular pathogenesis of AD remains poorly understood. Using cryoelectron microscopy (cryo-EM), we determined ABCA7 structures in the apo and substrate-bound forms, respectively. Combined with activity assays, we assigned the residues that specifically bind two molecules of phosphatidylserine (PS) that are arranged in a "tail-to-tail" manner. Pull-down assays confirmed that ApoE directly interacts with ABCA7; and moreover, both ATPase and lipid transport activities of ABCA7 were significantly enhanced in the presence of ApoE. We also measured the activities of a familial AD variant and a protective clinically reported variant in the ABCA7 gene. Our findings not only give structural insights into ABCA7-mediated PS translocation, but we also provide first biochemical evidence for its link to AD by forwarding lipids to ApoE.
Collapse
Affiliation(s)
- Shu-Cheng Fang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Liang Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Ting Cheng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Da Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Zhi-Peng Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Jie Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Wenli Liao
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Yanyan Li
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Cong-Zhao Zhou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Wen-Tao Hou
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Yuxing Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
60
|
Das A, Lakhani C, Terwagne C, Lin JST, Naito T, Raj T, Knowles DA. Leveraging functional annotations to map rare variants associated with Alzheimer's disease with gruyere. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.06.24318577. [PMID: 39677477 PMCID: PMC11643288 DOI: 10.1101/2024.12.06.24318577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation (gruyere), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.
Collapse
Affiliation(s)
- Anjali Das
- Computer Science, Columbia University, New York, NY, USA
- New York Genome Center, New York,NY, USA
| | | | | | | | - Tatsuhiko Naito
- New York Genome Center, New York,NY, USA
- Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Towfique Raj
- Neuroscience, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - David A Knowles
- Computer Science, Columbia University, New York, NY, USA
- New York Genome Center, New York,NY, USA
- Systems Biology, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
61
|
Mesias A, Borges S, Pintado M, Baptista-Silva S. Bioactive peptides as multipotent molecules bespoke and designed for Alzheimer's disease. Neuropeptides 2025; 111:102515. [PMID: 40056763 DOI: 10.1016/j.npep.2025.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
In an increasingly aging world where neurodegenerative diseases (NDs) are exponentially rising, research into more effective and innovative treatments seems paramount. Bioactive peptides (BPs) emerge as promising compounds with revolutionary potential in the treatment of NDs, particularly in well-known conditions like Alzheimer's disease (AD). The biological potential of these compounds is primarily attributed to their drug development advantages such as enhanced penetration, low toxicity, and rapid clearance, as well as, their antioxidant, and anti-inflammatory properties bio-linked to the neuroprotective effect, able to attenuate the multifactorial pathologies of AD. BPs can be sourced from common dietary origins, like animals, plants, marine, and from emerging sources like edible insects. However, to isolate an active BP with beneficial biological effects it must first be released from its parent protein, followed by a synthesis-flow. While in silico approaches can predict a BP's potential bioactivity and structural characteristics, in vitro, cell-based, and in vivo assays should be conducted to ensure these properties. The blood-brain-barrier (BBB) microenvironment and permeability in health or disease state are key factors to consider since they can limit the ability of circulating therapeutical agents, including BPs, to reach the brain. This review focuses on the bioactivity properties of BPs from different dietary protein sources and explores their beneficial effect and neuroprotective activity in AD, unraveling new paths of treatment.
Collapse
Affiliation(s)
- Ana Mesias
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sandra Borges
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
62
|
Tian Y, Felsky D, Gronsbell J, Park JY. Leveraging multimodal neuroimaging and GWAS for identifying modality-level causal pathways to Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25322897. [PMID: 40093259 PMCID: PMC11908268 DOI: 10.1101/2025.02.27.25322897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The UK Biobank study has produced thousands of brain imaging-driven phenotypes (IDPs) collected from more than 40,000 genotyped individuals so far, facilitating the investigation of genetic and imaging biomarkers for brain disorders. Motivated by efforts in genetics to integrate gene expression levels with genome-wide association studies (GWASs), recent methods in imaging genetics adopted an instrumental variable (IV) approach to identify causal IDPs for brain disorders. However, several methodological challenges arise with existing methods in achieving causality in imaging genetics, including horizontal pleiotropy and high dimensionality of candidate IVs. In this work, we propose testing the causality of each brain modality (i.e., structural, functional, and diffusion MRI) for each gene as a useful alternative, which offers an enhanced understanding of the roles of genetic variants and imaging features on behavior by controlling for the pleiotropic effects of IDPs from other imaging modalities. We demonstrate the utility of the proposed method by using Alzheimer's GWAS data from the UK Biobank and the International Genomics of Alzheimer's Project (IGAP) study. Our method is implemented using summary statistics, which is available on GitHub.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jessica Gronsbell
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jun Young Park
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
63
|
Peng J, Tang Q, Li Y, Liu L, Biswal BB, Wang P. Neuromorphic deviations associated with transcriptomic expression and specific cell type in Alzheimer's disease. Sci Rep 2025; 15:7460. [PMID: 40032887 PMCID: PMC11876660 DOI: 10.1038/s41598-025-90872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is known to be associated with cortical anatomical atrophy and neurodegeneration across various brain regions. However, the relationships between brain structural changes in AD and gene expression remain unclear. We perform the morphometric similarity network (MSN) analysis to reveal the consistent cortical structural differences in individuals with AD compared to controls, and investigate the associations between brain-wide gene expression and morphometric changes. Furthermore, we identify abnormally MSN-related genes linked to specific cell types as the major contributors to transcriptomic relationships. MSN-related structural changes are located in the lateral ventral prefrontal cortex, temporal pole and medial prefrontal lobe, which are highly associated with the AD's cognitive decline. Analysis of gene expression shows the spatial correlations between AD-related genes and MSN differences. Examination of cell type-specific signature genes indicates that changes in microglia and neuronal transcriptional profiles largely contribute to AD-specific MSN differences. The study map the disease-specific structural alterations in AD down to the cellular level, offering a novel perspective on the linking surface-level changes to molecular mechanisms.
Collapse
Affiliation(s)
- Jinzhong Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 611731, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 611731, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 611731, China
| | - Lin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 611731, China
| | - Bharat Bhusan Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall, University Height, Newark, NJ, 07102, USA.
| | - Pan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu, 611731, China.
| |
Collapse
|
64
|
Schaible P, Henschel J, Erny D. How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. J Neuroinflammation 2025; 22:60. [PMID: 40033338 PMCID: PMC11877772 DOI: 10.1186/s12974-025-03371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Amyloid-β (Aβ) accumulation and neurofibrillary tangles are two key histological features resulting in progressive and irreversible neuronal loss and cognitive decline. The macrophages of the central nervous system (CNS) belong to the innate immune system and comprise parenchymal microglia and CNS-associated macrophages (CAMs) at the CNS interfaces (leptomeninges, perivascular space and choroid plexus). Microglia and CAMs have received attention as they may play a key role in disease onset and progression e. g., by clearing amyloid beta (Aβ) through phagocytosis. Genome-wide association studies (GWAS) have revealed that human microglia and CAMs express numerous risk genes for AD, further highlighting their potentially critical role in AD pathogenesis. Microglia and CAMs are tightly controlled by environmental factors, such as the host microbiota. Notably, it was further reported that the composition of the gut microbiota differed between AD patients and healthy individuals. Hence, emerging studies have analyzed the impact of gut bacteria in different preclinical mouse models for AD as well as in clinical studies, potentially enabling promising new therapeutic options.
Collapse
Affiliation(s)
- Philipp Schaible
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Henschel
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
65
|
Adewuyi EO, Laws SM. Genomic Characterisation of the Relationship and Causal Links Between Vascular Calcification, Alzheimer's Disease, and Cognitive Traits. Biomedicines 2025; 13:618. [PMID: 40149595 PMCID: PMC11940612 DOI: 10.3390/biomedicines13030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Observational studies suggest a link between vascular calcification and dementia or cognitive decline, but the evidence is conflicting, and the underlying mechanisms are unclear. Here, we investigate the shared genetic and causal relationships of vascular calcification-coronary artery calcification (CAC) and abdominal aortic calcification (AAC)-with Alzheimer's disease (AD), and five cognitive traits. Methods: We analyse large-scale genome-wide association studies (GWAS) summary statistics, using well-regarded methods, including linkage disequilibrium score regression (LDSC), Mendelian randomisation (MR), pairwise GWAS (GWAS-PW), and gene-based association analysis. Results: Our findings reveal a nominally significant positive genome-wide genetic correlation between CAC and AD, which becomes non-significant after excluding the APOE region. CAC and AAC demonstrate significant negative correlations with cognitive performance and educational attainment. MR found no causal association between CAC or AAC and AD or cognitive traits, except for a bidirectional borderline-significant association between AAC and fluid intelligence scores. Pairwise-GWAS analysis identifies no shared causal SNPs (posterior probability of association [PPA]3 < 0.5). However, we find pleiotropic loci (PPA4 > 0.9), particularly on chromosome 19, with gene association analyses revealing significant genes in shared regions, including APOE, TOMM40, NECTIN2, and APOC1. Moreover, we identify suggestively significant loci (PPA4 > 0.5) on chromosomes 1, 6, 7, 9 and 19, implicating pleiotropic genes, including NAV1, IPO9, PHACTR1, UFL1, FHL5, and FOCAD. Conclusions: Current findings reveal limited genetic correlation and no significant causal associations of CAC and AAC with AD or cognitive traits. However, significant pleiotropic loci, particularly at the APOE region, highlight the complex interplay between vascular calcification and neurodegenerative processes. Given APOE's roles in lipid metabolism, neuroinflammation, and vascular integrity, its involvement may link vascular and neurodegenerative disorders, pointing to potential targets for further investigation.
Collapse
Affiliation(s)
- Emmanuel O. Adewuyi
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - Simon M. Laws
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia;
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
66
|
Wang N, Pan Y, Starling SC, Haskell DH, Quintero AC, Kawatani K, Inoue Y, Shue F, Ma X, Aikawa T, Martens YA, Kurti A, Parsons TM, Perkerson RB, Roy B, Raulin A, Ren Y, DeTure M, Dickson DW, Bao H, Han X, Bu G, Kanekiyo T. Neuronal ABCA7 deficiency aggravates mitochondrial dysfunction and neurodegeneration in Alzheimer's disease. Alzheimers Dement 2025; 21:e70112. [PMID: 40145325 PMCID: PMC11947734 DOI: 10.1002/alz.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Loss-of-function variants of the ABCA7 gene are associated with an increased risk of Alzheimer's disease (AD). How neuronal ABCA7 contributes to AD pathogenesis is unknown. METHODS Using neuron-specific Abca7 KO mice (nAbca7-/-) with or without 5×FAD amyloid model background and post mortem AD brains, we investigated AD-related phenotypes through comprehensive approaches including transcriptomics and lipidomics. RESULTS Lipidomics analysis detected altered lipid profiles in the brains and synaptosomes of 5×FAD; nAbca7-/- mice compared to controls. Transcriptomics profiling revealed that neuronal ABCA7 deficiency altered the expression of genes and pathways related to mitochondrial homeostasis and apoptosis, particularly in excitatory neurons. Consistently, synaptosomes isolated from 5×FAD; nAbca7-/- mice showed diminished mitochondria respiration and reduced synaptic protein levels, which is further supported by results from human AD brains. DISCUSSION Our findings reveal that neuronal ABCA7 plays a critical role in mitochondrial homeostasis important for neuronal function and survival in the presence of AD pathology. HIGHLIGHTS Neuronal ABCA7 deficiency exacerbates Aβ pathology and neuronal damage in 5×FAD mice. Neuronal ABCA7 deficiency alters brain transcriptomes and lipidomes of 5×FAD mice. Neuronal ABCA7 deficiency disturbs mitochondria functions in synaptosomes from 5×FAD mice. Neuronal ABCA7 expression associates with genes and pathways related to mitochondrial homeostasis in AD brains.
Collapse
Affiliation(s)
- Ni Wang
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yining Pan
- Department of Public HealthUniversity of North FloridaJacksonvilleFloridaUSA
| | | | | | | | - Keiji Kawatani
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yasuteru Inoue
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Francis Shue
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xiaoye Ma
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Yuka A. Martens
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- SciNeuro PharmaceuticalsRockvilleMarylandUSA
| | - Aishe Kurti
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Bhaskar Roy
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Yingxue Ren
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Michael DeTure
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Hanmei Bao
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Division of Life ScienceThe Hong Kong University of Science and TechnologyClear Water Bay Hong KongChina
| | | |
Collapse
|
67
|
Herrmann MJ, Wuttke A, Breuninger L, Eff J, Ettlinger S, Fischer M, Götzelmann A, Gram A, Pomper LD, Schneider E, Schwitalla L, Siminski N, Spielmann F, Weinmann E, Weyel V, Zeller JBM, Lauer M, Deckert J, Polak T. Functional near-infrared spectroscopy and vagus somatosensory evoked potentials add to the power of established parameters such as poor cognitive performance, dsyosmia and APOe genotype to predict cognitive decline over 8 years in the elderly. J Neural Transm (Vienna) 2025; 132:455-468. [PMID: 39535568 PMCID: PMC11870936 DOI: 10.1007/s00702-024-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's dementia is the main cause of cognitive impairment in people over the age of 65, with Alzheimer's disease starting presumably 10-15 years before the onset of clinical symptoms. It is therefore important to recognize dementia at an early stage and identify possible predictors. The existing methods, like different parameters of ß-Amyloid and Tau quantification in cerebrospinal fluid (CSF) or the living brain by measure of PET, are invasive and expensive. Therefore, the present study investigates the predictive value of a battery of clinical, neuropsychological, and blood parameters as well as two neurophysiological methods (functional near-infrared spectroscopy [fNIRS] and vagus somatosensory evoked potentials [VSEP]) which are easy to perform, less invasive and cost-efficient, for developing cognitive impairments in the elderly.In this longitudinal, prospective study, we enrolled 604 healthy participants between 70 and 77 years of age. The participants were invited back after a mean time interval of 3 years and 11 months, and after 7 years and 8 months, and their cognitive impairments were determined.Here we show that the development of cognitive impairments after approximately 8 years can be predicted not only by previously known risk factors such as ApoE4 risk alleles, dysosmia, or poor cognitive performance at baseline but that latency prolongation in the VSEP and altered functional activation patterns measured by NIRS at baseline also provide additional predictive value.We therefore suggest that both neurophysiological parameters, VSEP and NIRS, should be included in future studies, investigating the prediction of dementia. Dementia ClinicalTrials.gov Identifier: NCT02224326.
Collapse
Affiliation(s)
- Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany.
| | - Alexandra Wuttke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Linda Breuninger
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Judith Eff
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Sophia Ettlinger
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Matthias Fischer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
- SigmaCenter, Weihermatten 1, D-79713, Bad Säckingen, Germany
| | - Andrea Götzelmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Annika Gram
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Laura D Pomper
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
- Counselling Service, Johann Wolfgang Goethe University, Bockenheimer Landstraße 1334, D-60325, Frankfurt, Germany
| | - Evelyn Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Lisa Schwitalla
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Fabian Spielmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Erik Weinmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Viona Weyel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Julia B M Zeller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Martin Lauer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Margarete-Höppel-Platz 1, D-97080, Würzburg, Germany
| |
Collapse
|
68
|
Wang Y, Zhang X, Biverstål H, Bazan NG, Tan S, Li N, Ohshima M, Schultzberg M, Li X. Pro-resolving lipid mediator reduces amyloid-β42-induced gene expression in human monocyte-derived microglia. Neural Regen Res 2025; 20:873-886. [PMID: 38886959 PMCID: PMC11433908 DOI: 10.4103/nrr.nrr-d-23-01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University, New Orleans, LA, USA
| | - Shuai Tan
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Nailin Li
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Makiko Ohshima
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
69
|
An Z, Jiang A, Chen J. Toward understanding the role of genomic repeat elements in neurodegenerative diseases. Neural Regen Res 2025; 20:646-659. [PMID: 38886931 PMCID: PMC11433896 DOI: 10.4103/nrr.nrr-d-23-01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases cause great medical and economic burdens for both patients and society; however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
Collapse
Affiliation(s)
- Zhengyu An
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Aidi Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
70
|
İş Ö, Min Y, Wang X, Oatman SR, Abraham Daniel A, Ertekin‐Taner N. Multi Layered Omics Approaches Reveal Glia Specific Alterations in Alzheimer's Disease: A Systematic Review and Future Prospects. Glia 2025; 73:539-573. [PMID: 39652363 PMCID: PMC11784841 DOI: 10.1002/glia.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative dementia with multi-layered complexity in its molecular etiology. Multiple omics-based approaches, such as genomics, epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics are enabling researchers to dissect this molecular complexity, and to uncover a plethora of alterations yielding insights into the pathophysiology of this disease. These approaches reveal multi-omics alterations essentially in all cell types of the brain, including glia. In this systematic review, we screen the literature for human studies implementing any omics approach within the last 10 years, to discover AD-associated molecular perturbations in brain glial cells. The findings from over 200 AD-related studies are reviewed under four different glial cell categories: microglia, oligodendrocytes, astrocytes and brain vascular cells. Under each category, we summarize the shared and unique molecular alterations identified in glial cells through complementary omics approaches. We discuss the implications of these findings for the development, progression and ultimately treatment of this complex disease as well as directions for future omics studies in glia cells.
Collapse
Affiliation(s)
- Özkan İş
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuhao Min
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| |
Collapse
|
71
|
Humphrey J, Brophy E, Kosoy R, Zeng B, Coccia E, Mattei D, Ravi A, Naito T, Efthymiou AG, Navarro E, De Sanctis C, Flores-Almazan V, Muller BZ, Snijders GJLJ, Allan A, Münch A, Kitata RB, Kleopoulos SP, Argyriou S, Malakates P, Psychogyiou K, Shao Z, Francoeur N, Tsai CF, Gritsenko MA, Monroe ME, Paurus VL, Weitz KK, Shi T, Sebra R, Liu T, de Witte LD, Goate AM, Bennett DA, Haroutunian V, Hoffman GE, Fullard JF, Roussos P, Raj T. Long-read RNA sequencing atlas of human microglia isoforms elucidates disease-associated genetic regulation of splicing. Nat Genet 2025; 57:604-615. [PMID: 40033057 DOI: 10.1038/s41588-025-02099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. Mapping the genetics of gene expression in human microglia has identified several loci associated with disease-associated genetic variants in microglia-specific regulatory elements. However, identifying genetic effects on splicing is challenging because of the use of short sequencing reads. Here, we present the isoform-centric microglia genomic atlas (isoMiGA), which leverages long-read RNA sequencing to identify 35,879 novel microglia isoforms. We show that these isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ancestry meta-analysis of 555 human microglia short-read RNA sequencing samples from 391 donors, and found associations with genetic risk loci in Alzheimer's and Parkinson's disease. We nominate several loci that may act through complex changes in isoform and splice-site usage.
Collapse
Affiliation(s)
- Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Brophy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roman Kosoy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Biao Zeng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Coccia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniele Mattei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ashvin Ravi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatsuhiko Naito
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia G Efthymiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elisa Navarro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Claudia De Sanctis
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Department of Artificial Intelligence & Human Health, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Z Muller
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gijsje J L J Snijders
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Allan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Münch
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Steven P Kleopoulos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stathis Argyriou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Periklis Malakates
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantina Psychogyiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhiping Shao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lot D de Witte
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vahram Haroutunian
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
72
|
Prakash P, Randolph CE, Walker KA, Chopra G. Lipids: Emerging Players of Microglial Biology. Glia 2025; 73:657-677. [PMID: 39688320 PMCID: PMC11784843 DOI: 10.1002/glia.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Lipids are small molecule immunomodulators that play critical roles in maintaining cellular health and function. Microglia, the resident immune cells of the central nervous system, regulate lipid metabolism both in the extracellular environment and within intracellular compartments through various mechanisms. For instance, glycerophospholipids and fatty acids interact with protein receptors on the microglial surface, such as the Triggering Receptor Expressed on Myeloid Cells 2, influencing cellular functions like phagocytosis and migration. Moreover, cholesterol is essential not only for microglial survival but, along with other lipids such as fatty acids, is crucial for the formation, function, and accumulation of lipid droplets, which modulate microglial activity in inflammatory diseases. Other lipids, including acylcarnitines and ceramides, participate in various signaling pathways within microglia. Despite the complexity of the microglial lipidome, only a few studies have investigated the effects of specific lipid classes on microglial biology. In this review, we focus on major lipid classes and their roles in modulating microglial function. We also discuss novel analytical techniques for characterizing the microglial lipidome and highlight gaps in current knowledge, suggesting new directions for future research on microglial lipid biology.
Collapse
Affiliation(s)
- Priya Prakash
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Neuroscience Institute, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | | | | | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug Discovery, Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue UniversityWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare Engineering, Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
73
|
Jąkalski M, Bruhn-Olszewska B, Rychlicka-Buniowska E, Davies H, Sarkisyan D, Siedlar M, Baran J, Węglarczyk K, Jaszczynski J, Ryś J, Gedraitis V, Filipowicz N, Klich-Rączka A, Kilander L, Ingelsson M, Dumanski JP. DNA methylation patterns contribute to changes of cellular differentiation pathways in leukocytes with LOY from patients with Alzheimer´s disease. Cell Mol Life Sci 2025; 82:93. [PMID: 39998604 PMCID: PMC11861481 DOI: 10.1007/s00018-025-05618-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a common and increasing societal problem due to the extending human lifespan. In males, loss of chromosome Y (LOY) in leukocytes is strongly associated with AD. We studied here DNA methylation and RNA expression in sorted monocytes and granulocytes with and without LOY from male AD patients. Through multi-omic analysis, we identified new candidate genes along with those previously associated with AD. Global analyses of DNA methylation in samples with LOY vs. normal state showed that hypomethylation dominated both in granulocytes and monocytes. Our findings highlight LOY-related differences in DNA methylation that occur in gene regulatory regions. Specifically, we observed alterations in key genes involved in leukocyte differentiation: FLI1, involved in early hematopoiesis; RUNX1, essential for blood cell development; RARA, regulating gene expression in response to retinoic acid; CANX, crucial for protein folding; CEBPB, a transcription factor important for immune responses; and MYADM, implicated in cell adhesion and migration. Moreover, protein-protein interaction analysis in granulocytes identified that products of two of these genes, CANX and CEBPB, are key hub proteins. This research underscores the potential of multi-omic approach in pure hematopoietic cell populations to uncover the molecular underpinnings of AD. Finally, our results link previous analysis showing impact of LOY on leukocyte differentiation, LOY-associated transcriptional dysregulation and GWAS studies of LOY.
Collapse
Affiliation(s)
- Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | | | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Janusz Jaszczynski
- Department of Urology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Vilmantas Gedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| | - Alicja Klich-Rączka
- Department and Clinic of Internal Medicine and Gerontology, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jan P Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
74
|
Mhatre-Winters I, Eid A, Blum N, Han Y, Sammoura FM, Wu LJ, Richardson JR. Effects of Pesticide Exposure on Neuroinflammation and Microglial Gene Expression: Relevance to Mechanisms of Alzheimer's Disease Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638293. [PMID: 40027678 PMCID: PMC11870447 DOI: 10.1101/2025.02.14.638293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Alzheimer's disease (AD) is characterized by the presence of amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Previously, we reported serum levels of dichlorodiphenyldichloroethylene (DDE), the primary metabolite of the pesticide dichlorodiphenyltrichloroethane (DDT), were significantly higher in AD patients compared to age-matched controls and that DDT exposure worsened AD pathology in animal models. Objective Here, we investigated the effect of DDT on neuroinflammation in primary mouse microglia (PMG) and C57BL/6J mice. Methods Effects of DDT on inflammation and disease-associated microglia were determined in primary mouse microglia and C57BL/6J mice. Results PMG exposed to DDT (0.5-5.0 µM) elicited a ∼2-3-fold increase in Il-1b mRNA levels, with similar concentration-dependent upregulation in Il-6, Nos2, and Tnfa . These effects were blocked by the sodium channel antagonist tetrodotoxin, demonstrating the role of DDT-microglial sodium channel interactions in mediating this response. Additionally, NOS2 protein levels increased by ∼1.5-2-fold, while TNFa was elevated by 2-4-fold. C57BL/6J male and female mice exposed to DDT (30 mg/kg) demonstrated significantly increased mRNA levels of Nos2 , Il-1b , and Il-6 in the frontal cortex (1.5-2.3-fold), and Nos2 , Il-1b, and Tnfa (1.5-1.8-fold) in the hippocampus. Furthermore, microglial homeostatic genes, Cx3cr1 , P2ry12, and Tmem119 , were downregulated, while stage 1 disease-associated microglia genes were upregulated both in vitro and in vivo . Notably, Apoe and Trem2 were only upregulated in the frontal cortex and hippocampus of females. Conclusion These data indicate that DDT increases neuroinflammation, which may result from direct actions of DDT on microglia, providing a novel pathway by which DDT may contribute to AD risk.
Collapse
|
75
|
Oatman SR, Reddy JS, Atashgaran A, Wang X, Min Y, Quicksall Z, Vanelderen F, Carrasquillo MM, Liu CC, Yamazaki Y, Nguyen TT, Heckman M, Zhao N, DeTure M, Murray ME, Bu G, Kanekiyo T, Dickson DW, Allen M, Ertekin-Taner N. Integrative Epigenomic Landscape of Alzheimer's Disease Brains Reveals Oligodendrocyte Molecular Perturbations Associated with Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637140. [PMID: 40027794 PMCID: PMC11870448 DOI: 10.1101/2025.02.12.637140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) brains are characterized by neuropathologic and biochemical changes that are highly variable across individuals. Capturing epigenetic factors that associate with this variability can reveal novel biological insights into AD pathophysiology. We conducted an epigenome-wide association study of DNA methylation (DNAm) in 472 AD brains with neuropathologic measures (Braak stage, Thal phase, and cerebral amyloid angiopathy score) and brain biochemical levels of five proteins (APOE, amyloid-β (Aβ)40, Aβ42, tau, and p-tau) core to AD pathogenesis. Using a novel regional methylation (rCpGm) approach, we identified 5,478 significant associations, 99.7% of which were with brain tau biochemical measures. Of the tau-associated rCpGms, 93 had concordant associations in external datasets comprising 1,337 brain samples. Integrative transcriptome-methylome analyses uncovered 535 significant gene expression associations for these 93 rCpGms. Genes with concurrent transcriptome-methylome perturbations were enriched in oligodendrocyte marker genes, including known AD risk genes such as BIN1 , myelination genes MYRF, MBP and MAG previously implicated in AD, as well as novel genes like LDB3 . We further annotated the top oligodendrocyte genes in an additional 6 brain single cell and 2 bulk transcriptome datasets from AD and two other tauopathies, Pick's disease and progressive supranuclear palsy (PSP). Our findings support consistent rCpGm and gene expression associations with these tauopathies and tau-related phenotypes in both bulk brain tissue and oligodendrocyte clusters. In summary, we uncover the integrative epigenomic landscape of AD and demonstrate tau-related oligodendrocyte gene perturbations as a common potential pathomechanism across different tauopathies.
Collapse
|
76
|
Kroll F, Donnelly J, Özcan GG, Mackay E, Rihel J. Behavioural pharmacology predicts disrupted signalling pathways and candidate therapeutics from zebrafish mutants of Alzheimer's disease risk genes. eLife 2025; 13:RP96839. [PMID: 39960847 PMCID: PMC11832171 DOI: 10.7554/elife.96839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
By exposing genes associated with disease, genomic studies provide hundreds of starting points that should lead to druggable processes. However, our ability to systematically translate these genomic findings into biological pathways remains limited. Here, we combine rapid loss-of-function mutagenesis of Alzheimer's risk genes and behavioural pharmacology in zebrafish to predict disrupted processes and candidate therapeutics. FramebyFrame, our expanded package for the analysis of larval behaviours, revealed that decreased night-time sleep was common to F0 knockouts of all four late-onset Alzheimer's risk genes tested. We developed an online tool, ZOLTAR, which compares any behavioural fingerprint to a library of fingerprints from larvae treated with 3677 compounds. ZOLTAR successfully predicted that sorl1 mutants have disrupted serotonin signalling and identified betamethasone as a drug which normalises the excessive day-time sleep of presenilin-2 knockout larvae with minimal side effects. Predictive behavioural pharmacology offers a general framework to rapidly link disease-associated genes to druggable pathways.
Collapse
Affiliation(s)
- François Kroll
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Institut de la Vision, Sorbonne UniversitéParisFrance
| | - Joshua Donnelly
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Güliz Gürel Özcan
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
77
|
Gao X, Yin Y, Chen Y, Lu L, Zhao J, Lin X, Wu J, Li Q, Zeng R. Uncovering dark mass in population proteomics: Pan-analysis of single amino acid polymorphism relevant to cognition and aging. CELL GENOMICS 2025; 5:100763. [PMID: 39889701 PMCID: PMC11872527 DOI: 10.1016/j.xgen.2025.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Human proteome data across populations have been analyzed extensively to reveal protein quantitative associations with physiological or pathological states, while the single amino acid polymorphism (SAP) has been rarely investigated. In this work, we introduce a pan-SAP workflow that relies on pan-database searching independent of individual genome sequencing. Using ten cohorts comprising 2,004 individuals related to cognition disorder and aging, we quantify the SAP sites in key proteins, such as apolipoprotein E (APOE) in plasma and cerebrospinal fluid at the proteome level. Specifically, the quantification of heterozygous APOE-C112R, including its abundance and ratio, provides insights into the dosage effect and relationship with cognition disorder, which cannot be interpreted at the genomic level. Furthermore, our approach could precisely track age-related changes in APOE-C112R levels. Taken together, this pan-SAP workflow uncovered existing but hidden SAPs in multi-populations, connecting SAP quantification to disease progression and paving the way for broader proteomic investigations in complex diseases.
Collapse
Affiliation(s)
- Xiaojing Gao
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuanyuan Yin
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yiqian Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ling Lu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Lin
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- National Facility for Protein Science Shanghai (NFPSS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingrun Li
- National Facility for Protein Science Shanghai (NFPSS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Rong Zeng
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China; National Facility for Protein Science Shanghai (NFPSS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
78
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Chepyala SR, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human and mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. Nat Commun 2025; 16:1533. [PMID: 39934151 PMCID: PMC11814087 DOI: 10.1038/s41467-025-56853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. Here we present the comprehensive, age-dependent brain proteome and phosphoproteome across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata and prioritized components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Our analysis of the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identifies potential targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh, India
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Surendhar R Chepyala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xusheng Wang
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, West Haven, CT, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
79
|
Deecke L, Ohlei O, Goldeck D, Homann J, Toepfer S, Demuth I, Bertram L, Pawelec G, Lill CM. Peripheral Immune Profiles in Individuals at Genetic Risk of Amyotrophic Lateral Sclerosis and Alzheimer's Disease. Cells 2025; 14:250. [PMID: 39996723 PMCID: PMC11852917 DOI: 10.3390/cells14040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The immune system plays a crucial role in the pathogenesis of neurodegenerative diseases. Here, we explored whether blood immune cell profiles are already altered in healthy individuals with a genetic predisposition to amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). Using multicolor flow cytometry, we analyzed 92 immune cell phenotypes in the blood of 448 healthy participants from the Berlin Aging Study II. We calculated polygenic risk scores (PGSs) using genome-wide significant SNPs from recent large genome-wide association studies on ALS and AD. Linear regression analyses were then performed of the immune cell types on the PGSs in both the overall sample and a subgroup of older participants (>60 years). While we did not find any significant associations between immune cell subtypes and ALS and AD PGSs when controlling for the false discovery rate (FDR = 0.05), we observed several nominally significant results (p < 0.05) with consistent effect directions across strata. The strongest association was observed with CD57+ CD8+ early-memory T cells and ALS risk (p = 0.006). Other immune cell subtypes associated with ALS risk included PD-1+ CD8+ and CD57+ CD4+ early-memory T cells, non-classical monocytes, and myeloid dendritic cells. For AD, naïve CD57+ CD8+ T cells and mature NKG2A+ natural killer cells showed nominally significant associations. We did not observe major immune cell changes in individuals at high genetic risk of ALS or AD, suggesting they may arise later in disease progression. Additional studies are required to validate our nominally significant findings.
Collapse
Affiliation(s)
- Laura Deecke
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (L.D.); (J.H.)
| | - Olena Ohlei
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (L.D.); (J.H.)
| | - David Goldeck
- Department of Immunology, University of Tübingen, 72076 Tübingen, Germany (G.P.)
| | - Jan Homann
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (L.D.); (J.H.)
| | - Sarah Toepfer
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BCRT—Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, 23562 Lübeck, Germany
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72076 Tübingen, Germany (G.P.)
- Health Sciences North Research Institute of Canada, Sudbury, ON P3E 2H3, Canada
| | - Christina M. Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; (L.D.); (J.H.)
- Ageing and Epidemiology Unit (AGE), School of Public Health, Imperial College London, London W6 8RP, UK
| |
Collapse
|
80
|
Khartabil N, Awaness A. Targeting Amyloid Pathology in Early Alzheimer's: The Promise of Donanemab-Azbt. PHARMACY 2025; 13:23. [PMID: 39998021 PMCID: PMC11859624 DOI: 10.3390/pharmacy13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE The purpose of this review is to examine the potential role of donanemab-azbt in the treatment and management of early-stage Alzheimer's disease (AD), with a focus on its efficacy, safety, and clinical relevance based on data from key clinical trials. DATA SOURCES A comprehensive literature search of PubMed was conducted using relevant keywords such as "donanemab", "Alzheimer's disease", "Kisunla", "TRAILBLAZER clinical trials", and "amyloid-related imaging abnormalities (ARIA)". Additional data were extracted from clinical trial records (clinicaltrials.gov), conference abstracts, and product monographs. STUDY SELECTION AND DATA EXTRACTION Only English-language studies conducted in human populations were included. Clinical trials and peer-reviewed studies detailing the efficacy, safety, and mechanistic insights of donanemab-azbt were prioritized. DATA SYNTHESIS Key findings from the TRAILBLAZER series of clinical trials highlighted the potential of donanemab-azbt in slowing cognitive and functional decline in early-stage AD: (1) TRAILBLAZER-ALZ (Phase 2): This trial focused on participants with intermediate levels of tau protein. Results demonstrated a statistically significant slowing of cognitive and functional decline. (2) TRAILBLAZER-ALZ 2 (Phase 3): A large-scale, randomized, double-blind, placebo-controlled study confirmed the efficacy of donanemab-azbt in reducing amyloid plaque accumulation and cognitive decline. Key results included a 35% slowing of decline on the Integrated Alzheimer's Disease Rating Scale (iADRS) and a 36% slowing on the Clinical Dementia Rating-Sum of Boxes (CDR-SB). Additional secondary outcomes showed improvements in activities of daily living and reduced risk of disease progression. (3) TRAILBLAZER-ALZ 3: This ongoing trial is evaluating donanemab's potential in delaying or preventing Alois Alzheimer in cognitively normal individuals with amyloid plaques, broadening the scope of early intervention strategies. (4) TRAILBLAZER-ALZ 4: A head-to-head comparison with aducanumab revealed superior amyloid plaque clearance with donanemab. (5) TRAILBLAZER-ALZ 5: Currently recruiting, this trial aims to evaluate safety and efficacy across diverse populations with varying tau levels and comorbidities. (6) TRAILBLAZER-ALZ 6 (Phase 3b): This trial investigates modified dosing regimens to reduce ARIA while maintaining efficacy, particularly in populations with genetic risk factors like ApoE ε4 homozygotes. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Donanemab-azbt represents a promising treatment option for patients with early-stage AD. It specifically targets and reduces amyloid beta plaques, a hallmark of the disease, potentially slowing progression and preserving cognitive function. However, its administration requires careful patient selection, including genetic testing for ApoE ε4 status, to mitigate risks of ARIA. Furthermore, the findings emphasize the importance of close monitoring during treatment. CONCLUSIONS Donanemab-azbt offers a new avenue for managing early-stage AD, showing promise in reducing amyloid burden and slowing cognitive decline. While its efficacy and safety have been demonstrated in clinical trials, further research is essential to validate long-term outcomes, assess effectiveness across diverse populations, and refine dosing strategies to minimize side effects. With continued investigation, donanemab-azbt could significantly impact the clinical landscape of AD treatment.
Collapse
Affiliation(s)
- Nadia Khartabil
- School of Pharmacy, West Coast University, Anaheim, CA 92801, USA;
| | | |
Collapse
|
81
|
Lee L, Walker R, Whiteley W. Assessing the role of vascular risk factors in dementia: Mendelian randomization meta-analysis and comparison with observational estimates. F1000Res 2025; 11:565. [PMID: 40046004 PMCID: PMC11880757 DOI: 10.12688/f1000research.121604.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Background Although observational studies demonstrate that higher levels of vascular risk factors are associated with an increased risk of dementia, these associations might be explained by confounding or other biases. Mendelian randomization (MR) uses genetic instruments to test causal relationships in observational data. We sought to determine if genetically predicted modifiable risk factors (type 2 diabetes mellitus, low density lipoprotein cholesterol, high density lipoprotein cholesterol, total cholesterol, triglycerides, systolic blood pressure, diastolic blood pressure, body mass index, and circulating glucose) are associated with dementia by meta-analysing published MR studies. Secondary objectives were to identify heterogeneity in effect estimates across primary MR studies and to compare meta-analysis results with observational studies. Methods MR studies were identified by systematic search of Web of Science, OVID and Scopus. We selected primary MR studies investigating the modifiable risk factors of interest. Only one study from each cohort per risk factor was included. A quality assessment tool was developed to primarily assess the three assumptions of MR for each MR study. Data were extracted on study characteristics, exposure and outcome, effect estimates per unit increase, and measures of variation. Effect estimates were pooled to generate an overall estimate, I 2 and Cochrane Q values using fixed-effect model. Results We screened 5211 studies and included 12 primary MR studies after applying inclusion and exclusion criteria. Higher genetically predicted body mass index was associated with a higher odds of dementia (OR 1.03 [1.01, 1.05] per 5 kg/m 2 increase, one study, p=0.00285). Fewer hypothesized vascular risk factors were supported by estimates from MR studies than estimates from meta-analyses of observational studies. Conclusion Genetically predicted body mass index was associated with an increase in risk of dementia.
Collapse
Affiliation(s)
- Liam Lee
- University of Edinburgh, Edinburgh, UK
| | - Rosie Walker
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - William Whiteley
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
82
|
Dolci G, Cruciani F, Rahaman MA, Abrol A, Chen J, Fu Z, Galazzo IB, Menegaz G, Calhoun VD. AN INTERPRETABLE GENERATIVE MULTIMODAL NEUROIMAGING-GENOMICS FRAMEWORK FOR DECODING ALZHEIMER'S DISEASE. ARXIV 2025:arXiv:2406.13292v3. [PMID: 38947922 PMCID: PMC11213156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Alzheimer's disease (AD) is the most prevalent form of dementia worldwide, encompassing a prodromal stage known as Mild Cognitive Impairment (MCI), where patients may either progress to AD or remain stable. The objective of the work was to capture structural and functional modulations of brain structure and function relying on multimodal MRI data and Single Nucleotide Polymorphisms, also in case of missing views, with the twofold goal of classifying AD patients versus healthy controls and detecting MCI converters. Approach We propose a multimodal DL-based classification framework where a generative module employing Cycle Generative Adversarial Networks was introduced in the latent space for imputing missing data (a common issue of multimodal approaches). Explainable AI method was then used to extract input features' relevance allowing for post-hoc validation and enhancing the interpretability of the learned representations. Main results Experimental results on two tasks, AD detection and MCI conversion, showed that our framework reached competitive performance in the state-of-the-art with an accuracy of 0.926 ± 0.02 and 0.711 ± 0.01 in the two tasks, respectively. The interpretability analysis revealed gray matter modulations in cortical and subcortical brain areas typically associated with AD. Moreover, impairments in sensory-motor and visual resting state networks along the disease continuum, as well as genetic mutations defining biological processes linked to endocytosis, amyloid-beta, and cholesterol, were identified. Significance Our integrative and interpretable DL approach shows promising performance for AD detection and MCI prediction while shedding light on important biological insights.
Collapse
Affiliation(s)
- Giorgio Dolci
- Department of Computer Science, University of Verona, Verona, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Md Abdur Rahaman
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Anees Abrol
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
83
|
Cornelis MC, Fazlollahi A, Bennett DA, Schneider JA, Ayton S. Genetic Markers of Postmortem Brain Iron. J Neurochem 2025; 169:e16309. [PMID: 39918201 PMCID: PMC11804167 DOI: 10.1111/jnc.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
Brain iron (Fe) dyshomeostasis is implicated in neurodegenerative diseases. Genome-wide association studies (GWAS) have identified plausible loci correlated with peripheral levels of Fe. Systemic organs and the brain share several Fe regulatory proteins but there likely exist different homeostatic pathways. We performed the first GWAS of inductively coupled plasma mass spectrometry measures of postmortem brain Fe from 635 Rush Memory and Aging Project (MAP) participants. Sixteen single nucleotide polymorphisms (SNPs) associated with Fe in at least one of four brain regions were measured (p < 5 × 10-8). Promising SNPs (p < 5 × 10-6) were followed up for replication in published GWAS of blood, spleen, and brain imaging Fe traits and mapped to candidate genes for targeted cortical transcriptomic and epigenetic analysis of postmortem Fe in MAP. Results for SNPs previously associated with other Fe traits were also examined. Ninety-eight SNPs associated with postmortem brain Fe were at least nominally (p < 0.05) associated with one or more related Fe traits. Most novel loci identified had no direct links to Fe regulatory pathways but rather endoplasmic reticulum-Golgi trafficking (SORL1, SORCS2, MARCH1, CLTC), heparan sulfate (HS3ST4, HS3ST1), and coenzyme A (SLC5A6, PANK3); supported by nearest gene function and omic analyses. We replicated (p < 0.05) several previously published Fe loci mapping to candidate genes in cellular and systemic Fe regulation. Finally, novel loci (BMAL, COQ5, SLC25A11) and replication of prior loci (PINK1, PPIF, LONP1) lend support to the role of circadian rhythms and mitochondria function in Fe regulation more generally. In summary, we provide support for novel loci linked to pathways that may have greater relevance to brain Fe accumulation; some of which are implicated in neurodegeneration. However, replication of a subset of prior loci for blood Fe suggests that genetic determinants or biological pathways underlying Fe accumulation in the brain are not completely distinct from those of Fe circulating in the periphery.
Collapse
Affiliation(s)
- Marilyn C. Cornelis
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
- Queensland Brain InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | | | - Scott Ayton
- The Florey Institute of Neuroscience and Mental HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
84
|
Matsumoto M, Gomez-Soler M, Lombardi S, Lechtenberg BC, Pasquale EB. Missense mutations of the ephrin receptor EPHA1 associated with Alzheimer's disease disrupt receptor signaling functions. J Biol Chem 2025; 301:108099. [PMID: 39706267 PMCID: PMC11773478 DOI: 10.1016/j.jbc.2024.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Missense mutations in the EPHA1 receptor tyrosine kinase have been identified in Alzheimer's patients. To gain insight into their potential role in disease pathogenesis, we investigated the effects of four of these mutations. We show that the P460L mutation in the second fibronectin type III (FN2) domain drastically reduces EPHA1 cell surface localization while increasing tyrosine phosphorylation of the cell surface-localized receptor. The R791H mutation in the kinase domain abolishes EPHA1 tyrosine phosphorylation, indicating abrogation of kinase-dependent signaling. Furthermore, both mutations decrease EPHA1 phosphorylation on S906 in the kinase-SAM linker region, suggesting impairment of a noncanonical form of signaling regulated by serine/threonine kinases. The R492Q mutation, also in the FN2 domain, has milder effects than the P460L mutation while the R926C mutation in the SAM domain increases S906 phosphorylation. We also found that EPHA1 undergoes constitutive proteolytic cleavage in the FN2 domain, generating a soluble 55 kDa N-terminal fragment containing the ligand-binding domain and a transmembrane 60 kDa C-terminal fragment. The 60 kDa WT fragment is phosphorylated on both tyrosine residues and S906, suggesting signaling functions. The P460L mutant 60 kDa fragment undergoes proteasomal degradation and the R791H mutant fragment lacks tyrosine phosphorylation and has decreased S906 phosphorylation. These findings advance our understanding of EPHA1 signaling mechanisms and support the notion that alterations in EPHA1 signaling due to missense mutations contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Mike Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sara Lombardi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Bernhard C Lechtenberg
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
85
|
Yi D, Byun MS, Park J, Kim J, Jung G, Ahn H, Lee J, Lee Y, Kim YK, Kang KM, Sohn C, Liu S, Huang Y, Saykin AJ, Lee DY, Nho K, for the KBASE research group. Tau pathway-based gene analysis on PET identifies CLU and FYN in a Korean cohort. Alzheimers Dement 2025; 21:e14416. [PMID: 39625110 PMCID: PMC11848168 DOI: 10.1002/alz.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION The influence of genetic variation on tau protein aggregation, a key factor in Alzheimer's disease (AD), remains not fully understood. We aimed to identify novel genes associated with brain tau deposition using pathway-based candidate gene association analysis in a Korean cohort. METHODS We analyzed data for 146 older adults from the well-established Korean AD continuum cohort (Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer's Disease; KBASE). Fifteen candidate genes related to both tau pathways and AD were selected. Association analyses were performed using PLINK: A tool set for whole-genome association and population-based linkage analyses (PLINK) on tau deposition measured by 18F-AV-1451 positron emission tomography (PET) scans, with additional voxel-wise analysis conducted using Statistical Parametric Mapping 12 (SPM12). RESULTS CLU and FYN were significantly associated with tau deposition, with the most significant single-nucleotide polymorphisms (SNPs) being rs149413552 and rs57650567, respectively. These SNPs were linked to increased tau across key brain regions and showed additive effects with apolipoprotein E (APOE) ε4. DISCUSSION CLU and FYN may play specific roles in tau pathophysiology, offering potential targets for biomarkers and therapies. HIGHLIGHTS Gene-based analysis identified CLU and FYN as associated with tau deposition on positron emission tomography (PET). CLU rs149413552 and FYN rs57650567 were associated with brain tau deposition. rs149413552 and rs57650567 were associated with structural brain atrophy. CLU rs149413552 was associated with immediate verbal memory. CLU and FYN may play specific roles in tau pathophysiology.
Collapse
Affiliation(s)
- Dahyun Yi
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Min Soo Byun
- Department of NeuropsychiatrySeoul National University HospitalSeoulSouth Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
| | - Jong‐Ho Park
- Precision Medicine CenterSeoul National University Bundang HospitalSeongnam‐siGyeonggi‐doSouth Korea
| | - Jong‐Won Kim
- Department of Laboratory Medicine and GeneticsSamsung Medical CenterSungkyunkwan University School of MedicineGangnam‐guSeoulSouth Korea
| | - Gijung Jung
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Hyejin Ahn
- Interdisciplinary Program of Cognitive ScienceSeoul National University College of HumanitiesGwanak‐guSeoulSouth Korea
| | - Jun‐Young Lee
- Department of PsychiatrySeoul National University Boramae Medical Center, Dongjak‐guSeoulSouth Korea
| | - Yun‐Sang Lee
- Department of Nuclear MedicineSeoul National University College of MedicineJongro‐guSeoulSouth Korea
| | - Yu Kyeong Kim
- Department of Nuclear MedicineSeoul National University Boramae Medical Center, Dongjak‐guSeoulSouth Korea
| | - Koung Mi Kang
- Department of RadiologySeoul National University Hospital, Jongro‐guSeoulSouth Korea
- Department of RadiologySeoul National University College of Medicine, Jongro‐guSeoulSouth Korea
| | - Chul‐Ho Sohn
- Department of RadiologySeoul National University Hospital, Jongro‐guSeoulSouth Korea
| | - Shiwei Liu
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yen‐Ning Huang
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andrew J. Saykin
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoulSouth Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoulSouth Korea
- Department of PsychiatrySeoul National University College of MedicineSeoulSouth Korea
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
- Center for NeuroimagingDepartment of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | | |
Collapse
|
86
|
Moura S, Nasciben LB, Ramirez AM, Coombs L, Rivero J, Van Booven DJ, DeRosa BA, Hamilton‐Nelson KL, Whitehead PL, Adams LD, Starks TD, Mena PR, Illanes‐Manrique M, Tejada S, Byrd GS, Cornejo‐Olivas MR, Feliciano‐Astacio BE, Nuytemans K, Wang L, Pericak‐Vance MA, Dykxhoorn DM, Rajabli F, Griswold AJ, Young JI, Vance JM. Comparing Alzheimer's genes in African, European, and Amerindian induced pluripotent stem cell-derived microglia. Alzheimers Dement 2025; 21:e70031. [PMID: 40008916 PMCID: PMC11863361 DOI: 10.1002/alz.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) studies in Alzheimer's disease (AD) demonstrate ancestry-specific loci. Previous studies in the regulatory architecture have only been conducted in Europeans (EUs), thus studies in additional ancestries are needed. Given the prevalence of AD genes expressed in microglia, we initiated our studies in induced pluripotent stem cell (iPSC) -derived microglia. METHODS We created iPSC-derived microglia from 13 individuals of either high Amerindian (AI), African (AF), or EU global ancestry, including both AD and controls. RNA-seq, ATAC-seq, and pathway analyses were compared between ancestries in both AD and non-AD genes. RESULTS Twelve AD genes were differentially expressed genes (DEGs) and/or accessible between ancestries, including ABI3, CTSB, and MS4A6A. A total of 5% of all genes had differential ancestral expression, but differences in accessibility were less than 1%. The DEGs were enriched in known AD pathways. DISCUSSION This resource will be valuable in evaluating AD in admixed populations and other neurological disorders and understanding the AD risk differences between populations. HIGHLIGHTS First comparison of the genomics of AI, AF, and EU microglia. Report differences in expression and accessibility of AD genes between ancestries. Ancestral expression differences are greater than differences in accessibility. Good transcriptome correlation was seen between brain and iPSC-derived microglia. Differentially expressed AD genes were in known AD pathways.
Collapse
Affiliation(s)
- Sofia Moura
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Luciana Bertholim Nasciben
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Aura M. Ramirez
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Lauren Coombs
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Joe Rivero
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Derek J. Van Booven
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Brooke A. DeRosa
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Kara L. Hamilton‐Nelson
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Patrice L. Whitehead
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Larry D. Adams
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Takiyah D. Starks
- Maya Angelou Center for Health EquityWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Pedro R. Mena
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Maryenela Illanes‐Manrique
- Neurogenetics Working GroupUniversidad Científica del SurVilla EL SalvadorPeru
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
| | - Sergio Tejada
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Goldie S. Byrd
- Maya Angelou Center for Health EquityWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Mario R. Cornejo‐Olivas
- Neurogenetics Working GroupUniversidad Científica del SurVilla EL SalvadorPeru
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurológicasLimaPeru
| | | | - Karen Nuytemans
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Liyong Wang
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Margaret A. Pericak‐Vance
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Derek M. Dykxhoorn
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Farid Rajabli
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Anthony J. Griswold
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Juan I. Young
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
87
|
Krishnamurthy HK, Jayaraman V, Krishna K, Wang T, Bei K, Changalath C, Rajasekaran JJ. An overview of the genes and biomarkers in Alzheimer's disease. Ageing Res Rev 2025; 104:102599. [PMID: 39612989 DOI: 10.1016/j.arr.2024.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and neurodegenerative disease characterized by neurofibrillary tangles (NFTs) and amyloid plaque. Familial AD is caused by mutations in the APP, PSEN1, and PSEN2 genes and these mutations result in the early onset of the disease. Sporadic AD usually affects older adults over the age of 65 years and is, therefore classified as late-onset AD (LOAD). Several risk factors associated with LOAD including the APOE gene have been identified. Moreover, GWAS studies have identified a wide array of genes and polymorphisms that are associated with LOAD risk. Currently, the diagnosis of AD involves the evaluation of memory and personality changes, cognitive impairment, and medical and family history to rule out other diseases. Laboratory tests to assess the biomarkers in the body fluids as well as MRI, CT, and PET scans to analyze the presence of plaques and NFTs are also included in the diagnosis of AD. It is important to diagnose AD before the onset of clinical symptoms, i.e. during the preclinical stage, to delay the progression and for better management of the disease. Research has been conducted to identify biomarkers of AD in the CSF, serum, saliva, and urine during the preclinical stage. Current research has identified several biomarkers and potential biomarkers in the body fluids that enhance diagnostic accuracy. Aside from genetics, other factors such as diet, physical activity, and lifestyle factors may influence the risk of developing AD. Clinical trials are underway to find potential biomarkers, diagnostic measures, and treatments for AD mainly in the preclinical stage. This review provides an overview of the genes and biomarkers of AD.
Collapse
Affiliation(s)
| | | | - Karthik Krishna
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Tianhao Wang
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, United States of America.
| | | | | |
Collapse
|
88
|
Fu X, Quan S, Liang W, Li Y, Cai H, Ren Z, Xu Y, Wang Z, Jia L. FOXP1 is a Transcription Factor for the Alzheimer's Disease Risk Gene SORL1. J Neurochem 2025; 169:e70011. [PMID: 39902677 DOI: 10.1111/jnc.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/08/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Sortilin-related receptor 1 (SORL1) is a risk gene of Alzheimer's disease (AD), and some protein-truncating (PTV) and rare missense variants causing the loss of function of SORL1 contribute to AD pathogenesis. SORL1 is an endosomal receptor that interacts with multiple protein sorting complexes to facilitate the transport of various cargoes through the endolysosomal network (ELN). However, the regulatory mechanisms governing SORL1 expression remain unknown. Through biochemical methods, we identified Forkhead Box P1 (FOXP1) as a binding protein to the minimal promoter region of SORL1 gene. Silencing FOXP1 using siRNA significantly decreased the activity of the SORL1 minimal promoter and reduced SORL1 protein and mRNA levels in the neuroblastoma cell line SH-SY5Y. Additionally, using 5xFAD mouse models of AD, we observed significantly decreased FOXP1 and SORL1 expression in neurons within the prefrontal cortex. Disruption of ELN and the autophagy degradation system by bafilomycin A1 (BafA1) appeared to be a specific condition to suppress FOXP1 and hence SORL1 in SH-SY5Y cells. These findings highlight the critical role of FOXP1 in regulating SORL1 expression and suggest that FOXP1 could be a potential target to maintain SORL1 expression for AD prevention and therapy.
Collapse
Affiliation(s)
- Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenping Liang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
89
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
90
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
91
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
92
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
93
|
Zheng Y, Yu X, Li W, Wu F, Gu Y, Liu K, Tao S, Liu Y, Wang Q. HLA is a potent immunoinflammatory target in asymptomatic Alzheimer's disease. Neuroscience 2025; 565:386-398. [PMID: 39571960 DOI: 10.1016/j.neuroscience.2024.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease, neuroinflammation is an early pathological feature of AD. However, the alteration of the immune microenvironment in asymptomatic AD was not fully explained. In this study, we aimed to utilize the transcriptome data of AD patients in public databases to reveal the change of immune microenvironment in asymptomatic AD and screen the potential drug targets. A series of bioinformatics analyses were done, including differentially expressed genes (DEGs) screening, enrichment analysis, PPI network construction, and hub gene identification. Meanwhile, the selected hub genes were validated in APP/PS-1(AD) mice. Importantly, seven enrichment pathways and eight hub genes associated with inflammation were identified in asymptomatic AD. Correspondingly, more hub genes were increased in the hippocampus in AD mice compared to the other four brain regions. Accompanied by the activation of microglia and astrocytes, the inflammatory cytokines were increased in the hippocampus of AD mice. Subsequently, the relationship between HLA-C and inflammation was evaluated in AD mice. HLA-C was correlated with the activation of microglia, and HLA-DRB1 with IL-6 in the hippocampus. Moreover, HLA-C is expressed in the microglia cells and astrocytes. Further, five FDA-approved drugs (Itrazole, Dfo, Syrosingopine, Cefoperazone, and Pradaxa) were predicted as the common drug targeting HLA-C and HLA-DRB1 by molecular docking. Taken together, the results revealed the changes in the immune microenvironment of asymptomatic AD and provided a new perspective for the development of anti-inflammatory drugs for AD early treatment.
Collapse
Affiliation(s)
- Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Xiaobo Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, PR China
| | - Wenwen Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Fan Wu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yunlu Gu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Keyao Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, PR China
| | - Yue Liu
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, PR China; Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Qian Wang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou 221009, PR China.
| |
Collapse
|
94
|
Penati S, Brioschi S, Cai Z, Han CZ, Colonna M. Mechanisms and environmental factors shaping the ecosystem of brain macrophages. Front Immunol 2025; 16:1539988. [PMID: 39925814 PMCID: PMC11802581 DOI: 10.3389/fimmu.2025.1539988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Brain macrophages encompass two major populations: microglia in the parenchyma and border-associated macrophages (BAMs) in the extra-parenchymal compartments. These cells play crucial roles in maintaining brain homeostasis and immune surveillance. Microglia and BAMs are phenotypically and epigenetically distinct and exhibit highly specialized functions tailored to their environmental niches. Intriguingly, recent studies have shown that both microglia and BAMs originate from the same myeloid progenitor during yolk sac hematopoiesis, but their developmental fates diverge within the brain. Several works have partially unveiled the mechanisms orchestrating the development of microglia and BAMs in both mice and humans; however, many questions remain unanswered. Defining the molecular underpinnings controlling the transcriptional and epigenetic programs of microglia and BAMs is one of the upcoming challenges for the field. In this review, we outline current knowledge on ontogeny, phenotypic diversity, and the factors shaping the ecosystem of brain macrophages. We discuss insights garnered from human studies, highlighting similarities and differences compared to mice. Lastly, we address current research gaps and potential future directions in the field. Understanding how brain macrophages communicate with their local environment and how the tissue instructs their developmental trajectories and functional features is essential to fully comprehend brain physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Silvia Penati
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Claudia Z. Han
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
95
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera J, Rodríguez D, Naidoo V. The impact of genetic variability on Alzheimer's therapies: obstacles for pharmacogenetic progress. Expert Opin Drug Metab Toxicol 2025:1-28. [PMID: 39835706 DOI: 10.1080/17425255.2024.2433626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice. AREAS COVERED This article analyzes the pharmacogenetic apparatus made up of pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes responsible for the efficacy and safety of pharmacological treatment, the impact of genetic load on the outcome of multifactorial treatments, and practical aspects for the effective use of PGx. EXPERT OPINION Over 120 genes are closely associated with AD. There is an accumulation of cerebrovascular (CVn) and neurodegenerative (ADn) genes in AD. APOE-4 carriers accumulate more deleterious genetic load related to other CVn and ADn genes, develop the disease earlier, and are at a biological disadvantage compared to APOE-4 non-carriers. CYP2D6-PMs and APOE-4 carriers are the worst responders to anti-dementia drugs. Some limitations hinder the implementation of PGx in clinical practice, including lack of pharmacogenetic information for many drugs, low number of genes in PGx screening protocols, and educational deficiencies in the medical community regarding PGx and genomic medicine.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Jairo Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Daniel Rodríguez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Vinogran Naidoo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
96
|
Rottner AK, Lundin A, Li S, Firth M, Maresca M, Sienski G. Optimized prime editing of the Alzheimer's disease-associated APOE4 mutation. Stem Cell Reports 2025; 20:102372. [PMID: 39642875 PMCID: PMC11784477 DOI: 10.1016/j.stemcr.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024] Open
Abstract
Gene editing strategies to safely and robustly modify the Alzheimer's disease-associated APOE4 isoform are still lacking. Prime editing (PE) enables the precise introduction of genetic variants with minimal unintended editing and without donor templates. However, it requires optimization for each target site and has not yet been applied to APOE4 gene editing. Here, we screened PE guide RNA (pegRNA) parameters and PE systems for introducing the APOE4 variant and applied the optimized PE strategy to generate disease-relevant human induced pluripotent stem cell models. We show that introducing a single-nucleotide difference required for APOE4 correction inhibits PE activity. To advance efficient and robust genome engineering of precise genetic variants, we further present a reliable PE enrichment strategy based on diphtheria toxin co-selection. Our work provides an optimized and reproducible genome engineering pipeline to generate APOE4 disease models and outlines novel strategies to accelerate genome editing in cellular disease model generation.
Collapse
Affiliation(s)
- Antje K Rottner
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundin
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Songyuan Li
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
97
|
Matera A, Compagnion AC, Pedicone C, Kotah JM, Ivanov A, Monsorno K, Labouèbe G, Leggio L, Pereira-Iglesias M, Beule D, Mansuy-Aubert V, Williams TL, Iraci N, Sierra A, Marro SG, Goate AM, Eggen BJL, Kerr WG, Paolicelli RC. Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus. Immunity 2025; 58:197-217.e13. [PMID: 39657671 DOI: 10.1016/j.immuni.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
The gene inositol polyphosphate-5-phosphatase D (INPP5D), which encodes the lipid phosphatase SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is associated with the risk of Alzheimer's disease (AD). How it influences microglial function and brain physiology is unclear. Here, we showed that SHIP1 was enriched in early stages of healthy brain development. By combining in vivo loss-of-function approaches and proteomics, we discovered that mice conditionally lacking microglial SHIP1 displayed increased complement and synapse loss in the early postnatal brain. SHIP1-deficient microglia showed altered transcriptional signatures and abnormal synaptic pruning that was dependent on the complement system. Mice exhibited cognitive defects in adulthood only when microglial SHIP1 was depleted early postnatally but not at later stages. Induced pluripotent stem cell (iPSC)-derived microglia lacking SHIP1 also showed increased engulfment of synaptic structures. These findings suggest that SHIP1 is essential for proper microglia-mediated synapse remodeling in the healthy developing brain. Disrupting this process has lasting behavioral effects and may be linked to vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Pedicone
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marta Pereira-Iglesias
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Barrio Sarriena s/n, Leioa, Spain
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Barrio Sarriena, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain
| | - Samuele G Marro
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - William G Kerr
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
98
|
Liu S, Cho MY, Huang YN, Park T, Chaudhuri S, Rosewood TJ, Bice PJ, Chung D, Bennett DA, Ertekin-Taner N, Saykin AJ, Nho K. Multi-Omics Analysis for Identifying Cell-Type-Specific Druggable Targets in Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25320199. [PMID: 39830273 PMCID: PMC11741481 DOI: 10.1101/2025.01.08.25320199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Analyzing disease-linked genetic variants via expression quantitative trait loci (eQTLs) is important for identifying potential disease-causing genes. Previous research prioritized genes by integrating Genome-Wide Association Study (GWAS) results with tissue-level eQTLs. Recent studies have explored brain cell type-specific eQTLs, but they lack a systematic analysis across various Alzheimer's disease (AD) GWAS datasets, nor did they compare effects between tissue and cell type levels or across different cell type-specific eQTL datasets. In this study, we integrated brain cell type-specific eQTL datasets with AD GWAS datasets to identify potential causal genes at the cell type level. Methods To prioritize disease-causing genes, we used Summary Data-Based Mendelian Randomization (SMR) and Bayesian Colocalization (COLOC) to integrate AD GWAS summary statistics with cell-type-specific eQTLs. Combining data from five AD GWAS, three single-cell eQTL datasets, and one bulk tissue eQTL meta-analysis, we identified and confirmed both novel and known candidate causal genes. We investigated gene regulation through enhancer activity using H3K27ac and ATAC-seq data, performed protein-protein interaction and pathway enrichment analyses, and conducted a drug/compound enrichment analysis with the Drug Signatures Database (DSigDB) to support drug repurposing for AD. Results We identified 27 candidate causal genes for AD using cell type-specific eQTL datasets, with the highest numbers in microglia, followed by excitatory neurons, astrocytes, inhibitory neurons, oligodendrocytes, and oligodendrocyte precursor cells (OPCs). PABPC1 emerged as a novel astrocyte-specific gene. Our analysis revealed protein-protein interaction (PPI) networks for these causal genes in microglia and astrocytes. We found the "regulation of aspartic-type peptidase activity" pathway being the most enriched among all the causal genes. AD-risk variants associated with candidate causal gene PABPC1 is located near or within enhancers only active in astrocytes. We classified the genes into three drug tiers and identified druggable interactions, with imatinib mesylate emerging as a key candidate. A drug-target gene network was created to explore potential drug targets for AD. Conclusions We systematically prioritized AD candidate causal genes based on cell type-specific molecular evidence. The integrative approach enhances our understanding of molecular mechanisms of AD-related genetic variants and facilitates the interpretation of AD GWAS results.
Collapse
Affiliation(s)
- Shiwei Liu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Min Young Cho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
- Sungkyunkwan University, Seoul, Republic of Korea
| | - Yen-Ning Huang
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Tamina Park
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Soumilee Chaudhuri
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Thea Jacobson Rosewood
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Paula J Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, OH, 43210, USA
| | - David A. Bennett
- Department of Neurological Science, Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd. Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, 355 W. 16th Street, Goodman Hall, Suite 4100, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200 Indianapolis, Indiana, 46202, USA
| |
Collapse
|
99
|
Euesden J, Ali M, Robins C, Surendran P, Gormley P, for the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Pulford D, Cruchaga C. Patient stratification by genetic risk in Alzheimer's disease is only effective in the presence of phenotypic heterogeneity. PLoS One 2025; 20:e0310977. [PMID: 39787209 PMCID: PMC11717250 DOI: 10.1371/journal.pone.0310977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
Case-only designs in longitudinal cohorts are a valuable resource for identifying disease-relevant genes, pathways, and novel targets influencing disease progression. This is particularly relevant in Alzheimer's disease (AD), where longitudinal cohorts measure disease "progression," defined by rate of cognitive decline. Few of the identified drug targets for AD have been clinically tractable, and phenotypic heterogeneity is an obstacle to both clinical research and basic science. In four cohorts (n = 7241), we performed genome-wide association studies (GWAS) and Mendelian randomization (MR) to discover novel targets associated with progression and assess causal relationships. We tested opportunities for patient stratification by deriving polygenic risk scores (PRS) for AD risk and severity and tested the value of these scores in predicting progression. Genome-wide association studies identified no loci associated with progression at genome-wide significance (α = 5×10-8); MR analyses provided no significant evidence of an association between cognitive decline in AD patients and protein levels in brain, cerebrospinal fluid (CSF), and plasma. Polygenic risk scores for AD risk did not reliably stratify fast from slow progressors; however, a deeper investigation found that APOE ε4 status predicts amyloid-β and tau positive versus negative patients (odds ratio for an additional APOE ε4 allele = 5.78 [95% confidence interval: 3.76-8.89], P<0.001) when restricting to a subset of patients with available CSF biomarker data. These results provided no evidence for large-effect, common-variant loci involved in the rate of memory decline, suggesting that patient stratification based on common genetic risk factors for progression may have limited utility. Where clinically relevant biomarkers suggest diagnostic heterogeneity, there is evidence that a priori identified genetic risk factors may have value in patient stratification. Mendelian randomization was less tractable due to the lack of large-effect loci, and future analyses with increased samples sizes are needed to replicate and validate our results.
Collapse
Affiliation(s)
- Jack Euesden
- Biostatistics, GSK Pharma R&D, Stevenage, Hertfordshire, United Kingdom
| | - Muhammad Ali
- Washington University School of Medicine, NeuroGenomics and Informatics Center, St. Louis, MO, United States of America
| | - Chloe Robins
- Genomic Sciences, GSK Pharma R&D, Collegeville, PA, United States of America
| | - Praveen Surendran
- Genomic Sciences, GSK Pharma R&D, Stevenage, Hertfordshire, United Kingdom
| | - Padhraig Gormley
- Genomic Sciences, GSK Pharma R&D, Cambridge, MA, United States of America
| | | | - David Pulford
- Genomic Sciences, GSK Pharma R&D, Stevenage, Hertfordshire, United Kingdom
| | - Carlos Cruchaga
- Washington University School of Medicine, NeuroGenomics and Informatics Center, St. Louis, MO, United States of America
| |
Collapse
|
100
|
Elsworthy RJ, Pearce A, Masoudzadeh F, Koska K, Lodhiya H, Meher G, Adjej J, Brookes KJ. OAS1: A Protective Mechanism for Alzheimer's Disease? An Exploration of Data and Possible Mechanisms. Int J Mol Sci 2025; 26:524. [PMID: 39859237 PMCID: PMC11765370 DOI: 10.3390/ijms26020524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The immune system and neuroinflammation are now well established in the aetiology of neurodegeneration. Previous studies of transcriptomic and gene association studies have highlighted the potential of the 2'-5' oligoadenylate synthetase 1 (OAS1) to play a role in Alzheimer's disease. OAS1 is a viral response gene, interferon-induced, dsRNA activated enzyme, which binds RNase L to degrade dsRNA, and has been associated with COVID-19 response. This study explores whether a viral defence gene could play a vital role in neurodegeneration pathology. The genotyping of five SNPs across the OAS1 locus was conducted in the Brains for Dementia Research (BDR) Cohort for association with AD. RNA-sequencing data were explored for differences in OAS1 gene expression between phenotypes and genotypes. Finally, levels of dsRNA were measured in control cell lines, prior to and after exposure to amyloid oligomers and in cells harbouring a dementia-relevant mutation. No association of any of the OAS1 SNPs investigated were associated with the AD phenotype in the BDR cohort. However, gene expression data supported the previous observation that the minor allele haplotype was associated with higher levels of the OAS1 gene expression and the presence of an alternative transcript. Further to this, the presence of endogenous dsRNA was found to increase with exposure to amyloid oligomers and in the cell line with a dementia-relevant mutation. The data presented here suggest further exploration of the OAS1 gene in relation to dementia is warranted. Investigations of whether carriers of the protective OAS1 haplotype lower dsRNA presence and in turn lower inflammation and cell death are required to support the role of the gene as a moderator of neurodegeneration.
Collapse
Affiliation(s)
- Richard J. Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Alex Pearce
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| | - Farnoush Masoudzadeh
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| | - Klaudia Koska
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| | - Honey Lodhiya
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| | - Gargi Meher
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| | - Jodelle Adjej
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| | - Keeley J. Brookes
- Department of Biosciences, School of Science & Technology, Nottingham Trent University, Nottingham NG11 8NF, UK
| |
Collapse
|