51
|
Camberlein V, Fleau-Tabey C, Sierocki P, Li L, Gealageas R, Bosc D, Guillaume V, Warenghem S, Leroux F, Rosell M, Cheng K, Medve L, Prigent M, Decanter M, Piveteau C, Biela A, Eveque M, Dumont J, Mpakali A, Giastas P, Herledan A, Couturier C, Haupenthal J, Lesire L, Hirsch AK, Deprez B, Stratikos E, Bouvier M, Deprez-Poulain R. Discovery of the First Selective Nanomolar Inhibitors of Endoplasmic Reticulum Aminopeptidase 2 by Kinetic Target‐Guided Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Virgyl Camberlein
- University of Lille: Universite de Lille M2SV: Drugs and molecules for living systems Lille FRANCE
| | - Charlotte Fleau-Tabey
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living systems Lille FRANCE
| | - Pierre Sierocki
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems LILLE FRANCE
| | - Lenong Li
- University of Illinois at Chicago Microbiology and Immunology chicago UNITED STATES
| | - Ronan Gealageas
- University of Lille: Universite de Lille M2SV: Drugs and molecules for Living Systems Lille FRANCE
| | - Damien Bosc
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Valentin Guillaume
- Institut Pasteur de Lille M2SV: Drugs and molecules for Living Systems Lille FRANCE
| | - Sandrine Warenghem
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Florence Leroux
- INSERM U1177 Drugs and Molecules for Living Systems M2SV Drugs and Moelcules for Living Systems Lille FRANCE
| | - Melissa Rosell
- Universite de Lille M2SV: Drugs and molecules for living systems Lille FRANCE
| | - Keguang Cheng
- University of Lille: Universite de Lille M2SV: Drugs and molecules for Living systems Lille FRANCE
| | - Laura Medve
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living systems Lille FRANCE
| | - Mathilde Prigent
- Pasteur Institute Lille: Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems FRANCE
| | - Myriam Decanter
- Pasteur Institute Lille: Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems FRANCE
| | - Catherine Piveteau
- University of Lille: Universite de Lille M2SV: Drugs and molecules for living systems Lille FRANCE
| | - Alexandre Biela
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Maxime Eveque
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Julie Dumont
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Anastasia Mpakali
- National Centre for Scientific Research-Demokritos: Ethniko Kentro Ereunas Physikon Epistemon Demokritos Protein Chemistry laboratory Athens GREECE
| | - Petros Giastas
- NCSR Demokritos: Ethniko Kentro Ereunas Physikon Epistemon Demokritos Protein Chemistry laboratory Athens GREECE
| | - Adrien Herledan
- INSERM U1177 Drugs and Molecules for Living Systems M2SV: Drugs and Moelcules for Living systems Lille FRANCE
| | - Cyril Couturier
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Jörg Haupenthal
- Helmholtz-Institut fur Pharmazeutische Forschung Saarland HIPS Saarbrücken GERMANY
| | - Laetitia Lesire
- Institut Pasteur de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Anna K Hirsch
- Helmholtz-Institut fur Pharmazeutische Forschung Saarland HIPS Saarbrücken GERMANY
| | - Benoit Deprez
- University of Lille: Universite de Lille M2SV: Drugs and Molecules for Living Systems Lille FRANCE
| | - Efstratios Stratikos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon biochemistry Athens GREECE
| | - Marlene Bouvier
- University of Illinois at Chicago Microbiology and Immunology Chicago UNITED STATES
| | - Rebecca Deprez-Poulain
- University of Lille: Universite de Lille U1177 M2SV Drugs and molecules for Living systems 3 rue du Pr Laguesse 59000 LILLE FRANCE
| |
Collapse
|
52
|
Hopkins JR, MacLachlan BJ, Harper S, Sewell AK, Cole DK. Unconventional modes of peptide-HLA-I presentation change the rules of TCR engagement. DISCOVERY IMMUNOLOGY 2022; 1:kyac001. [PMID: 38566908 PMCID: PMC10917088 DOI: 10.1093/discim/kyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 04/04/2024]
Abstract
The intracellular proteome of virtually every nucleated cell in the body is continuously presented at the cell surface via the human leukocyte antigen class I (HLA-I) antigen processing pathway. This pathway classically involves proteasomal degradation of intracellular proteins into short peptides that can be presented by HLA-I molecules for interrogation by T-cell receptors (TCRs) expressed on the surface of CD8+ T cells. During the initiation of a T-cell immune response, the TCR acts as the T cell's primary sensor, using flexible loops to mould around the surface of the pHLA-I molecule to identify foreign or dysregulated antigens. Recent findings demonstrate that pHLA-I molecules can also be highly flexible and dynamic, altering their shape according to minor polymorphisms between different HLA-I alleles, or interactions with different peptides. These flexible presentation modes have important biological consequences that can, for example, explain why some HLA-I alleles offer greater protection against HIV, or why some cancer vaccine approaches have been ineffective. This review explores how these recent findings redefine the rules for peptide presentation by HLA-I molecules and extend our understanding of the molecular mechanisms that govern TCR-mediated antigen discrimination.
Collapse
Affiliation(s)
- Jade R Hopkins
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| |
Collapse
|
53
|
Papakyriakou A, Mpakali A, Stratikos E. Can ERAP1 and ERAP2 Form Functional Heterodimers? A Structural Dynamics Investigation. Front Immunol 2022; 13:863529. [PMID: 35514997 PMCID: PMC9065437 DOI: 10.3389/fimmu.2022.863529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) play important roles in the generation of antigenic peptides presented by Major Histocompatibility Class I (MHCI) molecules and indirectly regulate adaptive immune responses. Although the discrete function of these enzymes has been extensively characterized, recent reports have suggested that they can also form heterodimers with functional consequences. However, lack of structural characterization of a putative ERAP1/ERAP2 dimer has limited our understanding of its biological role and significance. To address this, we employed computational molecular dynamics calculations to explore the topology of interactions between these two, based on experimentally determined homo-dimerization interfaces observed in crystal structures of ERAP2 or homologous enzymes. Our analysis of 8 possible dimerization models, suggested that the most likely ERAP1/ERAP2 heterodimerization topology involves the exon 10 loop, a non-conserved loop previously implicated in interactions between ERAP1 and the disulfide-bond shuffling chaperone ERp44. This dimerization topology allows access to the active site of both enzymes and is consistent with a previously reported construct in which ERAP1 and ERAP2 were linked by Fos/Jun zipper tags. The proposed model constitutes a tentative structural template to help understand the physiological role and significance of ERAP1/ERAP2 molecular interactions.
Collapse
Affiliation(s)
- Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anastasia Mpakali
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Efstratios Stratikos
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
54
|
Yang Z, Tian H, Bie F, Xu J, Zhou Z, Yang J, Li R, Peng Y, Bai G, Tian Y, Chen Y, Liu L, Fan T, Xiao C, Zheng Y, Zheng B, Wang J, Li C, Gao S, He J. ERAP2 Is Associated With Immune Infiltration and Predicts Favorable Prognosis in SqCLC. Front Immunol 2022; 12:788985. [PMID: 34992605 PMCID: PMC8725995 DOI: 10.3389/fimmu.2021.788985] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Immunotherapy has been proven effective among several human cancer types, including Squamous cell lung carcinoma (SqCLC). ERAP2 plays a pivotal role in peptide trimming of many immunological processes. However, the prognostic role of ERAP2 and its relationship with immune cell infiltration in SqCLC remains unclear. Methods The differential expression of ERAP2 was identified via GEO and TCGA databases. We calculated the impact of ERAP2 on clinical prognosis using the Kaplan-Meier plotter. TIMER was applied to evaluate the abundance of immune cells infiltration and immune markers. SqCLC tissue microarrays containing 190 patients were constructed, and we performed immunohistochemical staining for ERAP2, CD8, CD47, CD68, and PD-L1 to validate our findings in public data. Results In the GEO SqCLC database, ERAP2 was upregulated in patients with better survival (p=0.001). ERAP2 expression in SqCLC was significantly lower than that of matched normal samples (p<0.05) based on TCGA SqCLC data. Higher expression of ERAP2 was significantly associated with better survival in SqCLC patients from TCGA (p=0.007), KM-plotter (p=0.017), and our tissue microarrays (TMAs) (p=0.026). In univariate and multivariate Cox analysis of SqCLC TMAs, high ERAP2 expression was identified as an independent protective factor for SqCLC patients (Univariate Cox, HR=0.659, range 0.454-0.956, p<0.05. Multivariate Cox, HR=0.578, range 0.385-0.866, p<0.05). In TIMER, ERAP2 was positively correlated with several immune markers (CD274, p=1.27E-04; CD68, p=5.88E-08) and immune infiltrating cells (CD8+ T cell, p=4.09E-03; NK cell, p=1.00E-04). In our cohort, ERAP2 was significantly correlated with CD8+ tumor-infiltrating lymphocytes (TILs) (p=0.0029), and patients with higher ERAP2 expression had a higher percentage of PD-L1 positive patients (p=0.049) and a higher CD8+ TILs level (p=0.036). Conclusions For the first time, our study demonstrates that higher expression of ERAP2 is tightly associated with the immuno-supportive microenvironment and can predict a favorable prognosis in SqCLC. Meanwhile, ERAP2 may be a promising immunotherapeutic target for patients with SqCLC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junhui Yang
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, The University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
55
|
Mpakali A, Georgiadis D, Stratikos E, Giastas P. Inhibitor-Dependent Usage of the S1' Specificity Pocket of ER Aminopeptidase 2. ACS Med Chem Lett 2022; 13:218-224. [PMID: 35178178 PMCID: PMC8842112 DOI: 10.1021/acsmedchemlett.1c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 2 (ERAP2) is an intracellular enzyme involved in the processing of antigenic peptides intended for presentation by major histocompatibility complex class I (MHCI) molecules. Because of its role in regulating immune responses, ERAP2 is an emerging pharmacological target. Phosphinic pseudopeptides are potent transition-state analogue inhibitors of ERAP2. Previous structure-activity studies have revealed a complex but ambiguous relationship between the occupation of putative specificity pockets and the inhibitor efficacy. To address these problems, we solved crystal structures of ERAP2 in complex with two phosphinic pseudotripeptide inhibitors. Both compounds are found in the catalytic site in a canonical orientation for transition-state analogues and utilize the S1 and S2' pockets in a similar fashion. Strikingly, their P1' side chains exhibit different orientations and make interactions with distinct shallow pockets near the ERAP2 active site. These structures suggest that S1' pocket usage in ERAP2 may be inhibitor-dependent and constitute useful starting templates for the further optimization of this class of compounds.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,
| | - Dimitris Georgiadis
- Laboratory
of Organic Chemistry, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Efstratios Stratikos
- National
Centre for Scientific Research Demokritos, Agia Paraskevi, Athens 15341, Greece,Laboratory
of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771 Greece
| | - Petros Giastas
- Department
of Neurobiology, Hellenic Pasteur Institute, Athens 11521, Greece,Department
of Biotechnology, School of Applied Biology & Biotechnology, Agricultural University of Athens, Athens 11855, Greece,
| |
Collapse
|
56
|
Guan W, Nakata K, Sagara A, Iwamoto C, Endo S, Matsuda R, Matsumoto S, Ikenaga N, Shindo K, Moriyama T, Onishi H, Ohuchida K, Oda Y, Nakamura M. ERAP2 is a novel target involved in autophagy and activation of pancreatic stellate cells via UPR signaling pathway. Pancreatology 2022; 22:9-19. [PMID: 34642112 DOI: 10.1016/j.pan.2021.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is characterized by excessive desmoplasia and autophagy-dependent tumorigenic growth. Pancreatic stellate cells (PSCs) as a predominant stromal cell type play a critical role in PDAC biology. We have previously reported that autophagy facilitates PSC activation, however, the mechanism remains unknown. We investigated the mechanism of autophagy in PSC activation. METHODS We compared gene expression profiles between patient-derived PSCs from pancreatic cancer and chronic pancreatitis using a microarray. The stromal expression of target gene in specimen of PDAC patients (n = 63) was analyzed. The effect of target gene on autophagy and activation of PSCs was investigated by small interfering RNAs transfection, and the relationship between autophagy and ER stress was investigated. We analyzed the growth and fibrosis of xenografted tumor by orthotopic models. RESULTS In analysis of gene expression microarray, endoplasmic reticulum aminopeptidase 2 (ERAP2) upregulated in cancer-associated PSCs was identified as the target gene. High stromal ERAP2 expression is associated with a poor prognosis of PDAC patients. Knockdown of ERAP2 inhibited unfolded protein response mediated autophagy, and led to inactivation of PSCs, thereby attenuating tumor-stromal interactions by inhibiting production of IL-6 and fibronectin. In vivo, the promoting effect of PSCs on xenografted tumor growth and fibrosis was inhibited by ERAP2 knockdown. CONCLUSIONS Our findings demonstrate a novel mechanism of PSCs activation regulated by autophagy. ERAP2 as a promising therapeutic target may provide a novel strategy for the treatment of PDAC.
Collapse
Affiliation(s)
- Weiyu Guan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Akiko Sagara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Endo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sokichi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
57
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen-binding groove of an MHC-encoded class I or class II molecule. Insight into the precise composition and biology of self and non-self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large-scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non-self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans AffairsTennessee Valley Healthcare System and the Department of PathologyMicrobiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nicola Ternette
- Centre for Cellular and Molecular PhysiologyNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
58
|
Maggs L, Sadagopan A, Moghaddam AS, Ferrone S. HLA class I antigen processing machinery defects in antitumor immunity and immunotherapy. Trends Cancer 2021; 7:1089-1101. [PMID: 34489208 PMCID: PMC8651070 DOI: 10.1016/j.trecan.2021.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen (HLA) class I antigen-processing machinery (APM) plays a crucial role in the synthesis and expression of HLA class I tumor antigen-derived peptide complexes; the latter mediate the recognition and elimination of malignant cells by cognate T cells. Defects in HLA class I APM component expression and/or function are frequently found in cancer cells, providing them with an immune escape mechanism that has relevance in the clinical course of the disease and in the response to T-cell-based immunotherapy. The majority of HLA class I APM defects (>75%) are caused by epigenetic mechanisms or dysregulated signaling and therefore can be corrected by strategies that counteract the underlying mechanisms. Their application in oncology is likely to improve responses to T-cell-based immunotherapies, including checkpoint inhibition.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Sanjari Moghaddam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
59
|
Piekarska K, Radwan P, Tarnowska A, Wiśniewski A, Radwan M, Wilczyński JR, Malinowski A, Nowak I. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front Immunol 2021; 12:755624. [PMID: 34745129 PMCID: PMC8569704 DOI: 10.3389/fimmu.2021.755624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023] Open
Abstract
The mother's uterine immune system is dominated by uterine natural killer (NK) cells during the first trimester of pregnancy. These cells express killer cell immunoglobulin-like receptors (KIRs) of inhibitory or activating function. Invading extravillous trophoblast cells express HLA-C molecules, and both maternal and paternal HLA-C allotypes are presented to KIRs. Endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the HLA class I immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides to fit into the HLA class I groove. The inability to form the correct HLA class I complexes with the appropriate peptides may result in a lack of immune response by NK cells. The aim of this study was to investigate the role of ERAP1 and ERAP2 polymorphisms in the context of KIR and HLA-C genes in recurrent implantation failure (RIF). In addition, for the first time, we showed the results of ERAP1 and ERAP2 secretion into the peripheral blood of patients and fertile women. We tested a total of 881 women. Four hundred ninety-six females were patients who, together with their partners, participated in in vitro fertilization (IVF). A group of 385 fertile women constituted the control group. Women positive for KIR genes in the Tel AA region and HLA-C2C2 were more prevalent in the RIF group than in fertile women (p/pcorr. = 0.004/0.012, OR = 2.321). Of the ERAP polymorphisms studied, two of them (rs26653 and rs26618) appear to affect RIF susceptibility in HLA-C2-positive patients. Moreover, fertile women who gave birth in the past secreted significantly more ERAP1 than IVF women and control pregnant women (p < 0.0001 and p = 0.0005, respectively). In the case of ERAP2, the opposite result was observed; i.e., fertile women secreted far less ERAP2 than IVF patients (p = 0.0098). Patients who became pregnant after in vitro fertilization embryo transfer (IVF-ET) released far less ERAP2 than patients who miscarried (p = 0.0032). Receiver operating characteristic (ROC) analyses indicate a value of about 2.9 ng/ml of ERAP2 as a point of differentiation between patients who miscarried and those who gave birth to a healthy child. Our study indicates that both ERAP1 and ERAP2 may be involved in processes related to reproduction.
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Agnieszka Tarnowska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian State University in Płock, Płock, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Łódź, Łódź, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers’ Memorial Hospital—Research Institute, Łódź, Poland
- Medical Centre Gynemed, Łódź, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
60
|
Ma Y, Fan D, Xu S, Deng J, Gao X, Guan S, Zhang X, Pan F. Ankylosing Spondylitis Patients Display Aberrant ERAP1 Gene DNA Methylation and Expression. Immunol Invest 2021; 51:1548-1560. [PMID: 34555981 DOI: 10.1080/08820139.2021.1982965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endoplasmic reticulum aminopeptidase 1 (ERAP1) is known to participate in the pathogenesis of ankylosing spondylitis (AS). This study aimed to evaluate the relationship between promoter methylation and mRNA levels of ERAP1 and AS susceptibility. METHODS DNA methylation levels of 100 AS patients and 100 healthy controls (HCs) were tested using a targeted bisulfite sequencing assay. To verify the results of DNA methylation, mRNA levels of ERAP1 were measured in 20 AS patients and HCs used quantitative real-time reverse transcription-polymerase chain reaction. RESULTS The DNA methylation levels of two CpG islands containing 31 loci in ERAP1 promoter were measured. ERAP1_1 (P< .001) and ERAP1_2 (P< .001) islands were significantly hypermethylated in AS patients compared with HCs. In the verification study, the mRNA levels of ERAP1 were significantly decreased in AS patients. The ROC curve analysis showed that the sensitivity, specificity and area under curve were 0.717, 0.737, and 0.779 of differential methylated CpG loci of ERAP1 for AS diagnosis. In AS patients, the methylation levels of EARP1 were associated with family history, non-steroidal anti-inflammatory drugs use, X-ray classification, and clinical manifestations. CONCLUSIONS Our study demonstrated that the ERAP1 gene is significantly hypermethylated, and mRNA levels of EARP1 decreased, in AS patients. Our findings suggested that the aberrant methylation of ERAP1 promoter may be involved in the pathogenesis of AS and could be considered as a diagnostic tool and therapeutic target of AS.Abbreviations AS: Ankylosing Spondylitis; AUC: Area Under Curve; BASDAI: Bath Ankylosing Spondylitis Disease Activity Index; BASFI: Bath Ankylosing Spondylitis Functional Index; CI: Confidence Interval; CpG: Cytosine-guanine Dinucleotide; CRP: C-reactive Protein; ERAP1: Endoplasmic Reticulum Aminopeptidase 1; ESR: Erythrocyte Sedimentation Rate; EWAS: Epigenome-Wide Association Study; HLA: Human Leukocyte Antigen; OR: Odds Ratio; PCR: Polymerase Chain Reaction; ROC: Receiver Operating Characteristic; NSAIDs: Non-Steroidal Anti-Inflammatory Drugs.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Shiyang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
61
|
Chimenti MS, Perricone C, D'Antonio A, Ferraioli M, Conigliaro P, Triggianese P, Ciccacci C, Borgiani P, Perricone R. Genetics, Epigenetics, and Gender Impact in Axial-Spondyloarthritis Susceptibility: An Update on Genetic Polymorphisms and Their Sex Related Associations. Front Genet 2021; 12:671976. [PMID: 34447407 PMCID: PMC8383732 DOI: 10.3389/fgene.2021.671976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Spondyloarthritis (SpA) is a group of chronic inflammatory rheumatic disease that can be divided into predominantly axial or predominantly peripheral involvement, with or without associated psoriasis, inflammatory bowel disease or previous infection. Axial SpA (axSpA) encompasses ankylosing spondylitis (AS) with radiological sacroiliitis, and a type without radiographic sacroiliitis, called “non-radiographic axial SpA” (nr-axSpA). Males and females show large differences in their susceptibility to SpA, such as distinctions in clinical patterns, phenotypes and in therapeutical response, particularly to TNF inhibitors (TNFi). Several studies indicate that AS women have doubled risk to failure TNFi compared with males. This diversity in drugs’ efficacy among women and men may be caused by differences in the balance of sex hormones and in gene-specific expression likely triggered by X-chromosome instability and gene-specific epigenetic modifications. Evidence reported that polymorphisms in microRNAs on X- and other chromosomes, such as miR-146a, miR-155, miR-125a-5p, miR-151a-3p and miR-22-3p, miR-199a-5p could be involved in the different clinical presentation of SpA, as well as disease activity. In addition, association with non−response to TNFi treatment and presence of IRAK3 and CHUCK genes in SpA patients was recently detected. Finally, polymorphisms in genes involved in IL-23/IL-17 pathway, such as in drug pharmacodynamics and pharmacokinetics may have a role in response to TNFi, IL17i, and IL23i. A major understanding of genomic variability could help in the development of new therapeutic targets or in taking advantages of different mechanisms of action of biological drugs. Moving from the multifactorial etiology of disease, the present review aims at evaluating genetic and epigenetic factors and their relationship with sex and bDMARDs response, helping to investigate the different expression among males and females of genes on X- and other chromosomes, as well as mi-RNA, to highlight relationships between sex and occurrence of specific phenotypes and symptoms of the disease. Moreover, the role of the epigenetic modification in relation to immune-regulatory mechanisms will be evaluated.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Rheumatology Unit, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Arianna D'Antonio
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Ferraioli
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Ciccacci
- Unicamillus, Saint Camillus International University of Health Sciences, Rome, Italy.,Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Unit, University of Rome "Tor Vergata", Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
62
|
Saulle I, Vicentini C, Clerici M, Biasin M. Antigen presentation in SARS-CoV-2 infection: the role of class I HLA and ERAP polymorphisms. Hum Immunol 2021; 82:551-560. [PMID: 34116863 PMCID: PMC8108382 DOI: 10.1016/j.humimm.2021.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Given the highly polymorphic nature of Human Leukocyte Antigen (HLA) molecules, it is not surprising that they function as key regulators of the host immune response to almost all invading pathogens, including SARS-CoV-2, the etiological agent responsible for the recent COVID-19 pandemic. Several correlations have already been established between the expression of a specific HLA allele/haplotype and susceptibility/progression of SARS-CoV-2 infection and new ones are continuously emerging. Protective and harmful HLA variants have been described in both mild and severe forms of the disease, but considering the huge amount of existing variants, the data gathered in such a brief span of time are to some extent confusing and contradictory. The aim of this mini-review is to provide a snap-shot of the main findings so far collected on the HLA-SARS-CoV-2 interaction, so as to partially untangle this intricate yarn. As key factors in the generation of antigenic peptides to be presented by HLA molecules, ERAP1 and ERAP2 role in SARS-CoV-2 infection will be revised as well.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy; Department of Pathophysiology and Transplantation, Milan, Italy.
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, Milan, Italy; SM Nascente Scientific Institute, IRCCS, Don C Gnocchi Foundation, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences- L. Sacco, University of Milan, Italy
| |
Collapse
|
63
|
Tsujimoto M, Aoki K, Goto Y, Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases. J Biochem 2021; 169:409-420. [PMID: 33481005 DOI: 10.1093/jb/mvab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023] Open
Abstract
The placental leucine aminopeptidase/insulin-regulated aminopeptidase, endoplasmic reticulum aminopeptidase 1 and endoplasmic reticulum aminopeptidase 2 are part of a distinct subfamily of M1 aminopeptidases termed the 'oxytocinase subfamily'. The subfamily members show molecular diversity due to differential usage of translation initiation sites, alternative splicing and multiple single nucleotide polymorphisms. It is becoming evident that, depending on their intracellular or extracellular location, members of the oxytocinase subfamily play important roles in the maintenance of homeostasis, including the regulation of blood pressure, maintenance of normal pregnancy, retention of memory and trimming of antigenic peptides presented to major histocompatibility complex class I molecules, by acting as either aminopeptidases or binding partners of specific functional proteins in the cells. Based on their molecular diversity and moonlighting protein-like properties, it is conceivable that the subfamily members exert pleiotropic effects during evolution, to become important players in the regulation of homeostasis.
Collapse
Affiliation(s)
- Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Kazuma Aoki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Atsushi Ohnishi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| |
Collapse
|
64
|
Sui L, Guo HC. ERAP1 binds peptide C-termini of different sequences and/or lengths by a common recognition mechanism. Immunobiology 2021; 226:152112. [PMID: 34247019 DOI: 10.1016/j.imbio.2021.152112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 01/25/2023]
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) plays a key role in controlling the immunopeptidomes available for presentation by MHC (major histocompatibility complex) molecules, thus influences immunodominance and cell-mediated immunity. It carries out this critical function by a unique molecular ruler mechanism that trims antigenic precursors in a peptide-length and sequence dependent manner. Acting as a molecular ruler, ERAP1 is capable of concurrently binding antigen peptide N- and C-termini by its N-terminal catalytic and C-terminal regulatory domains, respectively. As such ERAP1 can not only monitor substrate's lengths, but also exhibit a degree of sequence specificity at substrates' N- and C-termini. On the other hand, it also allows certain sequence and length flexibility in the middle part of peptide substrates that is critical for shaping MHC restricted immunopeptidomes. Here we report structural and biochemical studies to understand the molecular details on how ERAP1 can accommodate side chains of different anchoring residues at the substrate's C-terminus. We also examine how ERAP1 can accommodate antigen peptide precursors with length flexibility. Based on two newly determined complex structures, we find that ERAP1 binds the C-termini of peptides similarly even with different substrate sequences and/or lengths, by utilizing the same hydrophobic specificity pocket to accommodate peptides with either a Phe or Leu as the C-terminal anchor residue. In addition, SPR (surface plasmon resonance) binding analyses in solution further confirm the biological significance of these peptide-ERAP1 interactions. Similar to the binding mode of MHC-I molecules, ERAP1 accommodates for antigenic peptide length difference by allowing the peptide middle part to kink or bulge at the middle of its substrate binding cleft. This explains how SNP coded variants located at the middle of ERAP1 substrate binding cleft would influence the antigen pool and an individual's susceptibility to diseases.
Collapse
Affiliation(s)
- Lufei Sui
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
65
|
Aflalo A, Boyle LH. Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway. Int J Immunogenet 2021; 48:317-325. [PMID: 34176210 DOI: 10.1111/iji.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
MHC class I (MHC-I) molecules undergo an intricate folding process in order to pick up antigenic peptide to present to the immune system. In recent years, the discovery of a new peptide editor for MHC-I has added an extra level of complexity in our understanding of how peptide presentation is regulated. On top of this, the incredible diversity in MHC-I molecules leads to significant variation in the interaction between MHC-I and components of the antigen processing and presentation pathway. Here, we review our current understanding regarding how polymorphisms in human leukocyte antigen class I molecules influence their interactions with key components of the antigen processing and presentation pathway. A deeper understanding of this may offer new insights regarding how apparently subtle variation in MHC-I can have a significant impact on susceptibility to disease.
Collapse
Affiliation(s)
- Aure Aflalo
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
66
|
Komov L, Melamed Kadosh D, Barnea E, Admon A. The Effect of Interferons on Presentation of Defective Ribosomal Products as HLA Peptides. Mol Cell Proteomics 2021; 20:100105. [PMID: 34087483 PMCID: PMC8724922 DOI: 10.1016/j.mcpro.2021.100105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
A subset of class I major histocompatibility complex (MHC)-bound peptides is produced from immature proteins that are rapidly degraded after synthesis. These defective ribosomal products (DRiPs) have been implicated in early alert of the immune system about impending infections. Interferons are important cytokines, produced in response to viral infection, that modulate cellular metabolism and gene expression patterns, increase the presentation of MHC molecules, and induce rapid degradation of proteins and cell-surface presentation of their derived MHC peptides, thereby contributing to the battle against pathogen infections. This study evaluated the role of interferons in the induction of rapid degradation of DRiPs to modulate the repertoire of DRiP-derived MHC peptides. Cultured human breast cancer cells were treated with interferons, and the rates of synthesis and degradation of cellular protein and their degradation products were determined by LC-MS/MS analysis, following the rates of incorporation of heavy stable isotope–labeled amino acids (dynamic stable isotope labeling by amino acids in cell culture, dynamic SILAC) at several time points after the interferon application. Large numbers of MHC peptides that incorporated the heavy amino acids faster than their source proteins indicated that DRiP peptides were abundant in the MHC peptidome; interferon treatment increased by about twofold their relative proportions in the peptidome. Such typical DRiP-derived MHC peptides were from the surplus subunits of the proteasome and ribosome, which are degraded because of the transition to immunoproteasomes and a new composition of ribosomes incorporating protein subunits that are induced by the interferon. We conclude that degradation of surplus subunits induced by the interferon is a major source for DRiP–MHC peptides, a phenomenon relevant to coping with viral infections, where a rapid presentation of MHC peptides derived from excess viral proteins may help alert the immune system about the impending infection. Degradation products of surplus subunits are often presented as HLA peptides. Interferons increase degradation and presentation of such defective products. Dynamic SILAC facilitates identification of such HLA peptides. This cellular pathway provides alert to the immune system about viral infections.
Collapse
Affiliation(s)
- Liran Komov
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
67
|
Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol Immunol 2021; 136:36-44. [PMID: 34082257 DOI: 10.1016/j.molimm.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
MHC class I (MHC-I) molecules present a blueprint of the intracellular proteome to T cells allowing them to control infection or malignant transformation. As a response, pathogens and tumor cells often downmodulate MHC-I mediated antigen presentation to escape from immune surveillance. Although the fundamental rules of antigen presentation are known in detail, the players in this system are not saturated and new modules of regulation have recently been uncovered. Here, we update the understanding of antigen presentation by MHC-I molecules and how this can be exploited by tumors to prevent exposure of the intracellular proteome. This knowledge can provide new ways to improve immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- M L M Jongsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - J Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
68
|
Saulle I, Marventano I, Saresella M, Vanetti C, Garziano M, Fenizia C, Trabattoni D, Clerici M, Biasin M. ERAPs Reduce In Vitro HIV Infection by Activating Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 206:1609-1617. [PMID: 33619214 DOI: 10.4049/jimmunol.2000991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Recombinant human (rh) ERAP2-treated PBMCs are less susceptible to in vitro HIV-1 infection even when CD8+ T cells are depleted. We therefore investigated whether ERAP2 can trigger other immunocompetent cells, boosting their antiviral potential. To this end, human monocyte-derived macrophages (MDMs) differentiated from PBMCs of 15 healthy donors were in vitro HIV-1 infected in the presence/absence of 100 ng/ml of rhERAP2, rhERAP1, or rhERAP1+rhERAP2. Notably, rhERAP2 treatment resulted in a 7-fold reduction of HIV-1 replication in MDMs (p < 0.05). This antiviral activity was associated with an increased mRNA expression of CD80, IL-1β, IL-18, and TNF-α (p < 0.01 for cytokine) in in vitro ERAP2-treated HIV-1-infected MDMs and a greater release of IL-1β, TNF-α, IL-6, and IL-8 (p < 0.01 for each cytokine). The rhERAPs addition also induced the functional inflammasome activation by ASC speck formation in monocytes (p < 0.01) and in THP1-derived macrophages (p < 0.01) as well as a rise in the percentage of activated classical (CD14+CD16-HLA-DRII+CCR7+) and intermediate (CD14++CD16+HLA-DRII+CCR7+) monocytes (p < 0.02). Finally, THP-1-derived macrophages showed an increased phagocytosis following all ERAPs treatments. The discovery that ERAPs are able to trigger several antiviral mechanisms in monocyte/macrophages suggests that their anti-HIV potential is not limited to their canonical role in Ag presentation and CD8+ T cell activation. These findings pose the premise to further investigate the role of ERAPs in both innate and adaptive immunostimulatory pathways and suggest their potential use in novel preventive and therapeutic approaches against HIV-1 infection.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | | | | | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; and.,Fondazione IRCCS Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco," University of Milan, 20157 Milan, Italy;
| |
Collapse
|
69
|
Venema WJ, Hiddingh S, de Boer JH, Claas FHJ, Mulder A, den Hollander AI, Stratikos E, Sarkizova S, van der Veken LT, Janssen GMC, van Veelen PA, Kuiper JJW. ERAP2 Increases the Abundance of a Peptide Submotif Highly Selective for the Birdshot Uveitis-Associated HLA-A29. Front Immunol 2021; 12:634441. [PMID: 33717175 PMCID: PMC7950316 DOI: 10.3389/fimmu.2021.634441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Birdshot Uveitis (BU) is a blinding inflammatory eye condition that only affects HLA-A29-positive individuals. Genetic association studies linked ERAP2 with BU, an aminopeptidase which trims peptides before their presentation by HLA class I at the cell surface, which suggests that ERAP2-dependent peptide presentation by HLA-A29 drives the pathogenesis of BU. However, it remains poorly understood whether the effects of ERAP2 on the HLA-A29 peptidome are distinct from its effect on other HLA allotypes. To address this, we focused on the effects of ERAP2 on the immunopeptidome in patient-derived antigen presenting cells. Using complementary HLA-A29-based and pan-class I immunopurifications, isotope-labeled naturally processed and presented HLA-bound peptides were sequenced by mass spectrometry. We show that the effects of ERAP2 on the N-terminus of ligands of HLA-A29 are shared across endogenous HLA allotypes, but discover and replicate that one peptide motif generated in the presence of ERAP2 is specifically bound by HLA-A29. This motif can be found in the amino acid sequence of putative autoantigens. We further show evidence for internal sequence specificity for ERAP2 imprinted in the immunopeptidome. These results reveal that ERAP2 can generate an HLA-A29-specific antigen repertoire, which supports that antigen presentation is a key disease pathway in BU.
Collapse
Affiliation(s)
- Wouter J Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Greece
| | - Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lars T van der Veken
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
70
|
ERAP1 and ERAP2 Enzymes: A Protective Shield for RAS against COVID-19? Int J Mol Sci 2021; 22:ijms22041705. [PMID: 33567739 PMCID: PMC7914632 DOI: 10.3390/ijms22041705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have a wide variety of clinical outcomes ranging from asymptomatic to severe respiratory syndrome that can progress to life-threatening lung lesions. The identification of prognostic factors can help to improve the risk stratification of patients by promptly defining for each the most effective therapy to resolve the disease. The etiological agent causing COVID-19 is a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that enters cells via the ACE2 receptor. SARS-CoV-2 infection causes a reduction in ACE2 levels, leading to an imbalance in the renin-angiotensin system (RAS), and consequently, in blood pressure and systemic vascular resistance. ERAP1 and ERAP2 are two RAS regulators and key components of MHC class I antigen processing. Their polymorphisms have been associated with autoimmune and inflammatory conditions, hypertension, and cancer. Based on their involvement in the RAS, we believe that the dysfunctional status of ERAP1 and ERAP2 enzymes may exacerbate the effect of SARS-CoV-2 infection, aggravating the symptomatology and clinical outcome of the disease. In this review, we discuss this hypothesis.
Collapse
|
71
|
Fruci D, Locatelli F, Cifaldi L. ERAAP modulation: A possible novel strategy for cancer immunotherapy? Oncoimmunology 2021; 1:81-82. [PMID: 22720218 DOI: 10.4161/onci.1.1.17828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings demonstrate that loss of ERAAP, an endoplasmic reticulum aminopeptidase involved in antigen processing, plays a key role in stimulating anti-tumor innate and adaptive immune responses. We show that MHC class I molecules produced in the absence of ERAAP retain their capability of presenting antigens to CD8+ T cells, but not of inhibiting NK cells.
Collapse
Affiliation(s)
- Doriana Fruci
- Oncohaematology Department; IRCCS, Ospedale Pediatrico "Bambino Gesù"; Rome, Italy
| | | | | |
Collapse
|
72
|
Jiang P, Veenstra RN, Seitz A, Nolte IM, Hepkema BG, Visser L, van den Berg A, Diepstra A. Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in Hodgkin Lymphoma Development. Cancers (Basel) 2021; 13:cancers13030414. [PMID: 33499248 PMCID: PMC7865538 DOI: 10.3390/cancers13030414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a common lymphoma in young adults derived from B cells. Emerging evidence suggests that antigen presentation by the malignant B cells is critically involved in HL pathogenesis. In fact, genetic variants of the antigen presenting Human Leukocyte Antigens (HLA) are strongly associated with HL susceptibility. Interestingly, the endoplasmic reticulum aminopeptidase (ERAP)1 and ERAP2 genes, that code for enzymes that process antigens, also appear to be associated. In this study, we show that genetic variants of ERAP genes strongly affect expression levels of ERAP1 and ERAP2. In addition, we find that certain ERAP variants interact with specific HLA class I types in HL patients. This suggests that mechanisms that determine the repertoire of antigens that are presented to the immune system, affect the chance of developing HL. Our findings therefore support a prominent role of antigen presentation in HL susceptibility. Abstract Genetic variants in the HLA region are the strongest risk factors for developing Hodgkin lymphoma (HL), suggesting an important role for antigen presentation. This is supported by another HL-associated genomic region which contains the loci of two enzymes that process endogenous proteins to peptides to be presented by HLA class I, i.e., endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2. We hypothesized that ERAP and HLA class I type interact in HL susceptibility, as shown previously for several autoimmune diseases. We detected ERAP1 and ERAP2 expression in tumor cells and cells in the microenvironment in primary HL tissue samples. Seven ERAP SNPs and ERAP1 haplotypes showed strong associations with RNA and protein levels of ERAP1 and ERAP2 in LCLs and HL cell lines. Analysis of HLA class I types, ERAP SNPs and ERAP haplotypes by direct genotyping or imputation from genome-wide association data in 390 HL patients revealed significant interactions between HLA-A11, rs27038 and the rs27038 associated ERAP haplotype, as well as between HLA-Cw2 and rs26618. In conclusion, our results show that ERAP and HLA class I interact in genetic susceptibility to HL, providing further evidence that antigen presentation is an important process in HL susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Peijia Jiang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Department of Laboratory Medicine, Shenyang Huanggu National Defense Hospital, Shenyang 110032, China
| | - Rianne N. Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Bouke G. Hepkema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Correspondence:
| |
Collapse
|
73
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
74
|
Modulators of hERAP2 discovered by high-throughput screening. Eur J Med Chem 2020; 211:113053. [PMID: 33359953 DOI: 10.1016/j.ejmech.2020.113053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Endoplasmic reticulum aminopeptidase 2, ERAP2, is an emerging pharmacological target in cancer immunotherapy and control of autoinflammatory diseases, as it is involved in antigen processing. It has been linked to the risk of development of spondyloarthritis, and it associates with the immune infiltration of tumours and strongly predicts the overall survival for patients receiving check-point inhibitor therapy. While some selective inhibitors of its homolog ERAP1 are available, no selective modulator of ERAP2 has been disclosed so far. In order to identify such compounds, we screened an in-house focused library of 1920 compounds designed to target metalloenzymes. Structure-Activity Relationships and docking around two hits led to the discovery of selective inhibitors of ERAP2. Amid those, some bind to yet untapped amino-acids in the S1 pocket. Importantly, we disclose also the first activator of small substrates hydrolysis by ERAP2. Inhibitors and activators identified in this study could serve as useful starting points for optimization.
Collapse
|
75
|
Stamatakis G, Samiotaki M, Mpakali A, Panayotou G, Stratikos E. Generation of SARS-CoV-2 S1 Spike Glycoprotein Putative Antigenic Epitopes in Vitro by Intracellular Aminopeptidases. J Proteome Res 2020; 19:4398-4406. [PMID: 32931291 PMCID: PMC7640968 DOI: 10.1021/acs.jproteome.0c00457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Presentation of antigenic peptides by MHCI is central to cellular immune responses against viral pathogens. While adaptive immune responses versus SARS-CoV-2 can be of critical importance to both recovery and vaccine efficacy, how protein antigens from this pathogen are processed to generate antigenic peptides is largely unknown. Here, we analyzed the proteolytic processing of overlapping precursor peptides spanning the entire sequence of the S1 spike glycoprotein of SARS-CoV-2, by three key enzymes that generate antigenic peptides, aminopeptidases ERAP1, ERAP2, and IRAP. All enzymes generated shorter peptides with sequences suitable for binding onto HLA alleles, but with distinct specificity fingerprints. ERAP1 was the most efficient in generating peptides 8-11 residues long, the optimal length for HLA binding, while IRAP was the least efficient. The combination of ERAP1 with ERAP2 greatly limited the variability of peptide sequences produced. Less than 7% of computationally predicted epitopes were found to be produced experimentally, suggesting that aminopeptidase processing may constitute a significant filter to epitope presentation. These experimentally generated putative epitopes could be prioritized for SARS-CoV-2 immunogenicity studies and vaccine design. We furthermore propose that this in vitro trimming approach could constitute a general filtering method to enhance the prediction robustness for viral antigenic epitopes.
Collapse
Affiliation(s)
- George Stamatakis
- Biomedical
Sciences Research Center “Alexander Fleming”, 16672 Vari, Attica, Greece
| | - Martina Samiotaki
- Biomedical
Sciences Research Center “Alexander Fleming”, 16672 Vari, Attica, Greece
| | - Anastasia Mpakali
- National
Centre for Scientific Research “Demokritos”, 15310 Agia Paraskevi,
Attica, Greece
| | - George Panayotou
- Biomedical
Sciences Research Center “Alexander Fleming”, 16672 Vari, Attica, Greece
| | - Efstratios Stratikos
- National
Centre for Scientific Research “Demokritos”, 15310 Agia Paraskevi,
Attica, Greece
| |
Collapse
|
76
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
77
|
Umar M, Megarbane A, Shan J, Syed N, Chouery E, Aliyev E, Jithesh P, Temanni R, Mansour I, Chouchane L, Ismail Chouchane A. Genome sequencing unveils mutational landscape of the familial Mediterranean fever: Potential implications of IL33/ST2 signalling. J Cell Mol Med 2020; 24:11294-11306. [PMID: 32853466 PMCID: PMC7576248 DOI: 10.1111/jcmm.15701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Familial Mediterranean fever (FMF) is the most common auto-inflammatory disease. It is transmitted as autosomal recessive trait with mutations in MEditerranean FeVer (MEFV) gene. Despite a typical clinical expression, many patients have either a single or no mutation in MEFV. The current work is aimed to revisit the genetic landscape of FMF disease using high-coverage whole genome sequencing. In atypical patients (carrying a single or no mutation in MEFV), we revealed many rare variants in genes associated with auto-inflammatory disorders, and more interestingly, we discovered a novel variant ( a 2.1-Kb deletion) in exon 11 of IL1RL1 gene, present only in patients. To validate and screen this patient-specific variant, a tandem of allele-specific PCR and quantitative real-time PCR was performed in 184 FMF patients and 218 healthy controls and we demonstrated that the novel deletion was absent in controls and was present in more than 19% of patients. This study sheds more light on the mutational landscape of FMF. Our discovery of a disease-specific variant in IL1RL1 gene may constitute a novel genetic marker for FMF. This finding suggesting a potential role of the IL33/ST2 signalling in the disease pathogenicity highlights a new paradigm in FMF pathophysiology.
Collapse
Affiliation(s)
- Meenakshi Umar
- Laboratory of Inflammation Research, Immunology Department, Sidra Medicine, Doha, Qatar
| | - Andre Megarbane
- Institut Jérôme Lejeune, Paris, France.,Centre Medical et Psychopedagogique, Beirut, Lebanon
| | - Jingxuan Shan
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Najeeb Syed
- Biomedical Informatics Division, Sidra Medicine, Doha, Qatar
| | - Eliane Chouery
- Medical School, Lebanese American University, Beirut, Lebanon
| | - Elbay Aliyev
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Puthen Jithesh
- Biomedical Informatics Division, Sidra Medicine, Doha, Qatar
| | - Ramzi Temanni
- Biomedical Informatics Division, Sidra Medicine, Doha, Qatar
| | - Issam Mansour
- American University of Science and Technology (AUST), Beirut, Lebanon
| | - Lotfi Chouchane
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
78
|
Saulle I, Vanetti C, Goglia S, Vicentini C, Tombetti E, Garziano M, Clerici M, Biasin M. A New ERAP2/Iso3 Isoform Expression Is Triggered by Different Microbial Stimuli in Human Cells. Could It Play a Role in the Modulation of SARS-CoV-2 Infection? Cells 2020; 9:E1951. [PMID: 32847031 PMCID: PMC7563522 DOI: 10.3390/cells9091951] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Following influenza infection, rs2248374-G ERAP2 expressing cells may transcribe an alternative spliced isoform: ERAP2/Iso3. This variant, unlike ERAP2-wt, is unable to trim peptides to be loaded on MHC class I molecules, but it can still dimerize with both ERAP2-wt and ERAP1-wt, thus contributing to profiling an alternative cellular immune-peptidome. In order to verify if the expression of ERAP2/Iso3 may be induced by other pathogens, PBMCs and MDMs isolated from 20 healthy subjects were stimulated with flu, LPS, CMV, HIV-AT-2, SARS-CoV-2 antigens to analyze its mRNA and protein expression. In parallel, Calu3 cell lines and PBMCs were in vitro infected with growing doses of SARS-CoV-2 (0.5, 5, 1000 MOI) and HIV-1BAL (0.1, 1, and 10 ng p24 HIV-1Bal/1 × 106 PBMCs) viruses, respectively. Results showed that: (1) ERAP2/Iso3 mRNA expression can be prompted by many pathogens and it is coupled with the modulation of several determinants (cytokines, interferon-stimulated genes, activation/inhibition markers, antigen-presentation elements) orchestrating the anti-microbial immune response (Quantigene); (2) ERAP2/Iso3 mRNA is translated into a protein (western blot); (3) ERAP2/Iso3 mRNA expression is sensitive to SARS-CoV-2 and HIV-1 concentration. Considering the key role played by ERAPs in antigen processing and presentation, it is conceivable that these enzymes may be potential targets and modulators of the pathogenicity of infectious diseases and further analyses are needed to define the role played by the different isoforms.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
| | - Sara Goglia
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Enrico Tombetti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy; (I.S.); (C.V.); (S.G.); (C.V.); (E.T.); (M.G.)
| |
Collapse
|
79
|
Paladini F, Fiorillo MT, Tedeschi V, Mattorre B, Sorrentino R. The Multifaceted Nature of Aminopeptidases ERAP1, ERAP2, and LNPEP: From Evolution to Disease. Front Immunol 2020; 11:1576. [PMID: 32793222 PMCID: PMC7390905 DOI: 10.3389/fimmu.2020.01576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
In the human genome, the aminopeptidases ERAP1, ERAP2 and LNPEP lie contiguously on chromosome 5. They share sequence homology, functions and associations with immune-mediated diseases. By analyzing their multifaceted activities as well as their expression in the zoological scale, we suggest here that the progenitor of the three aminopeptidases might be LNPEP from which the other two aminopeptidases could have derived by gene duplications. We also propose that their functions are partially redundant. More precisely, the evolutionary story of the three aminopeptidases might have been dictated by their role in regulating the renin–angiotensin system, which requires their controlled and coordinated expression. This hypothesis is supported by the many species that lack one or the other gene as well as by the lack of ERAP2 in rodents and a null expression in 25% of humans. Finally, we speculate that their role in antigen presentation has been acquired later on during evolution. They have therefore been diversified between those residing in the ER, ERAP1 and ERAP2, whose role is to refine the MHC-I peptidomes, and LNPEP, mostly present in the endosomal vesicles where it can contribute to antigen cross-presentation or move to the cell membrane as receptor for angiotensin IV. Their association with autoinflammatory/autoimmune diseases can therefore be two-fold: as “contributors” to the shaping of the immune-peptidomes as well as to the regulation of the vascular response.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Benedetta Mattorre
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
80
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
81
|
Abstract
Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide-MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP 1650 San Martin, Buenos Aires, Argentina
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Søren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
82
|
Abstract
A critical step in antigen presentation is the degradative processing of peptides by aminopeptidases in the endoplasmic reticulum. It is unclear whether these enzymes act only on free peptides or on those bound to their major histocompatibility complex (MHC)-I-presenting molecules. A recent study examined the structure and biophysics of N-terminally extended peptides in complex with MHC-I, revealing the conformational adjustment of MHC to permit both binding of the peptide core and exposure of the peptide N terminus. These data suggest a mechanism by which aminopeptidase access is determined and offer an explanation for how longer peptides may be displayed at the cell surface.
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1892.
| |
Collapse
|
83
|
Lorente E, Fontela MG, Barnea E, Martín-Galiano AJ, Mir C, Galocha B, Admon A, Lauzurica P, López D. Modulation of Natural HLA-B*27:05 Ligandome by Ankylosing Spondylitis-associated Endoplasmic Reticulum Aminopeptidase 2 (ERAP2). Mol Cell Proteomics 2020; 19:994-1004. [PMID: 32265295 PMCID: PMC7261815 DOI: 10.1074/mcp.ra120.002014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The HLA-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with AS, a chronic inflammatory spondyloarthropathy. This study examined the effect of ERAP2 in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones, and the peptides were identified using high-throughput mass spectrometry analyses. The relative abundance of a thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in the presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of the antigen-binding site of the HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and PΩ positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Miguel G Fontela
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Eilon Barnea
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Carmen Mir
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Begoña Galocha
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Arie Admon
- Department of Biology, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Pilar Lauzurica
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain
| | - Daniel López
- Unidad de Presentación y Regulación Inmunes, 28220 Majadahonda (Madrid), Spain.
| |
Collapse
|
84
|
Chen L, Shi H, Koftori D, Sekine T, Nicastri A, Ternette N, Bowness P. Identification of an Unconventional Subpeptidome Bound to the Behçet's Disease-associated HLA-B*51:01 that is Regulated by Endoplasmic Reticulum Aminopeptidase 1 (ERAP1). Mol Cell Proteomics 2020; 19:871-883. [PMID: 32161166 PMCID: PMC7196583 DOI: 10.1074/mcp.ra119.001617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/10/2020] [Indexed: 01/31/2023] Open
Abstract
Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behçet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides. We aimed to study the features of this novel subpeptidome, and investigate its regulation by ERAP1. CRISPR-Cas9 was used to generate an HLA-ABC-triple knockout HeLa cell line (HeLa.ABC-KO), which was subsequently transduced to express HLA-B*51:01 (HeLa.ABC-KO.B51). ERAP1 was silenced using lentiviral shRNA. Peptides bound to HLA-B*51:01 were eluted and analyzed by mass spectrometry. The characteristics of non-Pro/Ala2, Pro2, and Ala2 peptides and their alteration by ERAP1 silencing were investigated. Effects of ERAP1 silencing on cell surface expression of HLA-B*51:01 were studied using flow cytometry. More than 20% of peptides eluted from HLA-B*51:01 lacked Pro or Ala at P2. This unconventional group of HLA-B*51:01-bound peptides was relatively enriched for 8-mers (with relatively fewer 9-mers) compared with the Pro2 and Ala2 subpeptidomes and had similar N-terminal and C-terminal residue usages to Ala2 peptides (with the exception of the less abundant leucine at position Ω). Knockdown of ERAP1 increased the percentage of non-Pro/Ala2 from 20% to ∼40%, increased the percentage of longer (10-mer and 11-mer) peptides eluted from HLA-B*51:01 complexes, and abrogated the predominance of leucine at P1. Interestingly knockdown of ERAP1 altered the length and N-terminal residue usage of non-Ala2&Pro2 and Ala2 but not the Pro2 peptides. Finally, ERAP1 silencing regulated the expression levels of cell surface HLA-B*51 in a cell-type-dependent manner. In conclusion, we have used a novel methodology to identify an unconventional but surprisingly abundant non-Pro/Ala2 HLA-B*51:01 subpeptidome. It is increased by knockdown of ERAP1, a gene affecting the risk of developing BD. This has implications for theories of disease pathogenesis.
Collapse
Affiliation(s)
- Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Hui Shi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Danai Koftori
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Takuya Sekine
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Nicola Ternette
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
85
|
Ebrazeh M, Nojavan M, Abdi-Shayan S, Salimifard S, Dolatshahi E, Aslani S, Hemmatzadeh M, Babaie F, Ghanavatinejad A, Azizi G, Jadidi-Niaragh F, Zamani N, Mohammadi H. Endoplasmic reticulum aminopeptidase 2 gene single nucleotide polymorphisms in association with susceptibility to ankylosing spondylitis in an Iranian population. Immunol Lett 2020; 223:97-105. [PMID: 32360304 DOI: 10.1016/j.imlet.2020.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic autoimmune disease, in which genetic polymorphisms are critically important in establishing inflammatory state. Endoplasmic reticulum aminopeptidase (ERAP) 2 gene has been implied to be involved in AS etiopathogenesis. The current study evaluated the association of ERAP2 gene single nucleotide polymorphisms (SNPs) with susceptibility to AS in an Iranian population. METHODS Two hundred and forty AS patients and 240 healthy individuals were recruited. DNA extraction was performed from whole blood samples and RNA content was isolated from peripheral blood mononuclear cells (PBMCs). Real-time allelic discrimination approach was exerted to genotype all subjects for rs2910686, rs2248374, and rs2549782 SNPs. After cDNA synthesis, mRNA expression of cytokines was determined. Enzyme-linked immunosorbent assay (ELISA) was exerted to evaluate the cytokine levels in serum of participants. RESULTS None of the SNPs were associated with AS risk in the whole population. However, allele and heterozygote genotype of rs2910686 SNP were associated significantly with higher risk of AS in Human leukocyte antigen (HLA)-B27 positive group. mRNA expression and serum concentrations of interleukin (IL)-17A, IL-23, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α was increased in AS patients compared with controls. Nonetheless, mRNA expression and serum levels of cytokines was not significantly different among HLA-B27 positive AS patients with different three genotypes for rs2910686 SNP. CONCLUSIONS AlthoughERAP2 gene rs2910686 polymorphism was significantly associated with increased risk of AS susceptibility, it might not be involved in regulation of the inflammatory cytokines during AS pathogenesis.
Collapse
Affiliation(s)
- Mehrdad Ebrazeh
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Nojavan
- Department of Laboratory Medicine, Alfa Medical Laboratory, Urmia, Iran
| | - Shiva Abdi-Shayan
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Salimifard
- Department of Hematology and Blood Transfusion, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Dolatshahi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Zamani
- Department of Cell and Molecular Biology, Marand Branch, Islamic Azad University, Marand, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
86
|
Abstract
Throughout the body, T cells monitor MHC-bound ligands expressed on the surface of essentially all cell types. MHC ligands that trigger a T cell immune response are referred to as T cell epitopes. Identifying such epitopes enables tracking, phenotyping, and stimulating T cells involved in immune responses in infectious disease, allergy, autoimmunity, transplantation, and cancer. The specific T cell epitopes recognized in an individual are determined by genetic factors such as the MHC molecules the individual expresses, in parallel to the individual's environmental exposure history. The complexity and importance of T cell epitope mapping have motivated the development of computational approaches that predict what T cell epitopes are likely to be recognized in a given individual or in a broader population. Such predictions guide experimental epitope mapping studies and enable computational analysis of the immunogenic potential of a given protein sequence region.
Collapse
Affiliation(s)
- Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B1650 Buenos Aires, Argentina
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, USA; ,
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
87
|
Li C, Li Y, Yan Z, Dai S, Liu S, Wang X, Wang J, Zhang X, Shi L, Yao Y. Polymorphisms in endoplasmic reticulum aminopeptidase genes are associated with cervical cancer risk in a Chinese Han population. BMC Cancer 2020; 20:341. [PMID: 32321463 PMCID: PMC7178719 DOI: 10.1186/s12885-020-06832-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Antigen-processing machinery molecules play crucial roles in infectious diseases and cancers. Studies have shown that polymorphisms in endoplasmic reticulum aminopeptidase (ERAP) genes can influence the enzymatic activity of ERAP proteins and are associated with the risk of diseases. In the current study, we evaluated the influence of ERAP gene (ERAP1 and ERAP2) polymorphisms on susceptibility to cervical intraepithelial neoplasia (CIN) and cervical cancer. Methods Six single nucleotide polymorphisms (SNPs) in ERAP1 and 5 SNPs in ERAP2 were selected and genotyped in 556 CIN patients, 1072 cervical cancer patients, and 1262 healthy control individuals. Candidate SNPs were genotyped using SNaPshot assay. And the association of these SNPs with CIN and cervical cancer was analysed. Results The results showed that allelic and genotypic frequencies of rs26653 in ERAP1 were significantly different between cervical cancer and control groups (P = 0.001 and 0.004). The allelic frequencies of rs27044 in ERAP1 and rs2287988 in ERAP2 were significantly different between control and cervical cancer groups (P = 0.003 and 0.004). Inheritance model analysis showed that genotypes of rs27044, rs26618, rs26653 and rs2287988 SNPs may be associated with the risk of cervical cancer (P = 0.003, 0.004, 0.001 and 0.002). Additionally, haplotype analysis results showed that the ERAP1 haplotype, rs27044C-rs30187T-rs26618T-rs26653G-rs3734016C, was associated with a lower risk of cervical cancer (P = 0.001). The ERAP2 haplotypes rs2549782G- rs2548538A-rs2248374A-rs2287988G-rs1056893T (P = 0.009 and 0.006) and rs2549782T-rs2548538T-rs2248374G-rs2287988A-rs1056893T (P = 0.003 and 0.009) might be associated with cervical cancer and the development from CIN to cervical cancer. Conclusion Our results indicated that rs27044, rs26618 and rs26653 in ERAP1 and rs2287988 in ERAP2 influenced susceptibility to cervical cancer.
Collapse
Affiliation(s)
- Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yaheng Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Shuying Dai
- School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xia Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Jun Wang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
88
|
Reeves E, Islam Y, James E. ERAP1: a potential therapeutic target for a myriad of diseases. Expert Opin Ther Targets 2020; 24:535-544. [PMID: 32249641 DOI: 10.1080/14728222.2020.1751821] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Endoplasmic Reticulum Aminopeptidase 1 (ERAP1) is a key regulator of the peptide repertoire displayed by Major Histocompatibility Complex I (MHC I) to circulating CD8 + T cells and NK cells. Studies have highlighted the essential requirement for the generation of stable peptide MHC I in regulating both innate and adaptive immune responses in health and disease.Areas covered: We review the role of ERAP1 in peptide trimming of N-terminally extended precursors that enter the ER, before loading on to MHC I, and the consequence of loss or downregulation of this activity. Polymorphisms in ERAP1 form multiple combinations (allotypes) within the population, and we discuss the contribution of this ERAP1 variation, and expression, on disease pathogenesis, including the resulting effect on both innate and adaptive immunity. We consider the current efforts to design inhibitors based on approaches using rational design and small molecule screening, and the potential effect of pharmacological modulation on the treatment of autoimmunity and cancer.Expert opinion: ERAP1 is fundamental for the regulation of immune responses, through generation of the presented peptide repertoire at the cell surface. Modulation of ERAP1 function, through design of inhibitors, may serve as a vital tool for changing immune responses in disease.
Collapse
Affiliation(s)
- Emma Reeves
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Yasmin Islam
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University Hospital Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
89
|
Paladini F, Fiorillo MT, Tedeschi V, D'Otolo V, Piga M, Cauli A, Mathieu A, Sorrentino R. The rs75862629 minor allele in the endoplasmic reticulum aminopeptidases intergenic region affects human leucocyte antigen B27 expression and protects from ankylosing spondylitis in Sardinia. Rheumatology (Oxford) 2020; 58:2315-2324. [PMID: 31209470 DOI: 10.1093/rheumatology/kez212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES HLA-B27 and the endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 genes are predisposing factors for AS. A single nucleotide polymorphism (SNP) in the ERAP2 promoter (rs75862629) coordinates the transcription of both ERAP genes. We investigated whether this SNP associates with AS and whether it affects the expression of the two major HLA-B27 alleles present in Sardinia, the AS-associated B*2705 and the non-AS-associated B*2709. METHODS Four SNPs in the ERAP region were genotyped in HLA-B*2705-positive patients with AS (n = 145), B27-positive healthy subjects (n = 126) and B27-negative controls (n = 250) and the allele and haplotype frequencies were derived. The expression of ERAP1 and ERAP2 mRNAs in 36 HLA-B27-positive B lymphoblastoid cell lines was measured by quantitative PCR. An electrophoretic mobility shift assay was performed to search for a nuclear factor binding the DNA sequence encompassing rs75862629. The expression of HLA-B27 molecules related to the SNP at rs75862629 was determined by flow cytometry. RESULTS The minor allele G at rs75862629 was found significantly increased in B27 healthy individuals, both B*2705 and B*2709, compared with B*2705-positive patients with AS and B27-negative controls. The electrophoretic mobility shift assay indicated the lack of binding of a transcription factor as the cause of the observed reduction in the ERAP2 concomitant with a higher ERAP1 expression. Of note, this occurs with a different cell surface expression of the HLA-B*2705 and HLA-B*2709 molecules. CONCLUSION SNP rs75862629, by modulating simultaneously the expression of ERAP1 and ERAP2, provides protection from AS in HLA-B27-positive subjects in Sardinia. This has a functional impact on HLA-B27 expression and likely on disease onset.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Viviana D'Otolo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Matteo Piga
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
90
|
Thomaidou S, Kracht MJL, van der Slik A, Laban S, de Koning EJ, Carlotti F, Hoeben RC, Roep BO, Zaldumbide A. β-Cell Stress Shapes CTL Immune Recognition of Preproinsulin Signal Peptide by Posttranscriptional Regulation of Endoplasmic Reticulum Aminopeptidase 1. Diabetes 2020; 69:670-680. [PMID: 31896552 DOI: 10.2337/db19-0984] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/28/2019] [Indexed: 11/13/2022]
Abstract
The signal peptide of preproinsulin is a major source for HLA class I autoantigen epitopes implicated in CD8 T cell (CTL)-mediated β-cell destruction in type 1 diabetes (T1D). Among them, the 10-mer epitope located at the C-terminal end of the signal peptide was found to be the most prevalent in patients with recent-onset T1D. While the combined action of signal peptide peptidase and endoplasmic reticulum (ER) aminopeptidase 1 (ERAP1) is required for processing of the signal peptide, the mechanisms controlling signal peptide trimming and the contribution of the T1D inflammatory milieu on these mechanisms are unknown. Here, we show in human β-cells that ER stress regulates ERAP1 gene expression at posttranscriptional level via the IRE1α/miR-17-5p axis and demonstrate that inhibition of the IRE1α activity impairs processing of preproinsulin signal peptide antigen and its recognition by specific autoreactive CTLs during inflammation. These results underscore the impact of ER stress in the increased visibility of β-cells to the immune system and position the IRE1α/miR-17 pathway as a central component in β-cell destruction processes and as a potential target for the treatment of autoimmune T1D.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria J L Kracht
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sandra Laban
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Eelco J de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Francoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
91
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
92
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
93
|
Babaie F, Hosseinzadeh R, Ebrazeh M, Seyfizadeh N, Aslani S, Salimi S, Hemmatzadeh M, Azizi G, Jadidi-Niaragh F, Mohammadi H. The roles of ERAP1 and ERAP2 in autoimmunity and cancer immunity: New insights and perspective. Mol Immunol 2020; 121:7-19. [PMID: 32135401 DOI: 10.1016/j.molimm.2020.02.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Autoimmunity and cancer affect millions worldwide and both, in principal, result from dysregulated immune responses. There are many well-known molecules involved in immunological process playing as a double-edged sword, by which associating autoimmune diseases and cancer. In this regard, Endoplasmic reticulum aminopeptidases (ERAP) 1, which belongs to the M1 family of aminopeptidases, plays a central role as a "molecular ruler", proteolyzing of N-terminal of the antigenic peptides before their loading onto HLA-I molecules for antigen presentation in the Endoplasmic Reticulum (ER). Several genome-wide association studies (GWAS) highlighted the significance of ERAP1 and ERAP2 in autoimmune diseases, including Ankylosing spondylitis, Psoriasis, Bechet's disease, and Birdshot chorioretinopathy, as well as in cancers. The expression of ERAP1/2 is mostly altered in different cancers compared to normal cells, but how this affects anti-cancer immune responses and cancer growth has been little explored. Recent studies on the immunological outcomes and the catalytic functions of ERAP1 and ERAP2 have provided a better understanding of their potential pathogenetic role in autoimmunity and cancer. In this review, we summarize the role of ERAP1 and ERAP2 in the autoimmune diseases and cancer immunity based on the recent advances in GWAS studies.
Collapse
Affiliation(s)
- Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrazeh
- Department of Biology, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Salimi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
94
|
Wang Q, Zhang H, Liang Y, Jiang H, Tan S, Luo F, Yuan Z, Chen Y. A Novel Method to Efficiently Highlight Nonlinearly Expressed Genes. Front Genet 2020; 10:1410. [PMID: 32082366 PMCID: PMC7006292 DOI: 10.3389/fgene.2019.01410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
For precision medicine, there is a need to identify genes that accurately distinguish the physiological state or response to a particular therapy, but this can be challenging. Many methods of analyzing differential expression have been established and applied to this problem, such as t-test, edgeR, and DEseq2. A common feature of these methods is their focus on a linear relationship (differential expression) between gene expression and phenotype. However, they may overlook nonlinear relationships due to various factors, such as the degree of disease progression, sex, age, ethnicity, and environmental factors. Maximal information coefficient (MIC) was proposed to capture a wide range of associations of two variables in both linear and nonlinear relationships. However, with MIC it is difficult to highlight genes with nonlinear expression patterns as the genes giving the most strongly supported hits are linearly expressed, especially for noisy data. It is thus important to also efficiently identify nonlinearly expressed genes in order to unravel the molecular basis of disease and to reveal new therapeutic targets. We propose a novel nonlinearity measure called normalized differential correlation (NDC) to efficiently highlight nonlinearly expressed genes in transcriptome datasets. Validation using six real-world cancer datasets revealed that the NDC method could highlight nonlinearly expressed genes that could not be highlighted by t-test, MIC, edgeR, and DEseq2, although MIC could capture nonlinear correlations. The classification accuracy indicated that analysis of these genes could adequately distinguish cancer and paracarcinoma tissue samples. Furthermore, the results of biological interpretation of the identified genes suggested that some of them were involved in key functional pathways associated with cancer progression and metastasis. All of this evidence suggests that these nonlinearly expressed genes may play a central role in regulating cancer progression.
Collapse
Affiliation(s)
- Qifei Wang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Haojian Zhang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Yuqing Liang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Heling Jiang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Siqiao Tan
- School of Information Science and Technology, Hunan Agricultural University, Changsha, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Zheming Yuan
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Yuan Chen
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| |
Collapse
|
95
|
Trowitzsch S, Tampé R. Multifunctional Chaperone and Quality Control Complexes in Adaptive Immunity. Annu Rev Biophys 2020; 49:135-161. [PMID: 32004089 DOI: 10.1146/annurev-biophys-121219-081643] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fundamental process of adaptive immunity relies on the differentiation of self from nonself. Nucleated cells are continuously monitored by effector cells of the immune system, which police the peptide status presented via cell surface molecules. Recent integrative structural approaches have provided insights toward our understanding of how sophisticated cellular machineries shape such hierarchical immune surveillance. Biophysical and structural achievements were invaluable for defining the interconnection of many key factors during antigen processing and presentation, and helped to solve several conundrums that persisted for many years. In this review, we illuminate the numerous quality control machineries involved in different steps during the maturation of major histocompatibility complex class I (MHC I) proteins, from their synthesis in the endoplasmic reticulum to folding and trafficking via the secretory pathway, optimization of antigenic cargo, final release to the cell surface, and engagement with their cognate receptors on cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; ,
| |
Collapse
|
96
|
Abstract
Major histocompatibility complex (MHC) class I molecules function to present pathogen derived peptides to cytotoxic T cells and act as ligands for Natural Killer cells, thus alerting the immune system to the presence of invading pathogens. However, some MHC class I molecules, most notably HLA-B27, can be strongly associated with autoimmune diseases. In addition, the MHC class I pathway is a target for numerous viral evasion strategies Understanding not only the antigen presenting functions, but also the biosynthesis and the degradation pathways of MHC class I molecules has therefore become important in determining their role in pathogen and autoimmune related diseases. Here, we describe how using epitope tagged MHC class I molecules can aid in the analysis of MHC class I molecule biosynthesis and degradation as well as complementary studies using conventional conformationally specific antibodies. Coupled together with pharmacological manipulation which can target both biosynthetic and degradative pathways, this offers a powerful tool in analyzing MHC class I molecules.
Collapse
|
97
|
Kubota N, Suyama M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Med Genomics 2020; 13:8. [PMID: 31969149 PMCID: PMC6977261 DOI: 10.1186/s12920-020-0662-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease, for which genome-wide association studies (GWAS) have identified many genetic variants as risk markers. However, the details of underlying molecular mechanisms, especially which variants are functional, are poorly understood. METHODS We utilized a computational approach to survey psoriasis-associated functional variants that might affect protein functions or gene expression levels. We developed a pipeline by integrating publicly available datasets provided by GWAS Catalog, FANTOM5, GTEx, SNP2TFBS, and DeepBlue. To identify functional variants on exons or splice sites, we used a web-based annotation tool in the Ensembl database. To search for noncoding functional variants within promoters or enhancers, we used eQTL data calculated by GTEx. The data of variants lying on transcription factor binding sites provided by SNP2TFBS were used to predict detailed functions of the variants. RESULTS We discovered 22 functional variant candidates, of which 8 were in noncoding regions. We focused on the enhancer variant rs72635708 (T > C) in the 1p36.23 region; this variant is within the enhancer region of the ERRFI1 gene, which regulates lipid metabolism in the liver and skin morphogenesis via EGF signaling. Further analysis showed that the ERRFI1 promoter spatially contacts with the enhancer, despite the 170 kb distance between them. We found that this variant lies on the AP-1 complex binding motif and may modulate binding levels. CONCLUSIONS The minor allele rs72635708 (rs72635708-C) might affect the ERRFI1 promoter activity, which results in unstable expression of ERRFI1, enhancing the risk of psoriasis via disruption of lipid metabolism and skin cell proliferation. Our study represents a successful example of predicting molecular pathogenesis by integration and reanalysis of public data.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
98
|
Mechanism for antigenic peptide selection by endoplasmic reticulum aminopeptidase 1. Proc Natl Acad Sci U S A 2019; 116:26709-26716. [PMID: 31843903 DOI: 10.1073/pnas.1912070116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an intracellular enzyme that optimizes the peptide cargo of major histocompatibility class I (MHC-I) molecules and regulates adaptive immunity. It has unusual substrate selectivity for length and sequence, resulting in poorly understood effects on the cellular immunopeptidome. To understand substrate selection by ERAP1, we solved 2 crystal structures of the enzyme with bound transition-state pseudopeptide analogs at 1.68 Å and 1.72 Å. Both peptides have their N terminus bound at the active site and extend away along a large internal cavity, interacting with shallow pockets that can influence selectivity. The longer peptide is disordered through the central region of the cavity and has its C terminus bound in an allosteric pocket of domain IV that features a carboxypeptidase-like structural motif. These structures, along with enzymatic and computational analyses, explain how ERAP1 can select peptides based on length while retaining the broad sequence-specificity necessary for its biological function.
Collapse
|
99
|
Li L, Batliwala M, Bouvier M. ERAP1 enzyme-mediated trimming and structural analyses of MHC I-bound precursor peptides yield novel insights into antigen processing and presentation. J Biol Chem 2019; 294:18534-18544. [PMID: 31601650 PMCID: PMC6901306 DOI: 10.1074/jbc.ra119.010102] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 critically shape the major histocompatibility complex I (MHC I) immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides (i.e. 8-10-mers) to fit into the MHC class I groove. It is therefore intriguing that MHC class I molecules can present N-terminally extended peptides on the cell surface that can elicit CD8+ T-cell responses. This observation likely reflects gaps in our understanding of how antigens are processed by the ERAP enzymes. To better understand ERAPs' function in antigen processing, here we generated a nested set of N-terminally extended 10-20-mer peptides (RA) n AAKKKYCL covalently bound to the human leukocyte antigen (HLA)-B*0801. We used X-ray crystallography, thermostability assessments, and an ERAP1-trimming assay to characterize these complexes. The X-ray structures determined at 1.40-1.65 Å resolutions revealed that the residue extensions (RA) n unexpectedly protrude out of the A pocket of HLA-B*0801, whereas the AAKKKYCL core of all peptides adopts similar, bound conformations. HLA-B*0801 residue 62 was critical to open the A pocket. We also show that HLA-B*0801 and antigenic precursor peptides form stable complexes. Finally, ERAP1-mediated trimming of the MHC I-bound peptides required a minimal length of 14 amino acids. We propose a mechanistic model explaining how ERAP1-mediated trimming of MHC I-bound peptides in cells can generate peptides of canonical as well as noncanonical lengths that still serve as stable MHC I ligands. Our results provide a framework to better understand how the ERAP enzymes influence the MHC I immunopeptidome.
Collapse
Affiliation(s)
- Lenong Li
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Mansoor Batliwala
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612
| | - Marlene Bouvier
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois 60612, To whom correspondence should be addressed:
Dept. of Microbiology and Immunology, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612. Tel.:
312-355-0664; E-mail:
| |
Collapse
|
100
|
Textoris-Taube K, Cammann C, Henklein P, Topfstedt E, Ebstein F, Henze S, Liepe J, Zhao F, Schadendorf D, Dahlmann B, Uckert W, Paschen A, Mishto M, Seifert U. ER-aminopeptidase 1 determines the processing and presentation of an immunotherapy-relevant melanoma epitope. Eur J Immunol 2019; 50:270-283. [PMID: 31729751 DOI: 10.1002/eji.201948116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Dissecting the different steps of the processing and presentation of tumor-associated antigens is a key aspect of immunotherapies enabling to tackle the immune response evasion attempts of cancer cells. The immunodominant glycoprotein gp100209-217 epitope, which is liberated from the melanoma differentiation antigen gp100PMEL17 , is part of immunotherapy trials. By analyzing different human melanoma cell lines, we here demonstrate that a pool of N-terminal extended peptides sharing the common minimal epitope is generated by melanoma proteasome subtypes. In vitro and in cellulo experiments indicate that ER-resident aminopeptidase 1 (ERAP1)-but not ERAP2-defines the processing of this peptide pool thereby modulating the T-cell recognition of melanoma cells. By combining the outcomes of our studies and others, we can sketch the complex processing and endogenous presentation pathway of the gp100209-217 -containing epitope/peptides, which are produced by proteasomes and are translocated to the vesicular compartment through different pathways, where the precursor peptides that reach the endoplasmic reticulum are further processed by ERAP1. The latter step enhances the activation of epitope-specific T lymphocytes, which might be a target to improve the efficiency of anti-melanoma immunotherapy.
Collapse
Affiliation(s)
- Kathrin Textoris-Taube
- Shared Facility for Mass Spectrometry, Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Cammann
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Petra Henklein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Henze
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juliane Liepe
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fang Zhao
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Burkhardt Dahlmann
- Berlin Institute of Health, Institut für Biochemie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfgang Uckert
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz Gemeinschaft, Berlin, Germany
| | - Annette Paschen
- Klinik für Dermatologie, Universitätsklinikum Essen, Essen and German Cancer Consortium (DKTK), Universität Duisburg-Essen, Essen, Germany
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom.,Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", University of Bologna, Bologna, Italy
| | - Ulrike Seifert
- Friedrich Loeffler Institut für Medizinische Mikrobiologie-Virologie, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|