51
|
Lee A, Floyd K, Wu S, Fang Z, Tan TK, Froggatt HM, Powers JM, Leist SR, Gully KL, Hubbard ML, Li C, Hui H, Scoville D, Ruggiero AD, Liang Y, Pavenko A, Lujan V, Baric RS, Nolan GP, Arunachalam PS, Suthar MS, Pulendran B. BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance. Nat Immunol 2024; 25:41-53. [PMID: 38036767 PMCID: PMC10932731 DOI: 10.1038/s41590-023-01700-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katharine Floyd
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shengyang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tze Kai Tan
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather M Froggatt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Yan Liang
- NanoString Technologies, Seattle, WA, USA
| | | | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
52
|
Tuyskanova MS, Zhugunissov KD, Ozaslan M, Myrzakhmetova BS, Kutumbetov LB. [Clinical symptoms and signs in hamsters during experimental infection with the SARS-CoV-2 virus (Coronaviridae: Betacoronavirus)]. Vopr Virusol 2023; 68:513-525. [PMID: 38156567 DOI: 10.36233/0507-4088-202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION At the beginning of December 2019, humanity has faced a new problem caused by coronavirus. In Hubei province of central China, epidemic events associated with severe primary viral pneumonia in humans began to develop. The isolated etiological agent was identified as a representative of Coronaviridae family. The global pandemic associated with the new coronavirus infection, acute respiratory syndrome type 2 (Severe acute respiratory syndrome 2, SARS-CoV-2), has become a challenge for humanity. OBJECTIVE In our work, we assessed the replicative ability and pathogenesis of the SARS-CoV-2 virus in hamsters. MATERIALS AND METHODS Syrian hamsters (n=16) randomly divided into two groups were used in experiment. The first group was infected intranasally with the SARS-CoV-2 virus, strain SARS-CoV-2/human/KAZ/KZ_Almaty/2020 deposited in GenBank under number MZ379258.1. The second group remained as a control group. Clinical manifestations of the disease in hamsters were observed within 14 days. Samples were collected on days 3, 5, 7, 9, 12, and 14 postinfection. The obtained samples were tested for viral isolation in cell culture, histological examination and analysis of viral RNA by RT-PCR. RESULTS SARS-CoV-2 virus isolates showed efficient replication in the lungs of hamsters, causing pathological lung lesions in animals infected intranasally. Clinical manifestations of the disease in hamsters infected with this virus were characterized by a decrease in temperature and body weight, wetness and ruffled fur, and frequent stroking of the nasal planum. High virus titers were observed following the virus isolation in cell cultures from nasal, oral swabs and lungs of animals infected intranasally. Pathological autopsy demonstrated pathological changes in the lungs. Moreover, transmission by airborne droplets has been established when a healthy hamster was kept together with animals infected using the intranasal method. CONCLUSION In conclusion, our study showed that the Syrian hamster model is a useful tool for studying the SARS-CoV-2 pathogenesis, as well as testing vaccine candidates against acute respiratory syndrome type 2.
Collapse
Affiliation(s)
- M S Tuyskanova
- Research Institute for Biological Safety Problems
- Al-Farabi Kazakh National University
| | | | - M Ozaslan
- Department of Biology, Gaziantep University
| | | | | |
Collapse
|
53
|
Malewana RD, Stalls V, May A, Lu X, Martinez DR, Schäfer A, Li D, Barr M, Sutherland LL, Lee E, Parks R, Beck WE, Newman A, Bock KW, Minai M, Nagata BM, DeMarco CT, Denny TN, Oguin TH, Rountree W, Wang Y, Mansouri K, Edwards RJ, Sempowski GD, Eaton A, Muramatsu H, Henderson R, Tam Y, Barbosa C, Tang J, Cain DW, Santra S, Moore IN, Andersen H, Lewis MG, Golding H, Seder R, Khurana S, Montefiori DC, Pardi N, Weissman D, Baric RS, Acharya P, Haynes BF, Saunders KO. Broadly neutralizing antibody induction by non-stabilized SARS-CoV-2 Spike mRNA vaccination in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572191. [PMID: 38187726 PMCID: PMC10769253 DOI: 10.1101/2023.12.18.572191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.
Collapse
Affiliation(s)
- R Dilshan Malewana
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victoria Stalls
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Aaron May
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Immunobiology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Whitney Edwards Beck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - C Todd DeMarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Eaton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ying Tam
- Acuitas Therapeutics, LLC, Vancouver, BC, V6T 1Z3, Canada
| | | | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sampa Santra
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | | | | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - Robert Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration, Silver Spring, MD 20871, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
54
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. Cell Host Microbe 2023; 31:1961-1973.e11. [PMID: 37989312 PMCID: PMC10913562 DOI: 10.1016/j.chom.2023.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rhinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. We determine a cryo-EM structure of the PRD-0038 RBD bound to Rhinolophus alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryo-EM and monoclonal antibody reactivity reveals its distinct antigenicity relative to SARS-CoV-2 and identifies PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared with SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir. Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
55
|
Chan TTY, Chow FWN, Fung J, Cheng FKK, Lo GCS, Tsang CC, Luk HKH, Wong ACP, He Z, Aw-Yong KL, Liu X, Yuen KY, Woo PCY, Lau SKP. A sensitive and simple RT-LAMP assay for sarbecovirus screening in bats. Microbiol Spectr 2023; 11:e0259123. [PMID: 37971222 PMCID: PMC10715088 DOI: 10.1128/spectrum.02591-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE We report the application of a colorimetric and fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to facilitate mass screening for sarbecoviruses in bats. The assay was evaluated using a total of 838 oral and alimentary samples from bats and demonstrated comparable sensitivity and specificity to quantitative reverse transcription PCR (qRT-PCR), with a simple setup. The addition of SYTO9, a fluorescent nucleic acid stain, also allows for quantitative analysis. The scalability and simplicity of the assay are believed to contribute to improving preparedness for detecting emerging coronaviruses by applying it to field studies and surveillance.
Collapse
Affiliation(s)
- Tony Tat-Yin Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Joshua Fung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Flora Ka-Kei Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - George Chi-Shing Lo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Hayes Kam-Hei Luk
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Antonio Cheuk-Pui Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zirong He
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kam Leng Aw-Yong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xueyan Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Susanna Kar-Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
56
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
57
|
Martinez DR, Schäfer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Soderblom EJ, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against Merbecovirus and Sarbecovirus challenge in mice. Cell Rep 2023; 42:113248. [PMID: 37858337 PMCID: PMC10842144 DOI: 10.1016/j.celrep.2023.113248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tyler D Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
58
|
Heise M, Dillard J, Taft-Benz S, Knight A, Anderson E, Pressey K, Parotti B, Martinez S, Diaz J, Sarkar S, Madden E, De la Cruz G, Adams L, Dinnon K, Leist S, Martinez D, Schaefer A, Powers J, Yount B, Castillo I, Morales N, Burdick J, Evangelista MK, Ralph L, Pankow N, Linnertz C, Lakshmanane P, Montgomery S, Ferris M, Baric R, Baxter V. Adjuvant-dependent effects on the safety and efficacy of inactivated SARS-CoV-2 vaccines during heterologous infection by a SARS-related coronavirus. RESEARCH SQUARE 2023:rs.3.rs-3401539. [PMID: 37961507 PMCID: PMC10635311 DOI: 10.21203/rs.3.rs-3401539/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Inactivated whole virus SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide (Alum) are among the most widely used COVID-19 vaccines globally and have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous virus infection in healthy recipients, the emergence of novel SARS-CoV-2 variants and the presence of large zoonotic reservoirs provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes including vaccine-associated enhanced respiratory disease (VAERD). To evaluate this possibility, we tested the performance of an inactivated SARS-CoV-2 vaccine (iCoV2) in combination with Alum against either homologous or heterologous coronavirus challenge in a mouse model of coronavirus-induced pulmonary disease. Consistent with human results, iCoV2 + Alum protected against homologous challenge. However, challenge with a heterologous SARS-related coronavirus, Rs-SHC014-CoV (SHC014), up to at least 10 months post-vaccination, resulted in VAERD in iCoV2 + Alum-vaccinated animals, characterized by pulmonary eosinophilic infiltrates, enhanced pulmonary pathology, delayed viral clearance, and decreased pulmonary function. In contrast, vaccination with iCoV2 in combination with an alternative adjuvant (RIBI) did not induce VAERD and promoted enhanced SHC014 clearance. Further characterization of iCoV2 + Alum-induced immunity suggested that CD4+ T cells were a major driver of VAERD, and these responses were partially reversed by re-boosting with recombinant Spike protein + RIBI adjuvant. These results highlight potential risks associated with vaccine breakthrough in recipients of Alum-adjuvanted inactivated vaccines and provide important insights into factors affecting both the safety and efficacy of coronavirus vaccines in the face of heterologous virus infections.
Collapse
Affiliation(s)
- Mark Heise
- University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Boyd Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill
| | | | | | | | | | | | | | | | - Prem Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | | | | | - Victoria Baxter
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
59
|
Arnaout Y, Picard-Meyer E, Robardet E, Cappelle J, Cliquet F, Touzalin F, Jimenez G, Djelouadji Z. Assessment of virus and Leptospira carriage in bats in France. PLoS One 2023; 18:e0292840. [PMID: 37862301 PMCID: PMC10588846 DOI: 10.1371/journal.pone.0292840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
With over 1,400 species worldwide, bats represent the second largest order of mammals after rodents, and are known to host major zoonotic pathogens. Here, we estimate the presence of pathogens in autochthonous bat populations. First, we set out to check our samples for PCR amplification efficiency by assessing the occurrence of inhibited PCR reactions from different types of bat samples with amplifying the housekeeping gene β-actin. Second, we investigated the presence of five targeted pathogens in a French bat population using PCR. We targeted viral RNA of Canine distemper virus, Alphacoronavirus, Lyssavirus, Rotavirus and bacterial Leptospira DNA. To do so, we screened for these viruses in bat faecal samples as well as in oropharyngeal swab samples. The presence of Leptospira was assessed in urine, kidney, lung and faecal samples. Results showed a frequency of inhibited reactions ranging from 5 to 60% of samples, varying according to the sample itself and also suspected to vary according to sampling method and the storage buffer solution used, demonstrating the importance of the sampling and storage on the probability of obtaining negative PCR results. For pathogen assessment, rotavirus and alphacoronavirus RNA were detected in Myotis myotis, Myotis daubentonii, Myotis emarginatus and Rhinolophus ferrumequinum bats. Rotaviruses were also detected in Barbastella barbastellus. The presence of alphacoronavirus also varied seasonally, with higher frequencies in late summer and October, suggesting that juveniles potentially play an important role in the dynamics of these viruses. Leptospira DNA was detected in M. myotis and M. daubentonii colonies. The 16S rRNA sequences obtained from Leptospira positive samples showed 100% genetic identity with L. borgpetersenii. Neither canine distemper virus nor lyssavirus RNA were detected in any of the tested samples. This study is the first to show the presence of Leptospira in autochthonous French bats in addition to coronavirus and rotavirus RNA previously reported in European autochthonous bats.
Collapse
Affiliation(s)
- Youssef Arnaout
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| | - Evelyne Picard-Meyer
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Emmanuelle Robardet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
- UMR EPIA, INRAE, VetAgro Sup, Theix, France
| | - Florence Cliquet
- Lyssavirus Unit, Nancy Laboratory for Rabies and Wildlife, ANSES, Malzéville, France
| | - Frédéric Touzalin
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Dublin, Ireland
| | | | - Zouheira Djelouadji
- USC 1233-INRAE Rongeurs Sauvages, Risque Sanitaire et Gestion des Populations, VetAgro Sup, Marcy l’Etoile, France
| |
Collapse
|
60
|
Fritch EJ, Mordant AL, Gilbert TSK, Wells CI, Yang X, Barker NK, Madden EA, Dinnon KH, Hou YJ, Tse LV, Castillo IN, Sims AC, Moorman NJ, Lakshmanane P, Willson TM, Herring LE, Graves LM, Baric RS. Investigation of the Host Kinome Response to Coronavirus Infection Reveals PI3K/mTOR Inhibitors as Betacoronavirus Antivirals. J Proteome Res 2023; 22:3159-3177. [PMID: 37634194 DOI: 10.1021/acs.jproteome.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Host kinases play essential roles in the host cell cycle, innate immune signaling, the stress response to viral infection, and inflammation. Previous work has demonstrated that coronaviruses specifically target kinase cascades to subvert host cell responses to infection and rely upon host kinase activity to phosphorylate viral proteins to enhance replication. Given the number of kinase inhibitors that are already FDA approved to treat cancers, fibrosis, and other human disease, they represent an attractive class of compounds to repurpose for host-targeted therapies against emerging coronavirus infections. To further understand the host kinome response to betacoronavirus infection, we employed multiplex inhibitory bead mass spectrometry (MIB-MS) following MERS-CoV and SARS-CoV-2 infection of human lung epithelial cell lines. Our MIB-MS analyses revealed activation of mTOR and MAPK signaling following MERS-CoV and SARS-CoV-2 infection, respectively. SARS-CoV-2 host kinome responses were further characterized using paired phosphoproteomics, which identified activation of MAPK, PI3K, and mTOR signaling. Through chemogenomic screening, we found that clinically relevant PI3K/mTOR inhibitors were able to inhibit coronavirus replication at nanomolar concentrations similar to direct-acting antivirals. This study lays the groundwork for identifying broad-acting, host-targeted therapies to reduce betacoronavirus replication that can be rapidly repurposed during future outbreaks and epidemics. The proteomics, phosphoproteomics, and MIB-MS datasets generated in this study are available in the Proteomics Identification Database (PRIDE) repository under project identifiers PXD040897 and PXD040901.
Collapse
Affiliation(s)
- Ethan J Fritch
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Angie L Mordant
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas S K Gilbert
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
| | - Carrow I Wells
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Xuan Yang
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Natalie K Barker
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily A Madden
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Yixuan J Hou
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Longping V Tse
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Izabella N Castillo
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Amy C Sims
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Premkumar Lakshmanane
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
| | - Timothy M Willson
- Structural Genomics Consortium, Department of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7264, United States
| | - Laura E Herring
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
| | - Lee M Graves
- UNC Michael Hooker Proteomics Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7365, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Ralph S Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, United States
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
61
|
Hou YJ, Chiba S, Leist SR, Meganck RM, Martinez DR, Schäfer A, Catanzaro NJ, Sontake V, West A, Edwards CE, Yount B, Lee RE, Gallant SC, Zost SJ, Powers J, Adams L, Kong EF, Mattocks M, Tata A, Randell SH, Tata PR, Halfmann P, Crowe JE, Kawaoka Y, Baric RS. Host range, transmissibility and antigenicity of a pangolin coronavirus. Nat Microbiol 2023; 8:1820-1833. [PMID: 37749254 PMCID: PMC10522490 DOI: 10.1038/s41564-023-01476-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.
Collapse
Affiliation(s)
- Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Moderna Inc., Cambridge, MA, USA
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vishwaraj Sontake
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rhianna E Lee
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel C Gallant
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edgar F Kong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aleksandra Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Purushothama R Tata
- Department of Cell Biology, Regeneration Next Initiative, Duke University Medical Center, Durham, NC, USA
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
63
|
Lin HF, Liu MQ, Jiang RD, Gong QC, Su J, Guo ZS, Chen Y, Jia JK, Dong TY, Zhu Y, Li A, Shen XR, Wang Y, Li B, Xie TT, Yang XL, Hu B, Shi ZL. Characterization of a mouse-adapted strain of bat severe acute respiratory syndrome-related coronavirus. J Virol 2023; 97:e0079023. [PMID: 37607058 PMCID: PMC10537601 DOI: 10.1128/jvi.00790-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/18/2023] [Indexed: 08/24/2023] Open
Abstract
Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.
Collapse
Affiliation(s)
- Hao-Feng Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Qin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qian-Chun Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Su
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Shuo Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Kun Jia
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Yi Dong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Rui Shen
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yi Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ting-Ting Xie
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
64
|
Vishwanath S, Carnell GW, Ferrari M, Asbach B, Billmeier M, George C, Sans MS, Nadesalingam A, Huang CQ, Paloniemi M, Stewart H, Chan A, Wells DA, Neckermann P, Peterhoff D, Einhauser S, Cantoni D, Neto MM, Jordan I, Sandig V, Tonks P, Temperton N, Frost S, Sohr K, Ballesteros MTL, Arbabi F, Geiger J, Dohmen C, Plank C, Kinsley R, Wagner R, Heeney JL. A computationally designed antigen eliciting broad humoral responses against SARS-CoV-2 and related sarbecoviruses. Nat Biomed Eng 2023:10.1038/s41551-023-01094-2. [PMID: 37749309 DOI: 10.1038/s41551-023-01094-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
The threat of spillovers of coronaviruses associated with the severe acute respiratory syndrome (SARS) from animals to humans necessitates vaccines that offer broader protection from sarbecoviruses. By leveraging a viral-genome-informed computational method for selecting immune-optimized and structurally engineered antigens, here we show that a single antigen based on the receptor binding domain of the spike protein of sarbecoviruses elicits broad humoral responses against SARS-CoV-1, SARS-CoV-2, WIV16 and RaTG13 in mice, rabbits and guinea pigs. When administered as a DNA immunogen or by a vector based on a modified vaccinia virus Ankara, the optimized antigen induced vaccine protection from the Delta variant of SARS-CoV-2 in mice genetically engineered to express angiotensin-converting enzyme 2 and primed by a viral-vector vaccine (AZD1222) against SARS-CoV-2. A vaccine formulation incorporating mRNA coding for the optimized antigen further validated its broad immunogenicity. Vaccines that elicit broad immune responses across subgroups of coronaviruses may counteract the threat of zoonotic spillovers of betacoronaviruses.
Collapse
Affiliation(s)
- Sneha Vishwanath
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Martina Billmeier
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Charlotte George
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Maria Suau Sans
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angalee Nadesalingam
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Chloe Qingzhou Huang
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Minna Paloniemi
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew Chan
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | | | | | - Paul Tonks
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, UK
| | - Simon Frost
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
- Microsoft Health Futures, Redmond, WA, USA
| | | | | | | | | | | | | | - Rebecca Kinsley
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
| | - Ralf Wagner
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Luke Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- DIOSynVax Ltd, University of Cambridge, Cambridge, UK.
| |
Collapse
|
65
|
Zhang Y, Sun Y, Xie Y, Shang W, Wang Z, Jiang H, Shen J, Xiao G, Zhang L. A viral RNA-dependent RNA polymerase inhibitor VV116 broadly inhibits human coronaviruses and has synergistic potency with 3CLpro inhibitor nirmatrelvir. Signal Transduct Target Ther 2023; 8:360. [PMID: 37735468 PMCID: PMC10514301 DOI: 10.1038/s41392-023-01587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
During the ongoing pandemic, providing treatment consisting of effective, low-cost oral antiviral drugs at an early stage of SARS-CoV-2 infection has been a priority for controlling COVID-19. Although Paxlovid and molnupiravir have received emergency approval from the FDA, some side effect concerns have emerged, and the possible oral agents are still limited, resulting in optimized drug development becoming an urgent requirement. An oral remdesivir derivative, VV116, has been reported to have promising antiviral effects against SARS-CoV-2 and positive therapeutic outcomes in clinical trials. However, whether VV116 has broad-spectrum anti-coronavirus activity and potential synergy with other drugs is not clear. Here, we uncovered the broad-spectrum antiviral potency of VV116 against SARS-CoV-2 variants of concern (VOCs), HCoV-OC43, and HCoV-229E in various cell lines. In vitro drug combination screening targeted RdRp and proteinase, highlighting the synergistic effect of VV116 and nirmatrelvir on HCoV-OC43 and SARS-CoV-2. When co-administrated with ritonavir, the combination of VV116 and nirmatrelvir showed significantly enhanced antiviral potency with noninteracting pharmacokinetic properties in mice. Our findings will facilitate clinical treatment with VV116 or VV116+nirmatrelvir combination to fight coronavirus infection.
Collapse
Affiliation(s)
- Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Yuan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | | | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Zhen Wang
- Lingang Laboratory, 200031, Shanghai, China
| | - Hualiang Jiang
- Lingang Laboratory, 200031, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jingshan Shen
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Leike Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 430071, Wuhan, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| |
Collapse
|
66
|
Tamayo-Ordóñez MC, Rosas-García NM, Ayil-Gutiérrez BA, Bello-López JM, Tamayo-Ordóñez FA, Anguebes-Franseschi F, Damas-Damas S, Tamayo-Ordóñez YDJ. Non-Structural Proteins (Nsp): A Marker for Detection of Human Coronavirus Families. Pathogens 2023; 12:1185. [PMID: 37764993 PMCID: PMC10537875 DOI: 10.3390/pathogens12091185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 was the cause of the global pandemic that caused a total of 14.9 million deaths during the years 2020 and 2021, according to the WHO. The virus presents a mutation rate between 10-5 and 10-3 substitutions per nucleotide site per cell infection (s/n/c). Due to this, studies aimed at knowing the evolution of this virus could help us to foresee (through the future development of new detection strategies and vaccines that prevent the infection of this virus in human hosts) that a pandemic caused by this virus will be generated again. In this research, we performed a functional annotation and identification of changes in Nsp (non-structural proteins) domains in the coronavirus genome. The comparison of the 13 selected coronavirus pangenomes demonstrated a total of 69 protein families and 57 functions associated with the structural domain's differentials between genomes. A marked evolutionary conservation of non-structural proteins was observed. This allowed us to identify and classify highly pathogenic human coronaviruses into alpha, beta, gamma, and delta groups. The designed Nsp cluster provides insight into the trajectory of SARS-CoV-2, demonstrating that it continues to evolve rapidly. An evolutionary marker allows us to discriminate between phylogenetically divergent groups, viral genotypes, and variants between the alpha and betacoronavirus genera. These types of evolutionary studies provide a window of opportunity to use these Nsp as targets of viral therapies.
Collapse
Affiliation(s)
- María Concepción Tamayo-Ordóñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | - Ninfa María Rosas-García
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico
| | - Benjamín Abraham Ayil-Gutiérrez
- CONAHCYT-Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnología Vegetal, Reynosa 88710, Tamaulipas, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Campeche, Mexico
| | - Francisco Alberto Tamayo-Ordóñez
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico (S.D.-D.)
| | - Francisco Anguebes-Franseschi
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico (S.D.-D.)
| | - Siprian Damas-Damas
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico (S.D.-D.)
| | - Yahaira de Jesús Tamayo-Ordóñez
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico
| |
Collapse
|
67
|
Lee J, Zepeda SK, Park YJ, Taylor AL, Quispe J, Stewart C, Leaf EM, Treichel C, Corti D, King NP, Starr TN, Veesler D. Broad receptor tropism and immunogenicity of a clade 3 sarbecovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557371. [PMID: 37745523 PMCID: PMC10515872 DOI: 10.1101/2023.09.12.557371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad ACE2 usage and that RBD mutations further expand receptor promiscuity and enable human ACE2 utilization. We determined a cryoEM structure of the PRD-0038 RBD bound to R. alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryoEM and monoclonal antibody reactivity revealed its distinct antigenicity relative to SARS-CoV-2 and identified PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicited greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared to SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Samantha K. Zepeda
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Elizabeth M. Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
68
|
Su X, Huang Z, Xu W, Wang Q, Xing L, Lu L, Jiang S, Xia S. IgG Fc-Binding Peptide-Conjugated Pan-CoV Fusion Inhibitor Exhibits Extended In Vivo Half-Life and Synergistic Antiviral Effect When Combined with Neutralizing Antibodies. Biomolecules 2023; 13:1283. [PMID: 37759683 PMCID: PMC10526447 DOI: 10.3390/biom13091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The peptide-based pan-coronavirus fusion inhibitor EK1 is in phase III clinical trials, and it has, thus far, shown good clinical application prospects against SARS-CoV-2 and its variants. To further improve its in vivo long-acting property, we herein developed an Fc-binding strategy by conjugating EK1 with human immunoglobulin G Fc-binding peptide (IBP), which can exploit the long half-life advantage of IgG in vivo. The newly engineered peptide IBP-EK1 showed potent and broad-spectrum inhibitory activity against SARS-CoV-2 and its variants, including various Omicron sublineages and other human coronaviruses (HCoVs) with low cytotoxicity. In mouse models, IBP-EK1 possessed potent prophylactic and therapeutic efficacy against lethal HCoV-OC43 challenge, and it showed good safety profile and low immunogenicity. More importantly, IBP-EK1 exhibited a significantly extended in vivo half-life in rhesus monkeys of up to 37.7 h, which is about 20-fold longer than that reported for EK1. Strikingly, IBP-EK1 displayed strong in vitro or ex vivo synergistic anti-HCoV effect when combined with monoclonal neutralizing antibodies, including REGN10933 or S309, suggesting that IBP-conjugated EK1 can be further developed as a long-acting, broad-spectrum anti-HCoV agent, either alone or in combination with neutralizing antibodies, to combat the current COVID-19 pandemic or future outbreaks caused by emerging and re-emerging highly pathogenic HCoVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai 200032, China; (X.S.); (Z.H.); (W.X.); (Q.W.); (L.X.); (L.L.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Fudan University, Shanghai 200032, China; (X.S.); (Z.H.); (W.X.); (Q.W.); (L.X.); (L.L.)
| |
Collapse
|
69
|
Lu M, Yao W, Li Y, Ma D, Zhang Z, Wang H, Tang X, Wang Y, Li C, Cheng D, Lin H, Yin Y, Zhao J, Zhong G. Broadly Effective ACE2 Decoy Proteins Protect Mice from Lethal SARS-CoV-2 Infection. Microbiol Spectr 2023; 11:e0110023. [PMID: 37395664 PMCID: PMC10434153 DOI: 10.1128/spectrum.01100-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.
Collapse
Affiliation(s)
- Mengjia Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Weitong Yao
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Yujun Li
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Danting Ma
- Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haimin Wang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaojuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dechun Cheng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hua Lin
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China
| | - Yandong Yin
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guocai Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
70
|
Wang G, Liu X, Wang K, Gao Y, Li G, Baptista-Hon DT, Yang XH, Xue K, Tai WH, Jiang Z, Cheng L, Fok M, Lau JYN, Yang S, Lu L, Zhang P, Zhang K. Deep-learning-enabled protein-protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nat Med 2023; 29:2007-2018. [PMID: 37524952 DOI: 10.1038/s41591-023-02483-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/28/2023] [Indexed: 08/02/2023]
Abstract
Host-pathogen interactions and pathogen evolution are underpinned by protein-protein interactions between viral and host proteins. An understanding of how viral variants affect protein-protein binding is important for predicting viral-host interactions, such as the emergence of new pathogenic SARS-CoV-2 variants. Here we propose an artificial intelligence-based framework called UniBind, in which proteins are represented as a graph at the residue and atom levels. UniBind integrates protein three-dimensional structure and binding affinity and is capable of multi-task learning for heterogeneous biological data integration. In systematic tests on benchmark datasets and further experimental validation, UniBind effectively and scalably predicted the effects of SARS-CoV-2 spike protein variants on their binding affinities to the human ACE2 receptor, as well as to SARS-CoV-2 neutralizing monoclonal antibodies. Furthermore, in a cross-species analysis, UniBind could be applied to predict host susceptibility to SARS-CoV-2 variants and to predict future viral variant evolutionary trends. This in silico approach has the potential to serve as an early warning system for problematic emerging SARS-CoV-2 variants, as well as to facilitate research on protein-protein interactions in general.
Collapse
Affiliation(s)
- Guangyu Wang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Xiaohong Liu
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- UCL Cancer Institute, University College London, London, UK
| | - Kai Wang
- Department of Big Data and Biomedical Artificial Intelligence, National Biomedical Imaging Center, College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yuanxu Gao
- Guangzhou National Laboratory, Guangzhou, China
| | - Gen Li
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Daniel T Baptista-Hon
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Xiaohong Helena Yang
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Wa Hou Tai
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zeyu Jiang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Linling Cheng
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Manson Fok
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Johnson Yiu-Nam Lau
- Departments of Biology and Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ligong Lu
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China
| | - Ping Zhang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Kang Zhang
- Instutite for Artificial Intelligence in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau, China.
- Department of Big Data and Biomedical Artificial Intelligence, National Biomedical Imaging Center, College of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, China.
- Guangzhou National Laboratory, Guangzhou, China.
- Zhuhai International Eye Center and Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Science and Technology, Guangdong, China.
| |
Collapse
|
71
|
Abdelaziz MO, Raftery MJ, Weihs J, Bielawski O, Edel R, Köppke J, Vladimirova D, Adler JM, Firsching T, Voß A, Gruber AD, Hummel LV, Fernandez Munoz I, Müller-Marquardt F, Willimsky G, Elleboudy NS, Trimpert J, Schönrich G. Early protective effect of a ("pan") coronavirus vaccine (PanCoVac) in Roborovski dwarf hamsters after single-low dose intranasal administration. Front Immunol 2023; 14:1166765. [PMID: 37520530 PMCID: PMC10372429 DOI: 10.3389/fimmu.2023.1166765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.
Collapse
Affiliation(s)
- Mohammed O. Abdelaziz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Weihs
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, Division of Gastroenterology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Bielawski
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Edel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Köppke
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia M. Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Theresa Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Luca V. Hummel
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivan Fernandez Munoz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesca Müller-Marquardt
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Nooran S. Elleboudy
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
72
|
Deshpande A, Schormann N, Piepenbrink MS, Sobrido LM, Kobie JJ, Walter MR. Structure and epitope of a neutralizing monoclonal antibody that targets the stem helix of β coronaviruses. FEBS J 2023; 290:3422-3435. [PMID: 37014961 PMCID: PMC10330828 DOI: 10.1111/febs.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Monoclonal antibodies that retain neutralizing activity against multiple coronavirus (CoV) lineages and variants of concern (VoC) must be developed to protect against future pandemics. These broadly neutralizing MAbs (BNMAbs) may be used as therapeutics and/or to assist in the rational design of vaccines that induce BNMAbs. 1249A8 is a BNMAb that targets the stem helix (SH) region of CoV spike (S) protein and neutralizes Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) original strain, delta, and omicron VoC, Severe Acute Respiratory Syndrome CoV (SARS-CoV), and Middle East Respiratory Syndrome CoV (MERS-CoV). To understand its mechanism of action, the crystal structure of 1249A8 bound to a MERS-CoV SH peptide was determined at 2.1 Å resolution. BNMAb 1249A8 mimics the SARS-CoV-2 S loop residues 743-749, which interacts with the N-terminal end of the SH helix in the S post-fusion conformation. The conformation of 1249A8-bound SH is distinct from the SH conformation observed in the post-fusion SARS-CoV-2 S structure, suggesting 1249A8 disrupts the secondary structure and refolding events required for CoV post-fusion S to initiate membrane fusion and ultimately infection. This study provides novel insights into the neutralization mechanisms of SH-targeting CoV BNMAbs that may inform vaccine development and the design of optimal BNMAb therapeutics.
Collapse
Affiliation(s)
- Ashlesha Deshpande
- Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama, AL, USA
| | - Nobert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham Alabama, AL, USA
| | - Mike S. Piepenbrink
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luis Martinez Sobrido
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama, AL, USA
| |
Collapse
|
73
|
Halfmann PJ, Loeffler K, Duffy A, Kuroda M, Kawaoka Y, Kane RS. Broad Protection Against Clade 1 Sarbecoviruses After a Single Immunization with Cocktail Spike-Protein-Nanoparticle Vaccine. RESEARCH SQUARE 2023:rs.3.rs-3088907. [PMID: 37461652 PMCID: PMC10350183 DOI: 10.21203/rs.3.rs-3088907/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech's bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.
Collapse
Affiliation(s)
- Peter J. Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Augustine Duffy
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53711, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Ravi S. Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
74
|
Martinez DR, Moreira FR, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Catanzaro N, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Bilello JP, Feng JY, Cihlar T, Baric RS, Mackman RL, Schäfer A, Sheahan TP. Efficacy of the oral nucleoside prodrug GS-5245 (Obeldesivir) against SARS-CoV-2 and coronaviruses with pandemic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546784. [PMID: 37425890 PMCID: PMC10327034 DOI: 10.1101/2023.06.27.546784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
75
|
Mocci S, Littera R, Chessa L, Campagna M, Melis M, Ottelio CM, Piras IS, Lai S, Firinu D, Tranquilli S, Mascia A, Vacca M, Schirru D, Lecca LI, Rassu S, Cannas F, Sanna C, Carta MG, Sedda F, Giuressi E, Cipri S, Miglianti M, Perra A, Giglio S. A review of the main genetic factors influencing the course of COVID-19 in Sardinia: the role of human leukocyte antigen-G. Front Immunol 2023; 14:1138559. [PMID: 37342325 PMCID: PMC10277491 DOI: 10.3389/fimmu.2023.1138559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction A large number of risk and protective factors have been identified during the SARS-CoV-2 pandemic which may influence the outcome of COVID-19. Among these, recent studies have explored the role of HLA-G molecules and their immunomodulatory effects in COVID-19, but there are very few reports exploring the genetic basis of these manifestations. The present study aims to investigate how host genetic factors, including HLA-G gene polymorphisms and sHLA-G, can affect SARS-CoV-2 infection. Materials and Methods We compared the immune-genetic and phenotypic characteristics between COVID-19 patients (n = 381) with varying degrees of severity of the disease and 420 healthy controls from Sardinia (Italy). Results HLA-G locus analysis showed that the extended haplotype HLA-G*01:01:01:01/UTR-1 was more prevalent in both COVID-19 patients and controls. In particular, this extended haplotype was more common among patients with mild symptoms than those with severe symptoms [22.7% vs 15.7%, OR = 0.634 (95% CI 0.440 - 0.913); P = 0.016]. Furthermore, the most significant HLA-G 3'UTR polymorphism (rs371194629) shows that the HLA-G 3'UTR Del/Del genotype frequency decreases gradually from 27.6% in paucisymptomatic patients to 15.9% in patients with severe symptoms (X2 = 7.095, P = 0.029), reaching the lowest frequency (7.0%) in ICU patients (X2 = 11.257, P = 0.004). However, no significant differences were observed for the soluble HLA-G levels in patients and controls. Finally, we showed that SARS-CoV-2 infection in the Sardinian population is also influenced by other genetic factors such as β-thalassemia trait (rs11549407C>T in the HBB gene), KIR2DS2/HLA-C C1+ group combination and the HLA-B*58:01, C*07:01, DRB1*03:01 haplotype which exert a protective effect [P = 0.005, P = 0.001 and P = 0.026 respectively]. Conversely, the Neanderthal LZTFL1 gene variant (rs35044562A>G) shows a detrimental consequence on the disease course [P = 0.001]. However, by using a logistic regression model, HLA-G 3'UTR Del/Del genotype was independent from the other significant variables [ORM = 0.4 (95% CI 0.2 - 0.7), PM = 6.5 x 10-4]. Conclusion Our results reveal novel genetic variants which could potentially serve as biomarkers for disease prognosis and treatment, highlighting the importance of considering genetic factors in the management of COVID-19 patients.
Collapse
Affiliation(s)
- Stefano Mocci
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
| | - Roberto Littera
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Luchino Chessa
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Liver Unit, University Hospital, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Maurizio Melis
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
| | - Carla Maria Ottelio
- Anesthesia and Intensive Care Unit, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Ignazio S. Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Sara Lai
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefania Tranquilli
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessia Mascia
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Vacca
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Schirru
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefania Rassu
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Federica Cannas
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Celeste Sanna
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Sedda
- Section of Pathology, Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Erika Giuressi
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
| | - Selene Cipri
- GeneMos-APS (Association for Social Advancement), Reggio Calabria, Italy
| | - Michela Miglianti
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- AART-ODV (Association for the Advancement of Research on Transplantation), Cagliari, Italy
- Section of Pathology, Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Sabrina Giglio
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Cagliari, Italy
- Centre for Research University Services (CeSAR, Centro Servizi di Ateneo per la Ricerca), University of Cagliari, Monserrato, Italy
| |
Collapse
|
76
|
Scarpa F, Imperia E, Ciccozzi A, Pascarella S, Quaranta M, Giovanetti M, Borsetti A, Petrosillo N, Ciccozzi M. Khosta: A Genetic and Structural Point of View of the Forgotten Virus. Infect Dis Rep 2023; 15:307-318. [PMID: 37367190 DOI: 10.3390/idr15030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Bats are well-known to be natural reservoirs of various zoonotic coronaviruses, which have caused outbreaks of severe acute respiratory syndrome (SARS) and the COVID-19 pandemic in 2002 and 2019, respectively. In late 2020, two new Sarbecoviruses were found in Russia, isolated in Rhinolophus bats, i.e., Khosta-1 in R. ferrumequinum and Khosta-2 in R. hipposideros. The potential danger associated with these new species of Sarbecovirus is that Khosta-2 has been found to interact with the same entry receptor as SARS-CoV-2. Our multidisciplinary approach in this study demonstrates that Khosta-1 and -2 currently appear to be not dangerous with low risk of spillover, as confirmed by prevalence data and by phylogenomic reconstruction. In addition, the interaction between Khosta-1 and -2 with ACE2 appears weak, and furin cleavage sites are absent. While the possibility of a spillover event cannot be entirely excluded, it is currently highly unlikely. This research further emphasizes the importance of assessing the zoonotic potential of widely distributed batborne CoV in order to monitor changes in genomic composition of viruses and prevent spillover events (if any).
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Elena Imperia
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico, 00128 Rome, Italy
- Unit of Gastroenterology, Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico, 00128 Rome, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome "La Sapienza", 00185 Rome, Italy
| | - Miriana Quaranta
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome "La Sapienza", 00185 Rome, Italy
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico of Rome, 00128 Rome, Italy
- Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30.190-009, Minas Gerais, Brazil
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Nicola Petrosillo
- Infection Prevention and Control-Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
77
|
Tsu BV, Agarwal R, Gokhale NS, Kulsuptrakul J, Ryan AP, Fay EJ, Castro LK, Beierschmitt C, Yap C, Turcotte EA, Delgado-Rodriguez SE, Vance RE, Hyde JL, Savan R, Mitchell PS, Daugherty MD. Host-specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome. PLoS Biol 2023; 21:e3002144. [PMID: 37289745 PMCID: PMC10249858 DOI: 10.1371/journal.pbio.3002144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CLpro) encoded by diverse coronaviruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CLpro, including 3CLpro-mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8's ability to sense coronavirus 3CLpros and, instead, enables sensing of 3C proteases (3Cpro) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intraspecies variation in inflammasome-mediated viral sensing and immunopathology.
Collapse
Affiliation(s)
- Brian V. Tsu
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Rimjhim Agarwal
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Nandan S. Gokhale
- Department of Immunology, University of Washington; Seattle, Washington, United States of America
| | - Jessie Kulsuptrakul
- Molecular and Cellular Biology Graduate Program, University of Washington; Seattle, Washington, United States of America
| | - Andrew P. Ryan
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Elizabeth J. Fay
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Lennice K. Castro
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Christopher Beierschmitt
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Christina Yap
- Department of Microbiology, University of Washington; Seattle, Washington, United States of America
| | - Elizabeth A. Turcotte
- Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
| | - Sofia E. Delgado-Rodriguez
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Russell E. Vance
- Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Jennifer L. Hyde
- Department of Microbiology, University of Washington; Seattle, Washington, United States of America
| | - Ram Savan
- Department of Immunology, University of Washington; Seattle, Washington, United States of America
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington; Seattle, Washington, United States of America
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
78
|
Martinez DR, Schafer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against merbecovirus and sarbecovirus challenge in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540829. [PMID: 37293083 PMCID: PMC10245799 DOI: 10.1101/2023.05.22.540829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of three distinct highly pathogenic human coronaviruses - SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 - underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Schafer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tyler D. Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
79
|
Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduct Target Ther 2023; 8:197. [PMID: 37164987 PMCID: PMC10170451 DOI: 10.1038/s41392-023-01472-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
80
|
Feng Y, Yuan M, Powers JM, Hu M, Munt JE, Arunachalam PS, Leist SR, Bellusci L, Kim J, Sprouse KR, Adams LE, Sundaramurthy S, Zhu X, Shirreff LM, Mallory ML, Scobey TD, Moreno A, O’Hagan DT, Kleanthous H, Villinger FJ, Veesler D, King NP, Suthar MS, Khurana S, Baric RS, Wilson IA, Pulendran B. Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine. Sci Transl Med 2023; 15:eadg7404. [PMID: 37163615 PMCID: PMC11032722 DOI: 10.1126/scitranslmed.adg7404] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.
Collapse
Affiliation(s)
- Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
| | - Jennifer E. Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA); Silver Spring, MD 20993, USA
| | - JungHyun Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA); Silver Spring, MD 20993, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | | | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Lisa M. Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette; New Iberia, LA 70560, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Trevor D. Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, GA 30322, USA
| | | | | | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana at Lafayette; New Iberia, LA 70560, USA
| | - David Veesler
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington; Seattle, WA 98195, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center; Atlanta, GA 30329, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA); Silver Spring, MD 20993, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
81
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep 2023; 42:112326. [PMID: 37000623 PMCID: PMC10063157 DOI: 10.1016/j.celrep.2023.112326] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
Affiliation(s)
- Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny S Maron
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Mark R Zweigert
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaclyn S Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Dallas Tissue Research, Dallas, TX, USA
| | - Victoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
82
|
Goodrum F, Lowen AC, Lakdawala S, Alwine J, Casadevall A, Imperiale MJ, Atwood W, Avgousti D, Baines J, Banfield B, Banks L, Bhaduri-McIntosh S, Bhattacharya D, Blanco-Melo D, Bloom D, Boon A, Boulant S, Brandt C, Broadbent A, Brooke C, Cameron C, Campos S, Caposio P, Chan G, Cliffe A, Coffin J, Collins K, Damania B, Daugherty M, Debbink K, DeCaprio J, Dermody T, Dikeakos J, DiMaio D, Dinglasan R, Duprex WP, Dutch R, Elde N, Emerman M, Enquist L, Fane B, Fernandez-Sesma A, Flenniken M, Frappier L, Frieman M, Frueh K, Gack M, Gaglia M, Gallagher T, Galloway D, García-Sastre A, Geballe A, Glaunsinger B, Goff S, Greninger A, Hancock M, Harris E, Heaton N, Heise M, Heldwein E, Hogue B, Horner S, Hutchinson E, Hyser J, Jackson W, Kalejta R, Kamil J, Karst S, Kirchhoff F, Knipe D, Kowalik T, Lagunoff M, Laimins L, Langlois R, Lauring A, Lee B, Leib D, Liu SL, Longnecker R, Lopez C, Luftig M, Lund J, Manicassamy B, McFadden G, McIntosh M, Mehle A, Miller WA, Mohr I, Moody C, Moorman N, Moscona A, Mounce B, Munger J, Münger K, Murphy E, Naghavi M, Nelson J, Neufeldt C, Nikolich J, O'Connor C, Ono A, Orenstein W, Ornelles D, Ou JH, Parker J, Parrish C, Pekosz A, Pellett P, Pfeiffer J, Plemper R, Polyak S, Purdy J, Pyeon D, Quinones-Mateu M, Renne R, Rice C, Schoggins J, Roller R, Russell C, Sandri-Goldin R, Sapp M, Schang L, Schmid S, Schultz-Cherry S, Semler B, Shenk T, Silvestri G, Simon V, Smith G, Smith J, Spindler K, Stanifer M, Subbarao K, Sundquist W, Suthar M, Sutton T, Tai A, Tarakanova V, tenOever B, Tibbetts S, Tompkins S, Toth Z, van Doorslaer K, Vignuzzi M, Wallace N, Walsh D, Weekes M, Weinberg J, Weitzman M, Weller S, Whelan S, White E, Williams B, Wobus C, Wong S, Yurochko A. Virology under the Microscope-a Call for Rational Discourse. mSphere 2023; 8:e0003423. [PMID: 36700653 PMCID: PMC10117089 DOI: 10.1128/msphere.00034-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Seema Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James Alwine
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daphne Avgousti
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | - David Bloom
- University of Florida, Gainesville, Florida, USA
| | - Adrianus Boon
- University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Curtis Brandt
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | - Craig Cameron
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Gary Chan
- SUNY Upstate Medical University, Syracuse, New York, USA
| | - Anna Cliffe
- University of Virginia, Charlottesville, Virginia, USA
| | - John Coffin
- Tufts University, Boston, Massachusetts, USA
| | | | - Blossom Damania
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Kari Debbink
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | - W Paul Duprex
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Nels Elde
- University of Utah, Salt Lake City, Utah, USA
| | - Michael Emerman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lynn Enquist
- Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | | - Klaus Frueh
- Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michaela Gack
- Florida Research and Innovation Center, Port Saint Lucie, Florida, USA
| | - Marta Gaglia
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Denise Galloway
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Adam Geballe
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Meaghan Hancock
- Oregon Health and Science University, Beaverton, Oregon, USA
| | - Eva Harris
- University of California, Berkeley, Berkeley, California, USA
| | | | - Mark Heise
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | - Jeremy Kamil
- Louisiana State University, Shreveport, Louisiana, USA
| | | | | | - David Knipe
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Ryan Langlois
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam Lauring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Leib
- Dartmouth College, Lebanon, New Hampshire, USA
| | - Shan-Lu Liu
- The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Jennifer Lund
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Andrew Mehle
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Ian Mohr
- New York University, New York, New York, USA
| | - Cary Moody
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | - Karl Münger
- Tufts University, Boston, Massachusetts, USA
| | - Eain Murphy
- SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Jay Nelson
- Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | | - Akira Ono
- University of Michigan, Ann Arbor, Michigan, USA
| | | | - David Ornelles
- Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jing-Hsiung Ou
- University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | - John Purdy
- University of Arizona, Tucson, Arizona, USA
| | - Dohun Pyeon
- Michigan State University, East Lansing, Michigan, USA
| | | | - Rolf Renne
- University of Florida, Gainesville, Florida, USA
| | - Charles Rice
- The Rockefeller University, New York, New York, USA
| | | | | | - Charles Russell
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Martin Sapp
- Louisiana State University, Shreveport, Louisiana, USA
| | | | | | | | - Bert Semler
- University of California, Irvine, Irvine, California, USA
| | - Thomas Shenk
- Princeton University, Princeton, New Jersey, USA
| | | | - Viviana Simon
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Jason Smith
- University of Washington, Seattle, Washington, USA
| | | | | | - Kanta Subbarao
- The Peter Doherty Institute, Melbourne, Victoria, Australia
| | | | | | - Troy Sutton
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Tai
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Zsolt Toth
- University of Florida, Gainesville, Florida, USA
| | | | | | | | - Derek Walsh
- Northwestern University, Chicago, Illinois, USA
| | | | | | | | - Sandra Weller
- University of Connecticut, Farmington, Connecticut, USA
| | - Sean Whelan
- Washington University, St. Louis, Missouri, USA
| | | | | | | | - Scott Wong
- Oregon Health and Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
83
|
Niu Z, Zhang S, Xu S, Wang J, Wang S, Hu X, Zhang L, Ren L, Zhang J, Liu X, Zhou Y, Yang L, Song Z. Porcine Epidemic Diarrhea Virus Replication in Human Intestinal Cells Reveals Potential Susceptibility to Cross-Species Infection. Viruses 2023; 15:v15040956. [PMID: 37112936 PMCID: PMC10142432 DOI: 10.3390/v15040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV.
Collapse
Affiliation(s)
- Zheng Niu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Shujuan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Shasha Xu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jing Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Siying Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xia Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Li Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Lixin Ren
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Jingyi Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
| | - Xiangyang Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liu Yang
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Zhenhui Song
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
84
|
Jayabal D, Jayanthi S, Thirumalaisamy R, Karthika R, Iqbal MN. Comparative anti-Diabetic potential of phytocompounds from Dr. Duke's phytochemical and ethnobotanical database and standard antidiabetic drugs against diabetes hyperglycemic target proteins: an in silico validation. J Biomol Struct Dyn 2023; 41:15137-15149. [PMID: 37011006 DOI: 10.1080/07391102.2023.2187231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
In the current investigation, the antidiabetic potential of 40 phytocompounds from Dr. Dukes phytochemical and ethanobotanical database and three antidiabetic pharmaceuticals from the market comparatively validated against hyperglycemic target proteins. Silymarin, proanthocyanidins, merremoside, rutin, mangiferin-7-O-beta-glucoside, and gymnemic acid exhibited good binding affinity toward protein targets of diabetes among the 40 phytocompounds from Dr.Dukes database over three chosen antidiabetic pharmaceutical compounds. Further these phytocompounds and sitagliptin are validated for its ADMET and bioactivity score to screen its pharmacological and pharmacokinetics properties. Silymarin, proanthocyanidins, rutin along with sitagliptin screened for DFT analysis found that phytocompounds have great Homo-Lumo orbital energies over commercial pharmaceutical sitagliptin. Finally, four complexes of alpha amylase-silymarin, alpha amylase-sitagliptin, aldose reductase-proanthocyanidins, and aldose reductase-sitagliptin screened for MD simulation and MMGBSA analysis, results shown that the phytocompounds silymarin and proanthocyanidins have strong affinities for binding to the binding pockets of alpha amylase and aldose reductase respectively over antidiabetic pharmaceuticals. Our current study proven proanthocyanidins and silymarin act as novel antidiabetic compounds toward diabetic target protein but it require clinical trial to evaluate its clinical pertinence toward diabetic target proteins.Communicated by Ramaswamy Sarma.
Collapse
Affiliation(s)
- D Jayabal
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, India
- Department of Biochemistry, Sri Ganesh College of Arts and Science, Salem, Tamil Nadu, India
| | - S Jayanthi
- Department of Biochemistry, Shri Sakthikailash Women's College, Salem, Tamil Nadu, India
| | - R Thirumalaisamy
- Department of Biotechnology, Sona College of Arts & Science, Salem, Tamil Nadu, India
| | - R Karthika
- PG and Research Department of Biotechnology, Mahendra Arts and Science College, Namakkal, Tamil Nadu, India
| | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
85
|
Li M, Du J, Liu W, Li Z, Lv F, Hu C, Dai Y, Zhang X, Zhang Z, Liu G, Pan Q, Yu Y, Wang X, Zhu P, Tan X, Garber PA, Zhou X. Comparative susceptibility of SARS-CoV-2, SARS-CoV, and MERS-CoV across mammals. THE ISME JOURNAL 2023; 17:549-560. [PMID: 36690780 PMCID: PMC9869846 DOI: 10.1038/s41396-023-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Exploring wild reservoirs of pathogenic viruses is critical for their long-term control and for predicting future pandemic scenarios. Here, a comparative in vitro infection analysis was first performed on 83 cell cultures derived from 55 mammalian species using pseudotyped viruses bearing S proteins from SARS-CoV-2, SARS-CoV, and MERS-CoV. Cell cultures from Thomas's horseshoe bats, king horseshoe bats, green monkeys, and ferrets were found to be highly susceptible to SARS-CoV-2, SARS-CoV, and MERS-CoV pseudotyped viruses. Moreover, five variants (del69-70, D80Y, S98F, T572I, and Q675H), that beside spike receptor-binding domain can significantly alter the host tropism of SARS-CoV-2. An examination of phylogenetic signals of transduction rates revealed that closely related taxa generally have similar susceptibility to MERS-CoV but not to SARS-CoV and SARS-CoV-2 pseudotyped viruses. Additionally, we discovered that the expression of 95 genes, e.g., PZDK1 and APOBEC3, were commonly associated with the transduction rates of SARS-CoV, MERS-CoV, and SARS-CoV-2 pseudotyped viruses. This study provides basic documentation of the susceptibility, variants, and molecules that underlie the cross-species transmission of these coronaviruses.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Lv
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xu Tan
- Beijing Advanced Center for Structural Biology, Beijing Frontier Innovation Center, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
86
|
Moore KA, Leighton T, Ostrowsky JT, Anderson CJ, Danila RN, Ulrich AK, Lackritz EM, Mehr AJ, Baric RS, Baylor NW, Gellin BG, Gordon JL, Krammer F, Perlman S, Rees HV, Saville M, Weller CL, Osterholm MT. A research and development (R&D) roadmap for broadly protective coronavirus vaccines: A pandemic preparedness strategy. Vaccine 2023; 41:2101-2112. [PMID: 36870874 PMCID: PMC9941884 DOI: 10.1016/j.vaccine.2023.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Broadly protective coronavirus vaccines are an important tool for protecting against future SARS-CoV-2 variants and could play a critical role in mitigating the impact of future outbreaks or pandemics caused by novel coronaviruses. The Coronavirus Vaccines Research and Development (R&D) Roadmap (CVR) is aimed at promoting the development of such vaccines. The CVR, funded by the Bill & Melinda Gates Foundation and The Rockefeller Foundation, was generated through a collaborative and iterative process, which was led by the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota and involved 50 international subject matter experts and recognized leaders in the field. This report summarizes the major issues and areas of research outlined in the CVR and identifies high-priority milestones. The CVR covers a 6-year timeframe and is organized into five topic areas: virology, immunology, vaccinology, animal and human infection models, and policy and finance. Included in each topic area are key barriers, gaps, strategic goals, milestones, and additional R&D priorities. The roadmap includes 20 goals and 86 R&D milestones, 26 of which are ranked as high priority. By identifying key issues, and milestones for addressing them, the CVR provides a framework to guide funding and research campaigns that promote the development of broadly protective coronavirus vaccines.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA; Center for Infectious Disease Research and Policy, C315 Mayo Memorial Building, MMC 263, 420 Delaware Street, SE, Minneapolis, Minnesota 55455, USA.
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cory J Anderson
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ralph S Baric
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Jennifer L Gordon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Florian Krammer
- Department of Microbiology, Department of Pathology, Molecular and Cell-Based Medicine, and Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | | | - Helen V Rees
- Wits RHI, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Melanie Saville
- Coalition for Epidemic Preparedness Innovations, London, United Kingdom
| | | | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
87
|
Zapatero Gaviria A, Barba Martin R. What do we know about the origin of COVID-19 three years later? Rev Clin Esp 2023; 223:240-243. [PMID: 36933695 PMCID: PMC10019034 DOI: 10.1016/j.rceng.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
More than three years have passed since the first case of a new coronavirus infection (SARS-CoV-2) in the city of Wuhan (Hubei, China). The Wuhan Institute of Virology was founded in that city in 1956 and the country's first biosafety level 4 laboratory opened within that center in 2015. The coincidence that the first cases of infection emerged in the city where the virology institute's headquarters is located, the failure to 100% identify the virus' RNA in any of the coronaviruses isolated in bats, and the lack of evidence on a possible intermediate animal host in the contagion's transmission make it so that at present, there are doubts about the real origin of SARS-CoV-2. This article will review two theories: SARS-CoV-2 as a virus of zoonotic origin or as a leak from the high-level biosafety laboratory in Wuhan.
Collapse
Affiliation(s)
- A Zapatero Gaviria
- Servicio Medicina Interna, Hospital Universitario Fuenlabrada, Universidad Rey Juan Carlos.
| | - R Barba Martin
- Servicio Medicina Interna, Hospital Universitario Rey Juan Carlos, Universidad Rey Juan Carlos
| |
Collapse
|
88
|
Kandwal S, Fayne D. Genetic conservation across SARS-CoV-2 non-structural proteins - Insights into possible targets for treatment of future viral outbreaks. Virology 2023; 581:97-115. [PMID: 36940641 PMCID: PMC9999249 DOI: 10.1016/j.virol.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The majority of SARS-CoV-2 therapeutic development work has focussed on targeting the spike protein, viral polymerase and proteases. As the pandemic progressed, many studies reported that these proteins are prone to high levels of mutation and can become drug resistant. Thus, it is necessary to not only target other viral proteins such as the non-structural proteins (NSPs) but to also target the most conserved residues of these proteins. In order to understand the level of conservation among these viruses, in this review, we have focussed on the conservation across RNA viruses, conservation across the coronaviruses and then narrowed our focus to conservation of NSPs across coronaviruses. We have also discussed the various treatment options for SARS-CoV-2 infection. A synergistic melding of bioinformatics, computer-aided drug-design and in vitro/vivo studies can feed into better understanding of the virus and therefore help in the development of small molecule inhibitors against the viral proteins.
Collapse
Affiliation(s)
- Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland.
| |
Collapse
|
89
|
Wang D, Yuan Y, Liu B, Epstein ND, Yang Y. Protein-based nano-vaccines against SARS-CoV-2: Current design strategies and advances of candidate vaccines. Int J Biol Macromol 2023; 236:123979. [PMID: 36907305 PMCID: PMC9998285 DOI: 10.1016/j.ijbiomac.2023.123979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shaken the global health system. Various nanotechnology-based strategies for vaccine development have played pivotal roles in fighting against SARS-CoV-2. Among them, the safe and effective protein-based nanoparticle (NP) platforms display a highly repetitive array of foreign antigens on their surface, which is urgent for improving the immunogenicity of vaccines. These platforms greatly improved antigen uptake by antigen presenting cells (APCs), lymph node trafficking, and B cell activation, due to the optimal size, multivalence, and versatility of NPs. In this review, we summarize the advances of protein-based NP platforms, strategies of antigen attachment, and the current progress of clinical and preclinical trials in the development of SARS-CoV-2 vaccines based on protein-based NP platforms. Importantly, the lessons learnt and design approaches developed for these NP platforms against SARS-CoV-2 also provide insights into the development of protein-based NP strategies for preventing other epidemic diseases.
Collapse
Affiliation(s)
- Dongliang Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; College of Biology, Hunan University, Changsha 410082, China
| | - Youqing Yuan
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Neal D Epstein
- Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
90
|
Perlman S, Peiris M. Coronavirus research: knowledge gaps and research priorities. Nat Rev Microbiol 2023; 21:125-126. [PMID: 36792727 DOI: 10.1038/s41579-022-00837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| | - Malik Peiris
- HKU-Pasteur Research Pole, The University of Hong Kong (HKU), Hong Kong Special Administrative Region, People's Republic of China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
91
|
Berche P. Gain-of-function and origin of Covid19. Presse Med 2023; 52:104167. [PMID: 37269978 PMCID: PMC10234839 DOI: 10.1016/j.lpm.2023.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
In nature, wild viruses adapted for transmission circulate in many animal species (bats, birds, primates…). Contamination of other animals, including humans, may occur by crossing of the species barrier. Genetic manipulations have been carried out on wild viruses to favor the species jumping and to increase of viral virulence. The aim was to identify the critical genes for pathogenicity. This has been mainly performed on potentially epidemic pathogens, as Myxovirus influenzae of avian flu and coronaviruses of SARS and MERS epidemics. These dangerous experiments were subject to a moratorium in the United States (2014-2017). Three years after the emergence of Covid-19, the origin of du SARS-CoV2 remains a mystery. Covid19 appeared in Wuhan, officially in December 2019, but probably during the autumn 2019. The virus was identified in January 2020. It belongs to the genus Betacoronavirus (subgenus Sarbecovirus). It was at once highly contagious. In addition, the primary isolates were genetically very homogeneous, differing only by two nucleotides without evidence for adaptive mutations. In addition, the Spike protein, a major virulence factor, has a furin site, not found in any other known sarbecovirus. Unlike the SARS and MERS epidemics, no intermediate host has been detected so far. Finally, no other outbreaks were reported at the beginning of the pandemic outside of Wuhan, contrary to what happened with the emergence of SARS (2002) and H7N9 avian influenza (2013). Today, there are two scenarios to explain the emergence of SARS-CoV2. Proponents of the natural origin argue that the bat virus might have directly infected humans, spreading silently at a low level in humans for years, without eliminating the existence of undetected intermediate hosts. This does not explain the origin in Wuhan, far away from the natural virus reservoirs. The furin site would have arisen spontaneously from other coronaviruses. The alternative scenario is that of a laboratory accident after gain-of-function manipulations from a SARS-like virus, or even the occurrence of a human contamination by a natural CoV virus grown on cells in Wuhan. This article is an update to the Quarterly Medical Review (QMR) devoted to the history of modern pandemics. To access this QMR contents, please go here: https://www.sciencedirect.com/journal/la-presse-medicale/vol/51/issue/3.
Collapse
|
92
|
Goodrum F, Lowen AC, Lakdawala S, Alwine J, Casadevall A, Imperiale MJ, Atwood W, Avgousti D, Baines J, Banfield B, Banks L, Bhaduri-McIntosh S, Bhattacharya D, Blanco-Melo D, Bloom D, Boon A, Boulant S, Brandt C, Broadbent A, Brooke C, Cameron C, Campos S, Caposio P, Chan G, Cliffe A, Coffin J, Collins K, Damania B, Daugherty M, Debbink K, DeCaprio J, Dermody T, Dikeakos J, DiMaio D, Dinglasan R, Duprex WP, Dutch R, Elde N, Emerman M, Enquist L, Fane B, Fernandez-Sesma A, Flenniken M, Frappier L, Frieman M, Frueh K, Gack M, Gaglia M, Gallagher T, Galloway D, García-Sastre A, Geballe A, Glaunsinger B, Goff S, Greninger A, Hancock M, Harris E, Heaton N, Heise M, Heldwein E, Hogue B, Horner S, Hutchinson E, Hyser J, Jackson W, Kalejta R, Kamil J, Karst S, Kirchhoff F, Knipe D, Kowalik T, Lagunoff M, Laimins L, Langlois R, Lauring A, Lee B, Leib D, Liu SL, Longnecker R, Lopez C, Luftig M, Lund J, Manicassamy B, McFadden G, McIntosh M, Mehle A, Miller WA, Mohr I, Moody C, Moorman N, Moscona A, Mounce B, Munger J, Münger K, Murphy E, Naghavi M, Nelson J, Neufeldt C, Nikolich J, O'Connor C, Ono A, Orenstein W, Ornelles D, Ou JH, Parker J, Parrish C, Pekosz A, Pellett P, Pfeiffer J, Plemper R, Polyak S, Purdy J, Pyeon D, Quinones-Mateu M, Renne R, Rice C, Schoggins J, Roller R, Russell C, Sandri-Goldin R, Sapp M, Schang L, Schmid S, Schultz-Cherry S, Semler B, Shenk T, Silvestri G, Simon V, Smith G, Smith J, Spindler K, Stanifer M, Subbarao K, Sundquist W, Suthar M, Sutton T, Tai A, Tarakanova V, tenOever B, Tibbetts S, Tompkins S, Toth Z, van Doorslaer K, Vignuzzi M, Wallace N, Walsh D, Weekes M, Weinberg J, Weitzman M, Weller S, Whelan S, White E, Williams B, Wobus C, Wong S, Yurochko A. Virology under the Microscope-a Call for Rational Discourse. mBio 2023; 14:e0018823. [PMID: 36700642 PMCID: PMC9973315 DOI: 10.1128/mbio.00188-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Seema Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James Alwine
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daphne Avgousti
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | - David Bloom
- University of Florida, Gainesville, Florida, USA
| | - Adrianus Boon
- University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Curtis Brandt
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | - Craig Cameron
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Gary Chan
- SUNY Upstate Medical University, Syracuse, New York, USA
| | - Anna Cliffe
- University of Virginia, Charlottesville, Virginia, USA
| | - John Coffin
- Tufts University, Boston, Massachusetts, USA
| | | | - Blossom Damania
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Kari Debbink
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | - Nels Elde
- University of Utah, Salt Lake City, Utah, USA
| | - Michael Emerman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lynn Enquist
- Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | | - Klaus Frueh
- Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michaela Gack
- Florida Research and Innovation Center, Port Saint Lucie, Florida, USA
| | - Marta Gaglia
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Denise Galloway
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Adam Geballe
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Meaghan Hancock
- Oregon Health and Science University, Beaverton, Oregon, USA
| | - Eva Harris
- University of California, Berkeley, Berkeley, California, USA
| | | | - Mark Heise
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | - Jeremy Kamil
- Louisiana State University, Shreveport, Louisiana, USA
| | | | | | - David Knipe
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Ryan Langlois
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam Lauring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Leib
- Dartmouth College, Lebanon, New Hampshire, USA
| | - Shan-Lu Liu
- The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Jennifer Lund
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Andrew Mehle
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Ian Mohr
- New York University, New York, New York, USA
| | - Cary Moody
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | - Karl Münger
- Tufts University, Boston, Massachusetts, USA
| | - Eain Murphy
- SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Jay Nelson
- Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | | - Akira Ono
- University of Michigan, Ann Arbor, Michigan, USA
| | | | - David Ornelles
- Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jing-hsiung Ou
- University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | - John Purdy
- University of Arizona, Tucson, Arizona, USA
| | - Dohun Pyeon
- Michigan State University, East Lansing, Michigan, USA
| | | | - Rolf Renne
- University of Florida, Gainesville, Florida, USA
| | - Charles Rice
- The Rockefeller University, New York, New York, USA
| | | | | | - Charles Russell
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Martin Sapp
- Louisiana State University, Shreveport, Louisiana, USA
| | | | | | | | - Bert Semler
- University of California, Irvine, Irvine, California, USA
| | - Thomas Shenk
- Princeton University, Princeton, New Jersey, USA
| | | | - Viviana Simon
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Jason Smith
- University of Washington, Seattle, Washington, USA
| | | | | | - Kanta Subbarao
- The Peter Doherty Institute, Melbourne, Victoria, Australia
| | | | | | - Troy Sutton
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Tai
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Zsolt Toth
- University of Florida, Gainesville, Florida, USA
| | | | | | | | - Derek Walsh
- Northwestern University, Chicago, Illinois, USA
| | | | | | | | - Sandra Weller
- University of Connecticut, Farmington, Connecticut, USA
| | - Sean Whelan
- Washington University, St. Louis, Missouri, USA
| | | | | | | | - Scott Wong
- Oregon Health and Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
93
|
A SARS-CoV-2-Related Virus from Malayan Pangolin Causes Lung Infection without Severe Disease in Human ACE2-Transgenic Mice. J Virol 2023; 97:e0171922. [PMID: 36688655 PMCID: PMC9972989 DOI: 10.1128/jvi.01719-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.
Collapse
|
94
|
Honrubia JM, Gutierrez-Álvarez J, Sanz-Bravo A, González-Miranda E, Muñoz-Santos D, Castaño-Rodriguez C, Wang L, Villarejo-Torres M, Ripoll-Gómez J, Esteban A, Fernandez-Delgado R, Sánchez-Cordón PJ, Oliveros JC, Perlman S, McCray PB, Sola I, Enjuanes L. SARS-CoV-2-Mediated Lung Edema and Replication Are Diminished by Cystic Fibrosis Transmembrane Conductance Regulator Modulators. mBio 2023; 14:e0313622. [PMID: 36625656 PMCID: PMC9973274 DOI: 10.1128/mbio.03136-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) of genera α, β, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Javier Gutierrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Infectious Diseases and Global Health, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, CNB-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
- Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
95
|
Goodrum F, Lowen AC, Lakdawala S, Alwine J, Casadevall A, Imperiale MJ, Atwood W, Avgousti D, Baines J, Banfield B, Banks L, Bhaduri-McIntosh S, Bhattacharya D, Blanco-Melo D, Bloom D, Boon A, Boulant S, Brandt C, Broadbent A, Brooke C, Cameron C, Campos S, Caposio P, Chan G, Cliffe A, Coffin J, Collins K, Damania B, Daugherty M, Debbink K, DeCaprio J, Dermody T, Dikeakos J, DiMaio D, Dinglasan R, Duprex WP, Dutch R, Elde N, Emerman M, Enquist L, Fane B, Fernandez-Sesma A, Flenniken M, Frappier L, Frieman M, Frueh K, Gack M, Gaglia M, Gallagher T, Galloway D, García-Sastre A, Geballe A, Glaunsinger B, Goff S, Greninger A, Hancock M, Harris E, Heaton N, Heise M, Heldwein E, Hogue B, Horner S, Hutchinson E, Hyser J, Jackson W, Kalejta R, Kamil J, Karst S, Kirchhoff F, Knipe D, Kowalik T, Lagunoff M, Laimins L, Langlois R, Lauring A, Lee B, Leib D, Liu SL, Longnecker R, Lopez C, Luftig M, Lund J, Manicassamy B, McFadden G, McIntosh M, Mehle A, Miller WA, Mohr I, Moody C, Moorman N, Moscona A, Mounce B, Munger J, Münger K, Murphy E, Naghavi M, Nelson J, Neufeldt C, Nikolich J, O'Connor C, Ono A, Orenstein W, Ornelles D, Ou JH, Parker J, Parrish C, Pekosz A, Pellett P, Pfeiffer J, Plemper R, Polyak S, Purdy J, Pyeon D, Quinones-Mateu M, Renne R, Rice C, Schoggins J, Roller R, Russell C, Sandri-Goldin R, Sapp M, Schang L, Schmid S, Schultz-Cherry S, Semler B, Shenk T, Silvestri G, Simon V, Smith G, Smith J, Spindler K, Stanifer M, Subbarao K, Sundquist W, Suthar M, Sutton T, Tai A, Tarakanova V, tenOever B, Tibbetts S, Tompkins S, Toth Z, van Doorslaer K, Vignuzzi M, Wallace N, Walsh D, Weekes M, Weinberg J, Weitzman M, Weller S, Whelan S, White E, Williams B, Wobus C, Wong S, Yurochko A. Virology under the Microscope-a Call for Rational Discourse. J Virol 2023; 97:e0008923. [PMID: 36700640 PMCID: PMC9972907 DOI: 10.1128/jvi.00089-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.
Collapse
Affiliation(s)
- Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Seema Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James Alwine
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daphne Avgousti
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | - David Bloom
- University of Florida, Gainesville, Florida, USA
| | - Adrianus Boon
- University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Curtis Brandt
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | - Craig Cameron
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Gary Chan
- SUNY Upstate Medical University, Syracuse, New York, USA
| | - Anna Cliffe
- University of Virginia, Charlottesville, Virginia, USA
| | - John Coffin
- Tufts University, Boston, Massachusetts, USA
| | | | - Blossom Damania
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Kari Debbink
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | - Nels Elde
- University of Utah, Salt Lake City, Utah, USA
| | - Michael Emerman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lynn Enquist
- Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | | - Klaus Frueh
- Oregon Health and Science University, Beaverton, Oregon, USA
| | - Michaela Gack
- Florida Research and Innovation Center, Port Saint Lucie, Florida, USA
| | - Marta Gaglia
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Denise Galloway
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Adam Geballe
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Meaghan Hancock
- Oregon Health and Science University, Beaverton, Oregon, USA
| | - Eva Harris
- University of California, Berkeley, Berkeley, California, USA
| | | | - Mark Heise
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | - Jeremy Kamil
- Louisiana State University, Shreveport, Louisiana, USA
| | | | | | - David Knipe
- Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Ryan Langlois
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Adam Lauring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Leib
- Dartmouth College, Lebanon, New Hampshire, USA
| | - Shan-Lu Liu
- The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Jennifer Lund
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | - Andrew Mehle
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Ian Mohr
- New York University, New York, New York, USA
| | - Cary Moody
- University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | - Karl Münger
- Tufts University, Boston, Massachusetts, USA
| | - Eain Murphy
- SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Jay Nelson
- Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | | - Akira Ono
- University of Michigan, Ann Arbor, Michigan, USA
| | | | - David Ornelles
- Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jing-hsiung Ou
- University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | - John Purdy
- University of Arizona, Tucson, Arizona, USA
| | - Dohun Pyeon
- Michigan State University, East Lansing, Michigan, USA
| | | | - Rolf Renne
- University of Florida, Gainesville, Florida, USA
| | - Charles Rice
- The Rockefeller University, New York, New York, USA
| | | | | | - Charles Russell
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Martin Sapp
- Louisiana State University, Shreveport, Louisiana, USA
| | | | | | | | - Bert Semler
- University of California, Irvine, Irvine, California, USA
| | - Thomas Shenk
- Princeton University, Princeton, New Jersey, USA
| | | | - Viviana Simon
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Jason Smith
- University of Washington, Seattle, Washington, USA
| | | | | | - Kanta Subbarao
- The Peter Doherty Institute, Melbourne, Victoria, Australia
| | | | | | - Troy Sutton
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Tai
- University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Zsolt Toth
- University of Florida, Gainesville, Florida, USA
| | | | | | | | - Derek Walsh
- Northwestern University, Chicago, Illinois, USA
| | | | | | | | - Sandra Weller
- University of Connecticut, Farmington, Connecticut, USA
| | - Sean Whelan
- Washington University, St. Louis, Missouri, USA
| | | | | | | | - Scott Wong
- Oregon Health and Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
96
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
97
|
Hills RA, Kit Tan T, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PN, Storm KN, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, James WS, Bjorkman PJ, Townsend AR, Howarth M. Multiviral Quartet Nanocages Elicit Broad Anti-Coronavirus Responses for Proactive Vaccinology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529520. [PMID: 36865256 PMCID: PMC9980174 DOI: 10.1101/2023.02.24.529520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A. Hills
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony H. Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Kaya N. Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michelle L. Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
98
|
Jones A, Zhang D, Massey SE, Deigin Y, Nemzer LR, Quay SC. Discovery of a novel merbecovirus DNA clone contaminating agricultural rice sequencing datasets from Wuhan, China. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528210. [PMID: 36865340 PMCID: PMC9979991 DOI: 10.1101/2023.02.12.528210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
HKU4-related coronaviruses are a group of betacoronaviruses belonging to the same merbecovirus subgenus as Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV), which causes severe respiratory illness in humans with a mortality rate of over 30%. The high genetic similarity between HKU4-related coronaviruses and MERS-CoV makes them an attractive subject of research for modeling potential zoonotic spillover scenarios. In this study, we identify a novel coronavirus contaminating agricultural rice RNA sequencing datasets from Wuhan, China. The datasets were generated by the Huazhong Agricultural University in early 2020. We were able to assemble the complete viral genome sequence, which revealed that it is a novel HKU4-related merbecovirus. The assembled genome is 98.38% identical to the closest known full genome sequence, Tylonycteris pachypus bat isolate BtTp-GX2012. Using in silico modeling, we identified that the novel HKU4-related coronavirus spike protein likely binds to human dipeptidyl peptidase 4 (DPP4), the receptor used by MERS-CoV. We further identified that the novel HKU4-related coronavirus genome has been inserted into a bacterial artificial chromosome in a format consistent with previously published coronavirus infectious clones. Additionally, we have found a near complete read coverage of the spike gene of the MERS-CoV reference strain HCoV-EMC/2012, and identify the likely presence of a HKU4-related-MERS chimera in the datasets. Our findings contribute to the knowledge of HKU4-related coronaviruses and document the use of a previously unpublished HKU4 reverse genetics system in apparent MERS-CoV related gain-of-function research. Our study also emphasizes the importance of improved biosafety protocols in sequencing centers and coronavirus research facilities.
Collapse
|
99
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
100
|
Hao L, Hsiang TY, Dalmat RR, Ireton R, Morton JF, Stokes C, Netland J, Hale M, Thouvenel C, Wald A, Franko NM, Huden K, Chu HY, Sigal A, Greninger AL, Tilles S, Barrett LK, Van Voorhis WC, Munt J, Scobey T, Baric RS, Rawlings DJ, Pepper M, Drain PK, Gale M. Dynamics of SARS-CoV-2 VOC Neutralization and Novel mAb Reveal Protection against Omicron. Viruses 2023; 15:530. [PMID: 36851745 PMCID: PMC9965505 DOI: 10.3390/v15020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.
Collapse
Affiliation(s)
- Linhui Hao
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Ronit R. Dalmat
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Renee Ireton
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jennifer F. Morton
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason Netland
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Malika Hale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Chris Thouvenel
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Anna Wald
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Allergy and Infectious Diseases Division, Laboratory Medicine & Pathology, & Epidemiology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kristen Huden
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Mayville 4058, South Africa
- Centre for the AIDS Program of Research in South Africa, Congella 4013, South Africa
| | - Alex L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sasha Tilles
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lynn K. Barrett
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - David J. Rawlings
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Paul K. Drain
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|