51
|
Moulana M. Androgen-Induced Cardiovascular Risk in Polycystic Ovary Syndrome: The Role of T Lymphocytes. Life (Basel) 2023; 13:life13041010. [PMID: 37109539 PMCID: PMC10145997 DOI: 10.3390/life13041010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
An estimated 15-20% of reproductive-age women are affected by polycystic ovary syndrome (PCOS). PCOS is associated with substantial metabolic and cardiovascular long-term consequences. In young women with PCOS, several cardiovascular risk factors may be found, including chronic inflammation, high blood pressure, and elevated leukocytes. These women are at an increased risk of cardiovascular diseases (CVD), not only during the reproductive years, but also with aging and menopause; therefore, the early prevention and treatment of future cardiovascular adverse effects are necessary. The fundamental characteristic of PCOS is hyperandrogenemia, which is associated with increased pro-inflammatory cytokines and T lymphocytes. Whether these factors play a role in the pathophysiology of hypertension, a risk factor of CVD, due to PCOS is not well established. This review will briefly discuss how a modest increase in androgens in females is linked to the development of hypertension through pro-inflammatory cytokines and T lymphocyte subsets and the promotion of renal injury. Moreover, it reveals a few existing research gaps in this area, including the lack of specific therapy directed at androgen-induced inflammation and immune activation, thus emphasizing the necessity to explore the systemic inflammation in women with PCOS to halt the inevitable inflammatory process targeting the underlying abnormalities of CVD.
Collapse
Affiliation(s)
- Mohadetheh Moulana
- Department of Psychiatry and Human Behavior, Women's Health Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| |
Collapse
|
52
|
Liu Y, Wang W, Zhu P, Cheng X, Wu M, Zhang H, Chen Y, Chen Y, Liang Z, Wu X, Weng X. Increased Non-MAIT CD161 +CD8 + T Cells Display Pathogenic Potential in Chronic HBV Infection. Cell Mol Gastroenterol Hepatol 2023; 15:1181-1198. [PMID: 36787843 PMCID: PMC10060787 DOI: 10.1016/j.jcmgh.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND & AIMS CD161-expressing CD8+ T cells consist of mucosal-associated invariant T cells with semi-invariant T-cell receptor (TCR) use and non-mucosal-associated invariant T CD161+CD8+ T cells with polyclonal TCR repertoire. Although CD161+CD8+ T cells are enriched in liver and embrace hepatitis B virus (HBV)-specific T cells in chronic hepatitis B (CHB) patients, their roles in disease progression remain poorly understood. This study aimed to decipher their profiling and dynamic changes during chronic HBV infection. METHODS Blood samples from 257 CHB patients and nontumor liver specimens from 73 HBV-positive patients were analyzed for CD161+CD8+ T-cell characterization by flow cytometry, TCR repertoire determination, transcriptomic analyses, and cell experiments. RESULTS CD161+CD8+ T cells were increased and hyperactivated in patients, while positive correlation between the CD161+CD8+ T-cell ratio and HBV-DNA level suggested this was insufficient to control HBV replication. The overlap of complementarity determining region 3 sequences supported the switch between CD161-CD8+ and CD161+CD8+ populations. Although CD161+CD8+ T cells were endowed with innateness phenotype and enhanced antiviral capacity, the population from patients had impaired type I cytokine production, and increased interleukin 17 and granzyme B secretion. The increased CD161+CD8+ T cells and their increased granzyme B secretion correlated positively with inflammation-associated liver injury. Hepatic CD161+CD8+ T cells showed neutrophil-related pathogenic potential because they had increased transcript signatures and proinflammatory cytokine production in neutrophil recruitment- and response-related pathways that changed consistently in the injured liver. CONCLUSIONS Our results highlight the reduced antiviral potency but increased pathogenic potential of CD161+CD8+ T cells in CHB patients, supporting CD161 expression as a marker of pathogenic CD8+ T subset and the intervention target for liver injury.
Collapse
Affiliation(s)
- Yu Liu
- School of Nursing, Nanchang University, Nanchang, China; Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhu
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Cheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoquan Zhang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucun Chen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
53
|
Worel N, Grabmeier-Pfistershammer K, Kratzer B, Schlager M, Tanzmann A, Rottal A, Körmöczi U, Porpaczy E, Staber PB, Skrabs C, Herkner H, Gudipati V, Huppa JB, Salzer B, Lehner M, Saxenhuber N, Friedberg E, Wohlfarth P, Hopfinger G, Rabitsch W, Simonitsch-Klupp I, Jäger U, Pickl WF. The frequency of differentiated CD3 +CD27 -CD28 - T cells predicts response to CART cell therapy in diffuse large B-cell lymphoma. Front Immunol 2023; 13:1004703. [PMID: 36700229 PMCID: PMC9868136 DOI: 10.3389/fimmu.2022.1004703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Chimeric antigen receptor T (CART) cell therapy targeting the B cell specific differentiation antigen CD19 has shown clinical efficacy in a subset of relapsed/refractory (r/r) diffuse large B cell lymphoma (DLBCL) patients. Despite this heterogeneous response, blood pre-infusion biomarkers predicting responsiveness to CART cell therapy are currently understudied. Methods Blood cell and serum markers, along with clinical data of DLBCL patients who were scheduled for CART cell therapy were evaluated to search for biomarkers predicting CART cell responsiveness. Findings Compared to healthy controls (n=24), DLBCL patients (n=33) showed significant lymphopenia, due to low CD3+CD4+ T helper and CD3-CD56+ NK cell counts, while cytotoxic CD3+CD8+ T cell counts were similar. Although lymphopenic, DLBCL patients had significantly more activated HLA-DR+ (P=0.005) blood T cells and a higher frequency of differentiated CD3+CD27-CD28- (28.7 ± 19.0% versus 6.6 ± 5.8%; P<0.001) T cells. Twenty-six patients were infused with CART cells (median 81 days after leukapheresis) and were analyzed for the overall response (OR) 3 months later. Univariate and multivariate regression analyses showed that low levels of differentiated CD3+CD27-CD28- T cells (23.3 ± 19.3% versus 35.1 ± 18.0%) were independently associated with OR. This association was even more pronounced when patients were stratified for complete remission (CR versus non-CR: 13.7 ± 11.7% versus 37.7 ± 17.4%, P=0.001). A cut-off value of ≤ 18% of CD3+CD27-CD28- T cells predicted CR at 12 months with high accuracy (P<0.001). In vitro, CD3+CD8+CD27-CD28- compared to CD3+CD8+CD27+CD28+ CART cells displayed similar CD19+ target cell-specific cytotoxicity, but were hypoproliferative and produced less cytotoxic cytokines (IFN-γ and TNF-α). CD3+CD8+ T cells outperformed CD3+CD4+ T cells 3- to 6-fold in terms of their ability to kill CD19+ target cells. Interpretation Low frequency of differentiated CD3+CD27-CD28- T cells at leukapheresis represents a novel pre-infusion blood biomarker predicting a favorable response to CART cell treatment in r/r DLBCL patients.
Collapse
Affiliation(s)
- Nina Worel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Schlager
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Andreas Tanzmann
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Arno Rottal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Körmöczi
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Edit Porpaczy
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Philipp B. Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Cathrin Skrabs
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Next Generation CAR T Cells, St. Anna Children´s Cancer Research Institute, Vienna, Austria
| | - Manfred Lehner
- Christian Doppler Laboratory for Next Generation CAR T Cells, St. Anna Children´s Cancer Research Institute, Vienna, Austria
| | - Nora Saxenhuber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Eleonora Friedberg
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Philipp Wohlfarth
- Department of Medicine I, Division of Blood and Bone Marrow Transplantation, Medical University of Vienna, Vienna, Austria
| | - Georg Hopfinger
- Department of Medicine I, Division of Blood and Bone Marrow Transplantation, Medical University of Vienna, Vienna, Austria
| | - Werner Rabitsch
- Department of Medicine I, Division of Blood and Bone Marrow Transplantation, Medical University of Vienna, Vienna, Austria
| | | | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria,*Correspondence: Winfried F. Pickl,
| |
Collapse
|
54
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
55
|
Yu B, Shi Q, Belk JA, Yost KE, Parker KR, Li R, Liu BB, Huang H, Lingwood D, Greenleaf WJ, Davis MM, Satpathy AT, Chang HY. Engineered cell entry links receptor biology with single-cell genomics. Cell 2022; 185:4904-4920.e22. [PMID: 36516854 PMCID: PMC9789208 DOI: 10.1016/j.cell.2022.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.
Collapse
Affiliation(s)
- Bingfei Yu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Betty B Liu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Huang Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
56
|
Anikeeva N, Steblyanko M, Kuri-Cervantes L, Buggert M, Betts MR, Sykulev Y. The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection. Nat Commun 2022; 13:6436. [PMID: 36307445 PMCID: PMC9616955 DOI: 10.1038/s41467-022-34157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic HIV infection causes persistent low-grade inflammation that induces premature aging of the immune system including senescence of memory and effector CD8 T cells. To uncover the reasons of gradually diminished potency of CD8 T cells from people living with HIV, here we expose the T cells to planar lipid bilayers containing ligands for T-cell receptor and a T-cell integrins and analyze the cellular morphology, dynamics of synaptic interface formation and patterns of the cellular degranulation. We find a large fraction of phenotypically naive T cells from chronically infected people are capable to form mature synapse with focused degranulation, a signature of a differentiated T cells. Further, differentiation of aberrant naive T cells may lead to the development of anomalous effector T cells undermining their capacity to control HIV and other pathogens that could be contained otherwise.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Steblyanko
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus Buggert
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuri Sykulev
- Departments of Immunology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Suarez-Ramirez JE, Cauley LS, Chandiran K. CTLs Get SMAD When Pathogens Tell Them Where to Go. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1025-1032. [PMID: 36130123 PMCID: PMC9512391 DOI: 10.4049/jimmunol.2200345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
Abstract
Vaccines protect against infections by eliciting both Ab and T cell responses. Because the immunity wanes as protective epitopes get modified by accruing mutations, developing strategies for immunization against new variants is a major priority for vaccine development. CTLs eliminate cells that support viral replication and provide protection against new variants by targeting epitopes from internal viral proteins. This form of protection has received limited attention during vaccine development, partly because reliable methods for directing pathogen-specific memory CD8 T cells to vulnerable tissues are currently unavailable. In this review we examine how recent studies expand our knowledge of mechanisms that contribute to the functional diversity of CTLs as they respond to infection. We discuss the role of TGF-β and the SMAD signaling cascade during genetic programming of pathogen-specific CTLs and the pathways that promote formation of a newly identified subset of terminally differentiated memory CD8 T cells that localize in the vasculature.
Collapse
|
58
|
Choi YJ, Lee H, Kim JH, Kim SY, Koh JY, Sa M, Park SH, Shin EC. CD5 Suppresses IL-15–Induced Proliferation of Human Memory CD8+ T Cells by Inhibiting mTOR Pathways. THE JOURNAL OF IMMUNOLOGY 2022; 209:1108-1117. [DOI: 10.4049/jimmunol.2100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 07/20/2022] [Indexed: 01/04/2023]
Abstract
Abstract
IL-15 induces the proliferation of memory CD8+ T cells as well as NK cells. The expression of CD5 inversely correlates with the IL-15 responsiveness of human memory CD8+ T cells. However, whether CD5 directly regulates IL-15–induced proliferation of human memory CD8+ T cells is unknown. In the current study, we demonstrate that human memory CD8+ T cells in advanced stages of differentiation respond to IL-15 better than human memory CD8+ T cells in stages of less differentiation. We also found that the expression level of CD5 is the best correlate for IL-15 hyporesponsiveness among human memory CD8+ T cells. Importantly, we found that IL-15–induced proliferation of human memory CD8+ T cells is significantly enhanced by blocking CD5 with Abs or knocking down CD5 expression using small interfering RNA, indicating that CD5 directly suppresses the IL-15–induced proliferation of human memory CD8+ T cells. We also found that CD5 inhibits activation of the mTOR pathway, which is required for IL-15–induced proliferation of human memory CD8+ T cells. Taken together, the results indicate that CD5 is not just a correlative marker for IL-15 hyporesponsiveness, but it also directly suppresses IL-15–induced proliferation of human memory CD8+ T cells by inhibiting mTOR pathways.
Collapse
Affiliation(s)
- Young Joon Choi
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- †Department of Ophthalmology, Ajou University School of Medicine, Suwon, Korea
| | - Hoyoung Lee
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- ‡The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea; and
| | - Jong Hoon Kim
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- §Department of Dermatology, Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So-Young Kim
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - June-Young Koh
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Moa Sa
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Hyung Park
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- *Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- ‡The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science, Daejeon, Republic of Korea; and
| |
Collapse
|
59
|
Todorov H, Prieux M, Laubreton D, Bouvier M, Wang S, de Bernard S, Arpin C, Cannoodt R, Saelens W, Bonnaffoux A, Gandrillon O, Crauste F, Saeys Y, Marvel J. CD8 memory precursor cell generation is a continuous process. iScience 2022; 25:104927. [PMID: 36065187 PMCID: PMC9440290 DOI: 10.1016/j.isci.2022.104927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, we studied the generation of memory precursor cells following an acute infection by analyzing single-cell RNA-seq data that contained CD8 T cells collected during the postinfection expansion phase. We used different tools to reconstruct the developmental trajectory that CD8 T cells followed after activation. Cells that exhibited a memory precursor signature were identified and positioned on this trajectory. We found that these memory precursors are generated continuously with increasing numbers arising over time. Similarly, expression of genes associated with effector functions was also found to be raised in memory precursors at later time points. The ability of cells to enter quiescence and differentiate into memory cells was confirmed by BrdU pulse-chase experiment in vivo. Analysis of cell counts indicates that the vast majority of memory cells are generated at later time points from cells that have extensively divided. Trajectory inference tools reconstruct the timing of memory precursors generation The trajectory is defined by both cell cycle and effector functions encoding genes Memory precursors numbers in lymphoid organs increase with time after priming In vivo BrdU labeling validate the in silico data
Collapse
Affiliation(s)
- Helena Todorov
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Margaux Prieux
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire de Biologie et de Modélisation de la cellule, Université de Lyon, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Lyon, France
| | - Daphne Laubreton
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Matteo Bouvier
- Laboratoire de Biologie et de Modélisation de la cellule, Université de Lyon, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Lyon, France
- Vidium, Lyon, France
| | - Shaoying Wang
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Christophe Arpin
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Robrecht Cannoodt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Data Intuitive, Lebbeke, Belgium
| | - Wouter Saelens
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | | | - Olivier Gandrillon
- Laboratoire de Biologie et de Modélisation de la cellule, Université de Lyon, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Lyon, France
- Inria, Villeurbanne, France
| | - Fabien Crauste
- Laboratoire MAP5 (UMR CNRS 8145), Université de Paris, Paris, France
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Jacqueline Marvel
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Superieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Corresponding author
| |
Collapse
|
60
|
Abstract
CD4dim CD8bright T cells are a mature population of CD8+ T cells that upon activation upregulate CD4 dimly on their surface. Expression of CD4 on these cells suggests that they can be an additional source of HIV neuroinvasion and persistence in the brain. We used HIV-infected NOD/SCID/IL-2rcγ-/- (NSG) humanized mice to track CD4dim CD8bright T cell homing to the brain and define their role in HIV dissemination into the brain. We report here that CD4dim CD8bright T cells are found in the brain at a median frequency of 2.6% and in the spleen at median frequency of 7.6% of CD3+ T cells. In the brain, 10 to 20% of CD4dim CD8bright T cells contain integrated provirus, which is infectious as demonstrated by viral outgrowth assay. CD4dim CD8bright T cells in the brain exhibited significantly higher expression of the brain homing receptors CX3CR1 and CXCR3 in comparison to their single-positive CD8+ T cell counterpart. Blocking lymphocyte trafficking into the brain of humanized mice via anti-VLA4 and anti-LFA1 antibodies reduced CD4dim CD8bright T cell trafficking into the brain by 60% and diminished brain HIV proviral DNA by 72%. Collectively, our findings demonstrate that CD4dim CD8bright T cells can home to the brain and support productive HIV replication. These studies also reveal for the first time that CD4dim CD8bright T cells are capable of HIV neuroinvasion and are a reservoir for HIV. IMPORTANCE We report here a seminal finding of a novel population of T cells, termed CD4dim CD8bright T cells, that plays a role in HIV neuroinvasion and is a reservoir for HIV in the brain.
Collapse
|
61
|
Khanniche A, Yang Y, Zhang J, Liu S, Xia L, Duan H, Yao Y, Zhao B, Zhao GP, Hu C, Wang Y, Lu S. Early-like differentiation status of systemic PD-1 +CD8 + T cells predicts PD-1 blockade outcome in non-small cell lung cancer. Clin Transl Immunology 2022; 11:e1406. [PMID: 35910005 PMCID: PMC9327560 DOI: 10.1002/cti2.1406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Objectives Despite remarkable advances in the treatment of non‐small cell lung cancer (NSCLC) with anti‐programmed death (PD)‐1 therapy; only a fraction of patients derives durable clinical benefit. In this study, we investigated whether the differentiation status of systemic CD8+ T cells predicts the outcome of PD‐1 blockade in NSCLC. Methods We carried out a prospective study on a total of 77 NSCLC patients receiving anti‐PD‐1 blockers, among which 47 patients were assigned as a discovery cohort and 30 patients as a validation cohort. Peripheral blood samples were obtained at baseline and upon multiple therapy cycles and analyzed by multi‐parameter flow cytometry. Results We found that a higher baseline ratio of PD‐1+ early effector memory CD8+ T cells (CD28+CD27−CD45RO+, TEEM) to PD‐1+ effector CD8+ T cells (CD28−CD27−CD45RO−, TE) delineated responders to PD‐1 blockade from progressors and was associated with prolonged progression‐free survival (PFS) and durable clinical benefit. Moreover, PD‐1+CD8 TEEM cells exhibited early responses after anti‐PD‐1 therapy and was the major fraction of cycling PD‐1+Ki67+CD8+ T cells to expand specifically with positive impact on PFS. Conclusion These findings provide insights into how the baseline differentiation status of the peripheral immune system determines responses to PD‐1‐targeted therapies.
Collapse
Affiliation(s)
- Asma Khanniche
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China.,Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Yi Yang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Jie Zhang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Shiqing Liu
- Department of Respiratory Medicine, Xiangya Lung Cancer Center, Xiangya Hospital Central South University Changsha China
| | - Liliang Xia
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Huangqi Duan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yaxian Yao
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Bingrong Zhao
- Department of Respiratory Medicine, Xiangya Lung Cancer Center, Xiangya Hospital Central South University Changsha China
| | - Guo-Ping Zhao
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Lung Cancer Center, Xiangya Hospital Central South University Changsha China
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
62
|
Effect of Cytomegalovirus on the Immune System: Implications for Aging and Mental Health. Curr Top Behav Neurosci 2022; 61:181-214. [PMID: 35871707 DOI: 10.1007/7854_2022_376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a major modulator of the immune system leading to long-term changes in T-lymphocytes, macrophages, and natural killer (NK) cells among others. Perhaps because of this immunomodulatory capacity, HCMV infection has been linked with a host of deleterious effects including accelerated immune aging (premature mortality, increased expression of immunosenescence-linked markers, telomere shortening, speeding-up of epigenetic "clocks"), decreased vaccine immunogenicity, and greater vulnerability to infectious diseases (e.g., tuberculosis) or infectious disease-associated pathology (e.g., HIV). Perhaps not surprisingly given the long co-evolution between HCMV and humans, the virus has also been associated with beneficial effects, such as increased vaccine responsiveness, heterologous protection against infections, and protection against relapse in the context of leukemia. Here, we provide an overview of this literature. Ultimately, we focus on one other deleterious effect of HCMV, namely the emerging literature suggesting that HCMV plays a pathophysiological role in psychiatric illness, particularly depression and schizophrenia. We discuss this literature through the lens of psychological stress and inflammation, two well-established risk factors for psychiatric illness that are also known to predispose to reactivation of HCMV.
Collapse
|
63
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
64
|
Kared H, Wolf AS, Alirezaylavasani A, Ravussin A, Solum G, Tran TT, Lund-Johansen F, Vaage JT, Nissen-Meyer LS, Nygaard UC, Hungnes O, Robertson AH, Næss LM, Trogstad L, Magnus P, Munthe LA, Mjaaland S. Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults. Nat Commun 2022; 13:4165. [PMID: 35851055 PMCID: PMC9293966 DOI: 10.1038/s41467-022-31888-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The SARS-CoV-2 Omicron variant has more than 15 mutations in the receptor binding domain of the Spike protein enabling increased transmissibility and viral escape from antibodies in vaccinated individuals. It is unclear how vaccine immunity protects against Omicron infection. Here we show that vaccinated participants at a super-spreader event have robust recall response of humoral and pre-existing cellular immunity induced by the vaccines, and an emergent de novo T cell response to non-Spike antigens. Individuals with Omicron SARS-CoV-2 breakthrough infections have significantly increased activated SARS-CoV-2 wild type Spike-specific cytotoxic T cells, activated follicular helper (TFH) cells, functional T cell responses, boosted humoral responses, and rapid release of Spike and RBD-specific IgG+ B cell plasmablasts and memory B cells into circulation. Omicron breakthrough infection affords significantly increased de novo memory T cell responses to non-Spike viral antigens. Concerted T and B cell responses may provide durable and broad immunity.
Collapse
Affiliation(s)
- Hassen Kared
- KG Jebsen Centre for B cell malignancy, Institute of Clinical medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| | - Asia-Sophia Wolf
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Amin Alirezaylavasani
- KG Jebsen Centre for B cell malignancy, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Anthony Ravussin
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Guri Solum
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Trung The Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | | | | | - Unni C Nygaard
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Olav Hungnes
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna H Robertson
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Lisbeth Meyer Næss
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Lill Trogstad
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ludvig A Munthe
- KG Jebsen Centre for B cell malignancy, Institute of Clinical medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| | - Siri Mjaaland
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
65
|
Song H, Zhang Y, Liu J, Liu W, Luo B. Activation of DNA methyltransferase 3a by Epstein-Barr nuclear antigen 1 in gastric carcinoma. Dig Liver Dis 2022; 54:973-983. [PMID: 34215536 DOI: 10.1016/j.dld.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epstein-Barr nuclear antigen 1 (EBNA1) is expressed in all Epstein-Barr virus (EBV)-infected cells. It interacts with a variety of cellular proteins and activates the transcription of other EBV latency genes, which plays an important role in the persistence of the EBV genome during latent infection. AIM Several studies have shown that EBV infection induces the expression of DNA methyltransferases (DNMTs) and causes extensive methylation of the whole genome in EBV-associated gastric carcinoma (EBVaGC). However, the specific mechanism by which EBV regulates DNMTs expression is still unclear. METHODS AND RESULTS EBNA1 plasmid and siRNA were transfected to evaluate the effect of EBNA1 on DNMT3a expression. Molecular biology experiments were used to detect the biological function of DNMT3a and its effect on EBV latency in gastric carcinoma cells. We showed that EBNA1 upregulated DNMT3a expression through the E2F1 transcription factor (E2F1) in EBVaGC. DNMT3a knockdown restrained cell proliferation, induced cell cycle arrest, promoted cell apoptosis and suppressed cell migration in vitro. CONCLUSIONS Our results showed a new mechanism for EBV to regulate the expression of DNMT3a. Targeting the EBNA1/E2F1/DNMT3a axis may provide an alternative therapeutic strategy in the treatment of EBVaGC with high DNMT3a expression.
Collapse
Affiliation(s)
- Hui Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo 255036, China
| | - Juanjuan Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
66
|
Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells. Cancer Gene Ther 2022; 29:961-972. [PMID: 34645974 DOI: 10.1038/s41417-021-00395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Engineered T-cell therapies have proven to be successful in cancer and their clinical effectiveness is directly correlated with the infused T-cell differentiation profile. Indeed, stem cell memory and central memory T cells proliferate and persist longer in vivo compared with more-differentiated T cells, while conferring enhanced antitumor activity. Here, we propose an optimized process using cord blood (CB) to generate minimally differentiated T-cell products in terms of phenotype, function, gene expression, and metabolism, using peripheral blood (PB)-derived T cells cultured with IL-2 as a standard. Phenotypically, CB-derived T cells, particularly CD4 T cells, are less differentiated than their PB counterparts when cultured with IL-2 or with IL-7 and IL-15. Furthermore, culture with IL-7 and IL-15 enables better preservation of less-differentiated CB-derived T cells compared with IL-2. In addition, transcriptomic and metabolic assessments of CB-derived transgenic T cells cultured with IL-7 and IL-15 point out their naivety and stemness signature. These relatively quiescent transgenic T cells are nevertheless primed for secondary stimulation and cytokine production. In conclusion, our study indicates that CB may be used as a source of early differentiated T cells to develop more effective adoptive cancer immunotherapy.
Collapse
|
67
|
Pyo HS, Hong CH, Choi H, Baek IC, Kim TG. Identification of Naturally Processed Epitope Region Using Artificial APC Expressing a Single HLA Class I Allotype and mRNA of HCMV pp65 Antigen Fragments. Vaccines (Basel) 2022; 10:vaccines10050787. [PMID: 35632543 PMCID: PMC9143612 DOI: 10.3390/vaccines10050787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, long synthetic peptides or in silico-predicted epitope peptides have been used to identify T cell epitopes, but these approaches may not be suitable for investigating naturally processed epitopes. Here, mRNAs, including fragments or predicted epitope sequences of HCMV pp65 antigen, were generated by in vitro transcription following transcriptionally active PCR. Then, artificial antigen-presenting cells (aAPCs) expressing a single HLA allotype were transfected with mRNAs to identify epitopes in donors with T cell responses that recognize pp65 antigen restricted to HLA-A*02:01, -A*02:06, or -B*07:02. T cells restricted to a particular HLA allotype showed positive responses in some of the 10 fragment antigens. Among predicted epitopes within these positive fragments, three epitopes of HLA-A*02:01, -A*02:06, and -B*07:02 were confirmed. In addition, T cells expanded by anti-CD3 stimulation for two weeks could also be effectively used for the identification of these T cell epitopes, although there were individual differences. These results demonstrated that fragment antigens and epitopes can be rapidly generated using mRNA, and naturally processed antigenic regions can be detected using aAPCs without a T cell cloning procedure. This method will help to identify novel T cell epitopes for developing immunotherapy and vaccines against infectious diseases and cancer.
Collapse
Affiliation(s)
- Hong-Seon Pyo
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Cheol-Hwa Hong
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul 06591, Korea;
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea; (H.-S.P.); (C.-H.H.); (H.C.)
- Department of Biomedicine & Health Sciences, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, Catholic University of Korea, Seoul 06591, Korea;
- Correspondence: ; Tel.: +82-2-2258-7341
| |
Collapse
|
68
|
Pieren DKJ, Smits NAM, Postel RJ, Kandiah V, de Wit J, van Beek J, van Baarle D, Guichelaar T. Co-Expression of TIGIT and Helios Marks Immunosenescent CD8+ T Cells During Aging. Front Immunol 2022; 13:833531. [PMID: 35651622 PMCID: PMC9148977 DOI: 10.3389/fimmu.2022.833531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aging leads to alterations in the immune system that result in ineffective responsiveness against pathogens. Features of this process, collectively known as immunosenescence, accumulate in CD8+ T cells with age and have been ascribed to differentiation of these cells during the course of life. Here we aimed to identify novel markers in CD8+ T cells associated with immunosenescence. Furthermore, we assessed how these markers relate to the aging-related accumulation of highly differentiated CD27-CD28- cells. We found that co-expression of the transcription factor Helios and the aging-related marker TIGIT identifies CD8+ T cells that fail to proliferate and show impaired induction of activation markers CD69 and CD25 in response to stimulation in vitro. Despite this, in blood of older adults we found TIGIT+Helios+ T cells to become highly activated during an influenza-A virus infection, but these higher frequencies of activated TIGIT+Helios+ T cells associate with longer duration of coughing. Moreover, in healthy individuals, we found that TIGIT+Helios+ CD8+ T cells accumulate with age in the highly differentiated CD27-CD28- population. Interestingly, TIGIT+Helios+ CD8+ T cells also accumulate with age among the less differentiated CD27+CD28- T cells before their transit into the highly differentiated CD27-CD28- stage. This finding suggests that T cells with immunosenescent features become prominent at old age also within the earlier differentiation states of these cells. Our findings show that co-expression of TIGIT and Helios refines the definition of immunosenescent CD8+ T cells and challenge the current dogma of late differentiation stage as proxy for T-cell immunosenescence.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Rimke J. Postel
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Vinitha Kandiah
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
69
|
Lagumdzic E, Pernold C, Viano M, Olgiati S, Schmitt MW, Mair KH, Saalmüller A. Transcriptome Profiling of Porcine Naïve, Intermediate and Terminally Differentiated CD8 + T Cells. Front Immunol 2022; 13:849922. [PMID: 35265090 PMCID: PMC8900158 DOI: 10.3389/fimmu.2022.849922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The pig has the potential to become a leading research model for human diseases, pharmacological and transplantation studies. Since there are many similarities between humans and pigs, especially concerning anatomy, physiology and metabolism, there is necessity for a better understanding of the porcine immune system. In adaptive immunity, cytotoxic T lymphocytes (CTLs) are essential for host defense. However, most data on CTLs come from studies in mice, non-human primates and humans, while detailed information about porcine CD8+ CTLs is still sparse. Aim of this study was to analyze transcriptomes of three subsets of porcine CD8β+ T-cell subsets by using next-generation sequencing technology. Specifically, we described transcriptional profiles of subsets defined by their CD11a/CD27 expression pattern, postulated as naïve (CD8β+CD27+CD11alow), intermediate differentiated (CD8β+CD27dimCD11a+), and terminally differentiated cells (CD8β+CD27-CD11ahigh). Cells were analyzed in ex vivo condition as well as upon in vitro stimulation with concanavalin A (ConA) and PMA/ionomycin. Our analyses show that the highest number of differentially expressed genes was identified between naïve and terminally differentiated CD8+ T-cell subsets, underlining their difference in gene expression signature and respective differentiation stages. Moreover, genes related to early (IL7-R, CCR7, SELL, TCF7, LEF1, BACH2, SATB1, ZEB1 and BCL2) and late (KLRG1, TBX21, PRDM1, CX3CR1, ZEB2, ZNF683, BATF, EZH2 and ID2) stages of CD8+ T-cell differentiation were highly expressed in the naïve and terminally differentiated CD8+ T-cell subsets, respectively. Intermediate differentiated CD8+ T-cell subsets shared a more comparable gene expression profile associated with later stages of T-cell differentiation. Genes associated with cytolytic activity (GNLY, PRF1, GZMB, FASL, IFNG and TNF) were highly expressed in terminally and intermediate differentiated CD8+ T-cell subsets, while naïve CD8+ T cells lacked expression even after in vitro stimulation. Overall, PMA/ionomycin stimulation induced much stronger upregulation of genes compared to stimulation with ConA. Taken together, we provided comprehensive results showing transcriptional profiles of three differentiation stages of porcine CD8+ T-cell subsets. In addition, our study provides a powerful toolbox for the identification of candidate markers to characterize porcine immune cell subsets in more detail.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Clara Pernold
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Marta Viano
- Istituto di Ricerche Biomediche "A. Marxer" RBM S.p.A., Torino, Italy
| | - Simone Olgiati
- Istituto di Ricerche Biomediche "A. Marxer" RBM S.p.A., Torino, Italy
| | - Michael W Schmitt
- Merck Healthcare KGaA, Chemical & Preclinical Safety, Darmstadt, Germany
| | - Kerstin H Mair
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
70
|
Salumets A, Tserel L, Rumm AP, Türk L, Kingo K, Saks K, Oras A, Uibo R, Tamm R, Peterson H, Kisand K, Peterson P. Epigenetic quantification of immunosenescent CD8 + TEMRA cells in human blood. Aging Cell 2022; 21:e13607. [PMID: 35397197 PMCID: PMC9124311 DOI: 10.1111/acel.13607] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
Age‐related changes in human T‐cell populations are important contributors to immunosenescence. In particular, terminally differentiated CD8+ effector memory CD45RA+ TEMRA cells and their subsets have characteristics of cellular senescence, accumulate in older individuals, and are increased in age‐related chronic inflammatory diseases. In a detailed T‐cell profiling among individuals over 65 years of age, we found a high interindividual variation among CD8+ TEMRA populations. CD8+ TEMRA proportions correlated positively with cytomegalovirus (CMV) antibody levels, however, not with the chronological age. In the analysis of over 90 inflammation proteins, we identified plasma TRANCE/RANKL levels to associate with several differentiated T‐cell populations, including CD8+ TEMRA and its CD28− subsets. Given the strong potential of CD8+ TEMRA cells as a biomarker for immunosenescence, we used deep‐amplicon bisulfite sequencing to match their frequencies in flow cytometry with CpG site methylation levels and developed a computational model to predict CD8+ TEMRA cell proportions from whole blood genomic DNA. Our findings confirm the association of CD8+ TEMRA and its subsets with CMV infection and provide a novel tool for their high throughput epigenetic quantification as a biomarker of immunosenescence.
Collapse
Affiliation(s)
- Ahto Salumets
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
- Institute of Computer Science University of Tartu Tartu Estonia
| | - Liina Tserel
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Anna P. Rumm
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Lehte Türk
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology Institute of Clinical Medicine University of Tartu Tartu Estonia
- Clinic of Dermatology Tartu University Hospital Tartu Estonia
| | - Kai Saks
- Department of Internal Medicine Institute of Clinical Medicine University of Tartu Tartu Estonia
| | - Astrid Oras
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Raivo Uibo
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Riin Tamm
- Laboratory of Immune Analysis United Laboratories Tartu University Hospital Tartu Estonia
| | - Hedi Peterson
- Institute of Computer Science University of Tartu Tartu Estonia
| | - Kai Kisand
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Pärt Peterson
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
71
|
Underwood ML, Park B, Uebelhoer LS, Gu G, Kunkel LE, Korthuis PT, Cook RR, Sekaly RP, Ribeiro SP, Lancioni CL. Chronic Alcohol Exposure Among People Living with HIV Is Associated with Innate Immune Activation and Alterations in Monocyte Phenotype and Plasma Cytokine Profile. Front Immunol 2022; 13:867937. [PMID: 35371104 PMCID: PMC8971672 DOI: 10.3389/fimmu.2022.867937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Despite advances in antiretroviral therapy, chronic immune activation continues to be observed among individuals with well-controlled HIV viral loads, and is associated with non-AIDS defining morbidities among people living with HIV. Alcohol use disorder impacts a significant proportion of individuals living with HIV, and alcohol exposure is known to damage the intestinal epithelium which may increase translocation of pathogens and their molecular products, driving systemic immune activation and dysregulation. The aim of this study was to determine if adults living with HIV with well-controlled viral loads, who also suffer from alcohol use disorder with and without hepatitis C virus co-infection (n=23), exhibit evidence of advanced systemic immune activation, intestinal damage, and microbial translocation, as compared to adults living with HIV who are not exposed to chronic alcohol or other substances of abuse (n=29). The impact of a 1-month intervention to treat alcohol-use disorder was also examined. Alcohol-use disorder was associated with evidence of advanced innate immune activation, alterations in monocyte phenotype including increased expression of Toll-like receptor 4, increased burden of stimulatory ligands for Toll-like receptor 4, and alterations in plasma cytokine signature, most notably elevations in soluble CD40 ligand and transforming growth factor beta. Alcohol-associated immune activation was more pronounced among individuals with hepatitis C virus co-infection. Although the 1-month intervention to treat alcohol use disorder did not result in significant reductions in the interrogated indicators of immune activation, our findings suggest that chronic alcohol exposure is a major modifiable risk factor for chronic immune activation and dysregulation among people-living with HIV.
Collapse
Affiliation(s)
- Michelle L. Underwood
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Byung Park
- Knight-Cancer Institute, Department of Biostatistics, Oregon Health & Science University, Portland, OR, United States
| | - Luke S. Uebelhoer
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Geoffrey Gu
- Undergraduate Studies, University of Southern California, Los Angeles, CA, United States
| | - Lynn E. Kunkel
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Philip T. Korthuis
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
- Department of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Ryan R. Cook
- Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Rafick Pierre Sekaly
- Department of Pathology & Translational Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Susan Pereira Ribeiro
- Department of Pathology & Translational Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Christina L. Lancioni
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
- *Correspondence: Christina L. Lancioni,
| |
Collapse
|
72
|
Leveraging biomaterials for enhancing T cell immunotherapy. J Control Release 2022; 344:272-288. [PMID: 35217099 DOI: 10.1016/j.jconrel.2022.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
The dynamic roles of T cells in the immune system to recognize and destroy the infected or mutated cells render T cell therapy a prospective treatment for a variety of diseases including cancer, autoimmune diseases, and allograft rejection. However, the clinical applications of T cell therapy remain unsatisfactory due to the tedious manufacturing process, off-target cytotoxicity, poor cell persistence, and associated adverse effects. To this end, various biomaterials have been introduced to enhance T cell therapy by facilitating proliferation, enhancing local enrichment, prolonging retention, and alleviating side effects. This review highlights the design strategies of biomaterials developed for T cell expansion, enrichment, and delivery as well as their corresponding therapeutic effects. The prospects of biomaterials for enhancing T cell immunotherapy are also discussed in this review.
Collapse
|
73
|
Kužílková D, Puñet-Ortiz J, Aui PM, Fernández J, Fišer K, Engel P, van Zelm MC, Kalina T. Standardization of Workflow and Flow Cytometry Panels for Quantitative Expression Profiling of Surface Antigens on Blood Leukocyte Subsets: An HCDM CDMaps Initiative. Front Immunol 2022; 13:827898. [PMID: 35222411 PMCID: PMC8874145 DOI: 10.3389/fimmu.2022.827898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background The Human Cell Differentiation Molecules (HCDM) organizes Human Leukocyte Differentiation Antigen (HLDA) workshops to test and name clusters of antibodies that react with a specific antigen. These cluster of differentiation (CD) markers have provided the scientific community with validated antibody clones, consistent naming of targets and reproducible identification of leukocyte subsets. Still, quantitative CD marker expression profiles and benchmarking of reagents at the single-cell level are currently lacking. Objective To develop a flow cytometric procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets that is standardized across multiple research laboratories. Methods A high content framework to evaluate the titration and reactivity of Phycoerythrin (PE)-conjugated monoclonal antibodies (mAbs) was created. Two flow cytometry panels were designed: an innate cell tube for granulocytes, dendritic cells, monocytes, NK cells and innate lymphoid cells (12-color) and an adaptive lymphocyte tube for naive and memory B and T cells, including TCRγδ+, regulatory-T and follicular helper T cells (11-color). The potential of these 2 panels was demonstrated via expression profiling of selected CD markers detected by PE-conjugated antibodies and evaluated using 561 nm excitation. Results Using automated data annotation and dried backbone reagents, we reached a robust workflow amenable to processing hundreds of measurements in each experiment in a 96-well plate format. The immunophenotyping panels enabled discrimination of 27 leukocyte subsets and quantitative detection of the expression of PE-conjugated CD markers of interest that could quantify protein expression above 400 units of antibody binding capacity. Expression profiling of 4 selected CD markers (CD11b, CD31, CD38, CD40) showed high reproducibility across centers, as well as the capacity to benchmark unique clones directed toward the same CD3 antigen. Conclusion We optimized a procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets. The workflow, bioinformatics pipeline and optimized flow panels enable the following: 1) mapping the expression patterns of HLDA-approved mAb clones to CD markers; 2) benchmarking new antibody clones to established CD markers; 3) defining new clusters of differentiation in future HLDA workshops.
Collapse
Affiliation(s)
- Daniela Kužílková
- Childhood Leukaemia Investigation Prague (CLIP), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic and University Hospital Motol, Prague, Czechia
| | - Joan Puñet-Ortiz
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Pei M. Aui
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Javier Fernández
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Karel Fišer
- Childhood Leukaemia Investigation Prague (CLIP), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic and University Hospital Motol, Prague, Czechia
| | - Pablo Engel
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Menno C. van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Allergy, Immunology and Respiratory Medicine, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Tomáš Kalina
- Childhood Leukaemia Investigation Prague (CLIP), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic and University Hospital Motol, Prague, Czechia
- *Correspondence: Tomáš Kalina,
| |
Collapse
|
74
|
Zheng Y, Han L, Chen Z, Li Y, Zhou B, Hu R, Chen S, Xiao H, Ma Y, Xie G, Yang J, Ding X, Shen L. PD-L1+CD8+ T cells enrichment in lung cancer exerted regulatory function and tumor-promoting tolerance. iScience 2022; 25:103785. [PMID: 35146396 PMCID: PMC8819393 DOI: 10.1016/j.isci.2022.103785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy targeting checkpoint blockade to rescue T cells from exhaustion has become an essential therapeutic strategy in treating cancers. Till now, little is known about the PD-L1 graphic pattern and characteristics in CD8+ T cells. We combined cytometry by time-of-flight (CyTOF) and imaging mass cytometry (IMC) approaches to analyze CD8+ T cells from primary lung cancers and discovered that PD-L1+CD8+ T cells were enriched in tumor lesions, spatially localized with PD-1+CD8+ T cells. Furthermore, PD-L1+CD8+ T cells exerted regulatory functions that inhibited CD8+ T cells proliferation and cytotoxic abilities through the PD-L1/PD-1 axis. Moreover, tumor-derived IL-27 promotes PD-L1+CD8+ T cells development through STAT1/STAT3 signaling. Single-cell RNA sequencing data analysis further clarified PD-L1+CD8+ T cells elevated in the components related to downregulation of adaptive immune response. Collectively, our data demonstrated that PD-L1+CD8+ T cells enriched in lung cancer engaged in tolerogenic effects and may become a therapeutic target in lung cancer. CyTOF and IMC revealed PD-L1+CD8+ T cells were enriched in human lung cancer PD-L1+CD8+ T cells inhibited CD8+ T cells function through PD-1/PD-L1 axis IL27 promoted PD-L1+CD8 T cells development through STAT1/STAT3 signaling
Collapse
Affiliation(s)
- Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Corresponding author
| | - Li Han
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yiyang Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui Hu
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200230, China
| | - Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Haibo Xiao
- Department of Thoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200230, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guohua Xie
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junyao Yang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Corresponding author
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Xin Hua Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Corresponding author
| |
Collapse
|
75
|
Mangare C, Tischer-Zimmermann S, Bonifacius A, Riese SB, Dragon AC, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. Variances in Antiviral Memory T-Cell Repertoire of CD45RA- and CD62L-Depleted Lymphocyte Products Reflect the Need of Individual T-Cell Selection Strategies to Reduce the Risk of GvHD while Preserving Antiviral Immunity in Adoptive T-Cell Therapy. Transfus Med Hemother 2022; 49:30-43. [PMID: 35221866 PMCID: PMC8832244 DOI: 10.1159/000516284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/01/2021] [Indexed: 04/03/2025] Open
Abstract
INTRODUCTION Viral infections and reactivations still remain a cause of morbidity and mortality after hematopoietic stem cell transplantation due to immunodeficiency and immunosuppression. Transfer of unmanipulated donor-derived lymphocytes (DLI) represents a promising strategy for improving cellular immunity but carries the risk of graft versus host disease (GvHD). Depleting alloreactive naïve T cells (TN) from DLIs was implemented to reduce the risk of GvHD induction while preserving antiviral memory T-cell activity. Here, we compared two TN depletion strategies via CD45RA and CD62L expression and investigated the presence of antiviral memory T cells against human adenovirus (AdV) and Epstein-Barr virus (EBV) in the depleted fractions in relation to their functional and immunophenotypic characteristics. METHODS T-cell responses against ppEBV_EBNA1, ppEBV_Consensus and ppAdV_Hexon within TN-depleted (CD45RA-/CD62L-) and TN-enriched (CD45RA+/CD62L+) fractions were quantified by interferon-gamma (IFN-γ) ELISpot assay after short- and long-term in vitro stimulation. T-cell frequencies and immunophenotypic composition were assessed in all fractions by flow cytometry. Moreover, alloimmune T-cell responses were evaluated by mixed lymphocyte reaction. RESULTS According to differences in the phenotype composition, antigen-specific T-cell responses in CD45RA- fraction were up to 2 times higher than those in the CD62L- fraction, with the highest increase (up to 4-fold) observed after 7 days for ppEBV_EBNA1-specific T cells. The CD4+ effector memory T cells (TEM) were mainly responsible for EBV_EBNA1- and AdV_Hexon-specific T-cell responses, whereas the main functionally active T cells against ppEBV_Consensus were CD8+ central memory T cells (TCM) and TEM. Moreover, comparison of both depletion strategies indicated that alloreactivity in CD45RA- was lower than that in CD62L- fraction. CONCLUSION Taken together, our results indicate that CD45RA depletion is a more suitable strategy for generating TN-depleted products consisting of memory T cells against ppEBV_EBNA1 and ppAdV_Hexon than CD62L in terms of depletion effectiveness, T-cell functionality and alloreactivity. To maximally exploit the beneficial effects mediated by antiviral memory T cells in TN-depleted products, depletion methods should be selected individually according to phenotype composition and CD4/CD8 antigen restriction. TN-depleted DLIs may improve the clinical outcome in terms of infections, GvHD, and disease relapse if selection of pathogen-specific donor T cells is not available.
Collapse
Affiliation(s)
- Caroline Mangare
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sebastian B. Riese
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
76
|
Distinguishing Incubation and Acute Disease Stages of Mild-to-Moderate COVID-19. Viruses 2022; 14:v14020203. [PMID: 35215797 PMCID: PMC8875077 DOI: 10.3390/v14020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
While numerous studies have already compared the immune responses against SARS-CoV-2 in severely and mild-to-moderately ill COVID-19 patients, longitudinal trajectories are still scarce. We therefore set out to analyze serial blood samples from mild-to-moderately ill patients in order to define the immune landscapes for differently progressed disease stages. Twenty-two COVID-19 patients were subjected to consecutive venipuncture within seven days after diagnosis or admittance to hospital. Flow cytometry was performed to analyze peripheral blood immune cell compositions and their activation as were plasma levels of cytokines and SARS-CoV-2 specific immunoglobulins. Healthy donors served as controls. Integrating the kinetics of plasmablasts and SARS-CoV-2 specific antibodies allowed for the definition of three disease stages of early COVID-19. The incubation phase was characterized by a sharp increase in pro-inflammatory monocytes and terminally differentiated cytotoxic T cells. The latter correlated significantly with elevated concentrations of IP-10. Early acute infection featured a peak in PD-1+ cytotoxic T cells, plasmablasts and increasing titers of virus specific antibodies. During late acute infection, immature neutrophils were enriched, whereas all other parameters returned to baseline. Our findings will help to define landmarks that are indispensable for the refinement of new anti-viral and anti-inflammatory therapeutics, and may also inform clinicians to optimize treatment and prevent fatal outcomes.
Collapse
|
77
|
Sung BY, Lin YH, Kong Q, Shah PD, Glick Bieler J, Palmer S, Weinhold KJ, Chang HR, Huang H, Avery RK, Schneck J, Chiu YL. Wnt activation promotes memory T cell polyfunctionality via epigenetic regulator PRMT1. J Clin Invest 2022; 132:e140508. [PMID: 35040433 PMCID: PMC8759796 DOI: 10.1172/jci140508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
T cell polyfunctionality is a hallmark of protective immunity against pathogens and cancer, yet the molecular mechanism governing it remains mostly elusive. We found that canonical Wnt agonists inhibited human memory CD8+ T cell differentiation while simultaneously promoting the generation of highly polyfunctional cells. Downstream effects of Wnt activation persisted after removal of the drug, and T cells remained polyfunctional following subsequent cell division, indicating the effect is epigenetically regulated. Wnt activation induced a gene expression pattern that is enriched with stem cell-specific gene signatures and upregulation of protein arginine methyltransferase 1 (PRMT1), a known epigenetic regulator. PRMT1+CD8+ T cells are associated with enhanced polyfunctionality, especially the ability to produce IL-2. In contrast, inhibition of PRMT1 ameliorated the effects of Wnt on polyfunctionality. Chromatin immunoprecipitation revealed that H4R3me2a, a permissive transcription marker mediated by PRMT1, increased at the IL-2 promoter loci following Wnt activation. In vivo, Wnt-treated T cells exhibited superior polyfunctionality and persistence. When applied to cytomegalovirus (CMV) donor-seropositive, recipient-seronegative patients (D+/R-) lung transplant patient samples, Wnt activation enhanced CMV-specific T cell polyfunctionality, which is important in controlling CMV diseases. These findings reveal a molecular mechanism governing T cell polyfunctionality and identify PRMT1 as a potential target for T cell immunotherapy.
Collapse
Affiliation(s)
- Bo-Yi Sung
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Microbiology and Immunology
- Department of Biomedical Engineering, and
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, and
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Pali D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joan Glick Bieler
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Kent J. Weinhold
- Department of Surgery, and Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Schneck
- Institute of Cell Engineering and
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland. USA
| | - Yen-Ling Chiu
- Institute of Cell Engineering and
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, Taiwan
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
78
|
Riou C, Schäfer G, du Bruyn E, Goliath RT, Stek C, Mou H, Hung D, Wilkinson KA, Wilkinson RJ. Rapid, simplified whole blood-based multiparameter assay to quantify and phenotype SARS-CoV-2-specific T-cells. Eur Respir J 2022; 59:2100285. [PMID: 34140294 PMCID: PMC8215505 DOI: 10.1183/13993003.00285-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rapid tests to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell responses are urgently needed to decipher protective immunity and aid monitoring vaccine-induced immunity. METHODS Using a rapid whole blood assay requiring a minimal amount of blood, we measured qualitatively and quantitatively SARS-CoV-2-specific CD4 T-cell responses in 31 healthcare workers using flow cytometry. RESULTS 100% of COVID-19 convalescent participants displayed a detectable SARS-CoV-2-specific CD4 T-cell response. SARS-CoV-2-responding cells were also detected in 40.9% of participants with no COVID-19-associated symptoms or who tested PCR-negative. Phenotypic assessment indicated that, in COVID-19 convalescent participants, SARS-CoV-2 CD4 responses displayed an early differentiated memory phenotype with limited capacity to produce interferon (IFN)-γ. Conversely, in participants with no reported symptoms, SARS-CoV-2 CD4 responses were enriched in late differentiated cells, coexpressing IFN-γ and tumour necrosis factor-α and also Granzyme B. CONCLUSIONS This proof-of-concept study presents a scalable alternative to peripheral blood mononuclear cell-based assays to enumerate and phenotype SARS-CoV-2-responding T-cells, thus representing a practical tool to monitor adaptive immunity due to natural infection or vaccine trials.
Collapse
Affiliation(s)
- Catherine Riou
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Dept of Pathology, University of Cape Town, Observatory, South Africa
| | - Georgia Schäfer
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory, South Africa
- Division of Medical Biochemistry and Structural Biology, Dept of Integrative Biomedical Sciences, University of Cape Town, Observatory, South Africa
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Dept of Medicine, University of Cape Town, Observatory, South Africa
| | - Rene T Goliath
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Cari Stek
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Dept of Medicine, University of Cape Town, Observatory, South Africa
- Dept of Infectious Diseases, Imperial College London, London, UK
| | - Huihui Mou
- Dept of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Deli Hung
- Dept of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Dept of Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London, UK
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Dept of Medicine, University of Cape Town, Observatory, South Africa
- Dept of Infectious Diseases, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
79
|
El-Badawy O, Elsherbiny NM, Abdeltawab D, Magdy DM, Bakkar LM, Hassan SA, Hassan EA, Thabet AM, Ashmawy AM, Moustafa EF, Abbas WA, Ahmad AB, Rayan A, Saad K, Elhoufey A, Hussein HAM, Thabet AA, Zahran AM. COVID-19 Infection in Patients with Comorbidities: Clinical and Immunological Insight. Clin Appl Thromb Hemost 2022; 28:10760296221107889. [PMID: 35698744 PMCID: PMC9201308 DOI: 10.1177/10760296221107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
AIM Our study's objectives were to study the clinical and laboratory characteristics that may serve as biomarkers for predicting disease severity, IL-10 levels, and frequencies of different T cell subsets in comorbid COVID-19 patients. METHODS Sixty-two hospitalized COVID-19 patients with comorbidities were assessed clinically and radiologically. Blood samples were collected to assess the T lymphocyte subsets by flow cytometry and IL-10 levels by ELISA. RESULTS The most common comorbidities observed in COVID-19 patients were diabetes mellitus (DM), hypertension, and malignancies. Common symptoms and signs included fever, cough, dyspnea, fatigue, myalgia, and sore throat. CRP, ferritin, D dimer, LDH, urea, creatinine, and direct bilirubin were significantly increased in patients than controls. Lymphocyte count and CD4+ and CD8+ T-cells were significantly decreased in comorbid COVID-19 patients, and CD25 and CD45RA expression were increased. CD4+ and CD8+ regulatory T cells (Tregs) and IL-10 levels were significantly decreased in patients. CONCLUSIONS Many parameters were found to be predictive of severity in the comorbid patients in our study. Significant reductions in the levels and activation of CD4+ and CD8+ T-cells were found. In addition, CD4+ and CD8+ Tregs were significant decreased in patients, probably pointing to a prominent role of CD8+ Tregs in dampening CD4+ T-cell activation.
Collapse
Affiliation(s)
- Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of
Medicine, Assiut University, Assiut, Egypt
| | - Nahla M. Elsherbiny
- Department of Medical Microbiology and Immunology, Faculty of
Medicine, Assiut University, Assiut, Egypt
| | - Doaa Abdeltawab
- Department of Gastroenterology and Tropical Medicine, Faculty of
Medicine, Assiut University, Assiut, Egypt
| | - Doaa M. Magdy
- Chest Diseases and Tuberculosis Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Lamees M. Bakkar
- Chest Diseases and Tuberculosis Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shimaa A. Hassan
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham A. Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of
Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M. Thabet
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed M. Ashmawy
- Department of Internal Medicine, Gastroenterology and Hepatology
Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ehab F. Moustafa
- Department of Gastroenterology and Tropical Medicine, Faculty of
Medicine, Assiut University, Assiut, Egypt
| | - Wael A. Abbas
- Department of Internal Medicine, Gastroenterology and Hepatology
Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmad Bahieldeen Ahmad
- Department of Internal Medicine, Critical Care Unit, Faculty of
Medicine, Assiut University, Assiut, Egypt
| | - Amal Rayan
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Hosni A. M. Hussein
- Department of Microbiology, Faculty of Science, Al Azhar University, Assiut 71524, Egypt
| | - Ali A. Thabet
- Department of Zoology, Faculty of Science, Al Azhar University, Assiut 71524, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
80
|
Alanio C, Verma A, Mathew D, Gouma S, Liang G, Dunn T, Oldridge DA, Weaver J, Kuri-Cervantes L, Pampena MB, Betts MR, Collman RG, Bushman FD, Meyer NJ, Hensley SE, Rader D, Wherry EJ, The UPenn COVID Processing Unit
BaxterAmy ED’AndreaKurtAdamskiSharonAlamZahidulAddisonMary MByrneKatelyn TChandraAditiDescampsHélène CHanNicholasKaminskiyYaroslavKammermanShane CKimJustinGreenplateAllison RHamiltonJacob TMarkosyanNuneNollJulia HanOmranDalia KPattekarAjinkyaPerkeyEricPragerElizabeth MPueschlDanaRennelsAustinShahJennifer BShilanJake SWilhausenNilsVanderbeckAshley N. OUP accepted manuscript. J Infect Dis 2022; 226:463-473. [PMID: 35134186 PMCID: PMC8905965 DOI: 10.1093/infdis/jiac020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Some risk factors for severe coronavirus disease 2019 (COVID-19) have been identified, including age, race, and obesity. However, 20%–50% of severe cases occur in the absence of these factors. Cytomegalovirus (CMV) is a herpesvirus that infects about 50% of all individuals worldwide and is among the most significant nongenetic determinants of immune system. We hypothesized that latent CMV infection might influence the severity of COVID-19. Our analyses demonstrate that CMV seropositivity is associated with more than twice the risk of hospitalization due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immune profiling of blood and CMV DNA quantitative polymerase chain reaction in a subset of patients for whom respiratory tract samples were available revealed altered T-cell activation profiles in absence of extensive CMV replication in the upper respiratory tract. These data suggest a potential role for CMV-driven immune perturbations in affecting the outcome of SARS-CoV-2 infection and may have implications for the discrepancies in COVID-19 severity between different human populations.
Collapse
Affiliation(s)
- Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, California, USA
- INSERM U932, PSL University, Institut Curie, Paris, France
- Laboratoire d’Immunologie Clinique, Institut Curie, Paris, France
| | | | | | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guanxiang Liang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas Dunn
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Translational Lung Biology, and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - JoEllen Weaver
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - M Betina Pampena
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D Bushman
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Translational Lung Biology, and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - E John Wherry
- Correspondence: E. John Wherry, Department of Systems Pharmacology and Translational Therapeutics and Institute for Immunology, University of Pennsylvania Perelman School of Medicine, 357 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104-6160 ()
| | | |
Collapse
|
81
|
Pizzo H, Shin B, Garrison J, Huang E, Malekzadeh M, Jordan SC, Puliyanda D, Toyoda M. Development of CMV-specific cytotoxic T cells (CMV-Tc) in pediatric renal transplant recipients with CMV viremia. Pediatr Transplant 2021; 25:e14119. [PMID: 34390094 DOI: 10.1111/petr.14119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Viral infections are controlled primarily by viral-specific T cells, raising concern for adequate T-cell response to clear CMV infection in transplant recipients receiving lymphocyte-depleting agents (LDA). We examined the rates of CMV viremia and clearance, seroconversion, and CMV-specific CD8+ T cell (CMV-Tc) activity with class of induction agent received. METHODS Retrospective review of 45 pediatric renal transplant recipients who received induction with LDA (n = 31) or non-LDA (NLDA; n = 14) received valganciclovir prophylaxis for 6 months post-transplant and CMV-PCR monitoring. CMV-Tc was measured by intracellular IFNγ flow cytometry, when possible, at baseline, 1 month after CMV viremia (>5 copies/PCR) and serially until CMV-Tc was positive (≥0.2%). RESULTS Viremia rates at 1, 2, and 4 years post-transplant were higher in LDA vs. NLDA (46.3% vs. 7.2%, 64.2% vs. 7.2%, and 64.2% vs. 7.2%, respectively; p = .002). Viremia rates at these time points in seronegative LDA (50.3%, 71.6%, 71.6%) were significantly or near significantly higher than seronegative NLDA (9.1%, 9.1%, 9.1%; p = .004), seropositive-LDA (22.3%, 22.3%, 22.3%; p = .07), or seropositive NLDA (0%, 0%, 0%; p = .07). Eleven of 17 (64.7%) viremic subjects required valganciclovir dose reduction during the prophylaxis period for leukopenia. All viremic LDA patients developed CMV-Tc. One viremic NLDA patient did not develop CMV-Tc. No patients developed CMV disease. CONCLUSION CMV seronegative pediatric renal transplant patients receiving LDA are more likely to have valganciclovir prophylaxis dose reduction and develop subclinical CMV viremia; however, all developed CMV-Tc. Larger prospective studies are needed to further understand the effects of induction agents on CMV-Tc and CMV-Tc's role post-transplant.
Collapse
Affiliation(s)
- Helen Pizzo
- Pediatric Nephrology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bongha Shin
- Transplant Immunology Laboratory and Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jon Garrison
- Transplant Immunology Laboratory and Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edmund Huang
- Transplant Immunology Laboratory and Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohammad Malekzadeh
- Pediatric Nephrology, University of California Los Angeles, Los Angeles, CA, USA
| | - Stanley C Jordan
- Transplant Immunology Laboratory and Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dechu Puliyanda
- Pediatric Nephrology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mieko Toyoda
- Transplant Immunology Laboratory and Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
82
|
van Aalderen MC, van Lier RAW, Hombrink P. How to Reliably Define Human CD8 + T-Cell Subsets: Markers Playing Tricks. Cold Spring Harb Perspect Biol 2021; 13:a037747. [PMID: 33782028 PMCID: PMC8559543 DOI: 10.1101/cshperspect.a037747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In recent years, our understanding about the functional complexity of CD8+ T-cell populations has increased tremendously. The immunology field is now facing challenges to translate these insights into phenotypic definitions that correlate reliably with distinct functional traits. This is key to adequately monitor and understand compound immune responses including vaccination and immunotherapy regimens. Here we will summarize our understanding of the current state in the human CD8+ T-cell subset characterization field. We will address how reliably the currently used cell surface markers are connected to differentiation status and function of particular subsets. By restricting ourselves to CD8+ αβ T cells, we will focus mostly on major histocompatibility complex (MHC) class I-restricted virus- and tumor-specific T cells. This comes with a major advantage as fluorescently labeled peptide-loaded MHC class I multimers have been widely used to identify and characterize these cells.
Collapse
Affiliation(s)
- Michiel C van Aalderen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre (AUMC), Amsterdam 1105 AZ, The Netherlands
| | - Rene A W van Lier
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| | - Pleun Hombrink
- Adaptive Immunity Laboratory and Landsteiner Laboratory of the AUMC at Sanquin Blood Supply Foundation, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
83
|
Lehmann M, Allers K, Heldt C, Meinhardt J, Schmidt F, Rodriguez-Sillke Y, Kunkel D, Schumann M, Böttcher C, Stahl-Hennig C, Elezkurtaj S, Bojarski C, Radbruch H, Corman VM, Schneider T, Loddenkemper C, Moos V, Weidinger C, Kühl AA, Siegmund B. Human small intestinal infection by SARS-CoV-2 is characterized by a mucosal infiltration with activated CD8 + T cells. Mucosal Immunol 2021; 14:1381-1392. [PMID: 34420043 PMCID: PMC8379580 DOI: 10.1038/s41385-021-00437-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 pandemic has so far claimed over three and a half million lives worldwide. Though the SARS-CoV-2 mediated disease COVID-19 has first been characterized by an infection of the upper airways and the lung, recent evidence suggests a complex disease including gastrointestinal symptoms. Even if a direct viral tropism of intestinal cells has recently been demonstrated, it remains unclear, whether gastrointestinal symptoms are caused by direct infection of the gastrointestinal tract by SARS-CoV-2 or whether they are a consequence of a systemic immune activation and subsequent modulation of the mucosal immune system. To better understand the cause of intestinal symptoms we analyzed biopsies of the small intestine from SARS-CoV-2 infected individuals. Applying qRT-PCR and immunohistochemistry, we detected SARS-CoV-2 RNA and nucleocapsid protein in duodenal mucosa. In addition, applying imaging mass cytometry and immunohistochemistry, we identified histomorphological changes of the epithelium, which were characterized by an accumulation of activated intraepithelial CD8+ T cells as well as epithelial apoptosis and subsequent regenerative proliferation in the small intestine of COVID-19 patients. In summary, our findings indicate that intraepithelial CD8+ T cells are activated upon infection of intestinal epithelial cells with SARS-CoV-2, providing one possible explanation for gastrointestinal symptoms associated with COVID-19.
Collapse
Affiliation(s)
- Malte Lehmann
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany
| | - Kristina Allers
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany
| | - Claudia Heldt
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany
| | - Jenny Meinhardt
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Schmidt
- Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitä̈tsmedizin Berlin, Berlin, Germa
| | - Yasmina Rodriguez-Sillke
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany,Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitä̈tsmedizin Berlin, Berlin, Germa
| | - Désirée Kunkel
- Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitä̈tsmedizin Berlin, Berlin, Germa
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany
| | - Chotima Böttcher
- Klinik für Psychiatrie und Psychotherapie, Campus Mitte, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sefer Elezkurtaj
- Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany,The Transregio 241 IBDome Consortium, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor M. Corman
- Institute of Virology and German Centre for Infection Research, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Berlin Institute of Health Charité Clinician Scientist Program, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Schneider
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany
| | - Christoph Loddenkemper
- PathoTres, Gemeinschaftspraxis für Pathologie und Neuropathologie, Teltowkanalstr. 2, Berlin, 12247, Germany
| | - Verena Moos
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany
| | - Carl Weidinger
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany,The Transregio 241 IBDome Consortium, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,Berlin Institute of Health Charité Clinician Scientist Program, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A. Kühl
- The Transregio 241 IBDome Consortium, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany,iPATH.Berlin, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, 12200, Germany,The Transregio 241 IBDome Consortium, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
84
|
Mateus J, Nocua P, Lasso P, López MC, Thomas MC, Egui A, Cuervo C, González JM, Puerta CJ, Cuéllar A. CD8 + T Cell Response Quality Is Related to Parasite Control in an Animal Model of Single and Mixed Chronic Trypanosoma cruzi Infections. Front Cell Infect Microbiol 2021; 11:723121. [PMID: 34712620 PMCID: PMC8546172 DOI: 10.3389/fcimb.2021.723121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease (ChD) is a chronic infection caused by Trypanosoma cruzi. This highly diverse intracellular parasite is classified into seven genotypes or discrete typing units (DTUs) and they overlap in geographic ranges, vectors, and clinical characteristics. Although studies have suggested that ChD progression is due to a decline in the immune response quality, a direct relationship between T cell responses and disease outcome is still unclear. To investigate the relationship between parasite control and immune T cell responses, we used two distinct infection approaches in an animal model to explore the histological and parasitological outcomes and dissect the T cell responses in T. cruzi-infected mice. First, we performed single infection experiments with DA (TcI) or Y (TcII) T. cruzi strains to compare the infection outcomes and evaluate its relationship with the T cell response. Second, because infections with diverse T. cruzi genotypes can occur in naturally infected individuals, mice were infected with the Y or DA strain and subsequently reinfected with the Y strain. We found different infection outcomes in the two infection approaches used. The single chronic infection showed differences in the inflammatory infiltrate level, while mixed chronic infection by different T. cruzi DTUs showed dissimilarities in the parasite loads. Chronically infected mice with a low inflammatory infiltrate (DA-infected mice) or low parasitemia and parasitism (Y/Y-infected mice) showed increases in early-differentiated CD8+ T cells, a multifunctional T cell response and lower expression of inhibitory receptors on CD8+ T cells. In contrast, infected mice with a high inflammatory infiltrate (Y-infected mice) or high parasitemia and parasitism (DA/Y-infected mice) showed a CD8+ T cell response distinguished by an increase in late-differentiated cells, a monofunctional response, and enhanced expression of inhibitory receptors. Overall, our results demonstrated that the infection outcomes caused by single or mixed T. cruzi infection with different genotypes induce a differential immune CD8+ T cell response quality. These findings suggest that the CD8+ T cell response might dictate differences in the infection outcomes at the chronic T. cruzi stage. This study shows that the T cell response quality is related to parasite control during chronic T. cruzi infection.
Collapse
Affiliation(s)
- Jose Mateus
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Adriana Egui
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - John Mario González
- Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Cuéllar
- Grupo de Ciencias de Laboratorio Clínico, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
85
|
Felismino ES, Santos JMB, Rossi M, Santos CAF, Durigon EL, Oliveira DBL, Thomazelli LM, Monteiro FR, Sperandio A, Apostólico JS, França CN, Amaral JB, Amirato GR, Vieira RP, Vaisberg M, Bachi ALL. Better Response to Influenza Virus Vaccination in Physically Trained Older Adults Is Associated With Reductions of Cytomegalovirus-Specific Immunoglobulins as Well as Improvements in the Inflammatory and CD8 + T-Cell Profiles. Front Immunol 2021; 12:713763. [PMID: 34712226 PMCID: PMC8546344 DOI: 10.3389/fimmu.2021.713763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic cytomegalovirus (CMV) infection is a trigger factor for the development of immunosenescence and negatively impacts the immune response to influenza virus vaccination (IVV) in older adults. However, the role of physical exercise training in this context is unknown. Thus, the aim of this study was to investigate whether the regular practice of combined exercise training can improve the specific antibody response to IVV in CMV-seropositive older adults. Eighty older adults were distributed into two groups-non-practitioners (NP, n = 31, age = 74.06 ± 6.4 years) and practitioners of combined exercise training (CET, n = 49, age = 71.7 ± 5.8 years)-for at least 12 months. Both volunteer groups were submitted to IVV and blood samples were collected before (pre) and 30 days after (post) the vaccination. Concerning the specific antibody response to IVV, higher serum levels of specific immunoglobulin A (IgA) were found in the CET group post- than pre-vaccination (p < 0.01), whereas higher levels of specific immunoglobulin M (IgM) were observed both in the NP (p < 0.05) and CET (p < 0.001) groups post-vaccination as compared to the pre-vaccination values. Serum levels of specific immunoglobulin G (IgG) for IVV and CMV, as well as interleukin 6 (IL-6) and IL-10, were similar between the time points evaluated. However, the IL-10/IL-6 ratio post-vaccination was higher (p < 0.05) in the CET group than that before vaccination. Negative correlations were observed between the specific IgG levels for IVV and CMV only in the CET group, both pre- and post-vaccination. In addition, negative correlations were found between IL-10 and specific IgG for CMV in all volunteer groups pre- and post-vaccination, whereas a positive correlation between IL-10 and specific-IgG for IVV pre- and post-vaccination was observed in the CET group. In addition, with the hemagglutination inhibition (HAI) assay, it was found that 32.2% of the NP group and 32.6% of the CET group were responders to IVV and displayed reductions in the CMV serostatus (p < 0.05 and p < 0.001, respectively) and increases in naive and effector CD8+ T cells post-vaccination (p < 0.01). However, only the responders from the CET group showed significant reductions in the ratio of effector to naive CD8+ T cells (p < 0.05) and increased IL-10 levels post-vaccination (p < 0.001). In summary, this study demonstrates that the improvement in the response to IVV in CMV-seropositive older adults was related to an anti-inflammatory status and enhancement of naive CD8+ T cells, particularly associated with regular practice of CET.
Collapse
Affiliation(s)
- Eduardo S. Felismino
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | - Juliana M. B. Santos
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, Brazil
| | - Marcelo Rossi
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos A. F. Santos
- Department of Medicine, Geriatry, Paulista School of Medicine (EPM), São Paulo, Brazil
| | - Edison L. Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur–University of São Paulo, São Paulo, Brazil
| | - Danielle B. L. Oliveira
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Luciano M. Thomazelli
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science of University of São Paulo, São Paulo, Brazil
| | - Fernanda R. Monteiro
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Method Faculty of São Paulo, São Paulo, Brazil
| | | | - Juliana S. Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carolina N. França
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
| | - Jonatas B. Amaral
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Gislene R. Amirato
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - Rodolfo P. Vieira
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo, Santos, Brazil
- Post-Graduation Program in Bioengineering, Universidade Brasil, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| | - Mauro Vaisberg
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
| | - André L. L. Bachi
- Post-Graduation Program in Health Science, University of Santo Amaro, São Paulo, Brazil
- Ear, Nose and Throat (ENT) Lab, Department of Otorhinolaryngology, Federal University of São Paulo, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos, Brazil
| |
Collapse
|
86
|
Lee SW, Choi HY, Lee GW, Kim T, Cho HJ, Oh IJ, Song SY, Yang DH, Cho JH. CD8 + TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer 2021; 9:jitc-2021-002709. [PMID: 34593620 PMCID: PMC8487216 DOI: 10.1136/jitc-2021-002709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/21/2023] Open
Abstract
Background CD8+ tumor-infiltrating lymphocytes (TILs) comprise phenotypically and functionally heterogeneous subpopulations. Of these, effector memory CD45RA re-expressing CD8+ T cells (Temra) have been discovered and characterized as the most terminally differentiated subset. However, their exact ontogeny and physiological importance in association with tumor progression remain poorly understood. Methods We analyzed primary tumors and peripheral blood samples from 26 patients with non-small cell lung cancer and analyzed their phenotypes and functional characteristics using flow cytometry, RNA-sequencing, and bioinformatics. Results We found that tumor-infiltrating Temra (tilTemra) cells largely differ from peripheral blood Temra (pTemra), with distinct transcriptomes and functional properties. Notably, although majority of the pTemra was CD27−CD28− double-negative (DN), a large fraction of tilTemra population was CD27+CD28+ double-positive (DP), a characteristic of early-stage, less differentiated effector cells. Trajectory analysis revealed that CD8+ TILs undergo a divergent sequence of events for differentiation into either DP or DN tilTemra. Such a differentiation toward DP tilTemra relied on persistent expression of CD27 and CD28 and was associated with weak T cell receptor engagement. Thus, a higher proportion of DP Temra was correlated with lower immunogenicity of tumor antigens and consequently lower accumulation of CD8+ TILs. Conclusions These data suggest a complex interplay between CD8+ T cells and tumors and define DP Temra as a unique subset of tumor-specific CD8+ TILs that are produced in patients with relatively low immunogenic cancer types, predicting immunogenicity of tumor antigens and CD8+ TIL counts, a reliable biomarker for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - He Yun Choi
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - Therasa Kim
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Sang Yun Song
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea .,Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea
| |
Collapse
|
87
|
Xie L, Zhang Z, Zhu P, Tian K, Liu Y, Yu Y. IL-21 Prevents Expansion of CD8 +CD28 - T Cells Stimulated by IL-15 and Changes Their Subset Distribution. Transplant Proc 2021; 53:2407-2414. [PMID: 34474914 DOI: 10.1016/j.transproceed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To examine the effect of interleukin (IL)-21 on the proliferation, subsets, and immunological characteristics of CD8+CD28- T cells stimulated by IL-15 in vitro. METHODS Purified CD8+ T cells stimulated with allogeneic CD2- cells obtained from the peripheral blood mononuclear cells of healthy volunteers were cocultured in the presence of IL-15 alone or IL-21 and IL-15 combined. The dynamic changes in the proliferation, subsets, and phenotypic characteristics of CD8+CD28- T cells were detected. Our work, involving human participants, complied with the Declaration of Helsinki and the Declaration of Istanbul. RESULTS IL-21 prevented the expansion of CD8+CD28- T cells stimulated by IL-15 by sustaining CD28 expression at the mRNA level. IL-15 altered the expanded CD8+CD28- T cell memory subsets over the coculture duration, but the addition of IL-21 could change the subset distribution. In the presence of IL-15, the in vitro-expanded CD8+CD28- T cells were mainly intermediately differentiated cells, but they were mainly late differentiated cells in the presence of IL-21 plus IL-15. Moreover, IL-21 upregulated the expression of toxic molecules in the IL-15-expanded CD8+CD28- T cells. CONCLUSIONS IL-21 prevents IL-15-induced CD8+CD28- T cell amplification by downregulating CD28 at the transcriptional level. IL-21 can alter the subpopulation distribution and phenotypic characteristics of CD8+CD28- T cells stimulated by IL-15.
Collapse
Affiliation(s)
- Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zedan Zhang
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
88
|
Kretschmer L, Busch DH, Buchholz VR. A Single-Cell Perspective on Memory T-Cell Differentiation. Cold Spring Harb Perspect Biol 2021; 13:a038067. [PMID: 33903160 PMCID: PMC8411955 DOI: 10.1101/cshperspect.a038067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Memory differentiation of CD4 and CD8 T-cell populations has been extensively studied and many key molecular players and transcriptional networks have been identified. But how regulatory principles, identified on this population level, translate to immune responses that originate from single antigen-specific T cells is only now being elucidated. Here, we provide a short summary of the approaches used for mapping the fate of individual T cells and their progeny in vivo. We then highlight which major questions, with respect to memory T-cell differentiation, have been addressed by studying the development of single-cell-derived T-cell families during infection or vaccination. We discuss how fate decisions of single T cells are modulated by the affinity of their TCR and further shaped through a coregulation of T-cell differentiation and T-cell proliferation. These current findings indicate the early segregation into slowly dividing T central memory precursors (CMPs) and rapidly dividing non-CMPs, as a key event that separates the developmental paths of long- and short-lived T cells.
Collapse
Affiliation(s)
- Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| |
Collapse
|
89
|
Imaging Tolerance Induction in Neonatal Mice: Hierarchical Interplay Between Allogeneic Adult and Neonatal Immune Cells. Transplantation 2021; 105:1730-1746. [PMID: 33273316 DOI: 10.1097/tp.0000000000003566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In Medawar's murine neonatal tolerance model, injection of adult semiallogeneic lymphohematopoietic cells (spleen cells [SC] and bone marrow cells [BMC]) tolerizes the neonatal immune system. An eventual clinical application would require fully allogeneic (allo) cells, yet little is known about the complex in vivo/in situ interplay between those cells and the nonconditioned neonatal immune system. METHODS To this end, labeled adult SC and BMC were injected into allogeneic neonates; interactions between donor and host cells were analyzed and modulated by systematic depletion/inactivation of specific donor and host immune effector cell types. RESULTS Consistent with effector cell compositions, allo-SC and allo-SC/BMC each induced lethal acute graft-versus-host disease, whereas allo-BMC alone did so infrequently. CD8 T cells from SC inoculum appeared naïve, while those of BMC were more memory-like. Age-dependent, cell-type dominance defined the interplay between adult donor cells and the neonatal host immune system such that if the dominant adult effector type was removed, then the equivalent neonatal one became dominant. Depletion of donor/host peripheral T cells protected against acute graft-versus-host disease and prolonged heart allograft survival; peripheral CD8 T-cell depletion together with CD4 T cell-costimulation blockade induced more robust tolerance. CONCLUSIONS This comprehensive study provides direct observation of the cellular interplay between allogeneic donor and host immune systems, adds to our previous work with semiallogeneic donor cells, and provides important insights for robust tolerance induction. Induction of transplant tolerance in neonates will likely require "crowd sourcing" of multiple tolerizing cell types and involve depletion of immune effector cells with costimulation blockade.
Collapse
|
90
|
Bonte S, de Munter S, Billiet L, Goetgeluk G, Ingels J, Jansen H, Pille M, de Cock L, Weening K, Taghon T, Leclercq G, Vandekerckhove B, Kerre T. In vitro OP9-DL1 co-culture and subsequent maturation in the presence of IL-21 generates tumor antigen-specific T cells with a favorable less-differentiated phenotype and enhanced functionality. Oncoimmunology 2021; 10:1954800. [PMID: 34367734 PMCID: PMC8312599 DOI: 10.1080/2162402x.2021.1954800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
T cell receptor (TCR)-redirected T cells target intracellular antigens such as Wilms' tumor 1 (WT1), a tumor-associated antigen overexpressed in several malignancies, including acute myeloid leukemia (AML). For both chimeric antigen receptor (CAR)- and TCR-redirected T cells, several clinical studies indicate that T cell subsets with a less-differentiated phenotype (e.g. stem cell memory T cells, TSCM) survive longer and mediate superior anti-tumor effects in vivo as opposed to more terminally differentiated T cells. Cytokines added during in vitro and ex vivo culture of T cells play an important role in driving the phenotype of T cells for adoptive transfer. Using the OP9-DL1 co-culture system, we have shown previously that we are able to generate in vitro, starting from clinically relevant stem cell sources, T cells with a single tumor antigen (TA)-specific TCR. This method circumvents possible TCR chain mispairing and unwanted toxicities that might occur when introducing a TA-specific TCR in peripheral blood lymphocytes. We now show that we are able to optimize our in vitro culture protocol, by adding IL-21 during maturation, resulting in generation of TA-specific T cells with a less-differentiated phenotype and enhanced in vitro anti-tumor effects. We believe the favorable TSCM-like phenotype of these in vitro generated T cells preludes superior in vivo persistence and anti-tumor efficacy. Therefore, these TA-specific T cells could be of use as a valuable new form of patient-tailored T cell immunotherapy for malignancies for which finding a suitable CAR-T target antigen is challenging, such as AML.
Collapse
Affiliation(s)
- Sarah Bonte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stijn de Munter
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Glenn Goetgeluk
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Laurenz de Cock
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tessa Kerre
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Hematology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
91
|
Simultaneous monitoring assay for T-cell receptor stimulation-dependent activation of CD4 and CD8 T cells using inducible markers on the cell surface. Biochem Biophys Res Commun 2021; 571:53-59. [PMID: 34303196 DOI: 10.1016/j.bbrc.2021.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/10/2021] [Indexed: 12/19/2022]
Abstract
Isolation of antigen (Ag)-specific T cells is an important step in the investigation of T-cell immunity. Activation-induced markers (AIMs), such as CD154/tumor necrosis factor (TNF)/CD107A/CD134/CD137 enable the sorting of Ag-specific T cells without using human leukocyte antigen (HLA)-multimers. However, optimal conditions suitable for simultaneous detection of both Ag-specific CD4 and CD8 T cells have not been investigated. Here, conditions were optimized to simultaneously detect the maximum number of activated CD4 and CD8 T cells in a TCR-dependent manner. First, the frequency of total pools of AIM-positive cells induced by superantigen, staphylococcal enterotoxin B (SEB), stimulation in various culture conditions was monitored and compared side-by-side. The total amount of AIM-positive CD4 T cells, but not CD8 T cells, was significantly abrogated by addition of brefeldin A. TNF-alpha converting enzyme inhibitor treatment effectively increased the TNF-positive population, without affecting other markers' positivity. AIM-positive CD4 T cells and CD8 T cells were detected at least 3 h after stimulation. Furthermore, examination of the multiple combination of each marker revealed that minimum contribution of CD134 on the total pool of AIM-positive cells at this setting, suggesting the essential and non-essential AIMs to maximize the detected number of AIM-positive cells. Taken together, this optimized method will be a useful tool for the simultaneous monitoring the T-cell receptor stimulation-dependent activation of CD4 and CD8 T cells using inducible markers on the cell surface including Ag-specific T cells.
Collapse
|
92
|
Mueller-Schoell A, Puebla-Osorio N, Michelet R, Green MR, Künkele A, Huisinga W, Strati P, Chasen B, Neelapu SS, Yee C, Kloft C. Early Survival Prediction Framework in CD19-Specific CAR-T Cell Immunotherapy Using a Quantitative Systems Pharmacology Model. Cancers (Basel) 2021; 13:2782. [PMID: 34205020 PMCID: PMC8199881 DOI: 10.3390/cancers13112782] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). However, since 36-60% of patients relapse, early response prediction is crucial. We present a novel population quantitative systems pharmacology model, integrating literature knowledge on physiology, immunology, and adoptive cell therapy together with 133 CAR-T cell phenotype, 1943 cytokine, and 48 metabolic tumor measurements. The model well described post-infusion concentrations of four CAR-T cell phenotypes and CD19+ metabolic tumor volume over 3 months after CAR-T cell infusion. Leveraging the model, we identified a low expansion subpopulation with significantly lower CAR-T cell expansion capacities amongst 19 NHL patients. Together with two patient-/therapy-related factors (autologous stem cell transplantation, CD4+/CD8+ T cells), the low expansion subpopulation explained 2/3 of the interindividual variability in the CAR-T cell expansion capacities. Moreover, the low expansion subpopulation had poor prognosis as only 1/4 of the low expansion subpopulation compared to 2/3 of the reference population were still alive after 24 months. We translated the expansion capacities into a clinical composite score (CCS) of 'Maximum naïve CAR-T cell concentrations/Baseline tumor burden' ratio and propose a CCSTN-value > 0.00136 (cells·µL-1·mL-1 as predictor for survival. Once validated in a larger cohort, the model will foster refining survival prediction and solutions to enhance NHL CAR-T cell therapy response.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.)
| | - Michael R. Green
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, Augustenburger Platz 1, 1335 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, CCC (Campus Mitte), 10178 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, 14476 Potsdam, Germany;
| | - Paolo Strati
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Beth Chasen
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.P.-O.); (M.R.G.); (P.S.)
| | - Cassian Yee
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX 70030, USA
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.)
| |
Collapse
|
93
|
Corneau A, Parizot C, Cherai M, Todesco E, Blanc C, Litvinova E, Nguyen S, Roos-Weil D, Guihot A, Norol F. Mass Cytometry: a robust platform for the comprehensive immunomonitoring of CAR-T-cell therapies. Br J Haematol 2021; 194:788-792. [PMID: 34041740 DOI: 10.1111/bjh.17551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Aurélien Corneau
- Sorbonne Université (Univ. Paris 06), UMS37-PASS, Plateforme de cytométrie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Christophe Parizot
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, F-75013, France.,Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Ma-ladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Mustapha Cherai
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, F-75013, France.,Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Ma-ladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Eve Todesco
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, Paris, F-75013, France
| | - Catherine Blanc
- Sorbonne Université (Univ. Paris 06), UMS37-PASS, Plateforme de cytométrie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elena Litvinova
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, F-75013, France
| | - Stéphanie Nguyen
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Hématologie, Hôpital Pitié Salpêtrière, Paris, F-75013, France
| | - Damien Roos-Weil
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Hématologie, Hôpital Pitié Salpêtrière, Paris, F-75013, France
| | - Amélie Guihot
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Département d'Immunologie, Paris, F-75013, France.,Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Ma-ladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Francoise Norol
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service d'Hématologie, Hôpital Pitié Salpêtrière, Paris, F-75013, France
| |
Collapse
|
94
|
Adenosine-related small molecules show utility of recall antigen assay to screen compounds for off-target effects on memory T cells. Sci Rep 2021; 11:9561. [PMID: 33953256 PMCID: PMC8100288 DOI: 10.1038/s41598-021-88965-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/07/2021] [Indexed: 01/29/2023] Open
Abstract
Extracellular adenosine suppresses T cell immunity in the tumor microenvironment and in vitro treatment of memory T cells with adenosine can suppress antigen-mediated memory T cell expansion. We describe utilizing the recall antigen assay platform to screen small molecule drug off-target effects on memory T cell expansion/function using a dosing regimen based on adenosine treatment. As a proof of principle, we show low dose GS-5734, a monophosphoramidate prodrug of an adenosine analog, does not alter memory T cell recall at lower doses whereas toxicity observed at high dose favors antigen-specific memory T cell survival/proliferation over non-specific CD8+ T cells. Conversely, parent nucleoside GS-441524 at high dosage does not result in cellular toxicity and reduces antigen-specific T cell recall in most donors. Despite similar chemical structure, these drugs displayed opposing effects on memory T cell expansion and viability highlighting the sensitivity of this assay setup in screening compounds for off-target effects.
Collapse
|
95
|
Mold JE, Modolo L, Hård J, Zamboni M, Larsson AJM, Stenudd M, Eriksson CJ, Durif G, Ståhl PL, Borgström E, Picelli S, Reinius B, Sandberg R, Réu P, Talavera-Lopez C, Andersson B, Blom K, Sandberg JK, Picard F, Michaëlsson J, Frisén J. Divergent clonal differentiation trajectories establish CD8 + memory T cell heterogeneity during acute viral infections in humans. Cell Rep 2021; 35:109174. [PMID: 34038736 DOI: 10.1016/j.celrep.2021.109174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
The CD8+ T cell response to an antigen is composed of many T cell clones with unique T cell receptors, together forming a heterogeneous repertoire of effector and memory cells. How individual T cell clones contribute to this heterogeneity throughout immune responses remains largely unknown. In this study, we longitudinally track human CD8+ T cell clones expanding in response to yellow fever virus (YFV) vaccination at the single-cell level. We observed a drop in clonal diversity in blood from the acute to memory phase, suggesting that clonal selection shapes the circulating memory repertoire. Clones in the memory phase display biased differentiation trajectories along a gradient from stem cell to terminally differentiated effector memory fates. In secondary responses, YFV- and influenza-specific CD8+ T cell clones are poised to recapitulate skewed differentiation trajectories. Collectively, we show that the sum of distinct clonal phenotypes results in the multifaceted human T cell response to acute viral infections.
Collapse
Affiliation(s)
- Jeff E Mold
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Laurent Modolo
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Joanna Hård
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Margherita Zamboni
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anton J M Larsson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Moa Stenudd
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carl-Johan Eriksson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ghislain Durif
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Patrik L Ståhl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Erik Borgström
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Simone Picelli
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pedro Réu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carlos Talavera-Lopez
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Franck Picard
- LBBE, UMR CNRS 5558, Université Lyon 1, Villeurbanne, France LBMC UMR 5239 CNRS/ENS Lyon, Lyon, France
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
96
|
Lanfermeijer J, de Greef PC, Hendriks M, Vos M, van Beek J, Borghans JAM, van Baarle D. Age and CMV-Infection Jointly Affect the EBV-Specific CD8 + T-Cell Repertoire. FRONTIERS IN AGING 2021; 2:665637. [PMID: 35822032 PMCID: PMC9261403 DOI: 10.3389/fragi.2021.665637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023]
Abstract
CD8+ T cells play an important role in protection against viral infections. With age, changes in the T-cell pool occur, leading to diminished responses against both new and recurring infections in older adults. This is thought to be due to a decrease in both T-cell numbers and T-cell receptor (TCR) diversity. Latent infection with cytomegalovirus (CMV) is assumed to contribute to this age-associated decline of the immune system. The observation that the level of TCR diversity in the total memory T-cell pool stays relatively stable during aging is remarkable in light of the constant input of new antigen-specific memory T cells. What happens with the diversity of the individual antigen-specific T-cell repertoires in the memory pool remains largely unknown. Here we studied the effect of aging on the phenotype and repertoire diversity of CMV-specific and Epstein-Barr virus (EBV)-specific CD8+ T cells, as well as the separate effects of aging and CMV-infection on the EBV-specific T-cell repertoire. Antigen-specific T cells against both persistent viruses showed an age-related increase in the expression of markers associated with a more differentiated phenotype, including KLRG-1, an increase in the fraction of terminally differentiated T cells, and a decrease in the diversity of the T-cell repertoire. Not only age, but also CMV infection was associated with a decreased diversity of the EBV-specific T-cell repertoire. This suggests that both CMV infection and age can impact the T-cell repertoire against other antigens.
Collapse
Affiliation(s)
- Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter C. de Greef
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Marion Hendriks
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn Vos
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
97
|
Nguyen THO, Rowntree LC, Petersen J, Chua BY, Hensen L, Kedzierski L, van de Sandt CE, Chaurasia P, Tan HX, Habel JR, Zhang W, Allen LF, Earnest L, Mak KY, Juno JA, Wragg K, Mordant FL, Amanat F, Krammer F, Mifsud NA, Doolan DL, Flanagan KL, Sonda S, Kaur J, Wakim LM, Westall GP, James F, Mouhtouris E, Gordon CL, Holmes NE, Smibert OC, Trubiano JA, Cheng AC, Harcourt P, Clifton P, Crawford JC, Thomas PG, Wheatley AK, Kent SJ, Rossjohn J, Torresi J, Kedzierska K. CD8 + T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity 2021; 54:1066-1082.e5. [PMID: 33951417 PMCID: PMC8049468 DOI: 10.1016/j.immuni.2021.04.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαβ repertoires and promiscuous αβ-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαβ diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam 1066CX, the Netherlands
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda Earnest
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kai Yan Mak
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole A Mifsud
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Katie L Flanagan
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Department of Immunology and Pathology, Monash University, Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Science, RMIT University, Melbourne, VIC 3000, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Sabrina Sonda
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Jasveen Kaur
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS 7248, Australia; Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Glen P Westall
- Lung Transplant Unit, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Effie Mouhtouris
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia
| | - Natasha E Holmes
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC 3000, Australia; Data Analytics Research and Evaluation (DARE) Centre, Austin Health and The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; The National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; The National Centre for Infections in Cancer, Peter McCallum Cancer Centre, Melbourne, VIC 3000, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases Austin Health, Heidelberg, VIC 3084, Australia; Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Allen C Cheng
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | | | | | - Jeremy Chase Crawford
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Joseph Torresi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-0808, Japan.
| |
Collapse
|
98
|
Influence of the Antiretroviral Regimen on the Early Changes in Plasma HIV RNA and Immune Activation at Initiation of Antiretroviral Therapy in Naïve HIV-1-Infected Patients. J Acquir Immune Defic Syndr 2021; 86:e146-e149. [PMID: 33351528 DOI: 10.1097/qai.0000000000002594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99
|
CD27 is required for protective lytic EBV antigen-specific CD8+ T-cell expansion. Blood 2021; 137:3225-3236. [PMID: 33827115 DOI: 10.1182/blood.2020009482] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Primary immunodeficiencies in the costimulatory molecule CD27 and its ligand, CD70, predispose for pathologies of uncontrolled Epstein-Barr virus (EBV) infection in nearly all affected patients. We demonstrate that both depletion of CD27+ cells and antibody blocking of CD27 interaction with CD70 cause uncontrolled EBV infection in mice with reconstituted human immune system components. While overall CD8+ T-cell expansion and composition are unaltered after antibody blocking of CD27, only some EBV-specific CD8+ T-cell responses, exemplified by early lytic EBV antigen BMLF1-specific CD8+ T cells, are inhibited in their proliferation and killing of EBV-transformed B cells. This suggests that CD27 is not required for all CD8+ T-cell expansions and cytotoxicity but is required for a subset of CD8+ T-cell responses that protect us from EBV pathology.
Collapse
|
100
|
Detsika MG, Ampelakiotou K, Grigoriou E, Psarra K, Jahaj E, Roussos C, Dimopoulou I, Orfanos SE, Tsirogianni A, Kotanidou A. A novel ratio of CD8 +:B-cells as a prognostic marker of coronavirus disease 2019 patient progression and outcome. Virology 2021; 556:79-86. [PMID: 33550117 PMCID: PMC7831474 DOI: 10.1016/j.virol.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
Infection with SARS-COV-2 may result in severe pneumonia potentially leading to mechanical ventilation and intensive care treatment. The aim of the present study was to analyze the immune responses in critically ill coronavirus 2019 (COVID-19) patients requiring mechanical ventilation and assess their potential use as markers of clinical progression and outcome. Confirmed COVID-19 patients were grouped into those requiring mechanical ventilation (intubated) and non-intubated. Immune phenotyping was performed and cytokine levels were determined. A novel ratio of CD8+:B cells was significantly lower in intubated versus non-intubated (p = 0.015) and intubated non-survivors (NSV) versus survivors (SV) (p = 0.015). The same ratio correlated with outcome, CRP, IL-6 levels and neutrophil count. Receiving operating curve (ROC) analysis for prediction of requirement of mechanical ventilation by the CD8+:B cells ratio revealed an AUC of 0.747 and a p = 0.007. The ratio of CD8+:B cells may serve as a useful prognostic marker for disease severity and outcome.
Collapse
Affiliation(s)
- Maria G. Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleio Ampelakiotou
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Eirini Grigoriou
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Katherina Psarra
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Charis Roussos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece,2nd Department of Critical Care Medicine, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsirogianni
- Department of Immunology and Histocompatibility, ‘Evangelismos' General Hospital, Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|