51
|
Yong J, Lacan G, Dang H, Hsieh T, Middleton B, Wasserfall C, Tian J, Melega WP, Kaufman DL. BCG vaccine-induced neuroprotection in a mouse model of Parkinson's disease. PLoS One 2011; 6:e16610. [PMID: 21304945 PMCID: PMC3031604 DOI: 10.1371/journal.pone.0016610] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/28/2010] [Indexed: 12/14/2022] Open
Abstract
There is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses. We assessed the neuroprotective potential of vaccines containing tyrosine hydroxylase (a neuronal protein involved in dopamine synthesis) or Copaxone® in CFA in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Surprisingly, we observed that the main beneficial factor in these vaccines was the CFA. Since the major immunogenic component in CFA is Mycobacterium tuberculosis, which closely related to the bacille Calmette-Guérin (BCG) that is used in human vaccines, we tested BCG vaccination in the MPTP mouse model. We observed that BCG vaccination partially preserved markers of striatal dopamine system integrity and prevented an increase in activated microglia in the substantia nigra of MPTP-treated mice. These results support a new neuroprotective vaccine paradigm in which general (nonself-reactive) immune stimulation in the periphery can limit potentially deleterious microglial responses to a neuronal insult and exert a neurorestorative effect in the CNS. Accordingly, BCG vaccination may provide a new strategy to augment current treatments for a wide range of neuropathological conditions.
Collapse
Affiliation(s)
- Jing Yong
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Goran Lacan
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Terry Hsieh
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Clive Wasserfall
- Department of Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - William P. Melega
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
52
|
Babad J, Geliebter A, DiLorenzo TP. T-cell autoantigens in the non-obese diabetic mouse model of autoimmune diabetes. Immunology 2010; 131:459-65. [PMID: 21039471 DOI: 10.1111/j.1365-2567.2010.03362.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The non-obese diabetic (NOD) mouse model of autoimmune (type 1) diabetes has contributed greatly to our understanding of disease pathogenesis and has facilitated the development and testing of therapeutic strategies to combat the disease. Although the model is a valuable immunological tool in its own right, it reaches its fullest potential in areas where its findings translate to the human disease. Perhaps the foremost example of this is the field of T-cell antigen discovery, from which diverse benefits can be derived, including the development of antigen-specific disease interventions. The majority of NOD T-cell antigens are also targets of T-cell autoimmunity in patients with type 1 diabetes, and several of these are currently being evaluated in clinical trials. Here we review the journeys of these antigens from bench to bedside. We also discuss several recently identified NOD T-cell autoantigens whose translational potential warrants further investigation.
Collapse
Affiliation(s)
- Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
53
|
Axelsson S, Hjorth M, Akerman L, Ludvigsson J, Casas R. Early induction of GAD(65)-reactive Th2 response in type 1 diabetic children treated with alum-formulated GAD(65). Diabetes Metab Res Rev 2010; 26:559-68. [PMID: 20830731 DOI: 10.1002/dmrr.1126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND We have previously shown that two injections of 20 µg alum-formulated glutamic acid decarboxylase 65 (GAD(65)) (GAD-alum; Diamyd(®)) in children with recent-onset type 1 diabetes lead to preservation of residual insulin secretion. In vitro cytokine production at the 15 months' follow-up indicated immunomodulation. In the present study, we took advantage of peripheral blood mononuclear cells, cryopreserved during early follow-ups, to investigate whether the immunomodulatory effect of GAD-alum was apparent earlier after treatment, preceding the changes previously reported at 15 months. METHODS Peripheral blood mononuclear cells from 70 type 1 diabetic children, randomly assigned GAD-alum (n = 35) or placebo (n = 35), that had been frozen at baseline (n = 27) and after 1 (n = 58), 3 (n = 67) and 9 (n = 66) months, were stimulated in vitro with GAD(65), tyrosine phosphatase-like protein IA-2 peptide, insulin peptide, GAD-alum, alum formulation or phytohaemagglutinin. Interleukin (IL)-5, -6, -10, -12, -13, -17, tumour necrosis factor and interferon-γ were measured in cell supernatants and serum samples using Luminex. Expression of FOXP3 and transforming growth factor-β was determined by real-time reverse transcription polymerase chain reaction. RESULTS Already 1 month after the first injection, GAD(65)-induced IL-5 and IL-13 together with FOXP3 were enhanced in GAD-alum-treated patients compared to those with placebo. The in vitro response at 3 and 9 months was characterized by a broader range of cytokines in the treated group. Notably, only the T-helper 2-associated cytokines IL-5 and IL-13 together with FOXP3 increased continuously over time. CONCLUSIONS Treatment with GAD-alum in type 1 diabetic children induced an early T-helper 2 immune enhanced response to GAD(65), followed by a wider spectrum of cytokines at 3 and 9 months.
Collapse
Affiliation(s)
- Stina Axelsson
- Division of Paediatrics and Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
54
|
Affiliation(s)
- Mark Peakman
- Department of Immunobiology, National Institute for Health Research, Comprehensive Biomedical Research Centre at Guy's and St Thomas' National Health Service Foundation Trust, King's College London, London, U.K
- Corresponding authors: Mark Peakman, , and Matthias von Herrath,
| | - Matthias von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
- Corresponding authors: Mark Peakman, , and Matthias von Herrath,
| |
Collapse
|
55
|
Stadinski B, Kappler J, Eisenbarth GS. Molecular targeting of islet autoantigens. Immunity 2010; 32:446-56. [PMID: 20412755 DOI: 10.1016/j.immuni.2010.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes of man and animal models results from immune-mediated specific beta cell destruction. Multiple islet antigens are targets of autoimmunity and most of these are not beta cell specific. Immune responses to insulin appear to be essential for the development of diabetes of the NOD mouse. In this review, we will emphasize the unusual manner in which selected autoantigenic peptides (particularly the recently discovered target of BDC2.5 T cells [chromagranin A]) are presented and recognized by autoreactive CD4(+) T cell receptors. We hypothesize that "unusual" structural interactions of specific trimolecular complexes (MHC class II, peptide, and T cell receptors) are fundamental to the escape from the thymus of autoreactive T cells able to cause type 1 diabetes.
Collapse
|
56
|
Gong Z, Pan L, Le Y, Liu Q, Zhou M, Xing W, Zhuo R, Wang S, Guo J. Glutamic acid decarboxylase epitope protects against autoimmune diabetes through activation of Th2 immune response and induction of possible regulatory mechanism. Vaccine 2010; 28:4052-4058. [DOI: 10.1016/j.vaccine.2010.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 03/07/2010] [Accepted: 04/07/2010] [Indexed: 01/12/2023]
|
57
|
Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity 2010; 32:488-99. [PMID: 20412759 PMCID: PMC2860878 DOI: 10.1016/j.immuni.2010.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by destruction of insulin-producing pancreatic beta cells. Many broad-based immunosuppressive and antigen-specific immunoregulatory therapies have been and are currently being evaluated for their utility in the prevention and treatment of T1D. Looking forward, this review discusses the potential therapeutic use of antigen-specific tolerance strategies, including tolerance induced by "tolerogenic" antigen-presenting cells pulsed with diabetogenic antigens and transfer of induced or expanded regulatory T cells, which have demonstrated efficacy in nonobese diabetic (NOD) mice. Depending on the time of therapeutic intervention in the T1D disease process, antigen-specific immunoregulatory strategies may be employed as monotherapies, or in combination with short-term tolerance-promoting immunoregulatory drugs and/or drugs promoting differentiation of insulin-producing beta cells from endogenous progenitors.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Kevan C. Herold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
58
|
Liang J, Aihua Z, Yu W, Yong L, Jingjing L. HSP65 serves as an immunogenic carrier for a diabetogenic peptide P277 inducing anti-inflammatory immune response in NOD mice by nasal administration. Vaccine 2010; 28:3312-7. [DOI: 10.1016/j.vaccine.2010.02.100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/30/2022]
|
59
|
Ludvigsson J. GAD-alum (Diamyd) – a new concept for preservation of residual insulin secretion. Expert Opin Biol Ther 2010; 10:787-99. [DOI: 10.1517/14712591003742920] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
60
|
Abstract
Type 1 diabetes mellitus (T1DM) is a prototypic organ-specific autoimmune disease that results from selective destruction of insulin-secreting beta-cells by immune-mediated inflammation (insulitis), that is, the infiltration of pancreatic islets by autoreactive CD4(+) and CD8(+) T lymphocytes. Current treatment is substitutive-chronic use of exogenous insulin-which, in spite of considerable advances, is still associated with constraints and lack of effectiveness over the long-term in relation to the prevention of vascular and neurological complications. Finding a cure for T1DM is an important medical health challenge, as the disease's incidence is steadily increasing in industrialized countries and projections of future prevalence are alarming. Crucially, as T1DM mainly affects children and young adults, any candidate immune therapy must be safe and avoid chronic use of immunosuppressants that promote sustained depression of immune responses. The ideal approach would, therefore, involve induction or, in the case of established T1DM, restoration of immune tolerance to target autoantigens. This Review presents, in particular, two strategies that are still in clinical development but hold great promise. These strategies are focused on the use of candidate autoantigens and anti-CD3 monoclonal antibodies.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, INSERM U1013, Hôpital Necker Enfants Malades, 161 Rue de Sèvres, Paris 75015, France.
| |
Collapse
|
61
|
Affiliation(s)
- Anthony Quinn
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
62
|
Tian J, Dang H, von Boehmer H, Jaeckel E, Kaufman DL. Transgenically induced GAD tolerance curtails the development of early beta-cell autoreactivities but causes the subsequent development of supernormal autoreactivities to other beta-cell antigens. Diabetes 2009; 58:2843-50. [PMID: 19741165 PMCID: PMC2780885 DOI: 10.2337/db08-0851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study how tolerance to GAD65 affects the development of autoimmunity to other beta-cell autoantigens (beta-CAAs) in GAD65-transgenic (GAD-tg) NOD mice. RESEARCH DESIGN AND METHODS We used ELISPOT to characterize the frequency and functional phenotype of T-cell responses to GAD65 and other beta-CAAs at different ages in GAD-tg mice and their NOD mouse littermates. RESULTS In young GAD-tg mice, Th1 responses to GAD65's dominant determinants were 13-18% of those in young NOD mice. This coincided with a great reduction in Th1 responses to other beta-CAAs. Evidently, GAD65-reactive T-cells are important for activating and/or expanding early autoreactivities in NOD mice. As GAD-tg mice aged, their T-cell responses to GAD65 remained low, but they developed supernormal splenic and pancreatic lymph node T-cell autoimmunity to other beta-CAAs. Apparently, the elimination/impairment of many GAD65-reactive T-cells allowed other beta-CAA-reactive T-cells to eventually expand to a greater extent, perhaps by reducing competition for antigen-presenting cells, or homeostatic proliferation in the target tissue, which may explain the GAD-tg mouse's usual disease incidence. CONCLUSIONS Transgenically induced reduction of GAD65 autoreactivity curtailed the development of early T-cell responses to other beta-CAAs. However, later in life, beta-CAA-reactive T-cells expanded to supernormal levels. These data suggest that early beta-cell autoreactivities are mutually dependent for support to activate and expand, while later in the disease process, autoantigen-specific T-cell pools can expand autonomously. These findings have implications for understanding type 1 diabetes immunopathogenesis and for designing antigen-based immunotherapeutics.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Hoa Dang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
| | - Harald von Boehmer
- Laboratory of Lymphocyte Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California
- Corresponding author: Daniel L. Kaufman,
| |
Collapse
|
63
|
Affiliation(s)
- Jide Tian
- From the Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California
| | - Daniel L. Kaufman
- From the Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California
- Corresponding author: Daniel L. Kaufman,
| |
Collapse
|
64
|
Bresson D, Fradkin M, Manenkova Y, Rottembourg D, von Herrath M. Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. Mol Ther 2009; 18:307-16. [PMID: 19690518 DOI: 10.1038/mt.2009.197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To enhance efficacy of forthcoming type 1 diabetes (T1D) clinical trials, combination therapies (CTs) are envisaged. In this study, we showed that efficacy of a CT, using anti-CD3 antibody and glutamic acid decarboxylase of 65 kd (GAD65)-expressing plasmid, to reverse new-onset T1D was dependent upon the genetic background. Synergism between both treatments was only observed in the RIP-LCMV-GP but not in the nonobese diabetic (NOD) or RIP-LCMV-NOD models. Efficacy was associated with an expansion of bystander suppressor regulatory T cells (Tregs) recognizing the C-terminal region of GAD65 and secreting interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), and interferon-gamma (IFN-gamma). In addition, we found that frequency and epitope specificity of GAD65-reactive CD4(+) T cells during antigen priming at diabetes onset and Tregs detected after CT correlated. Consequently, NOD mice harbored significantly lower levels of GAD65-reactive CD4(+) T cells than RIP-LCMV-GP before and after treatment. Our results demonstrate that antigen-specific T cells available at treatment may differ between various major histocompatibility complex (MHC) and genetic backgrounds. These cells play a major role in shaping T-cell responses following antigen-specific immune intervention and determine whether a beneficial Tregs response is generated. Our findings hold important implications to understand and predict the success of antigen-based clinical trials, where responsiveness to immunotherapy might vary from patient to patient.
Collapse
Affiliation(s)
- Damien Bresson
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
65
|
Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. THE JOURNAL OF IMMUNOLOGY 2009; 183:993-1004. [PMID: 19561093 DOI: 10.4049/jimmunol.0900803] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human clinical trials in type 1 diabetes (T1D) patients using mesenchymal stem cells (MSC) are presently underway without prior validation in a mouse model for the disease. In response to this void, we characterized bone marrow-derived murine MSC for their ability to modulate immune responses in the context of T1D, as represented in NOD mice. In comparison to NOD mice, BALB/c-MSC mice were found to express higher levels of the negative costimulatory molecule PD-L1 and to promote a shift toward Th2-like responses in treated NOD mice. In addition, transfer of MSC from resistant strains (i.e., nonobese resistant mice or BALB/c), but not from NOD mice, delayed the onset of diabetes when administered to prediabetic NOD mice. The number of BALB/c-MSC trafficking to the pancreatic lymph nodes of NOD mice was higher than in NOD mice provided autologous NOD-MSC. Administration of BALB/c-MSC temporarily resulted in reversal of hyperglycemia in 90% of NOD mice (p = 0.002). Transfer of autologous NOD-MSC imparted no such therapeutic benefit. We also noted soft tissue and visceral tumors in NOD-MSC-treated mice, which were uniquely observed in this setting (i.e., no tumors were present with BALB/c- or nonobese resistant mice-MSC transfer). The importance of this observation remains to be explored in humans, as inbred mice such as NOD may be more susceptible to tumor formation. These data provide important preclinical data supporting the basis for further development of allogeneic MSC-based therapies for T1D and, potentially, for other autoimmune disorders.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Waldron-Lynch F, Herold KC. Advances in Type 1 diabetes therapeutics: immunomodulation and beta-cell salvage. Endocrinol Metab Clin North Am 2009; 38:303-17, viii. [PMID: 19328413 DOI: 10.1016/j.ecl.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Refinements in our understanding of the pathogenic mechanisms of Type 1 diabetes from studies of animal models and clinical observation have led to new clinical trials to prevent disease progression and restore the loss of beta-cells that defines the disease. Antigen-specific agents have shown initial promise and non-antigen-specific agents now have improved safety compared with older agents. In addition, preclinical studies with other agents have shown efficacy. Ultimately, a combination of immunologic and cellular therapies may be needed to restore metabolic control. Agents that augment recovery of dysfunctional beta-cells, and other compounds that may be able to induce beta-cell replication, are logical additions once immune tolerance is achieved.
Collapse
|
67
|
Abstract
The enzyme glutamic acid decarboxylase (GAD) is of great importance for the neurotransmission in the central nervous system, and therefore of interest for treatment of pain and neurological disease. However, it is also released in pancreas although its role is not quite clear. GAD is a major auto-antigen in the process leading to type 1 diabetes with both a clear cell-mediated immune response to GAD and auto-antibodies to GAD (GADA), which can be used as a predictor of diabetes. Administration of the isoform GAD65 can prevent autoimmune destruction of pancreatic beta cells in non-obese diabetic (NOD) mice and the subsequent need for exogenous insulin replacement. In Phase I and II studies an alum-formulated vaccine (Diamyd) has shown to be safe, and in a dose-finding study in Latent Autoimmune Diabetes in Adults (LADA) patients 20-microg was given subcutaneously one month apart indicating preservation of residual insulin secretion. A double-blind randomized Phase II trial in 70 patients (10-18 years old) with recent-onset type 1 diabetes showed significant preservation of residual insulin secretion and a GAD-specific immune response, both humoral and cell-mediated, but no treatment-related adverse events. With this promising background further studies are on their way, both intervention in newly diagnosed type 1 diabetic patients, and trials to prevent the disease.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Division of Pediatrics and Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
68
|
Abstract
Type 1 diabetes (T1DM) is characterized by loss of virtually all endogenous insulin secretion. If residual insulin secretion is preserved, this will lead to improved metabolic balance, less acute and late complications, improved quality of life, and, in case of pronounced improvement of residual insulin secretion, complete remission and even cure of the disease. Immune suppression or immune modulation have been demonstrated as a proof of principle to stop/decrease the destructive process and thereby preserve beta-cell function. Several methods to save residual beta-cell function have been tried for more than three decades with little or no evidence of efficacy. Positive effects have been seen mainly in adult patients but have been minimal or absent in children with diabetes. Furthermore, the safety of these immune interventions and/or their benefit to risk relationships have not been found to justify clinical use. More specific immune modulation with anti-CD3 monoclonal antibodies has resulted in more encouraging postponement of C-peptide decline, but with frequent and serious adverse effects. Still more promising are the autoantigen therapies, of which glutamic acid decarboxylase (GAD) vaccination has shown significant preservation of residual insulin secretion in 10-18-year-old type 1 diabetes patients with recent onset. Efficacy was most impressive in the subgroup of patients with diabetes of short duration (<3 months). The treatment was simple, well tolerated, and showed no treatment-related adverse events. If these results can be confirmed, there is a realistic hope that GAD vaccination, perhaps in combination with vaccinations with other autoantigens and/or other therapies, will result in remission for some patients. The prospects of cure and prevention of T1DM will become less remote.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Division of Pediatrics and Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| |
Collapse
|
69
|
Satpute SR, Durai M, Moudgil KD. Antigen-specific tolerogenic and immunomodulatory strategies for the treatment of autoimmune arthritis. Semin Arthritis Rheum 2008; 38:195-207. [PMID: 18177689 PMCID: PMC2723747 DOI: 10.1016/j.semarthrit.2007.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/18/2007] [Accepted: 10/21/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To review various antigen-specific tolerogenic and immunomodulatory approaches for arthritis in animal models and patients in regard to their efficacy, mechanisms of action, and limitations. METHODS We reviewed the published literature in Medline (PubMed) on the induction of antigen-specific tolerance and its effect on autoimmune arthritis, as well as the recent work on B-cell-mediated tolerance from our laboratory. The prominent key words used in different combinations included arthritis, autoimmunity, immunotherapy, innate immunity, tolerance, treatment, and rheumatoid arthritis (RA). Although this search spanned the years 1975 to 2007, the majority of the short-listed articles belonged to the period 1990 to 2007. The relevant primary as well as cross-referenced articles were then collected from links within PubMed and reviewed. RESULTS Antigen-specific tolerance has been successful in the prevention and/or treatment of arthritis in animal models. The administration of soluble native antigen or an altered peptide ligand intravenously, orally, or nasally, and the delivery of the DNA encoding a particular antigen by gene therapy have been the mainstay of immunomodulation. Recently, the methods for in vitro expansion of CD4+CD25+ regulatory T-cells have been optimized. Furthermore, interleukin-17 has emerged as a promising new therapeutic target in arthritis. However, in RA patients, non-antigen-specific therapeutic approaches have been much more successful than antigen-specific tolerogenic regimens. CONCLUSION An antigen-specific treatment against autoimmune arthritis is still elusive. However, insights into newly emerging mechanisms of disease pathogenesis provide hope for the development of effective and safe immunotherapeutic strategies in the near future.
Collapse
Affiliation(s)
- Shailesh R. Satpute
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malarvizhi Durai
- Johns Hopkins Medical Institutions, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
70
|
Ludvigsson J, Faresjö M, Hjorth M, Axelsson S, Chéramy M, Pihl M, Vaarala O, Forsander G, Ivarsson S, Johansson C, Lindh A, Nilsson NO, Aman J, Ortqvist E, Zerhouni P, Casas R. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 2008; 359:1909-20. [PMID: 18843118 DOI: 10.1056/nejmoa0804328] [Citation(s) in RCA: 366] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The 65-kD isoform of glutamic acid decarboxylase (GAD) is a major autoantigen in patients with type 1 diabetes mellitus. This trial assessed the ability of alum-formulated GAD (GAD-alum) to reverse recent-onset type 1 diabetes in patients 10 to 18 years of age. METHODS We randomly assigned 70 patients with type 1 diabetes who had fasting C-peptide levels above 0.1 nmol per liter (0.3 ng per milliliter) and GAD autoantibodies, recruited within 18 months after receiving the diagnosis of diabetes, to receive subcutaneous injections of 20 microg of GAD-alum (35 patients) or placebo (alum alone, 35 patients) on study days 1 and 30. At day 1 and months 3, 9, 15, 21, and 30, patients underwent a mixed-meal tolerance test to stimulate residual insulin secretion (measured as the C-peptide level). The effect of GAD-alum on the immune system was also studied. RESULTS Insulin secretion gradually decreased in both study groups. The study treatment had no significant effect on change in fasting C-peptide level after 15 months (the primary end point). Fasting C-peptide levels declined from baseline levels significantly less over 30 months in the GAD-alum group than in the placebo group (-0.21 vs. -0.27 nmol per liter [-0.62 vs. -0.81 ng per milliliter], P=0.045), as did stimulated secretion measured as the area under the curve (-0.72 vs. -1.02 nmol per liter per 2 hours [-2.20 vs. -3.08 ng per milliliter per 2 hours], P=0.04). No protective effect was seen in patients treated 6 months or more after receiving the diagnosis. Adverse events appeared to be mild and similar in frequency between the two groups. The GAD-alum treatment induced a GAD-specific immune response. CONCLUSIONS GAD-alum may contribute to the preservation of residual insulin secretion in patients with recent-onset type 1 diabetes, although it did not change the insulin requirement. (ClinicalTrials.gov number, NCT00435981.)
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Goudy KS, Wang B, Tisch R. Gene gun-mediated DNA vaccination enhances antigen-specific immunotherapy at a late preclinical stage of type 1 diabetes in nonobese diabetic mice. Clin Immunol 2008; 129:49-57. [PMID: 18675592 PMCID: PMC2593033 DOI: 10.1016/j.clim.2008.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes (T1D) is characterized by the T cell mediated destruction of the insulin-producing beta cells. Antigen-specific immunotherapies are used to selectively tolerize beta cell-specific pathogenic T cells either directly, or indirectly through the induction of immunoregulatory T cells. A key concern of antigen-specific immunotherapy is exacerbating autoimmunity. We compared the T cell reactivity and efficacy induced by plasmid DNA (pDNA) encoding glutamic acid decarboxylase 65 (GAD65) administered via intramuscular versus gene gun vaccination in NOD mice at a late preclinical stage of T1D. Whereas intramuscular injection of pGAD65 promoted a predominant type 1 CD4(+) T cell response and failed to suppress ongoing beta cell autoimmunity, gene gun vaccination preferentially induced IL-4 secreting CD4(+) T cells and significantly delayed the onset of diabetes. These findings demonstrate that gene gun delivery of autoantigen-encoding pDNA preferentially elicits immunoregulatory T cells and offers a safe, effective mode of pDNA vaccination for the treatment of T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Kevin S. Goudy
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC 27599-7020
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC 27599-7020
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC 27599-7020
| |
Collapse
|
73
|
AAV8-mediated gene transfer of interleukin-4 to endogenous beta-cells prevents the onset of diabetes in NOD mice. Mol Ther 2008; 16:1409-16. [PMID: 18560422 DOI: 10.1038/mt.2008.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have demonstrated the ability to deliver and express genes specifically in beta-cells for at least 6 months, using a murine insulin promoter (mIP) in a double-stranded, self-complementary AAV vector (dsAAV8-mIP). In this study, we evaluated the effects of dsAAV8-mIP-mediated delivery of interleukin 4 (mIL-4) to endogenous beta-cells in nonobese diabetic (NOD) mice. In 4-week-old NOD mice, the extent of gene transfer and expression in endogenous beta-cells after ip delivery of dsAAV8-mIP-enhanced green fluorescent protein (eGFP) was comparable to normal BALB/C mice. Further, after IP delivery of dsAAV8-mIP-IL4, expression of mIL-4 was detected in islets isolated from the treated mice and cultured. AAV8-mIP-mediated gene expression of mIL-4 in endogenous beta- cells of 4- and 8-week-old NOD mice prevented the onset of hyperglycemia in NOD mice and reduced the severity of insulitis. Moreover, expression of mIL-4 also maintained the level of CD4(+)CD25(+)FoxP3(+) cells, and adoptive transfer of splenocytes from nondiabetic dsAAV8-mIP-IL-4 mice to NODscid mice was able to block the diabetes induced by splenocytes co-adoptively transferred from nondiabetic dsAAV-mIP-eGFP mice. Taken together, these results demonstrate that local expression of mIL-4 in islets prevents islet destruction and blocks autoimmunity, partly through regulation of T-cell function.
Collapse
|
74
|
Cihakova D, Barin JG, Baldeviano GC, Kimura M, Talor MV, Zimmerman DH, Talor E, Rose NR. L.E.A.P.S. heteroconjugate is able to prevent and treat experimental autoimmune myocarditis by altering trafficking of autoaggressive cells to the heart. Int Immunopharmacol 2008; 8:624-33. [PMID: 18387504 PMCID: PMC2716547 DOI: 10.1016/j.intimp.2008.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
Abstract
We evaluated the efficacy of the Ligand Epitope Antigen Presentation System (L.E.A.P.S.trade mark) in preventing or treating experimental autoimmune myocarditis (EAM) in A/J mice. L.E.A.P.S. (here, J-My-1) is a conjugate of the myocarditogenic peptide of cardiac myosin MyHCalpha(334-352) (My-1) and J peptide, derived from the sequence of human beta-2 microglobulin. Remarkably, early prophylactic (J-My-1 injected on days -14 and -7 before EAM induction), late prophylactic (J-My-1 injected on days 0, 7, 14, and 21), and therapeutic (J-My-1 injected on days 7, 14, and 21 or 10, 17 and 24) administration of J-My-1 significantly decreased the incidence and severity of EAM. However, extended therapeutic treatment was associated with anaphylaxis and death, corresponding with global immune activation associated with J-My-1 treatment. In J-My1-treated animals, we observed expanded numbers of activated CD69+ and CD44+ CD4+ and CD8+ T cells in the spleens. J-My-1 treatment also increased the proportion of CD11c+ dendritic cells in spleens and induced strong production of anti-J-My-1 specific antibodies. J-My-1 injections resulted in decreased levels of chemokines MIP-1alpha and IP-10 in hearts. We propose that J-My-1 treatment interferes with trafficking of autoaggressive immune cells to the heart.
Collapse
Affiliation(s)
- Daniela Cihakova
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. <>
| | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Ravanan R, Wong SF, Morgan NG, Mathieson PW, Smith RM. Inhalation of glutamic acid decarboxylase 65-derived peptides can protect against recurrent autoimmune but not alloimmune responses in the non-obese diabetic mouse. Clin Exp Immunol 2007; 148:368-72. [PMID: 17437424 PMCID: PMC1868866 DOI: 10.1111/j.1365-2249.2007.03358.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2007] [Indexed: 12/01/2022] Open
Abstract
Systemic administration of islet-derived antigens has been shown to protect against diabetes in the non-obese diabetic (NOD) mouse by the induction of antigen-specific regulatory T cells. Bystander regulation to related and unrelated islet-derived antigens (intramolecular and intermolecular recognition) in this context is recognized. We tested if intranasal administration of glutamic acid decarboxylase 65 (GAD 65)-derived peptides could protect against both autoimmune and, through bystander regulation, alloimmune responses in a NOD mouse model. Spontaneously diabetic female NOD mice underwent islet transplantation from either C57Bl/6 or NOD islet donors. Islet recipients were treated with intranasal GAD 65-derived peptides or control (ovalbumin) peptide pre- and post-transplantation. In-vitro analysis of the effect of inhalation was defined using lymph node proliferation assays and supernatant analysis for cytokines. GAD 65-derived peptide inhalation resulted in significant protection against recurrent autoimmune disease, with the generation of an interleukin (IL)-10-producing immune phenotype in a syngeneic islet transplant model. This phenotype, however, was not robust enough to protect against alloimmune responses. Inhalation of GAD-derived peptides induces an immunoregulatory response that protects against recurrent autoimmune, but not alloimmune responses in the NOD mouse.
Collapse
Affiliation(s)
- R Ravanan
- Department of Clinical Sciences at North Bristol, Bristol University, Bristol, UK.
| | | | | | | | | |
Collapse
|
77
|
Pop SM, Wong CP, He Q, Wang Y, Wallet MA, Goudy KS, Tisch R. The type and frequency of immunoregulatory CD4+ T-cells govern the efficacy of antigen-specific immunotherapy in nonobese diabetic mice. Diabetes 2007; 56:1395-402. [PMID: 17317763 DOI: 10.2337/db06-0543] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antigen-specific immunotherapy, an approach to selectively block autoimmune diabetes, generally declines in nonobese diabetic (NOD) mice as disease progresses. To define the parameters influencing the efficacy of antigen-specific immunotherapy once diabetes is established, plasmid DNA (pDNA) vaccination was used to suppress autoimmune-mediated destruction of syngeneic islet grafts in diabetic NOD recipients. pDNAs encoding a glutamic acid decarboxylase 65 (GAD65)-Ig molecule (pGAD65), interleukin (IL)-4 (pIL4), and IL-10 (pIL10) significantly delayed the onset of recurrent diabetes compared with pGAD65+pIL10-vaccinated recipients. Despite differences in efficacy, a similar frequency of GAD65-specific CD4(+) T-cells secreting IL-4, IL-10, or interferon-gamma were detected in mice treated with pGAD65+pIL4+pIL10 and pGAD65+pIL10. However, the frequency of FoxP3-expressing CD4(+)CD25(+)CD62L(hi) T-cells was increased in the renal and pancreatic lymph nodes of diabetic recipients vaccinated with pGAD65+pIL4+pIL10. These immunoregulatory CD4(+)CD25(+) T-cells (CD4(+)CD25(+) Treg) exhibited enhanced in vivo and in vitro suppressor activity that partially was transforming growth factor-beta dependent. Furthermore, duration of islet graft protection in pGAD65+pIL4+pIL10-vaccinated diabetic recipients correlated with the persistence of CD4(+)CD25(+) Treg. These data demonstrate that the frequency and maintenance of FoxP3-expressing CD4(+)CD25(+) Treg influence antigen-induced suppression of ongoing beta-cell autoimmunity in diabetic recipients.
Collapse
Affiliation(s)
- Shannon M Pop
- Curriculum in Oral Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7290, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Lichtenegger FS, Kuerten S, Faas S, Boehm BO, Tary-Lehmann M, Lehmann PV. Dissociation of Experimental Allergic Encephalomyelitis Protective Effect and Allergic Side Reactions in Tolerization with Neuroantigen. THE JOURNAL OF IMMUNOLOGY 2007; 178:4749-56. [PMID: 17404254 DOI: 10.4049/jimmunol.178.8.4749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Administration of autoantigens under conditions that induce type 2 immunity frequently leads to protection from T cell-mediated autoimmune diseases. Such treatments, however, are inherently linked to the induction of IgG1 Abs and to the risk of triggering anaphylactic reactions. We studied the therapeutic benefit vs risk of immune deviation in experimental allergic encephalomyelitis of SJL mice induced by MP4, a myelin basic protein-proteolipid protein (PLP) fusion protein. MP4 administration in IFA induced type 2 T cell immunity, IgG1 Abs, and experimental allergic encephalomyelitis protection, and all three were enhanced by repeat injections. Despite high Ab titers, anaphylactic side reactions were not observed when MP4 was repeatedly injected in IFA or as soluble Ag s.c. In contrast, lethal anaphylaxis was seen after s.c. injection of soluble PLP:139-151 peptide, but not when the peptide was reinjected in IFA. Therefore, the Ab response accompanying the immune therapy constituted an anaphylactic risk factor only when the autoantigen was not retained in an adjuvant and when it was small enough to be readily disseminated within the body. Taken together, our data show that treatment regimens can be designed to boost the protective type 2 T cell response while avoiding the risk of Ab-mediated allergic side effects.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
The human gut offers more than 200 m2 of mucosal surface, where direct interactions between the immune system and foreign antigens take place to eliminate pathogens or induce immune tolerance toward food antigens or normal gut flora. Therefore, mucosally administered antigens can induce tolerance under certain circumstances. In autoimmune diabetes, mucosal vaccination with autoantigens elicits some efficacy in restoring tolerance in mice, but it never succeeded in humans. Furthermore, in some instances autoimmunity can be precipitated upon oral or intranasal autoantigen administration. Therefore, it is difficult to predict the effect of mucosal vaccination on autoimmunity and much effort should be put into establishing better assays to reduce the risk for possible adverse events in humans and enable a rapid and smooth translation.
Collapse
Affiliation(s)
- Georgia Fousteri
- La Jolla Institute for Allergy and Immunology, Department of Developmental Immunology 3, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
80
|
Busick RY, Aguilera C, Quinn A. Dominant CTL-inducing epitopes on GAD65 are adjacent to or overlap with dominant Th-inducing epitopes. Clin Immunol 2007; 122:298-311. [PMID: 17174605 DOI: 10.1016/j.clim.2006.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/16/2006] [Accepted: 10/16/2006] [Indexed: 12/22/2022]
Abstract
Immune responses to GAD65 are associated with progression to T1D in NOD mice and humans. Our previous data suggested that dominant CTL-inducing and Th-inducing determinants might preferentially occur in proximal GAD65 sequences. Using a panel of 192 GAD65 peptides we discovered that four of the eight CTL-inducing peptides, including those most biologically relevant, were proximal to previously described I-A(g7)-restricted determinants that characterize natural islet autoimmunity in NOD mice. The CTL determinants 546-554 and 88-98 were presented by GAD65-expressing cells and were displayed on pancreatic LNC, along with 268-278, following beta cell damage. p546-554-specific CTL were detectable in young naive mice and transferred significant islet inflammation into NOD.scid mice. These findings demonstrate that unique regions of GAD65 may be favored during antigen processing, such that diverse dominant epitopes are produced from overlapping sequences, which can engage distinct T cell subsets. Additionally, cross-presentation may enhance GAD65-specific CTL responses in T1D.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cells, Cultured
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/immunology
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/immunology
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/immunology
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Immunodominant Epitopes/analysis
- Immunodominant Epitopes/immunology
- Isoenzymes/genetics
- Isoenzymes/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Sequence Data
- Peptide Mapping
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
Collapse
Affiliation(s)
- Rhea Y Busick
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606, USA
| | | | | |
Collapse
|
81
|
Chatenoud L. Une étape vers la restauration de la tolérance immunitaire au soi dans les maladies auto-immunes humaines. Med Sci (Paris) 2007; 23:167-71. [PMID: 17291426 DOI: 10.1051/medsci/2007232167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In developed countries the incidence of autoimmune insulin-dependent or type 1 diabetes as the one of all autoimmune diseases has steadily increased over the last decades. Conventional therapy of type 1 diabetes is essentially palliative namely, chronic delivery of exogenous insulin that is associated with major constraints (multiple daily parenteral administration, serious risks linked to hypoglycemic episodes) and incomplete effectiveness in preventing severe degenerative complications. This explains the growing attention on modern therapeutic strategies using biological agents such as CD3 monoclonal antibodies that allow 'reprogramming' the immune system to restore self-tolerance to pancreatic beta cell antigens. This strategy which proved successful in the experimental setting has recently been translated to the clinic with very encouraging results. CD3 antibodies may represent a new category of drugs affording a real cure for autoimmunity namely, inhibiting the pathogenic immune response while preserving the host reactivity to unrelated antigens.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Autoantibodies/biosynthesis
- Autoantibodies/immunology
- Autoantigens/immunology
- Autoantigens/therapeutic use
- Autoimmune Diseases/immunology
- Autoimmune Diseases/therapy
- Autoimmunity/immunology
- CD3 Complex/immunology
- Chaperonin 60/immunology
- Chaperonin 60/therapeutic use
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Clonal Deletion
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Glutamate Decarboxylase/immunology
- Glutamate Decarboxylase/therapeutic use
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/therapeutic use
- Immunotherapy/methods
- Infant, Newborn
- Insulin/immunology
- Insulin/therapeutic use
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred NOD
- Muromonab-CD3/immunology
- Muromonab-CD3/therapeutic use
- Randomized Controlled Trials as Topic
- Self Tolerance/immunology
- T-Lymphocyte Subsets/immunology
- Thymectomy/adverse effects
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Inserm U580, Faculté René-Descartes Paris 5, Hôpital Necker- Enfants-Malades, 161, rue de Sèvres 75015, Paris, France.
| |
Collapse
|
82
|
Abstract
It is known that CD4(+) regulatory T cells (Tr cells) play a central role in inducing immune tolerance in animals and humans. Compared to polyclonal Tr cells, autoantigen-specific Tr cells are more potent at blocking pathogenic immune responses. In order to better understand the role of Tr cells in controlling type 1 diabetes development and to help design effective antigen-specific cell-based therapeutic methods to treat the disease, it is necessary to: (a) determine the antigen specificity of Tr cells; (b) study how antigen-specific Tr cells behave in vivo; (c) investigate the interaction of Tr cells with pathogenic T cells (Tpath cells) and determine whether such interaction correlates with the progression or inhibition of diabetes; and (d) determine the cellular and molecular mechanisms underlying the regulation of diabetes by Tr cells. We have addressed these questions with a focus on the studies of glutamic acid decarboxylase (GAD)-specific T cells. Previous studies have suggested that GAD-specific T cells play a key role in type 1 diabetes. Treatment of NOD mice with GAD or its peptides can prevent the progression toward overt disease. The preventive effect could be due to either the deletion of antigen-specific pathogenic T cells or the induction of potent antigen-specific Tr cells. Using antigen-specific I-Ag7 tetramers we have isolated several populations of GAD peptide-specific T cells from diabetes-prone NOD and diabetes-resistant NOR mice. Herein, we summarize our studies on the role of these GAD peptide-specific T cells in type 1 diabetes. We present evidence that supports the hypothesis that the repertoire of T cells specific for these GAD peptides is biased toward Tr cells that inhibit diabetes rather than toward pathogenic T cells that induce diabetes.
Collapse
Affiliation(s)
- Chih-Pin Liu
- Beckman Research Institute, City of Hope, Division of Immunology, 1450 E. Duarte, Duarte CA 91010, USA.
| |
Collapse
|
83
|
Fousteri G, Bresson D, von Herrath M. Rational development of antigen-specific therapies for type 1 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:313-9. [PMID: 17713020 DOI: 10.1007/978-0-387-72005-0_34] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Administration of autoantigens, especially via the mucosal route, can induce tolerance under certain circumstances. In autoimmune diabetes, mucosal vaccination with autoantigens was frequently effective in restoring tolerance in mice but has not yet succeeded in humans. Furthermore, in some instances, autoimmunity can be precipitated upon autoantigen administration. We will here briefly discuss the underlying reasons and delineate which efforts should be made in the future to rationally translate antigen-specific immunotherapy, for example, by establishing better assays to reduce the risk for possible adverse events in humans.
Collapse
Affiliation(s)
- Georgia Fousteri
- La Jolla Institute for Allergy and Immunology, Department of Developmental Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
84
|
You S, Thieblemont N, Alyanakian MA, Bach JF, Chatenoud L. Transforming growth factor-beta and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 2006; 212:185-202. [PMID: 16903915 DOI: 10.1111/j.0105-2896.2006.00410.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is now well-established that CD4+ regulatory T cells are instrumental in controlling immune responses both to self-antigens and to non-self-antigens. However, the precise modalities involved in their differentiation and survival, their mode of action and their antigen specificity are only partially understood. We have been particularly interested in the study of regulatory T cells controlling autoimmune insulin-dependent diabetes. Here, we provide evidence to support the phenotypic and functional diversity of regulatory T cells mediating transferable 'active' or 'dominant' peripheral tolerance in the non-obese diabetic mouse model (NOD). They include natural and adaptive regulatory T cells that are operational both in unmanipulated NOD mice and in animals undergoing treatments aimed at inducing/restoring tolerance to self-beta-cell antigens. At least in our hands, the differential cytokine-dependency appears as a major distinctive feature of regulatory T cells subsets. Among immunoregulatory cytokines, transforming growth factor-beta(TGF-beta) appeared to play a key role. Herein we discuss these results and the working hypothesis they evoke in the context of the present literature, where the role of TGF-beta-dependent T-cell-mediated immunoregulation is still debated.
Collapse
Affiliation(s)
- Sylvaine You
- Université René Descartes Paris 5, Institut National de la Santé et de la Recherche Médicale U580 and Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | |
Collapse
|
85
|
Shi Q, Wang D, Hadley GA, Farber DL, Bartlett ST. Abrogation of recurrent autoimmunity in the NOD mouse: A critical role for host interleukin 4. Surgery 2006; 140:281-8. [PMID: 16904981 DOI: 10.1016/j.surg.2006.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/27/2006] [Accepted: 05/06/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND We previously established a clinically relevant strategy to abrogate recurrent autoimmunity and enable long-term islet graft survival, involving antilymphocyte serum (ALS)-depletion of recipient T cells and intraportal administration of donor pancreatic lymph node cells (PLNCs) along with islet grafts. In this study, we investigated whether Th2 cytokines were required for the tolerizing ability of ALS/PLNC treatment in islet transplantation. METHODS ALS-treated diabetic NOD recipient mice, and NOD recipient mice deficient in interleukin 4 (IL-4-/-) or 10 (IL-4/10-/-) were transplanted with NOR or NOD.scid islets intraportally along with donor PLNC. Blood glucose levels were monitored to access graft function, sections of graft-bearing livers were histologically examined, and ELISPOT assays were used to assess cytokine profile and frequency of islet-reactive CD4 T cells. RESULTS We found that ALS/PLNC was not effective in prolonging islet graft survival in diabetic NOD hosts deficient in either IL-4 (NOD.IL-4-/-) or in IL-4 and IL-10 (NOD.IL4-/-/10-/-) (mean survival time, 36 days), contrasting the long-term survival of islet grafts in wild-type NOD mice (mean survival time, > 80 days). In contrast, PLNC deficient in IL-4 promoted long-term graft survival in wild-type NOD hosts similar to that in wild-type PLNC. In wild-type NOD recipients of either wild-type PLNC or IL-4-/- PLNC, the host autoantigen-specific CD4 T cells produced predominately IL-4 coincident with long-term graft survival, whereas, in NOD.IL-4-/- recipients with rejected grafts, the autoreactive T cells produced interferon gamma and low amounts of IL-4. CONCLUSIONS These data demonstrate that abrogation of recurrent autoimmunity requires host IL-4 and that manipulation of the autoreactive cytokine profile in long-term diabetes may be an effective strategy for islet transplant therapies.
Collapse
Affiliation(s)
- Qixin Shi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201-1544, USA
| | | | | | | | | |
Collapse
|
86
|
Abstract
Type 1 diabetes may occur at any age, in young individuals before or after adolescence, during middle age life, or even in the elderly. When diagnosed in adults it is characterized by the presence of islet cell-related autoantibodies (ICA), in particular GAD and IA2 (less common) and very rarely insulin autoantibodies (IAA). Baseline C-peptide at diagnosis of type 1 diabetes can identify different patient populations according to when the disease is diagnosed depending on age. A key question is whether the process of beta cell destruction follows the same pattern in patients diagnosed in young age, soon after adolescence, or in adult age. The terms SPIDDM--slowly progressive insulin-dependent diabetes mellitus, and LADA--latent autoimmune diabetes in adults, have been considered synonymous on most grounds based on the fact that with this form of diabetes we intend a form of diabetes that has an autoimmune basis that eventually will require insulin for its treatment sometime after diagnosis. Therapeutic approaches are similar for prevention and treatment of SPIDDM or LADA, including both specific and nonspecific immunomodulation. For specific immunomodulation the attention is focused on DiaPep277, GAD, and insulin, and for nonspecific immunomodulation on 1,25 dihydroxy-vitamin D3 (calcitriol) and thiazolidinediones. Current trials in SPIDDM/LADA with both specific and nonspecific immunomodulation seem promising. Response to therapy varies according to age and residual beta cell function at diagnosis of SPIDMM/LADA. Results in beta cell protection with different agents can also help to identify differences, if any, between SPIDMM and LADA.
Collapse
Affiliation(s)
- P Pozzilli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico, Via E. Longoni 83, 00155 Rome, Italy.
| | | |
Collapse
|
87
|
Chatenoud L, Bach JF. Resetting the functional capacity of regulatory T cells: a novel immunotherapeutic strategy to promote immune tolerance. Expert Opin Biol Ther 2006; 5 Suppl 1:S73-81. [PMID: 16187942 DOI: 10.1517/14712598.5.1.s73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the last few years, there has been a re-emergence of the concept of suppressor/regulatory T cells among the central players of immune mechanisms controlling a wide variety of immune responses from physiological autoreactivity (i.e., response to self-antigens) to responses to transplants, tumours and infectious antigens. Regulatory T cells are diverse in their phenotypes, antigen specificity, mode of action and immunopathological relevance. This review briefly summarises studies from the authors' group showing that specialised subsets of regulatory T cells are instrumental in the control of autoimmune diseases and more specifically of Type 1 diabetes. In addition, this review will provide evidence supporting the notion that CD3-specific monoclonal antibodies are representatives of a new category of immunotherapeutic agents that possess the unique capacity to promote immunological tolerance (an antigen-specific unresponsiveness in the absence of long-term generalised immunosuppression) through their ability to induce immunoregulatory T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/immunology
- CD3 Complex/immunology
- Clinical Trials as Topic
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Disease Models, Animal
- Drug Evaluation, Preclinical
- Humans
- Immune Tolerance
- Mice
- Mice, Inbred NOD
- Muromonab-CD3/pharmacology
- Muromonab-CD3/therapeutic use
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Faculté René Descartes Paris 5, INSERM U580, Hôpital Necker, 161 Rue de Sèvres, 75015 Paris, France.
| | | |
Collapse
|
88
|
Tian J, Zekzer D, Lu Y, Dang H, Kaufman DL. B cells are crucial for determinant spreading of T cell autoimmunity among beta cell antigens in diabetes-prone nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:2654-61. [PMID: 16456028 DOI: 10.4049/jimmunol.176.4.2654] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The determinant spreading of T cell autoimmunity plays an important role in the pathogenesis of type 1 diabetes and in the protective mechanism of Ag-based immunotherapy in NOD mice. However, little is known about the role of APCs, particularly B cells, in the spreading of T cell autoimmunity. We studied determinant spreading in NOD/scid or Igmu(-/-) NOD mice reconstituted with NOD T and/or B cells and found that mice with mature B cells (TB NOD/scid and BMB Igmu(-/-) NOD), but not mice that lacked mature B cells (T NOD/scid and BM Igmu(-/-) NOD), spontaneously developed Th1 autoimmunity, which spread sequentially among different beta cell Ags. Immunization of T NOD/scid and BM Igmu(-/-) NOD mice with a beta cell Ag could prime Ag-specific Th1 or Th2 responses, but those T cell responses did not spread to other beta cell Ags. In contrast, immunization of TB NOD/scid and BMB Igmu(-/-) NOD mice with a beta cell Ag in IFA induced Th2 responses, which spread to other beta cell Ags. Furthermore, we found that while macrophages and dendritic cells could evoke memory and effector T cell responses in vitro, B cells significantly enhanced the detection of spontaneously primed and induced Th1 responses to beta cell Ags. Our data suggest that B cells, but not other APCs, mediate the spreading of T cell responses during the type 1 diabetes process and following Ag-based immunotherapy. Conceivably, the modulation of the capacity of B cells to present Ag may provide new interventions for enhancing Ag-based immunotherapy and controlling autoimmune diseases.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095, USA.
| | | | | | | | | |
Collapse
|
89
|
Cernea S, Herold KC. Drug Insight: new immunomodulatory therapies in type 1 diabetes. ACTA ACUST UNITED AC 2006; 2:89-98. [PMID: 16932263 DOI: 10.1038/ncpendmet0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/28/2005] [Indexed: 01/12/2023]
Abstract
Animal models and human studies have provided strong evidence that the immune response that causes type 1A diabetes is initiated against a limited array of antigens but acquires breadth and depth until beta-cell mass has been critically compromised. Two recent trials confirmed the ability to identify relatives at risk for development of diabetes, but were unsuccessful in preventing disease. Treatment of at-risk individuals with oral insulin, which is postulated to be an antigen in the disease, did however show efficacy in a subgroup of these subjects, suggesting that antigen-specific prevention approaches might be successful in the right group of subjects at the right time. Earlier trials showed that the natural progression of disease can be altered with conventional immune suppression but these approaches have been supplanted by tolerance-induction strategies. Anti-CD3 monoclonal antibodies have shown efficacy in preventing the loss of insulin production over the first 2 years of disease without chronic immune suppression. The mechanisms are novel, and appear to involve induction of immune regulation by the monoclonal antibody. Ultimately, preservation and even improvement in beta-cell mass is the goal of therapy. The means needed to achieve this will depend on the timing and mechanisms of the immune intervention and might require combinations of agents.
Collapse
|
90
|
Pinkse GGM, Tysma OHM, Bergen CAM, Kester MGD, Ossendorp F, van Veelen PA, Keymeulen B, Pipeleers D, Drijfhout JW, Roep BO. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A 2005; 102:18425-30. [PMID: 16339897 PMCID: PMC1317949 DOI: 10.1073/pnas.0508621102] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is a T cell-mediated autoimmune disease, and insulin is an important target of the autoimmune response associated with beta cell destruction. The mechanism of destruction is still unknown. Here, we provide evidence for CD8 T cell autoreactivity associated with recurrent autoimmunity and loss of beta cell function in type 1 diabetic islet transplant recipients. We first identified an insulin B chain peptide (insB10-18) with extraordinary binding affinity to HLA-A2(*0201) that is expressed by the majority of type 1 diabetes patients. We next demonstrated that this peptide is naturally processed by both constitutive and immuno proteasomes and translocated to the endoplasmic reticulum by the peptide transporter TAP1 to allow binding to HLA-A2 in the endoplasmic reticulum and cell surface presentation. Peripheral blood mononuclear cells from a healthy donor were primed in vitro with this peptide, and CD8 T cells were isolated that specifically recognize target cells expressing the insulin B chain peptide. HLA-A2(insB10-18) tetramer staining revealed a strong association between detection of autoreactive CD8 T cells and recurrent autoimmunity after islet transplantation and graft failure in type 1 diabetic patients. We demonstrate that CD8 T cell autoreactivity is associated with beta cell destruction in type 1 diabetes in humans.
Collapse
Affiliation(s)
- Gabrielle G M Pinkse
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Olcott AP, Tian J, Walker V, Dang H, Middleton B, Adorini L, Washburn L, Kaufman DL. Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:1991-9. [PMID: 16034144 DOI: 10.4049/jimmunol.175.3.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As organ-specific autoimmune diseases do not become manifest until well-advanced, interventive therapies must inhibit late-stage disease processes. Using a panel of immunogenic peptides from various beta cell Ags, we evaluated the factors influencing the efficacy of Ag-based therapies in diabetes-prone NOD mice with advanced disease. The ability of the major beta cell autoantigen target determinants (TDs) to prime Th2 responses declined sharply between 6 and 12 wk of age, whereas the ability of immunogenic ignored determinants (IDs) of beta cell Ags to prime Th2 responses was unaffected by the disease process. The different patterns of TD and ID immunogenicity (even from the same beta cell Ag) may be due to the exhaustion of uncommitted TD-reactive, but not ID-reactive, T cell pools by recruitment into the autoimmune cascade. Therapeutic efficacy was associated with a peptide's immunogenicity and ability to promote Th2 spreading late in the disease process but not its affinity for I-Ag7 or its expression pattern (beta cell specific/nonspecific or rare/abundant). Characterization of some IDs revealed them to be "absolute" cryptic determinants. Such determinants have little impact on T cell selection, leaving large precursor T cell pools available for priming by synthetic peptides. Traditional Ag-based therapeutics using whole autoantigens or their TDs cannot prime responses to such determinants. These findings suggest a new strategy for designing more efficacious Ag-based therapeutics for late-stage autoimmune diseases.
Collapse
Affiliation(s)
- Angelica P Olcott
- Department of Molecular and Medical Pharmacology, University of California, School of Medicine, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Horwitz MS, Ilic A, Fine C, Sarvetnick N. Induction of antigen specific peripheral humoral tolerance to cardiac myosin does not prevent CB3-mediated autoimmune myocarditis. J Autoimmun 2005; 25:102-11. [PMID: 16011890 DOI: 10.1016/j.jaut.2005.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 04/02/2005] [Accepted: 05/25/2005] [Indexed: 11/16/2022]
Abstract
Chronic myocarditis often progresses to dilated cardiomyopathy resulting in heart failure or cardiac transplantation. Viral infection is the most common cause of myocarditis and coxsackie B viruses (CBV) are the most frequently cited etiologic agents associated with myocarditis and cardiomyopathy. Additionally, CBV infections of genetically susceptible mice induce autoimmune myocarditis resembling human disease, including the development of autoantibodies to cardiac myosin. Herein, we describe experiments in which peripheral tolerance to cardiac myosin was induced by administration of antigen-coupled antigen presenting cells. While the antibody response to cardiac myosin following CB3 infection was reduced, the viral induction of clinical autoimmune myocarditis was not affected. Additionally, viral replication was unaffected by the reduced humoral response to cardiac myosin. Therefore, the humoral response to cardiac myosin is not required for the development of autoimmunity following infection of NOD mice. This work demonstrates the difficulty in using antigen specific tolerance as a course of treatment to prevent multivalent autoimmune disorders.
Collapse
Affiliation(s)
- Marc S Horwitz
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
93
|
Agardh CD, Cilio CM, Lethagen A, Lynch K, Leslie RDG, Palmér M, Harris RA, Robertson JA, Lernmark A. Clinical evidence for the safety of GAD65 immunomodulation in adult-onset autoimmune diabetes. J Diabetes Complications 2005; 19:238-46. [PMID: 15993359 DOI: 10.1016/j.jdiacomp.2004.12.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/17/2004] [Accepted: 12/17/2004] [Indexed: 11/18/2022]
Abstract
The purpose of this Phase II study was to evaluate if alum-formulated human recombinant GAD65 is safe and does not compromise beta cell function. The study was conducted as a randomized, double blind, placebo-controlled, dose-escalation clinical trial in a total of 47 Latent Autoimmune Diabetes in Adults (LADA) patients who received either placebo or 4, 20, 100, or 500 microg Diamyd subcutaneously at Weeks 1 and 4. Safety evaluations, including neurology, beta cell function tests, diabetes status assessment, hematology, biochemistry, and cellular and humoral immunological markers, were repeatedly assessed over 24 weeks. None of the patients had significant study-related adverse events (AE). Fasting c-peptide levels at 24 weeks were increased compared with placebo (P=.0015) in the 20 microg but not in the other dose groups. In addition, both fasting (P=.0081) and stimulated (P=.0236) c-peptide levels increased from baseline to 24 weeks in the 20 microg dose group. GADA log levels clearly increased (P=.0002) in response to 500 microg Diamyd. The (CD4+)(CD25+)/(CD4+)(CD25-) cell ratio increased (P=.0128) at 24 weeks in the 20 microg group. No sudden increase in HbA1c or plasma glucose or decrease in beta cell function was observed in any of the dose groups. These positive findings for clinical safety further support the clinical development of Diamyd as a therapeutic to prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Carl-David Agardh
- Department of Endocrinology, University Hospital MAS, Malmö SE-205 02, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Han G, Li Y, Wang J, Wang R, Chen G, Song L, Xu R, Yu M, Wu X, Qian J, Shen B. Active Tolerance Induction and Prevention of Autoimmune Diabetes by Immunogene Therapy Using Recombinant Adenoassociated Virus Expressing Glutamic Acid Decarboxylase 65 Peptide GAD500–585. THE JOURNAL OF IMMUNOLOGY 2005; 174:4516-24. [PMID: 15814672 DOI: 10.4049/jimmunol.174.8.4516] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tolerance induction of autoreactive T cells against pancreatic beta cell-specific autoantigens such as glutamic acid decarboxylase 65 (GAD65) and insulin has been attempted as a method to prevent autoimmune diabetes. In this study, we investigate whether adenoassociated virus (AAV) gene delivery of multiple immunodominant epitopes expressing GAD(500-585) could induce potent immune tolerance and persistently suppress autoimmune diabetes in NOD mice. A single muscle injection of 7-wk-old female NOD mice with rAAV/GAD(500-585) (3 x 10(11) IU/mouse) quantitatively reduced pancreatic insulitis and efficiently prevented the development of overt type I diabetes. This prevention was marked by the inactivation of GAD(500-585)-responsive T lymphocytes, the enhanced GAD(500-585)-specific Th2 response (characterized by increased IL-4, IL-10 production, and decreased IFN-gamma production; especially elevated anti-GAD(500-585) IgG1 titer; and relatively unchanged anti-GAD(500-585) IgG2b titer), the increased secretion of TGF-beta, and the production of protective regulatory cells. Our studies also revealed that peptides 509-528, 570-585, and 554-546 in the region of GAD(500-585) played important roles in rAAV/GAD(500-585) immunization-induced immune tolerance. These data indicate that using AAV, a vector with advantage for therapeutic gene delivery, to transfer autoantigen peptide GAD(500-585), can induce immunological tolerance through active suppression of effector T cells and prevent type I diabetes in NOD mice.
Collapse
Affiliation(s)
- Gencheng Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Gregg RK, Jain R, Schoenleber SJ, Divekar R, Bell JJ, Lee HH, Yu P, Zaghouani H. A Sudden Decline in Active Membrane-Bound TGF-β Impairs Both T Regulatory Cell Function and Protection against Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2004; 173:7308-16. [PMID: 15585854 DOI: 10.4049/jimmunol.173.12.7308] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autoimmunity presumably manifests as a consequence of a shortfall in the maintenance of peripheral tolerance by CD4(+)CD25(+) T regulatory cells (Tregs). However, the mechanism underlying the functional impairment of Tregs remains largely undefined. In this study a glutamic acid decarboxylase (GAD) diabetogenic epitope was expressed on an Ig to enhance tolerogenic function, and the resulting Ig-GAD expanded Tregs in both young and older insulitis-positive, nonobese diabetic (NOD) mice, but delayed autoimmune diabetes only in the former. Interestingly, Tregs induced at 4 wk of age had significant active membrane-bound TGF-beta (mTGF-beta) and sustained protection against diabetes, whereas Tregs expanded during insulitis had minimal mTGF-beta and could not protect against diabetes. The Tregs probably operate suppressive function through mTGF-beta, because Ab blockade of mTGF-beta nullifies protection against diabetes. Surprisingly, young Tregs that modulated pathogenic T cells maintained stable frequency over time in the protected animals, but decreased their mTGF-beta at the age of 8 wk. More strikingly, these 8-wk-old mTGF-beta-negative Tregs, which were previously protective, became unable to confer resistance against diabetes. Thus, a developmental decline in active mTGF-beta nullifies Treg function, leading to a break in tolerance and the onset of diabetes.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Amino Acid Sequence
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clone Cells
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Glutamate Decarboxylase/biosynthesis
- Glutamate Decarboxylase/genetics
- Glutamate Decarboxylase/immunology
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/physiology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Molecular Sequence Data
- Peptides/genetics
- Peptides/immunology
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL. Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. THE JOURNAL OF IMMUNOLOGY 2004; 173:5298-304. [PMID: 15470076 DOI: 10.4049/jimmunol.173.8.5298] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gamma-aminobutyric acid (GABA) is both a major inhibitory neurotransmitter in the CNS and a product of beta cells of the peripheral islets. Our previous studies, and those of others, have shown that T cells express functional GABAA receptors. However, their subunit composition and physiological relevance are unknown. In this study, we show that a subset of GABAA receptor subunits are expressed by CD4+ T cells, including the delta subunit that confers high affinity for GABA and sensitivity to alcohol. GABA at relatively low concentrations down-regulated effector T cell responses to beta cell Ags ex vivo, and administration of GABA retarded the adoptive transfer of type 1 diabetes (T1D) in NOD/scid mice. Furthermore, treatment with low dose of GABA (600 microg daily) dramatically inhibited the development of proinflammatory T cell responses and disease progression in T1D-prone NOD mice that already had established autoimmunity. Finally, GABA inhibited TCR-mediated T cell cycle progression in vitro, which may underlie GABA's therapeutic effects. The immunoinhibitory effects of GABA on T cells may contribute to the long prodomal period preceding the development of T1D, the immunological privilege of the CNS, and the regulatory effects of alcohol on immune responses. Potentially, pharmacological modulation of GABAA receptors on T cells may provide a new class of therapies for human T1D as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles 90095, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Hamaguchi K, Kimura A, Kusuda Y, Yamashita T, Yasunami M, Takahasi M, Abe N, Yoshimatsu H. Clinical and genetic characteristics of GAD-antibody positive patients initially diagnosed as having type 2 diabetes. Diabetes Res Clin Pract 2004; 66:163-71. [PMID: 15533584 DOI: 10.1016/j.diabres.2004.02.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Revised: 02/09/2004] [Accepted: 02/26/2004] [Indexed: 11/19/2022]
Abstract
The present study was conducted to clarify the clinical and genetic characteristics of the diabetic patients who have antibodies to glutamic acid decarboxylase (GADab) but are diagnosed initially as type 2 diabetes because of the slow progression. Fifty-five GADab+ patients and 137 GADab- patients were recruited. The GADab+ patients were divided into two subgroups according to their antibody titers. The high-titer subgroup (Ab > or = 20 U/ml) had lower urinary C-peptide concentrations, and was assigned insulin therapy more often than the GADab- patients. In contrast to the high-titer subgroup, clinical parameters in the low-titer subgroup were similar to the GADab- diabetic patients. The urinary C-peptide levels correlated negatively with the GADab titer in the GADab+ patients. Analysis of type 1 diabetes-susceptible HLA alleles revealed high frequencies of the B54 and DRB1*0405 allele, but not the B61 and DRB1*0901 alleles, in the high-titer subgroup, whereas the frequency of the protective DRB1*1502 allele was decreased. The GADab+ patients with the B54 allele had higher GADab titers and lower urinary C-peptide excretion than patients without this allele. These data indicated that patients with a high-GADab titer share the autoimmune background characteristic of type 1 diabetes.
Collapse
Affiliation(s)
- Kazuyuki Hamaguchi
- Department of Internal Medicine I, Faculty of Medicine, Oita Medical University, 1-1, Idaigaoka, Hasama, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Olcott AP, Tocco G, Tian J, Zekzer D, Fukuto J, Ignarro L, Kaufman DL. A salen-manganese catalytic free radical scavenger inhibits type 1 diabetes and islet allograft rejection. Diabetes 2004; 53:2574-80. [PMID: 15448086 DOI: 10.2337/diabetes.53.10.2574] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species, such as superoxide, and nitrogen oxides, such as peroxynitrite, are thought to contribute to beta-cell destruction during the disease process that leads to type 1 diabetes. EUK-8 is a member of a new class of synthetic salen-manganese compounds with low toxicity that possess catalytic superoxide dismutase, peroxidase, and catalase activity that can inactivate superoxide and nitrogen oxides (e.g., peroxynitrite and nitrogen dioxide). We observed that EUK-8 administration inhibited the adoptive transfer of type 1 diabetes to NOD mice. In addition, administration of EUK-8 to NOD mice with established autoimmunity completely prevented the development of type 1 diabetes for up to 1 year in age, even though the treatment was discontinued after 35 weeks of age. EUK-8 treatment also prolonged the survival of islet allografts in newly diabetic NOD mice. Thus, reactive oxygen and nitrogen species contribute to the pathoetiology of both spontaneous type 1 diabetes and allograft rejection. In cultures of NIT-1 cells, EUK-8 inhibited cytotoxicity caused by superoxide as well as nitric oxide. Collectively, our findings implicate a greater role for nitrogen oxides (other than peroxynitrite) in beta-cell damage. Antioxidants designed to prevent the formation of both cytotoxic reactive oxygen and nitrogen species may effectively protect beta-cells from spontaneous autoimmunity and alloresponses.
Collapse
Affiliation(s)
- Angelica P Olcott
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1735, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Arnold PY, Burton AR, Vignali DAA. Diabetes incidence is unaltered in glutamate decarboxylase 65-specific TCR retrogenic nonobese diabetic mice: generation by retroviral-mediated stem cell gene transfer. THE JOURNAL OF IMMUNOLOGY 2004; 173:3103-11. [PMID: 15322170 DOI: 10.4049/jimmunol.173.5.3103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR transgenic mice are valuable tools for dissecting the role of autoantigen-specific T cells in the pathogenesis of type 1 diabetes but are time-consuming to generate and backcross onto congenic strains. To circumvent these limitations, we developed a new approach to rapidly generate mice expressing TCR using retroviral-mediated stem cell gene transfer and a novel picornavirus-like 2A peptide to link the TCR alpha- and beta-chains in a single retroviral vector. We refer to these as retrogenic (Rg) mice to avoid confusion with conventional transgenic mice. Our approach was validated by demonstrating that Rg nonobese diabetic (NOD)-scid mice expressing the diabetogenic TCRs, BDC2.5 and 4.1, generate clonotype-positive T cells and develop diabetes. We then expressed three TCR specific for either glutamate decarboxylase (GAD) 206-220 or GAD 524-538 or for hen egg lysozyme 11-25 as a control in NOD, NOD-scid, and B6.H2(g7) mice. Although T cells from these TCR Rg mice responded to their respective Ag in vitro, the GAD-specific T cells exhibited a naive, resting phenotype in vivo. However, T cells from Rg mice challenged with Ag in vivo became activated and developed into memory cells. Neither of the GAD-reactive TCR accelerated or protected mice from diabetes, nor did activated T cells transfer or protect against diabetes in NOD-scid recipients, suggesting that GAD may not be a primary target for diabetogenic T cells. Generation of autoantigen-specific TCR Rg mice represents a powerful approach for the analysis of a wide variety of autoantigens.
Collapse
Affiliation(s)
- Paula Y Arnold
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
100
|
Shi Q, Wang D, Hadley GA, Bingaman AW, Bartlett ST, Farber DL. Long-term islet graft survival in NOD mice by abrogation of recurrent autoimmunity. Diabetes 2004; 53:2338-45. [PMID: 15331543 DOI: 10.2337/diabetes.53.9.2338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet transplantation has great potential for curing type 1 diabetes; however, long-term islet survival using conventional immunosuppression remains elusive. We present a novel strategy for inducing long-lasting islet graft survival in diabetic NOD mice in the absence of posttransplant immunosuppression by initial treatment with antilymphocyte serum (ALS) followed by coadministration of donor pancreatic lymph node cells (PLNCs). When treated with ALS/PLNC, diabetic NOD mice become normoglycemic and tolerated minor antigen-disparate islet grafts for >100 days and syngeneic islet grafts indefinitely. Donor T-cells are required for graft prolongation, and tolerant hosts have long-term donor T-cell chimerism. Strikingly, host autoreactive T-cells from mice with long-surviving islet grafts predominantly produce interleukin-4, whereas autoreactive T-cells from mice that rejected their islet grafts predominantly produce interferon-gamma. We thus demonstrate a clinically relevant approach for ablation of recurrent autoimmunity in islet transplantation, involving donor lymphocyte-driven alteration of pathogenic autoreactive T-cells.
Collapse
Affiliation(s)
- Qixin Shi
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, 29 South Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|