51
|
Hammad MM, Dunn HA, Ferguson SSG. MAGI proteins can differentially regulate the signaling pathways of 5-HT 2AR by enhancing receptor trafficking and PLC recruitment. Cell Signal 2018; 47:109-121. [PMID: 29625175 DOI: 10.1016/j.cellsig.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Abstract
MAGI proteins are Membrane-Associated Guanylate Kinase Inverted proteins that belong to the MAGUK family. They are scaffolding proteins that were shown to mediate the trafficking and signaling of various G protein-coupled receptors (GPCRs). They contain PDZ domains in their structure and many GPCRs interact with these proteins via the PDZ motifs on the carboxyl terminal end of a receptor. In a PDZ overlay assay performed with the carboxyl terminal tail of 5-HT2AR, we were able to detect all three members of the MAGI subfamily, MAGI-1, MAGI-2 and MAGI-3 as interacting PDZ proteins. The PDZ motif of 5-HT2AR consists of three amino acids; serine (S), cysteine (C) and valine (V). In this study, we characterize these 5-HT2AR interactions with MAGI proteins. We first confirm the interaction using co-immunopricipitation and illustrate that the interaction is PDZ motif-dependent in human embryonic kidney (HEK 293) cells. We then assess the effects of overexpression and knockdown of the MAGI proteins on the internalization, trafficking and signaling of 5-HT2AR. We find that knockdown of either MAGI-1 or MAGI-3 using siRNA results in a significant reduction in the internalization of 5-HT2AR. As for signaling, we report here that MAGI proteins can modulate the signaling via the two transduction pathways that 5-HT2AR can activate. We illustrate a significant effect of modulating MAGI proteins expression on 5-HT-stimulated IP formation. We demonstrate an enhancement in 5-HT2AR-stimulated IP formation upon MAGI proteins overexpression. In addition, we show that knockdown of MAGI proteins with siRNA leads to a significant reduction in 5-HT2AR-stimulated IP formation. Furthermore, we illustrate a significant increase in 5-HT-stimulated ERK1/2 phosphorylation upon MAGI proteins knockdown. Interestingly, this effect on ERK1/2 activation is PDZ motif-independent. We also suggest two possible mechanisms of regulation for the effect of MAGI proteins on 5-HT2AR function. One mechanism involves the regulation of cell surface expression since we show that both MAGI-2 and MAGI-3 can enhance receptor trafficking to the plasma membrane when overexpressed in HEK 293 cells. The other mechanism points to regulation of second messengers in the signaling pathways. Specifically, we show that overexpression of any of the three MAGI proteins can enhance the recruitment of PLCβ3 to 5-HT2AR. In addition, we report a negative effect for knocking down MAGI-3 on β-arrestin recruitment to the receptor and this effect is PDZ motif-independent. Taken together, our findings document distinct roles for the three MAGI proteins in regulating 5-HT2AR trafficking and signaling and emphasize the importance of studying PDZ proteins and their interactions with GPCRs to regulate their function.
Collapse
Affiliation(s)
- Maha M Hammad
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr., Ottawa, Ontario K1H 8M5, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Henry A Dunn
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr., Ottawa, Ontario K1H 8M5, Canada
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr., Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
52
|
Dunlop BW, Binder EB, Iosifescu D, Mathew SJ, Neylan TC, Pape JC, Carrillo-Roa T, Green C, Kinkead B, Grigoriadis D, Rothbaum BO, Nemeroff CB, Mayberg HS. Corticotropin-Releasing Factor Receptor 1 Antagonism Is Ineffective for Women With Posttraumatic Stress Disorder. Biol Psychiatry 2017; 82:866-874. [PMID: 28793974 PMCID: PMC5683912 DOI: 10.1016/j.biopsych.2017.06.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/09/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Medication and psychotherapy treatments for posttraumatic stress disorder (PTSD) provide insufficient benefit for many patients. Substantial preclinical and clinical data indicate abnormalities in the hypothalamic-pituitary-adrenal axis, including signaling by corticotropin-releasing factor, in the pathophysiology of PTSD. METHODS We conducted a double-blind, placebo-controlled, randomized, fixed-dose clinical trial evaluating the efficacy of GSK561679, a corticotropin-releasing factor receptor 1 (CRF1 receptor) antagonist in adult women with PTSD. The trial randomized 128 participants, of whom 96 completed the 6-week treatment period. RESULTS In both the intent-to-treat and completer samples, GSK561679 failed to show superiority over placebo on the primary outcome of change in Clinician-Administered PTSD Scale total score. Adverse event frequencies did not significantly differ between GSK561679- and placebo-treated subjects. Exploration of the CRF1 receptor single nucleotide polymorphism rs110402 found that response to GSK561679 and placebo did not significantly differ by genotype alone. However, subjects who had experienced a moderate or severe history of childhood abuse and who were also GG homozygotes for rs110402 showed significant improvement after treatment with GSK561679 (n = 6) but not with placebo (n = 7) on the PTSD Symptom Scale-Self-Report. CONCLUSIONS The results of this trial, the first evaluating a CRF1 receptor antagonist for the treatment of PTSD, combined with other negative trials of CRF1 receptor antagonists for major depressive disorder, generalized anxiety disorder, and social anxiety disorder, suggest that CRF1 receptor antagonists lack efficacy as monotherapy agents for these conditions.
Collapse
Affiliation(s)
- Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Elisabeth B. Binder
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dan Iosifescu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanjay J. Mathew
- Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine & Michael E. Debakey VA Medical Center, Houston, TX, USA
| | - Thomas C. Neylan
- Department of Psychiatry, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Julius C. Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tania Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Charles Green
- Department of Pediatrics, Center for Clinical Research and Evidence-Based Medicine, University of Texas Medical School at Houston, TX, USA
| | - Becky Kinkead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | | | - Barbara O. Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen S. Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
53
|
Keller B, Mestre-Pinto JI, Álvaro-Bartolomé M, Martinez-Sanvisens D, Farre M, García-Fuster MJ, García-Sevilla JA, Torrens M. A Biomarker to Differentiate between Primary and Cocaine-Induced Major Depression in Cocaine Use Disorder: The Role of Platelet IRAS/Nischarin (I 1-Imidazoline Receptor). Front Psychiatry 2017; 8:258. [PMID: 29326609 PMCID: PMC5757145 DOI: 10.3389/fpsyt.2017.00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
The association of cocaine use disorder (CUD) and comorbid major depressive disorder (MDD; CUD/MDD) is characterized by high prevalence and poor treatment outcomes. CUD/MDD may be primary (primary MDD) or cocaine-induced (CUD-induced MDD). Specific biomarkers are needed to improve diagnoses and therapeutic approaches in this dual pathology. Platelet biomarkers [5-HT2A receptor and imidazoline receptor antisera selected (IRAS)/nischarin] were assessed by Western blot in subjects with CUD and primary MDD (n = 16) or CUD-induced MDD (n = 9; antidepressant free, AD-; antidepressant treated, AD+) and controls (n = 10) at basal level and/or after acute tryptophan depletion (ATD). Basal platelet 5-HT2A receptor (monomer) was reduced in comorbid CUD/MDD subjects (all patients: 43%) compared to healthy controls, and this down-regulation was independent of AD medication (decreases in AD-: 47%, and in AD+: 40%). No basal differences were found for IRAS/nischarin contents in AD+ and AD- comorbid CUD/MDD subjects. The comparison of IRAS/nischarin in the different subject groups during/after ATD showed opposite modulations (i.e., increases and decreases) in response to low plasma tryptophan levels with significant differences discriminating between the subgroups of CUD with primary MDD and CUD-induced MDD. These specific alterations suggested that platelet IRAS/nischarin might be useful as a biomarker to discriminate between primary and CUD-induced MDD in this dual pathology.
Collapse
Affiliation(s)
- Benjamin Keller
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joan-Ignasi Mestre-Pinto
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
| | - María Álvaro-Bartolomé
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Diana Martinez-Sanvisens
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
| | - Magí Farre
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M. Julia García-Fuster
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jesús A. García-Sevilla
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Torrens
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
54
|
Inda C, Armando NG, Dos Santos Claro PA, Silberstein S. Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocr Connect 2017; 6:R99-R120. [PMID: 28710078 PMCID: PMC5551434 DOI: 10.1530/ec-17-0111] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023]
Abstract
Corticotropin-releasing hormone (CRH) is a key player of basal and stress-activated responses in the hypothalamic-pituitary-adrenal axis (HPA) and in extrahypothalamic circuits, where it functions as a neuromodulator to orchestrate humoral and behavioral adaptive responses to stress. This review describes molecular components and cellular mechanisms involved in CRH signaling downstream of its G protein-coupled receptors (GPCRs) CRHR1 and CRHR2 and summarizes recent findings that challenge the classical view of GPCR signaling and impact on our understanding of CRHRs function. Special emphasis is placed on recent studies of CRH signaling that revealed new mechanistic aspects of cAMP generation and ERK1/2 activation in physiologically relevant contexts of the neurohormone action. In addition, we present an overview of the pathophysiological role of the CRH system, which highlights the need for a precise definition of CRHRs signaling at molecular level to identify novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders.
Collapse
Affiliation(s)
- Carolina Inda
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- DFBMCFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia G Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Paula A Dos Santos Claro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Susana Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- DFBMCFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
55
|
Hasdemir B, Mahajan S, Oses-Prieto J, Chand S, Woolley M, Burlingame A, Grammatopoulos DK, Bhargava A. Actin cytoskeleton-dependent regulation of corticotropin-releasing factor receptor heteromers. Mol Biol Cell 2017; 28:2386-2399. [PMID: 28701349 PMCID: PMC5576902 DOI: 10.1091/mbc.e16-11-0778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023] Open
Abstract
A physical interaction is shown between CRF1R and CRF2R, two class B G protein–coupled receptors that mediate stress and immune responses. Trafficking of CRF2R but not CRF1R is actin dependent, and coexpression of the two receptors alters actin-independent trafficking. Receptor cross-talk alters agonist binding and signaling. Stress responses are highly nuanced and variable, but how this diversity is achieved by modulating receptor function is largely unknown. Corticotropin-releasing factor receptors (CRFRs), class B G protein–coupled receptors, are pivotal in mediating stress responses. Here we show that the two known CRFRs interact to form heteromeric complexes in HEK293 cells coexpressing both CRFRs and in vivo in mouse pancreas. Coimmunoprecipitation and mass spectrometry confirmed the presence of both CRF1R and CRF2βR, along with actin in these heteromeric complexes. Inhibition of actin filament polymerization prevented the transport of CRF2βR to the cell surface but had no effect on CRF1R. Transport of CRF1R when coexpressed with CRF2βR became actin dependent. Simultaneous stimulation of cells coexpressing CRF1R+CRF2βR with their respective high-affinity agonists, CRF+urocortin2, resulted in approximately twofold increases in peak Ca2+ responses, whereas stimulation with urocortin1 that binds both receptors with 10-fold higher affinity did not. The ability of CRFRs to form heteromeric complexes in association with regulatory proteins is one mechanism to achieve diverse and nuanced function.
Collapse
Affiliation(s)
- Burcu Hasdemir
- Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA 94143.,Department of Obstetrics & Gynecology, University of California, San Francisco, San Francisco, CA 94143
| | - Shilpi Mahajan
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143
| | - Juan Oses-Prieto
- Departments of Pediatrics, Pharmacology, and Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Shreya Chand
- Departments of Pediatrics, Pharmacology, and Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Michael Woolley
- Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Alma Burlingame
- Departments of Pediatrics, Pharmacology, and Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Dimitris K Grammatopoulos
- Translational and Systems Medicine, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Aditi Bhargava
- Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA 94143 .,Department of Surgery, University of California, San Francisco, San Francisco, CA 94143.,Department of Obstetrics & Gynecology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
56
|
Jaggar M, Weisstaub N, Gingrich JA, Vaidya VA. 5-HT 2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress. Neurobiol Stress 2017. [PMID: 28626787 PMCID: PMC5470573 DOI: 10.1016/j.ynstr.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A) receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS) on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC) and hippocampus in 5-HT2A receptor knockout (5-HT2A−/−) and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2), trophic factors (Bdnf, Igf1) and immediate early genes (IEGs) (Arc, Fos, Fosb, Egr1-4) in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic.
Collapse
Affiliation(s)
- Minal Jaggar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Noelia Weisstaub
- Department of Physiology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Jay A Gingrich
- Department of Psychiatry, Columbia University, New York, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
57
|
Spierling SR, Zorrilla EP. Don't stress about CRF: assessing the translational failures of CRF 1antagonists. Psychopharmacology (Berl) 2017; 234:1467-1481. [PMID: 28265716 PMCID: PMC5420464 DOI: 10.1007/s00213-017-4556-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dr. Athina Markou sought treatments for a common neural substrate shared by depression and drug dependence. Antagonists of corticotropin-releasing factor (CRF) receptors, a target of interest to her, have not reached the clinic despite strong preclinical rationale and sustained translational efforts. METHODS We explore potential causes for the failure of CRF1 antagonists and review recent findings concerning CRF-CRF1 systems in psychopathology. RESULTS Potential causes for negative outcomes include (1) poor safety and efficacy of initial drug candidates due to bad pharmacokinetic and physicochemical properties, (2) specificity problems with preclinical screens, (3) the acute nature of screens vs. late-presenting patients, (4) positive preclinical results limited to certain models and conditions with dynamic CRF-CRF1 activation not homologous to tested patients, (5) repeated CRF1 activation-induced plasticity that reduces the importance of ongoing CRF1 agonist stimulation, and (6) therapeutic silencing which may need to address CRF2 receptor or CRF-binding protein molecules, constitutive CRF1 activity, or molecules that influence agonist-independent activity or to target structural regions other than the allosteric site bound by all drug candidates. We describe potential markers of activation towards individualized treatment, human genetic, and functional data that still implicate CRF1 systems in emotional disturbance, sex differences, and suggestive clinical findings for CRF1 antagonists in food craving and CRF-driven HPA-axis overactivation. CONCLUSION The therapeutic scope of selective CRF1 antagonists now appears narrower than had been hoped. Yet, much remains to be learned about CRF's role in the neurobiology of dysphoria and addiction and the potential for novel anti-CRF therapies therein.
Collapse
Affiliation(s)
- Samantha R Spierling
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
58
|
MAGI Proteins Regulate the Trafficking and Signaling of Corticotropin-Releasing Factor Receptor 1 via a Compensatory Mechanism. J Mol Signal 2016; 11:5. [PMID: 31051013 PMCID: PMC5345131 DOI: 10.5334/1750-2187-11-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Corticotropin-releasing factor (CRF) receptor1 (CRFR1) is associated with psychiatric illness and is a proposed target for the treatment of anxiety and depression. Similar to many G protein-coupled receptors (GPCRs), CRFR1 harbors a PDZ (PSD-95/Disc Large/Zona Occludens)-binding motif at the end of its carboxyl-terminal tail. The interactions of PDZ proteins with GPCRs are crucial for the regulation of receptor function. In the present study, we characterize the interaction of all members of the membrane-associated guanylate kinase with inverted orientation PDZ (MAGI) proteins with CRFR1. We show using co-immunoprecipitation that CRFR1 interacts with MAGI-1 and MAGI-3 in human embryonic kidney (HEK293) cells in a PDZ motif-dependent manner. We find that overexpression as well as knockdown of MAGI proteins result in a significant reduction in CRFR1 endocytosis. This effect is dependent on an intact PDZ binding motif for MAGI-2 and MAGI-3 but not MAGI-1. We show that the alteration in expression levels of MAGI-1, MAGI-2 or MAGI-3 can interfere with β-arrestin recruitment to CRFR1. This could explain the effects observed with receptor internalization. We also find that knockdown of endogenous MAGI-1, MAGI-2 or MAGI-3 in HEK293 cells can lead to an enhancement in ERK1/2 signaling but has no effect on cAMP formation. Interestingly, we observe a compensation effect between MAGI-1 and MAGI-3. Taken together, our data suggest that the MAGI proteins, MAGI-1, MAGI-2 and MAGI-3 can regulate β-arrestin-mediated internalization of CRFR1 as well as its signaling and that there is a compensatory mechanism involved in regulating the function of the MAGI subfamily.
Collapse
|
59
|
Uribe-Mariño A, Gassen NC, Wiesbeck MF, Balsevich G, Santarelli S, Solfrank B, Dournes C, Fries GR, Masana M, Labermeier C, Wang XD, Hafner K, Schmid B, Rein T, Chen A, Deussing JM, Schmidt MV. Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction. Biol Psychiatry 2016; 80:743-753. [PMID: 27318500 DOI: 10.1016/j.biopsych.2016.03.2106] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear. METHODS Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11-12) or reversal learning (n = 9-11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17-20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3',5' monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing. RESULTS We report acute stress-induced effects on mPFC-mediated cognition, identify CRF-CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction. CONCLUSIONS Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Andrés Uribe-Mariño
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maximilian F Wiesbeck
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Georgia Balsevich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Beate Solfrank
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carine Dournes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gabriel R Fries
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; INCT for Translational Medicine, Porto Alegre, Brazil
| | - Merce Masana
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christiana Labermeier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xiao-Dong Wang
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
60
|
Gaitonde SA, González-Maeso J. Contribution of heteromerization to G protein-coupled receptor function. Curr Opin Pharmacol 2016; 32:23-31. [PMID: 27835800 DOI: 10.1016/j.coph.2016.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a remarkably multifaceted family of transmembrane proteins that exert a variety of physiological effects. Although family A GPCRs are able to operate as monomers, there is increasing evidence that heteromerization represents a fundamental aspect of receptor function, trafficking and pharmacology. Most recently, it has been suggested that GPCR heteromers may play a crucial role as new molecular targets of heteromer-selective and bivalent ligands. The current review summarizes key recent developments in these topics.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States.
| |
Collapse
|
61
|
Defining the role of corticotropin releasing factor binding protein in alcohol consumption. Transl Psychiatry 2016; 6:e953. [PMID: 27845775 PMCID: PMC5314120 DOI: 10.1038/tp.2016.208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
The corticotropin releasing factor (CRF) exerts its effects by acting on its receptors and on the binding protein (CRFBP), and has been implicated in alcohol use disorder (AUD). Therefore, identification of the exact contribution of each protein that mediates CRF effects is necessary to design effective therapeutic strategies for AUD. A series of in vitro/in vivo experiments across different species were performed to define the biological discrete role of CRFBP in AUD. First, to establish the CRFBP role in receptor signaling, we developed a novel chimeric cell-based assay and showed that CFRBP full length can stably be expressed on the plasma membrane. We discovered that only CRFBP(10 kD) fragment is able to potentiate CRF-intracellular Ca2+ release. We provide evidence that CRHBP gene loss increased ethanol consumption in mice. Then, we demonstrate that selective reduction of CRHBP expression in the center nucleus of the amygdala (CeA) decreases ethanol consumption in ethanol-dependent rats. CRFBP amygdalar downregulation, however, does not attenuate yohimbine-induced ethanol self-administration. This effect was associated with decreased hemodynamic brain activity in the CRFBP-downregulated CeA and increased hemodynamic activity in the caudate putamen during yohimbine administration. Finally, in alcohol-dependent patients, genetic variants related to the CRFBP(10 kD) fragment were associated with greater risk for alcoholism and anxiety, while other genetic variants were associated with reduced risk for anxiety. Taken together, our data provide evidence that CRFBP may possess both inhibitory and excitatory roles and may represent a novel pharmacological target for the treatment of AUD.
Collapse
|
62
|
Slater PG, Yarur HE, Gysling K. Corticotropin-Releasing Factor Receptors and Their Interacting Proteins: Functional Consequences. Mol Pharmacol 2016; 90:627-632. [DOI: 10.1124/mol.116.104927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
|
63
|
Martin DA, Nichols CD. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain. EBioMedicine 2016; 11:262-277. [PMID: 27649637 PMCID: PMC5050000 DOI: 10.1016/j.ebiom.2016.08.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT2A-expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research. Psychedelics activate distinct transcription across cell types, including excitatory neurons, inhibitory neurons, and astrocytes Psychedelics induce internalization of 5-HT2A receptors throughout the cortex and claustrum FACS can separate neuronal subpopulations that require non-nuclear markers
Psychedelic drugs are known to act through the 5-HT2A receptor to produce many of their effects, however, the precise cellular populations in the brain which respond to this class of drugs remain unknown. We use flow cytometric analyses, immunohistochemistry, and gene expression analyses to identify small populations of specific cells in the brain that are activated by the psychedelic drug, (R)-DOI. The methodology used in these studies will be useful to determine the molecular effects of any manipulation or disease on particular brain cells.
Collapse
Affiliation(s)
- David A Martin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
64
|
Henckens MJAG, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat Rev Neurosci 2016; 17:636-51. [PMID: 27586075 DOI: 10.1038/nrn.2016.94] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dysregulation of the corticotropin-releasing factor (CRF)-urocortin (UCN) system has been implicated in stress-related psychopathologies such as depression and anxiety. It has been proposed that CRF-CRF receptor type 1 (CRFR1) signalling promotes the stress response and anxiety-like behaviour, whereas UCNs and CRFR2 activation mediate stress recovery and the restoration of homeostasis. Recent findings, however, provide clear evidence that this view is overly simplistic. Instead, a more complex picture has emerged that suggests that there are brain region- and cell type-specific effects of CRFR signalling that are influenced by the individual's prior experience and that shape molecular, cellular and ultimately behavioural responses to stressful challenges.
Collapse
Affiliation(s)
- Marloes J A G Henckens
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
65
|
Kleinau G, Müller A, Biebermann H. Oligomerization of GPCRs involved in endocrine regulation. J Mol Endocrinol 2016; 57:R59-80. [PMID: 27151573 DOI: 10.1530/jme-16-0049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/27/2022]
Abstract
More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Anne Müller
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology (IEPE)Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
66
|
Barra de la Tremblaye P, Plamondon H. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments. Front Neuroendocrinol 2016; 42:53-75. [PMID: 27455847 DOI: 10.1016/j.yfrne.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke.
Collapse
Affiliation(s)
- P Barra de la Tremblaye
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - H Plamondon
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
67
|
Baratta MV, Kodandaramaiah SB, Monahan PE, Yao J, Weber MD, Lin PA, Gisabella B, Petrossian N, Amat J, Kim K, Yang A, Forest CR, Boyden ES, Goosens KA. Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory. Biol Psychiatry 2016; 79:814-822. [PMID: 26248536 PMCID: PMC4698247 DOI: 10.1016/j.biopsych.2015.06.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/02/2015] [Accepted: 06/17/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. METHODS Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. RESULTS Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. CONCLUSIONS Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/metabolism
- Animals
- Association Learning/drug effects
- Association Learning/physiology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Disease Models, Animal
- Dorsal Raphe Nucleus/metabolism
- Electroshock
- Fear/drug effects
- Fear/physiology
- Male
- Memory Consolidation/drug effects
- Memory Consolidation/physiology
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Neurological
- Models, Psychological
- Neurons/drug effects
- Neurons/metabolism
- Optogenetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Restraint, Physical
- Serotonin/metabolism
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Stress Disorders, Post-Traumatic/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Michael V Baratta
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Suhasa B Kodandaramaiah
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts; The George W. Woodruff School of Mechanical Engineering (SBK, CRF), Georgia Institute of Technology, Atlanta, Georgia
| | - Patrick E Monahan
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Junmei Yao
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Michael D Weber
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Pei-Ann Lin
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Barbara Gisabella
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Natalie Petrossian
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jose Amat
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kyungman Kim
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Aimei Yang
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Craig R Forest
- The George W. Woodruff School of Mechanical Engineering (SBK, CRF), Georgia Institute of Technology, Atlanta, Georgia
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ki A Goosens
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
68
|
PSD-95 regulates CRFR1 localization, trafficking and β-arrestin2 recruitment. Cell Signal 2016; 28:531-540. [PMID: 26898829 DOI: 10.1016/j.cellsig.2016.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide commonly associated with the hypothalamic-pituitary adrenal axis stress response. Upon release, CRF activates two G protein-coupled receptors (GPCRs): CRF receptor 1 (CRFR1) and CRF receptor 2 (CRFR2). Although both receptors contribute to mood regulation, CRFR1 antagonists have demonstrated anxiolytic and antidepressant-like properties that may be exploited in the generation of new pharmacological interventions for mental illnesses. Previous studies have demonstrated CRFR1 capable of heterologously sensitizing serotonin 2A receptor (5-HT2AR) signaling: another GPCR implicated in psychiatric disease. Interestingly, this phenomenon was dependent on Postsynaptic density 95 (PSD-95)/Disc Large/Zona Occludens (PDZ) interactions on the distal carboxyl termini of both receptors. In the current study, we demonstrate that endogenous PSD-95 can be co-immunoprecipitated with CRFR1 from cortical brain homogenate, and this interaction appears to be primarily via the PDZ-binding motif. Additionally, PSD-95 colocalizes with CRFR1 within the dendritic projections of cultured mouse neurons in a PDZ-binding motif-dependent manner. In HEK 293 cells, PSD-95 overexpression inhibited CRFR1 endocytosis, whereas PSD-95 shRNA knockdown enhanced CRFR1 endocytosis. Although PSD-95 does not appear to play a significant role in CRF-mediated cAMP or ERK1/2 signaling, PSD-95 was demonstrated to suppress β-arrestin2 recruitment: providing a potential mechanism for PSD-95's inhibition of endocytosis. In revisiting previously documented heterologous sensitization, PSD-95 shRNA knockdown did not prevent CRFR1-mediated enhancement of 5-HT2AR signaling. In conclusion, we have identified and characterized a novel functional relationship between CRFR1 and PSD-95 that may have implications in the design of new treatment strategies for mental illness.
Collapse
|
69
|
Galtrey CM, Cock HR. Stress and Epilepsy. NEUROPSYCHIATRIC SYMPTOMS OF NEUROLOGICAL DISEASE 2016. [DOI: 10.1007/978-3-319-22159-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
70
|
Bender J, Engeholm M, Ederer MS, Breu J, Møller TC, Michalakis S, Rasko T, Wanker EE, Biel M, Martinez KL, Wurst W, Deussing JM. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS One 2015; 10:e0136768. [PMID: 26352593 PMCID: PMC4564177 DOI: 10.1371/journal.pone.0136768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/07/2015] [Indexed: 01/24/2023] Open
Abstract
The corticotropin-releasing hormone receptor type 1 (CRHR1) plays an important role in orchestrating neuroendocrine, behavioral, and autonomic responses to stress. To identify molecules capable of directly modulating CRHR1 signaling, we performed a yeast-two-hybrid screen using the C-terminal intracellular tail of the receptor as bait. We identified several members of the membrane-associated guanylate kinase (MAGUK) family: postsynaptic density protein 95 (PSD95), synapse-associated protein 97 (SAP97), SAP102 and membrane associated guanylate kinase, WW and PDZ domain containing 2 (MAGI2). CRHR1 is co-expressed with the identified MAGUKs and with the additionally investigated PSD93 in neurons of the adult mouse brain and in primary hippocampal neurons, supporting the probability of a physiological interaction in vivo. The C-terminal PDZ (PSD-95, discs large, zona occludens 1) binding motif of CRHR1 is essential for its physical interaction with MAGUKs, as revealed by the CRHR1-STAVA mutant, which harbors a functionally impaired PDZ binding motif. The imitation of a phosphorylation at Thr413 within the PDZ binding motif also disrupted the interaction with MAGUKs. In contrast, distinct PDZ domains within the identified MAGUKs are involved in the interactions. Expression of CRHR1 in primary neurons demonstrated its localization throughout the neuronal plasma membrane, including the excitatory post synapse, where the receptor co-localized with PSD95 and SAP97. The co-expression of CRHR1 and respective interacting MAGUKs in HEK293 cells resulted in a clustered subcellular co-localization which required an intact PDZ binding motif. In conclusion, our study characterized the PDZ binding motif-mediated interaction of CRHR1 with multiple MAGUKs, which directly affects receptor function.
Collapse
Affiliation(s)
- Julia Bender
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Marion S. Ederer
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
| | | | - Thor C. Møller
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tamas Rasko
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Erich E. Wanker
- Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM) and Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karen L. Martinez
- University of Copenhagen, Department of Chemistry & Nano-Science Center, Copenhagen, Denmark
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Neurodegenerative Diseases within the Helmholtz Association, Munich, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan M. Deussing
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Molecular Neurogenetics, Munich, Germany
- * E-mail:
| |
Collapse
|
71
|
Viñals X, Moreno E, Lanfumey L, Cordomí A, Pastor A, de La Torre R, Gasperini P, Navarro G, Howell LA, Pardo L, Lluís C, Canela EI, McCormick PJ, Maldonado R, Robledo P. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors. PLoS Biol 2015; 13:e1002194. [PMID: 26158621 PMCID: PMC4497644 DOI: 10.1371/journal.pbio.1002194] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/03/2015] [Indexed: 11/19/2022] Open
Abstract
Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.
Collapse
MESH Headings
- Amnesia/chemically induced
- Analgesia
- Animals
- Anxiety/chemically induced
- Brain/drug effects
- Brain/metabolism
- Cognition Disorders/chemically induced
- Dimerization
- Dorsal Raphe Nucleus/drug effects
- Dronabinol/adverse effects
- HEK293 Cells
- Humans
- Hypothermia/chemically induced
- Locomotion/drug effects
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
Collapse
Affiliation(s)
- Xavier Viñals
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
| | - Estefanía Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Laurence Lanfumey
- CPN, INSERM UMR S894, Université Paris Descartes, UMR S894, Paris, France
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rafael de La Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Paola Gasperini
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lesley A. Howell
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Enric I. Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Rafael Maldonado
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
| | - Patricia Robledo
- Neuropharmacology Laboratory, University Pompeu Fabra, Barcelona, Spain
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
72
|
Nocjar C, Alex KD, Sonneborn A, Abbas AI, Roth BL, Pehek EA. Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience 2015; 297:22-37. [PMID: 25818050 PMCID: PMC4595040 DOI: 10.1016/j.neuroscience.2015.03.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin-2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a complex interplay of cortical 5-HT2A and 5-HT2C receptor mechanisms exists, which if altered, could modulate efferent brain systems implicated in mental illness.
Collapse
Affiliation(s)
- C Nocjar
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - K D Alex
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - A Sonneborn
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - A I Abbas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| | - B L Roth
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, 120 Mason Farm Road, 4072 Genetic Medicine Building, Campus Box 7365, Chapel Hill, NC 27599-7365, USA.
| | - E A Pehek
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
73
|
Hammad MM, Dunn HA, Walther C, Ferguson SSG. Role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in regulating the trafficking and signaling of corticotropin-releasing factor receptor 1. Cell Signal 2015; 27:2120-30. [PMID: 26115868 DOI: 10.1016/j.cellsig.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 10/23/2022]
Abstract
Corticotropin releasing factor (CRF) receptor1 (CRFR1) is associated with psychiatric illness and is a proposed target for the treatment of anxiety and depression. Like many G protein-coupled receptors (GPCRs), CRFR1 harbors a PDZ (PSD95/Disc Large/Zona Occludens 1)-binding motif at the end of its carboxyl terminal tail. The interactions of PDZ proteins with GPCRs are crucial for the regulation of their receptor function. In the present study, we characterize the interaction of the cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) with CRFR1. We show using co-immunoprecipitation that the two proteins interact in human embryonic kidney (HEK293) cells in a PDZ motif-dependent manner. We find that the interaction occurs at the Golgi apparatus and that overexpression of CAL retains a proportion of CRFR1 in the intracellular compartment and prevents trafficking to the cell surface. We also demonstrate a significant reduction in the levels of receptor at the plasma membrane upon CAL overexpression, as well as a reduction in internalization. We find that the overexpression of CAL in HEK293 cells resulted in a significant decrease in CRF-stimulated extracellular-regulated protein kinase 1/2 (ERK1/2) phosphorylation, but has no effect on cAMP signaling mediated by the receptor. This effect was dependent on an intact PDZ motif and knockdown of CAL expression using CAL siRNA results in a significant enhancement in ERK1/2 signaling. We show that CAL contributes to the regulation of CRFR1 glycosylation and utilize glycosylation-deficient CRFR1 mutants to further examine the role of glycosylation in the cell surface trafficking of CRFR1. We find that the mutation of Asn residues 90 and 98 results in a reduction in cell surface CRFR1 that is comparable to the effect of CAL overexpression and that these mutants are retained in the Golgi apparatus. Mutation of Asn residues 90 and 98 also results in a decrease in the efficacy for CRF-stimulated cAMP formation mediated by CRFR1. Taken together, our data suggest that CAL can regulate the anterograde trafficking, the internalization as well as the signaling of CRFR1 via modulating the post-translational modifications that the receptor undergoes at the Golgi apparatus.
Collapse
Affiliation(s)
- Maha M Hammad
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Henry A Dunn
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr. Ottawa, Ontario K1H 8M5, Canada
| | - Cornelia Walther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Dr. Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
74
|
Bali A, Jaggi AS. Electric foot shock stress adaptation: Does it exist or not? Life Sci 2015; 130:97-102. [DOI: 10.1016/j.lfs.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 12/01/2022]
|
75
|
Narla C, Dunn HA, Ferguson SSG, Poulter MO. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors. Front Cell Neurosci 2015; 9:200. [PMID: 26074770 PMCID: PMC4446537 DOI: 10.3389/fncel.2015.00200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/10/2015] [Indexed: 11/29/2022] Open
Abstract
The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.
Collapse
Affiliation(s)
- Chakravarthi Narla
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Henry A Dunn
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Stephen S G Ferguson
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| | - Michael O Poulter
- Molecular Medicine Research Group, Department of Physiology and Pharmacology, Robarts Research Institute, Faculty of Medicine, Schulich School of Medicine, University of Western Ontario London, ON, Canada
| |
Collapse
|
76
|
Walther C, Ferguson SSG. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015; 29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology (C.W., S.S.G.F.), Robarts Research Institute, and Department of Physiology and Pharmacology (S.S.G.F.), University of Western Ontario, London, Ontario, Canada N6A 5K8
| |
Collapse
|
77
|
Darmon M, Al Awabdh S, Emerit MB, Masson J. Insights into Serotonin Receptor Trafficking: Cell Membrane Targeting and Internalization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:97-126. [PMID: 26055056 DOI: 10.1016/bs.pmbts.2015.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serotonin receptors (5-HTRs) mediate both central and peripheral control on numerous physiological functions such as sleep/wake cycle, thermoregulation, food intake, nociception, locomotion, sexual behavior, gastrointestinal motility, blood coagulation, and cardiovascular homeostasis. Six families of the G-protein-coupled receptors comprise most of serotonin receptors besides the conserved 5-HT3R Cys-loop type which belongs to the family of Cys-loop ligand-gated cation channel receptors. Many of these receptors are targets of pharmaceutical drugs, justifying the importance for elucidating their coupling, signaling and functioning. Recently, special interest has been focused on their trafficking inside cell lines or neurons in conjunction with their interaction with partner proteins. In this review, we describe the trafficking of 5-HTRs including their internalization, desensitization, or addressing to the plasma membrane depending on specific mechanisms which are peculiar for each class of serotonin receptor.
Collapse
Affiliation(s)
- Michèle Darmon
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Sana Al Awabdh
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel-Boris Emerit
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Justine Masson
- INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France; Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
78
|
Dunn HA, Ferguson SSG. PDZ Protein Regulation of G Protein–Coupled Receptor Trafficking and Signaling Pathways. Mol Pharmacol 2015; 88:624-39. [DOI: 10.1124/mol.115.098509] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023] Open
|
79
|
Walther C, Caetano FA, Dunn HA, Ferguson SSG. PDZK1/NHERF3 differentially regulates corticotropin-releasing factor receptor 1 and serotonin 2A receptor signaling and endocytosis. Cell Signal 2015; 27:519-31. [PMID: 25562428 DOI: 10.1016/j.cellsig.2014.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/18/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
The corticotropin-releasing factor receptor 1 (CRFR1) and serotonin 2A receptor (5-HT2AR) are linked to cellular mechanisms underlying stress anxiety and depression. Both receptors are members of the G protein-coupled receptor (GPCR) superfamily and encode class I PSD-95/DiscsLarge/Zona Occludens 1 (PDZ) binding motifs (-S/T-x-V/I/L) at the end of their carboxyl-terminal tails. We have identified PDZK1, also referred to as Na(+)/H(+) exchange regulatory cofactor 3 (NHERF3) as both a CRFR1- and 5-HT2AR-interacting protein. We have examined whether PDZK1 plays a role in regulating both CRFR1 and 5-HT2AR activity. We find that while PDZK1 interactions with CRFR1 are PDZ binding motif-dependent, PDZK1 associates with 5-HT2AR in a PDZ binding motif-independent manner and CRFR1 expression, but not 5-HT2AR expression, redistributes PDZK1 to the plasma membrane in PDZ binding motif-dependent manner. PDZK1, negatively regulates 5-HT2AR endocytosis and has no effect upon 5-HT2AR-mediated ERK1/2 phosphorylation. In contrast, PDZK1 overexpression does not affect CRFR1 endocytosis, but selectively increases CRFR1-stimulated ERK1/2 phosphorylation. Similar to what has been previously reported for PSD-95 and SAP97, PDZK1 positively influences 5-HT2AR-stimulated inositol phosphate formation, but does not contribute to the regulation of CRFR1-mediated cAMP signaling. Taken together, these results indicate that PDZK1 differentially regulates the signaling and trafficking of CRFR1 and 5-HT2AR via PDZ-dependent and -independent mechanisms, respectively.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute
| | | | - Henry A Dunn
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute; Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr., London, Ontario, Canada, N6A5K8
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute; Department of Physiology and Pharmacology, University of Western Ontario, 100 Perth Dr., London, Ontario, Canada, N6A5K8.
| |
Collapse
|
80
|
Lestaevel P, Dhieux B, Delissen O, Benderitter M, Aigueperse J. Uranium modifies or not behavior and antioxidant status in the hippocampus of rats exposed since birth. J Toxicol Sci 2015; 40:99-107. [DOI: 10.2131/jts.40.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Bernadette Dhieux
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Olivia Delissen
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| | - Jocelyne Aigueperse
- Institut de Radioprotection et de Sûreté Nucléaire, Direction de la RadioProtection de l’Homme, Service de Radiobiologie et d’Epidémiologie, Laboratoire de RadioToxicologie Expérimentale, France
| |
Collapse
|
81
|
Katzman MA, Anand L, Furtado M, Chokka P. Food for thought: understanding the value, variety and usage of management algorithms for major depressive disorder. Psychiatry Res 2014; 220 Suppl 1:S3-14. [PMID: 25539872 DOI: 10.1016/s0165-1781(14)70002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/11/2014] [Indexed: 12/28/2022]
Abstract
By 2020, depression is projected to be among the most important contributors to the global burden of disease. A plethora of data confirms that despite the availability of effective therapies, major depressive disorder continues to exact an enormous toll; this, in part, is due to difficulties reaching complete remission, as well as the specific associated costs of both the disorder's morbidity and mortality. The negative effects of depression include those on patients' occupational functioning, including absenteeism, presenteeism, and reduced opportunities for educational and work success. The use of management algorithms has been shown to improve treatment outcomes in major depressive disorder and may be less costly than "usual care" practices. Nevertheless, many patients with depression remain untreated. As well, even those who are treated often continue to experience suboptimal quality of life. As such, the treatment algorithms in this article may improve outcomes for patients suffering with depression. This paper introduces some of the principal reasons underlying these treatment gaps and examines measures or recommendations that might be changed or strengthened in future practice guidelines to bridge them.
Collapse
Affiliation(s)
- Martin A Katzman
- START Clinic for Mood and Anxiety Disorders, Toronto, ON, Canada; Northern Ontario School of Medicine, Thunder Bay, ON, Canada; Department of Psychology, Lakehead University, Thunder Bay, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Adler Graduate Professional School, Toronto, ON, Canada.
| | - Leena Anand
- START Clinic for Mood and Anxiety Disorders, Toronto, ON, Canada
| | - Melissa Furtado
- START Clinic for Mood and Anxiety Disorders, Toronto, ON, Canada
| | - Pratap Chokka
- University of Alberta, Edmonton, AB, Canada; Chokka Center for Integrative Health, Edmonton, AB, Canada
| |
Collapse
|
82
|
Fuenzalida J, Galaz P, Araya KA, Slater PG, Blanco EH, Campusano JM, Ciruela F, Gysling K. Dopamine D1 and corticotrophin-releasing hormone type-2α receptors assemble into functionally interacting complexes in living cells. Br J Pharmacol 2014; 171:5650-64. [PMID: 25073922 PMCID: PMC4290708 DOI: 10.1111/bph.12868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/05/2014] [Accepted: 07/23/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine and corticotrophin-releasing hormone (CRH; also known as corticotrophin-releasing factor) are key neurotransmitters in the interaction between stress and addiction. Repeated treatment with cocaine potentiates glutamatergic transmission in the rat basolateral amygdala/cortex pathway through a synergistic action of D1 -like dopamine receptors and CRH type-2α receptors (CRF2 α receptors). We hypothesized that this observed synergism could be instrumented by heteromers containing the dopamine D1 receptor and CRF2 α receptor. EXPERIMENTAL APPROACH D1 /CRF2 α receptor heteromerization was demonstrated in HEK293T cells using co-immunoprecipitation, BRET and FRET assays, and by using the heteromer mobilization strategy. The ability of D1 receptors to signal through calcium, when singly expressed or co-expressed with CRF2 α receptors, was evaluated by the calcium mobilization assay. KEY RESULTS D1 /CRF2 α receptor heteromers were observed in HEK293T cells. When singly expressed, D1 receptors were mostly located at the cell surface whereas CRF2 α receptors accumulated intracellularly. Interestingly, co-expression of both receptors promoted D1 receptor intracellular and CRF2 α receptor cell surface targeting. The heteromerization of D1 /CRF2 α receptors maintained the signalling through cAMP of both receptors but switched D1 receptor signalling properties, as the heteromeric D1 receptor was able to mobilize intracellular calcium upon stimulation with a D1 receptor agonist. CONCLUSIONS AND IMPLICATIONS D1 and CRF2 α receptors are capable of heterodimerization in living cells. D1 /CRF2 α receptor heteromerization might account, at least in part, for the complex physiological interactions established between dopamine and CRH in normal and pathological conditions such as addiction, representing a new potential pharmacological target.
Collapse
Affiliation(s)
- J Fuenzalida
- Millennium Nucleus in Stress and Addiction, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
83
|
González-Maeso J. Family a GPCR heteromers in animal models. Front Pharmacol 2014; 5:226. [PMID: 25346690 PMCID: PMC4191056 DOI: 10.3389/fphar.2014.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/21/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Javier González-Maeso
- Departments of Psychiatry and Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
84
|
Franklin JM, Carrasco GA. Cocaine potentiates multiple 5-HT2A receptor signaling pathways and is associated with decreased phosphorylation of 5-HT2A receptors in vivo. J Mol Neurosci 2014; 55:770-7. [PMID: 25213649 DOI: 10.1007/s12031-014-0419-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/31/2014] [Indexed: 01/25/2023]
Abstract
Cocaine addiction is a chronic relapsing disorder in which the underlying mechanisms are not well understood. Here, we used Sprague-Dawley rats injected with either saline (1 ml/kg) or cocaine (15 mg/kg) for 7 days (b.i.d, i.p) to study the effect of cocaine on several components of 5-HT2A receptor signaling in prefrontal cortex (PFCx). We detected enhanced activation of 5-HT2A receptor-mediated phospholipase C beta (PLCβ) and extracellular regulated kinase 1/2 activity in PFCx of cocaine-treated rats. Although we were unable to detect changes in the protein levels of several proteins associated with 5-HT2A receptor signaling such as caveolin-1, postsynaptic density protein 95, β-arrestin 2, etc., we found a significant reduction in the phosphorylation status of cortical 5-HT2A receptors. This phenomenon was associated with reduced levels of G-protein receptor kinase 5 (GRK5), but not GRK2 or RSK2, proteins. Our results suggest that decreased phosphorylation of 5-HT2A receptors could mediate, at least in part, the cocaine-induced potentiation of multiple 5-HT2A receptor signaling pathways in rat PFCx. As discussed in this manuscript, we hypothesize that preventing these neuroadaptations in 5-HT2A receptor signaling may alleviate some of the aversive withdrawal-associated symptoms that contribute to relapse to cocaine abuse.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, 3048B Malott Hall, Lawrence, KS, 66045, USA
| | | |
Collapse
|
85
|
Reyes BAS, Bangasser DA, Valentino RJ, Van Bockstaele EJ. Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sci 2014; 112:2-9. [PMID: 25058917 DOI: 10.1016/j.lfs.2014.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) is a critical determinant of cellular sensitivity of neurons. To understand how endogenous or exogenous ligands impact cell surface expression of GPCRs, it is essential to employ approaches that achieve superior anatomical resolution at the synaptic level. In situations in which light and fluorescence microscopy techniques may provide only limited resolution, electron microscopy provides enhanced subcellular precision. Dual labeling immunohistochemistry employing visually distinct immunoperoxidase and immunogold markers has been an effective approach for elucidating complex receptor profiles at the synapse and to definitively establish the localization of individual receptors and neuromodulators to common cellular profiles. The immuno-electron microscopy approach offers the potential for determining membrane versus intracellular protein localization, as well as the association with various identifiable cellular organelles. Corticotropin-releasing factor (CRF) is an important regulator of endocrine, autonomic, immunological, behavioral and cognitive limbs of the stress response. Dysfunction of this neuropeptide system has been associated with several psychiatric disorders. This review summarizes findings from neuroanatomical studies, with superior spatial resolution, that indicate that the distribution of CRF receptors is a highly dynamic process that, in addition to being sexually dimorphic, involves complex regulation of receptor trafficking within extrasynaptic sites that have significant consequences for adaptations to stress, particularly within the locus coeruleus (LC), the major brain norepinephrine-containing nucleus.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - D A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - R J Valentino
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
86
|
Klampfl SM, Brunton PJ, Bayerl DS, Bosch OJ. Hypoactivation of CRF receptors, predominantly type 2, in the medial-posterior BNST is vital for adequate maternal behavior in lactating rats. J Neurosci 2014; 34:9665-76. [PMID: 25031406 PMCID: PMC4099544 DOI: 10.1523/jneurosci.4220-13.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 11/21/2022] Open
Abstract
Maternal behavior ensures the proper development of the offspring. In lactating mammals, maternal behavior is impaired by stress, the physiological consequence of central corticotropin-releasing factor receptor (CRF-R) activation. However, which CRF-R subtype in which specific brain area(s) mediates this effect is unknown. Here we confirmed that an intracerebroventricularly injected nonselective CRF-R antagonist enhances, whereas an agonist impairs, maternal care. The agonist also prolonged the stress-induced decrease in nursing, reduced maternal aggression and increased anxiety-related behavior. Focusing on the bed nucleus of the stria terminalis (BNST), CRF-R1 and CRF-R2 mRNA expression did not differ in virgin versus lactating rats. However, CRF-R2 mRNA was more abundant in the posterior than in the medial BNST. Pharmacological manipulations within the medial-posterior BNST showed that both CRF-R1 and CRF-R2 agonists reduced arched back nursing (ABN) rapidly and after a delay, respectively. After stress, both antagonists prevented the stress-induced decrease in nursing, with the CRF-R2 antagonist actually increasing ABN. During the maternal defense test, maternal aggression was abolished by the CRF-R2, but not the CRF-R1, agonist. Anxiety-related behavior was increased by the CRF-R1 agonist and reduced by both antagonists. Both antagonists were also effective in virgin females but not in males, revealing a sexual dimorphism in the regulation of anxiety within the medial-posterior BNST. In conclusion, the detrimental effects of increased CRF-R activation on maternal behavior are mediated via CRF-R2 and, to a lesser extent, via CRF-R1 in the medial-posterior BNST in lactating rats. Moreover, both CRF-R1 and CRF-R2 regulate anxiety in females independently of their reproductive status.
Collapse
Affiliation(s)
- Stefanie M Klampfl
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany, and
| | - Paula J Brunton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Doris S Bayerl
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany, and
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany, and
| |
Collapse
|
87
|
Dunn HA, Walther C, Yuan GY, Caetano FA, Godin CM, Ferguson SSG. Role of SAP97 in the Regulation of 5-HT2AR Endocytosis and Signaling. Mol Pharmacol 2014; 86:275-83. [DOI: 10.1124/mol.114.093476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
88
|
Rivera-Baltanas T, Olivares JM, Martinez-Villamarin JR, Fenton EY, Kalynchuk LE, Caruncho HJ. Serotonin 2A receptor clustering in peripheral lymphocytes is altered in major depression and may be a biomarker of therapeutic efficacy. J Affect Disord 2014; 163:47-55. [PMID: 24836087 DOI: 10.1016/j.jad.2014.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 12/28/2022]
Abstract
BACKGROUND In a previous report, we showed that the clustering of serotonin (5HT) transporter (SERT) protein on cell membranes of peripheral lymphocytes predicts responsivity to antidepressant medication in two subpopulations of naïve depression patients (Rivera-Baltanas et al., J Affect Disord, 2012, 137, 46-55). In this study, we extended this idea to 5-HT2A receptor clusters in a similar patient population. METHODS We collected blood samples from a subset of patients from our previous study on SERT clustering (20 untreated and newly diagnosed depression patients, and 20 matched control subjects). Blood samples were collected at the time of diagnosis and after 8 weeks of pharmacological treatment and at analogous times in control subjects. We used the Hamilton scale to quantify the level of depression in patients both before and after treatment. We then used immunocytochemistry to assess 5-HT2A receptor clusters in lymphocytes at the same time points. RESULTS We found that both the size and number of 5-HT2A receptor clusters were increased in naïve depression patients compared to control subjects. Interestingly, there were individual differences in the distribution of 5-HT2A receptor cluster size that allowed us to differentiate the depression patients into two subgroups: a D-I group and a D-II group. After 8 weeks of pharmacological treatment, patients in both groups showed an improvement of symptoms, but patients in the D-II group had a much better outcome with many of them showing remission of symptoms. Furthermore, although treatment decreased cluster number and size in both D-I and D-II groups, only the D-II patients showed an increase in the number of clusters within the modal peak. Importantly, the same patients that belonged in the D-I or D-II groups in the present report were also assigned to the same groups in our previous study on SERT clustering. LIMITATIONS The data should be replicated within a proper clinical trial. CONCLUSIONS 5-HT2A receptor clusters in peripheral lymphocytes are altered in major depression, partially reversed by antidepressant treatment, and may be considered a putative biomarker of therapeutic efficacy in major depression.
Collapse
Affiliation(s)
- Tania Rivera-Baltanas
- Department of Cell Biology, University of Santiago de Compostela, Spain; Hospital Meixoeiro, CHUVI, Vigo, Spain
| | | | | | - Erin Y Fenton
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lisa E Kalynchuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hector J Caruncho
- Department of Cell Biology, University of Santiago de Compostela, Spain; College of Pharmacy and Nutrition, University of Saskatchewan, Academic Health Sciences Bldg # 1B23, 107 Wiggins Road, Saskatoon, Saskatoon, SK, Canada S7N 5E5.
| |
Collapse
|
89
|
Onakomaiya MM, Porter DM, Oberlander JG, Henderson LP. Sex and exercise interact to alter the expression of anabolic androgenic steroid-induced anxiety-like behaviors in the mouse. Horm Behav 2014; 66:283-97. [PMID: 24768711 PMCID: PMC4127168 DOI: 10.1016/j.yhbeh.2014.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/14/2022]
Abstract
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.
Collapse
Affiliation(s)
- Marie M Onakomaiya
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Donna M Porter
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Joseph G Oberlander
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, IL 60208, USA
| | - Leslie P Henderson
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
90
|
Spindle MS, Thomas MP. Activation of 5-HT2A receptors by TCB-2 induces recurrent oscillatory burst discharge in layer 5 pyramidal neurons of the mPFC in vitro. Physiol Rep 2014; 2:2/5/e12003. [PMID: 24844635 PMCID: PMC4098732 DOI: 10.14814/phy2.12003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is a region of neocortex that plays an integral role in several cognitive processes which are abnormal in schizophrenic patients. As with other cortical regions, large‐bodied layer 5 pyramidal neurons serve as the principle subcortical output of microcircuits of the mPFC. The coexpression of both inhibitory serotonin 5‐HT1A receptors on the axon initial segments, and excitatory 5‐HT2A receptors throughout the somatodendritic compartments, by layer 5 pyramidal neurons allows serotonin to provide potent top–down regulation of input–output relationships within cortical microcircuits. Application of 5‐HT2A agonists has previously been shown to enhance synaptic input to layer 5 pyramidal neurons, as well as increase the gain in neuronal firing rate in response to increasing depolarizing current steps. Using whole‐cell patch‐clamp recordings obtained from layer 5 pyramidal neurons of the mPFC of C57/bl6 mice, the aim of our present study was to investigate the modulation of long‐term spike trains by the selective 5‐HT2A agonist TCB‐2. We found that in the presence of synaptic blockers, TCB‐2 induced recurrent oscillatory bursting (ROB) after 15–20 sec of tonic spiking in 7 of the 14 cells. In those seven cells, ROB discharge was accurately predicted by the presence of a voltage sag in response to a hyperpolarizing current injection. This effect was reversed by 5–10 min of drug washout and ROB discharge was inhibited by both synaptic activity and coapplication of the 5‐HT2A/2C antagonist ketanserin. While the full implications of this work are not yet understood, it may provide important insight into serotonergic modulation of cortical networks. Using whole‐cell patch‐clamp recordings obtained from layer 5 pyramidal neurons of the mouse mPFC, we investigated the modulation of long‐term spike trains by the selective 5‐HT2A agonist TCB‐2. In the presence of synaptic blockers, TCB‐2 induced recurrent oscillatory bursting (ROB) after 15–20 sec of tonic spiking in 7 of the 14 cells; ROB discharge was accurately predicted by the presence of a voltage sag in response to a hyperpolarizing current injection. We have identified a novel modulation of pyramidal neuron excitability by a 5HT receptor known to contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Michael S Spindle
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado
| | - Mark P Thomas
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado
| |
Collapse
|
91
|
Mahajan S, Liao M, Barkan P, Takahashi K, Bhargava A. Urocortin 3 expression at baseline and during inflammation in the colon: corticotropin releasing factor receptors cross-talk. Peptides 2014; 54:58-66. [PMID: 24462512 PMCID: PMC4006935 DOI: 10.1016/j.peptides.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Urocortins (Ucn1-3), members of the corticotropin-releasing factor (CRF) family of neuropeptides, are emerging as potent immunomodulators. Localized, cellular expression of Ucn1 and Ucn2, but not Ucn3, has been demonstrated during inflammation. Here, we investigated the role of Ucn3 in a rat model of Crohn's colitis and the relative contribution of CRF receptors (CRF1 and CRF2) in regulating Ucn3 expression at baseline and during inflammation. Ucn3 mRNA and peptide were ubiquitously expressed throughout the GI tract in naïve rats. Ucn3 immunoreactivity was seen in epithelial cells and myenteric neurons. On day 1 of colitis, Ucn3 mRNA levels decreased by 80% and did not recover to baseline even by day 9. Next, we ascertained pro- or anti-inflammatory actions of Ucn3 during colitis. Surprisingly, unlike observed anti-inflammatory actions of Ucn1, exogenous Ucn3 did not alter histopathological outcomes during colitis and neither did it alter levels of pro-inflammatory cytokines IL-6 and TNF-α. At baseline, colon-specific knockdown of CRF1, but not CRF2 decreased Ucn3 mRNA by 78%, whereas during colitis, Ucn3 mRNA levels increased after CRF1 knockdown. In cultured cells, co-expression of CRF1+CRF2 attenuated Ucn3-stimulated intracellular Ca(2+) peak by 48% as compared to cells expressing CRF2 alone. Phosphorylation of p38 kinase increased by 250% during colitis and was significantly attenuated after Ucn3 administration. Thus, our results suggest that a balanced and coordinated expression of CRF receptors is required for proper regulation of Ucn3 at baseline and during inflammation.
Collapse
Affiliation(s)
- Shilpi Mahajan
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Min Liao
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Paris Barkan
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Jefferson Medical College, 1025 Walnut Street, Philadelphia, PA 19107, USA(1)
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
92
|
Analysis of α3 GlyR single particle tracking in the cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:544-53. [DOI: 10.1016/j.bbamcr.2013.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
|
93
|
Harada Y, Takayama K, Ro S, Ochiai M, Noguchi M, Iizuka S, Hattori T, Yakabi K. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain. Peptides 2014; 51:139-44. [PMID: 24269295 DOI: 10.1016/j.peptides.2013.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 12/24/2022]
Abstract
This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.
Collapse
Affiliation(s)
- Yumi Harada
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan; Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Kiyoshige Takayama
- Department of Laboratory Sciences, Gunma University School of Health Sciences, Maebashi, Gunma, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan; Central Research Laboratories, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan
| | | | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | | | - Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical University, Kawagoe, Saitama, Japan.
| |
Collapse
|
94
|
Nooh MM, Chumpia MM, Hamilton TB, Bahouth SW. Sorting of β1-adrenergic receptors is mediated by pathways that are either dependent on or independent of type I PDZ, protein kinase A (PKA), and SAP97. J Biol Chem 2013; 289:2277-94. [PMID: 24324269 DOI: 10.1074/jbc.m113.513481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The β1-adrenergic receptor (β1-AR) is a target for treatment of major cardiovascular diseases, such as heart failure and hypertension. Recycling of agonist-internalized β1-AR is dependent on type I PSD-95/DLG/ZO1 (PDZ) in the C-tail of the β1-AR and on protein kinase A (PKA) activity (Gardner, L. A., Naren, A. P., and Bahouth, S. W. (2007) J. Biol. Chem. 282, 5085-5099). We explored the effects of point mutations in the PDZ and in the activity of PKA on recycling of the β1-AR and its binding to the PDZ-binding protein SAP97. These studies indicated that β1-AR recycling was inhibited by PKA inhibitors and by mutations in the PDZ that interfered with SAP97 binding. The trafficking effects of short sequences differing in PDZ and SAP97 binding were examined using chimeric mutant β1-AR. β1-AR chimera containing the type I PDZ of the β2-adrenergic receptor that does not bind to SAP97 failed to recycle except when serine 312 was mutated to aspartic acid. β1-AR chimera with type I PDZ sequences from the C-tails of aquaporin-2 or GluR1 recycled in a SAP97- and PKA-dependent manner. Non-PDZ β1-AR chimera derived from μ-opioid, dopamine 1, or GluR2 receptors promoted rapid recycling of chimeric β1-AR in a SAP97- and PKA-independent manner. Moreover, the nature of the residue at position -3 in the PDZ regulated whether the β1-AR was internalized alone or in complex with SAP97. These results indicate that divergent pathways were involved in trafficking the β1-AR and provide a roadmap for its trafficking via type I PDZs versus non-PDZs.
Collapse
Affiliation(s)
- Mohammed M Nooh
- From the Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163 and
| | | | | | | |
Collapse
|
95
|
Directing GPCR-transfected cells and neuronal projections with nano-scale resolution. Biomaterials 2013; 34:10065-74. [DOI: 10.1016/j.biomaterials.2013.09.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/20/2013] [Indexed: 12/18/2022]
|
96
|
Jørgensen CV, Klein AB, EL-Sayed M, Knudsen GM, Mikkelsen JD. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons. Synapse 2013; 67:794-800. [DOI: 10.1002/syn.21689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/03/2013] [Indexed: 01/19/2023]
Affiliation(s)
| | - Anders B. Klein
- Neurobiology Research Unit, University Hospital Rigshospitalet; Copenhagen Denmark
| | - Mona EL-Sayed
- Neurobiology Research Unit, University Hospital Rigshospitalet; Copenhagen Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet; Copenhagen Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, University Hospital Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
97
|
Olivier JDA, Vinkers CH, Olivier B. The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Front Pharmacol 2013; 4:74. [PMID: 23781201 PMCID: PMC3677985 DOI: 10.3389/fphar.2013.00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence that genetic factors play an important role in anxiety disorders. In support, human genome-wide association studies have implicated several novel candidate genes. However, illumination of such genetic factors involved in anxiety disorders has not resulted in novel drugs over the past decades. A complicating factor is the heterogeneous classification of anxiety disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) and diverging operationalization of anxiety used in preclinical and clinical studies. Currently, there is an increasing focus on the gene × environment (G × E) interaction in anxiety as genes do not operate in isolation and environmental factors have been found to significantly contribute to the development of anxiety disorders in at-risk individuals. Nevertheless, extensive research on G × E mechanisms in anxiety has not resulted in major breakthroughs in drug discovery. Modification of individual genes in rodent models has enabled the specific study of anxiety in preclinical studies. In this context, two extensively studied neurotransmitters involved in anxiety are the gamma-aminobutyric acid (GABA) and 5-HT (5-hydroxytryptamine) system. In this review, we illustrate the complex interplay between genes and environment in anxiety processes by reviewing preclinical and clinical studies on the serotonin transporter (5-HTT), 5-HT1A receptor, 5-HT2 receptor, and GABAA receptor. Even though targets from the serotonin and GABA system have yielded drugs with known anxiolytic efficacy, the relation between the genetic background of these targets and anxiety symptoms and development of anxiety disorders is largely unknown. The aim of this review is to show the vast complexity of genetic and environmental factors in anxiety disorders. In light of the difficulty with which common genetic variants are identified in anxiety disorders, animal models with translational validity may aid in elucidating the neurobiological background of these genes and their possible role in anxiety. We argue that, in addition to human genetic studies, translational models are essential to map anxiety-related genes and to enhance our understanding of anxiety disorders in order to develop potentially novel treatment strategies.
Collapse
Affiliation(s)
- Jocelien D A Olivier
- Department of, Women's and Children's Health, Uppsala University Uppsala, Sweden ; Center for Gender Medicine, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
98
|
Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V, Brahmendra Swamy CV, Kumar A, Idris MM. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One 2013; 8:e63302. [PMID: 23691016 PMCID: PMC3653931 DOI: 10.1371/journal.pone.0063302] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Anxiety and depression are major chronic mood disorders, and the etiopathology for each appears to be repeated exposure to diverse unpredictable stress factors. Most of the studies on anxiety and related mood disorders are performed in rodents, and a good model is chronic unpredictable stress (CUS). In this study, we have attempted to understand the molecular basis of the neuroglial and behavioral changes underlying CUS-induced mood disorders in the simplest vertebrate model, the zebrafish, Danio rerio. Zebrafish were subjected to a CUS paradigm in which two different stressors were used daily for 15 days, and thorough behavioral analyses were performed to assess anxiety and related mood disorder phenotypes using the novel tank test, shoal cohesion and scototaxis. Fifteen days of exposure to chronic stressors appears to induce an anxiety and related mood disorder phenotype. Decreased neurogenesis, another hallmark of anxiety and related disorders in rodents, was also observed in this zebrafish model. The common molecular markers of rodent anxiety and related disorders, corticotropin-releasing factor (CRF), calcineurin (ppp3r1a) and phospho cyclic AMP response element binding protein (pCREB), were also replicated in the fish model. Finally, using 2DE FTMS/ITMSMS proteomics analyses, 18 proteins were found to be deregulated in zebrafish anxiety and related disorders. The most affected process was mitochondrial function, 4 of the 18 differentially regulated proteins were mitochondrial proteins: PHB2, SLC25A5, VDAC3 and IDH2, as reported in rodent and clinical samples. Thus, the zebrafish CUS model and proteomics can facilitate not only uncovering new molecular targets of anxiety and related mood disorders but also the routine screening of compounds for drug development.
Collapse
Affiliation(s)
- Sumana Chakravarty
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- * E-mail: (SC); (MMI)
| | - Bommana R. Reddy
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Sreesha R. Sudhakar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Sandeep Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Tapatee Das
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Vuppalapaty Meghah
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | | | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Mohammed M. Idris
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
- * E-mail: (SC); (MMI)
| |
Collapse
|
99
|
Franklin JM, Carrasco GA. G-protein receptor kinase 5 regulates the cannabinoid receptor 2-induced up-regulation of serotonin 2A receptors. J Biol Chem 2013; 288:15712-24. [PMID: 23592773 DOI: 10.1074/jbc.m113.454843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
100
|
Dunn HA, Walther C, Godin CM, Hall RA, Ferguson SSG. Role of SAP97 protein in the regulation of corticotropin-releasing factor receptor 1 endocytosis and extracellular signal-regulated kinase 1/2 signaling. J Biol Chem 2013; 288:15023-34. [PMID: 23576434 DOI: 10.1074/jbc.m113.473660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The corticotropin-releasing factor (CRF) receptor 1 (CRFR1) is a target for the treatment of psychiatric diseases such as depression, schizophrenia, anxiety disorder, and bipolar disorder. The carboxyl-terminal tail of the CRFR1 terminates in a PDZ-binding motif that provides a potential site for the interaction of PSD-95/Discs Large/Zona Occludens 1 (PDZ) domain-containing proteins. In this study, we found that CRFR1 interacts with synapse-associated protein 97 (SAP97; also known as DLG1) by co-immunoprecipitation in human embryonic 293 (HEK 293) cells and cortical brain lysates and that this interaction is dependent upon an intact PDZ-binding motif at the end of the CRFR1 carboxyl-terminal tail. Similarly, we demonstrated that SAP97 is recruited to the plasma membrane in HEK 293 cells expressing CRFR1 and that mutation of the CRFR1 PDZ-binding motif results in the redistribution of SAP97 into the cytoplasm. Overexpression of SAP97 antagonized agonist-stimulated CRFR1 internalization, whereas single hairpin (shRNA) knockdown of endogenous SAP97 in HEK 293 cells resulted in increased agonist-stimulated CRFR1 endocytosis. CRFR1 was internalized as a complex with SAP97 resulting in the redistribution of SAP97 to endocytic vesicles. Overexpression or shRNA knockdown of SAP97 did not significantly affect CRFR1-mediated cAMP formation, but SAP97 knockdown did significantly attenuate CRFR1-stimulated ERK1/2 phosphorylation in a PDZ interaction-independent manner. Taken together, our studies show that SAP97 interactions with CRFR1 attenuate CRFR1 endocytosis and that SAP97 is involved in coupling G protein-coupled receptors to the activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Henry A Dunn
- J Allyn Taylor Centre for Cell Biology, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|