51
|
Riddle J, Schooler JW. Hierarchical consciousness: the Nested Observer Windows model. Neurosci Conscious 2024; 2024:niae010. [PMID: 38504828 PMCID: PMC10949963 DOI: 10.1093/nc/niae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Foremost in our experience is the intuition that we possess a unified conscious experience. However, many observations run counter to this intuition: we experience paralyzing indecision when faced with two appealing behavioral choices, we simultaneously hold contradictory beliefs, and the content of our thought is often characterized by an internal debate. Here, we propose the Nested Observer Windows (NOW) Model, a framework for hierarchical consciousness wherein information processed across many spatiotemporal scales of the brain feeds into subjective experience. The model likens the mind to a hierarchy of nested mosaic tiles-where an image is composed of mosaic tiles, and each of these tiles is itself an image composed of mosaic tiles. Unitary consciousness exists at the apex of this nested hierarchy where perceptual constructs become fully integrated and complex behaviors are initiated via abstract commands. We define an observer window as a spatially and temporally constrained system within which information is integrated, e.g. in functional brain regions and neurons. Three principles from the signal analysis of electrical activity describe the nested hierarchy and generate testable predictions. First, nested observer windows disseminate information across spatiotemporal scales with cross-frequency coupling. Second, observer windows are characterized by a high degree of internal synchrony (with zero phase lag). Third, observer windows at the same spatiotemporal level share information with each other through coherence (with non-zero phase lag). The theoretical framework of the NOW Model accounts for a wide range of subjective experiences and a novel approach for integrating prominent theories of consciousness.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychology, Florida State University, 1107 W Call St, Tallahassee, FL 32304, USA
| | - Jonathan W Schooler
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Psychological & Brain Sciences, Santa Barbara, CA 93106, USA
| |
Collapse
|
52
|
Phillips JM, Afrasiabi M, Kambi NA, Redinbaugh MJ, Steely S, Johnson ER, Cheng X, Fayyad M, Mohanta S, Carís A, Mikell CB, Mofakham S, Saalmann YB. Primate thalamic nuclei select abstract rules and shape prefrontal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584871. [PMID: 38559142 PMCID: PMC10980052 DOI: 10.1101/2024.03.13.584871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Flexible behavior depends on abstract rules to generalize beyond specific instances, and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BG), enable primate-specific thalamus to select rules. To test this, we simultaneously measured spiking activity across PFC and two connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in the ventroanterior thalamus (VA) - the main thalamic hub between BG and PFC. The mediodorsal thalamus (MD) also represented rule information before PFC, which persisted after rule cues were removed, to help maintain activation of relevant posterior PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was first to represent information about behavioral outcomes. This persisted after the trial (also in PFC). A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. These results suggest a revised view of the neural basis of flexible behavior in primates, featuring a central role for thalamus in selecting high-level cognitive information from PFC and implementing post-error behavioral adjustments, and of the functional organization of PFC along its anterior-posterior dimension.
Collapse
|
53
|
Manea AMG, Maisson DJN, Voloh B, Zilverstand A, Hayden B, Zimmermann J. Neural timescales reflect behavioral demands in freely moving rhesus macaques. Nat Commun 2024; 15:2151. [PMID: 38461167 PMCID: PMC10925022 DOI: 10.1038/s41467-024-46488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Previous work demonstrated a highly reproducible cortical hierarchy of neural timescales at rest, with sensory areas displaying fast, and higher-order association areas displaying slower timescales. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this lack of variability in the hierarchical organization of neural timescales could reflect the structure of the laboratory contexts. We posit that unconstrained paradigms are ideal to test whether the dynamics of neural timescales reflect behavioral demands. Here we measured timescales of local field potential activity while male rhesus macaques foraged in an open space. We found a hierarchy of neural timescales that differs from previous work. Importantly, although the magnitude of neural timescales expanded with task engagement, the brain areas' relative position in the hierarchy was stable. Next, we demonstrated that the change in neural timescales is dynamic and contains functionally-relevant information, differentiating between similar events in terms of motor demands and associated reward. Finally, we demonstrated that brain areas are differentially affected by these behavioral demands. These results demonstrate that while the space of neural timescales is anatomically constrained, the observed hierarchical organization and magnitude is dependent on behavioral demands.
Collapse
Affiliation(s)
- Ana M G Manea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - David J-N Maisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Voloh
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Jan Zimmermann
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
54
|
Zheng R, Bu C, Chen Y, Wei Y, Zhou B, Jiang Y, Zhu C, Wang K, Wang C, Li S, Han S, Zhang Y, Cheng J. Decreased intrinsic neural timescale in treatment-naïve adolescent depression. J Affect Disord 2024; 348:389-397. [PMID: 38160888 DOI: 10.1016/j.jad.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is mainly characterized by its core dysfunction in higher-order brain cortices involved in emotional and cognitive processes, whose neurobiological basis remains unclear. In this study, we applied a relatively new developed resting-state functional magnetic resonance imaging (rs-fMRI) method of intrinsic neural timescale (INT), which reflects how long neural information is stored in a local brain area and reflects an ability of information integration, to investigate the local intrinsic neural dynamics using univariate and multivariate analyses in adolescent depression. METHOD Based on the rs-fMRI data of sixty-six treatment-naïve adolescents with MDD and fifty-two well-matched healthy controls (HCs), we calculated an INT by assessing the magnitude of autocorrelation of the resting-state brain activity, and then compared the difference of INT between the two groups. Correlation between abnormal INT and clinical features was performed. We also utilized multivariate pattern analysis to determine whether INT could differentiate MDD patients from HCs at the individual level. RESULT Compared with HCs, patients with MDD showed shorter INT widely distributed in cortical and partial subcortical regions. Interestingly, the decreased INT in the left hippocampus was related to disease severity of MDD. Furthermore, INT can distinguish MDD patients from HCs with the most discriminative regions located in the dorsolateral prefrontal cortex, angular, middle occipital gyrus, and cerebellar posterior lobe. CONCLUSION Our research aids in advancing understanding the brain abnormalities of treatment-naïve adolescents with MDD from the perspective of the local neural dynamics, highlighting the significant role of INT in understanding neurophysiological mechanisms. This study shows that the altered intrinsic timescales of local neural signals widely distributed in higher-order brain cortices regions may be the neurodynamic basis of cognitive and emotional disturbances in MDD patients, and provides preliminary support for the suggestion that these could be used to aid the identification of MDD patients in clinical practice.
Collapse
Affiliation(s)
- Ruiping Zheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Chunxiao Bu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Chendi Zhu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Henan University of Chinese Medicine, PR China
| | - Kefan Wang
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Shuying Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, PR China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, PR China.
| |
Collapse
|
55
|
Lisi M, Cavanagh P. Different extrapolation of moving object locations in perception, smooth pursuit, and saccades. J Vis 2024; 24:9. [PMID: 38546586 PMCID: PMC10996402 DOI: 10.1167/jov.24.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024] Open
Abstract
The ability to accurately perceive and track moving objects is crucial for many everyday activities. In this study, we use a "double-drift stimulus" to explore the processing of visual motion signals that underlie perception, pursuit, and saccade responses to a moving object. Participants were presented with peripheral moving apertures filled with noise that either drifted orthogonally to the aperture's direction or had no net motion. Participants were asked to saccade to and track these targets with their gaze as soon as they appeared and then to report their direction. In the trials with internal motion, the target disappeared at saccade onset so that the first 100 ms of the postsaccadic pursuit response was driven uniquely by peripheral information gathered before saccade onset. This provided independent measures of perceptual, pursuit, and saccadic responses to the double-drift stimulus on a trial-by-trial basis. Our analysis revealed systematic differences between saccadic responses, on one hand, and perceptual and pursuit responses, on the other. These differences are unlikely to be caused by differences in the processing of motion signals because both saccades and pursuits seem to rely on shared target position and velocity information. We conclude that our results are instead due to a difference in how the processing mechanisms underlying perception, pursuit, and saccades combine motor signals with target position. These findings advance our understanding of the mechanisms underlying dissociation in visual processing between perception and eye movements.
Collapse
Affiliation(s)
- Matteo Lisi
- Department of Psychology, Royal Holloway, University of London, London, UK
| | - Patrick Cavanagh
- Department of Psychology, Glendon College, Toronto, Ontario, Canada
- Department Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
56
|
Wei Y, Zhang C, Peng Y, Chen C, Han S, Wang W, Zhang Y, Lu H, Cheng J. MRI Assessment of Intrinsic Neural Timescale and Gray Matter Volume in Parkinson's Disease. J Magn Reson Imaging 2024; 59:987-995. [PMID: 37318377 DOI: 10.1002/jmri.28864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Numerous studies have indicated altered temporal features of the brain function in Parkinson's disease (PD), and the autocorrelation magnitude of intrinsic neural signals, called intrinsic neural timescales, were often applied to estimate how long neural information stored in local brain areas. However, it is unclear whether PD patients at different disease stages exhibit abnormal timescales accompanied with abnormal gray matter volume (GMV). PURPOSE To assess the intrinsic timescale and GMV in PD. STUDY TYPE Prospective. POPULATION 74 idiopathic PD patients (44 early stage (PD-ES) and 30 late stage (PD-LS), as determined by the Hoehn and Yahr (HY) severity classification scale), and 73 healthy controls (HC). FIELD STRENGTH/SEQUENCE 3.0 T MRI scanner; magnetization prepared rapid acquisition gradient echo and echo planar imaging sequences. ASSESSMENT The timescales were estimated by using the autocorrelation magnitude of neural signals. Voxel-based morphometry was performed to calculate GMV in the whole brain. Severity of motor symptoms and cognitive impairments were assessed using the unified PD rating scale, the HY scale, the Montreal cognitive assessment, and the mini-mental state examination. STATISTICAL TEST Analysis of variance; two-sample t-test; Spearman rank correlation analysis; Mann-Whitney U test; Kruskal-Wallis' H test. A P value <0.05 was considered statistically significant. RESULTS The PD group had significantly abnormal intrinsic timescales in the sensorimotor, visual, and cognitive-related areas, which correlated with the symptom severity (ρ = -0.265, P = 0.022) and GMV (ρ = 0.254, P = 0.029). Compared to the HC group, the PD-ES group had significantly longer timescales in anterior cortical regions, whereas the PD-LS group had significantly shorter timescales in posterior cortical regions. CONCLUSION This study suggested that PD patients have abnormal timescales in multisystem and distinct patterns of timescales and GMV in cerebral cortex at different disease stages. This may provide new insights for the neural substrate of PD. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chunyan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuanyuan Peng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
57
|
Ichikawa K, Kaneko K. Bayesian inference is facilitated by modular neural networks with different time scales. PLoS Comput Biol 2024; 20:e1011897. [PMID: 38478575 PMCID: PMC10962854 DOI: 10.1371/journal.pcbi.1011897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Various animals, including humans, have been suggested to perform Bayesian inferences to handle noisy, time-varying external information. In performing Bayesian inference by the brain, the prior distribution must be acquired and represented by sampling noisy external inputs. However, the mechanism by which neural activities represent such distributions has not yet been elucidated. Our findings reveal that networks with modular structures, composed of fast and slow modules, are adept at representing this prior distribution, enabling more accurate Bayesian inferences. Specifically, the modular network that consists of a main module connected with input and output layers and a sub-module with slower neural activity connected only with the main module outperformed networks with uniform time scales. Prior information was represented specifically by the slow sub-module, which could integrate observed signals over an appropriate period and represent input means and variances. Accordingly, the neural network could effectively predict the time-varying inputs. Furthermore, by training the time scales of neurons starting from networks with uniform time scales and without modular structure, the above slow-fast modular network structure and the division of roles in which prior knowledge is selectively represented in the slow sub-modules spontaneously emerged. These results explain how the prior distribution for Bayesian inference is represented in the brain, provide insight into the relevance of modular structure with time scale hierarchy to information processing, and elucidate the significance of brain areas with slower time scales.
Collapse
Affiliation(s)
- Kohei Ichikawa
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Kunihiko Kaneko
- Research Center for Complex Systems Biology, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
58
|
Monosov IE. Curiosity: primate neural circuits for novelty and information seeking. Nat Rev Neurosci 2024; 25:195-208. [PMID: 38263217 DOI: 10.1038/s41583-023-00784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
For many years, neuroscientists have investigated the behavioural, computational and neurobiological mechanisms that support value-based decisions, revealing how humans and animals make choices to obtain rewards. However, many decisions are influenced by factors other than the value of physical rewards or second-order reinforcers (such as money). For instance, animals (including humans) frequently explore novel objects that have no intrinsic value solely because they are novel and they exhibit the desire to gain information to reduce their uncertainties about the future, even if this information cannot lead to reward or assist them in accomplishing upcoming tasks. In this Review, I discuss how circuits in the primate brain responsible for detecting, predicting and assessing novelty and uncertainty regulate behaviour and give rise to these behavioural components of curiosity. I also briefly discuss how curiosity-related behaviours arise during postnatal development and point out some important reasons for the persistence of curiosity across generations.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| |
Collapse
|
59
|
Yiling Y, Klon-Lipok J, Shapcott K, Lazar A, Singer W. Dynamic fading memory and expectancy effects in the monkey primary visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2314855121. [PMID: 38354261 PMCID: PMC10895277 DOI: 10.1073/pnas.2314855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
In order to investigate the involvement of the primary visual cortex (V1) in working memory (WM), parallel, multisite recordings of multi-unit activity were obtained from monkey V1 while the animals performed a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse stimuli that enhanced neuronal firing. This fading trace of the sample did not require active engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent cortical networks in lower visual areas. This renders an active, attention-dependent involvement of V1 in the maintenance of WM contents unlikely. By contrast, population responses to the test stimulus depended on the probabilistic contingencies between sample and test stimuli. Responses to tests that matched expectations were reduced which agrees with concepts of predictive coding.
Collapse
Affiliation(s)
- Yang Yiling
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Johanna Klon-Lipok
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
| | - Katharine Shapcott
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Andreea Lazar
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
| | - Wolf Singer
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main60528, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main60438, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main60438, Germany
| |
Collapse
|
60
|
Karimi-Rouzbahani H. Evidence for Multiscale Multiplexed Representation of Visual Features in EEG. Neural Comput 2024; 36:412-436. [PMID: 38363657 DOI: 10.1162/neco_a_01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 02/18/2024]
Abstract
Distinct neural processes such as sensory and memory processes are often encoded over distinct timescales of neural activations. Animal studies have shown that this multiscale coding strategy is also implemented for individual components of a single process, such as individual features of a multifeature stimulus in sensory coding. However, the generalizability of this encoding strategy to the human brain has remained unclear. We asked if individual features of visual stimuli were encoded over distinct timescales. We applied a multiscale time-resolved decoding method to electroencephalography (EEG) collected from human subjects presented with grating visual stimuli to estimate the timescale of individual stimulus features. We observed that the orientation and color of the stimuli were encoded in shorter timescales, whereas spatial frequency and the contrast of the same stimuli were encoded in longer timescales. The stimulus features appeared in temporally overlapping windows along the trial supporting a multiplexed coding strategy. These results provide evidence for a multiplexed, multiscale coding strategy in the human visual system.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, Brisbane 4101, Australia
- Queensland Brain Institute, University of Queensland, Brisbane 4067, Australia
- Mater Research Institute, University of Queensland, Brisbane 4101, Australia
| |
Collapse
|
61
|
Samiei T, Zou Z, Imani M, Nozari E. Optimal decoding of neural dynamics occurs at mesoscale spatial and temporal resolutions. Front Cell Neurosci 2024; 18:1287123. [PMID: 38419658 PMCID: PMC10899419 DOI: 10.3389/fncel.2024.1287123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Understanding the neural code has been one of the central aims of neuroscience research for decades. Spikes are commonly referred to as the units of information transfer, but multi-unit activity (MUA) recordings are routinely analyzed in aggregate forms such as binned spike counts, peri-stimulus time histograms, firing rates, or population codes. Various forms of averaging also occur in the brain, from the spatial averaging of spikes within dendritic trees to their temporal averaging through synaptic dynamics. However, how these forms of averaging are related to each other or to the spatial and temporal units of information representation within the neural code has remained poorly understood. Materials and methods In this work we developed NeuroPixelHD, a symbolic hyperdimensional model of MUA, and used it to decode the spatial location and identity of static images shown to n = 9 mice in the Allen Institute Visual Coding-NeuroPixels dataset from large-scale MUA recordings. We parametrically varied the spatial and temporal resolutions of the MUA data provided to the model, and compared its resulting decoding accuracy. Results For almost all subjects, we found 125ms temporal resolution to maximize decoding accuracy for both the spatial location of Gabor patches (81 classes for patches presented over a 9×9 grid) as well as the identity of natural images (118 classes corresponding to 118 images) across the whole brain. This optimal temporal resolution nevertheless varied greatly between different regions, followed a sensory-associate hierarchy, and was significantly modulated by the central frequency of theta-band oscillations across different regions. Spatially, the optimal resolution was at either of two mesoscale levels for almost all mice: the area level, where the spiking activity of all neurons within each brain area are combined, and the population level, where neuronal spikes within each area are combined across fast spiking (putatively inhibitory) and regular spiking (putatively excitatory) neurons, respectively. We also observed an expected interplay between optimal spatial and temporal resolutions, whereby increasing the amount of averaging across one dimension (space or time) decreases the amount of averaging that is optimal across the other dimension, and vice versa. Discussion Our findings corroborate existing empirical practices of spatiotemporal binning and averaging in MUA data analysis, and provide a rigorous computational framework for optimizing the level of such aggregations. Our findings can also synthesize these empirical practices with existing knowledge of the various sources of biological averaging in the brain into a new theory of neural information processing in which the unit of information varies dynamically based on neuronal signal and noise correlations across space and time.
Collapse
Affiliation(s)
- Toktam Samiei
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Zhuowen Zou
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Mohsen Imani
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Erfan Nozari
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, United States
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
62
|
Matteucci G, Piasini E, Zoccolan D. Unsupervised learning of mid-level visual representations. Curr Opin Neurobiol 2024; 84:102834. [PMID: 38154417 DOI: 10.1016/j.conb.2023.102834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Recently, a confluence between trends in neuroscience and machine learning has brought a renewed focus on unsupervised learning, where sensory processing systems learn to exploit the statistical structure of their inputs in the absence of explicit training targets or rewards. Sophisticated experimental approaches have enabled the investigation of the influence of sensory experience on neural self-organization and its synaptic bases. Meanwhile, novel algorithms for unsupervised and self-supervised learning have become increasingly popular both as inspiration for theories of the brain, particularly for the function of intermediate visual cortical areas, and as building blocks of real-world learning machines. Here we review some of these recent developments, placing them in historical context and highlighting some research lines that promise exciting breakthroughs in the near future.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, University of Geneva, Geneva, 1206, Switzerland. https://twitter.com/giulio_matt
| | - Eugenio Piasini
- International School for Advanced Studies (SISSA), Trieste, 34136, Italy
| | - Davide Zoccolan
- International School for Advanced Studies (SISSA), Trieste, 34136, Italy.
| |
Collapse
|
63
|
Zoefel B, Kösem A. Neural tracking of continuous acoustics: properties, speech-specificity and open questions. Eur J Neurosci 2024; 59:394-414. [PMID: 38151889 DOI: 10.1111/ejn.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Human speech is a particularly relevant acoustic stimulus for our species, due to its role of information transmission during communication. Speech is inherently a dynamic signal, and a recent line of research focused on neural activity following the temporal structure of speech. We review findings that characterise neural dynamics in the processing of continuous acoustics and that allow us to compare these dynamics with temporal aspects in human speech. We highlight properties and constraints that both neural and speech dynamics have, suggesting that auditory neural systems are optimised to process human speech. We then discuss the speech-specificity of neural dynamics and their potential mechanistic origins and summarise open questions in the field.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Toulouse, France
- Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, Bron, France
| |
Collapse
|
64
|
Lurie DJ, Pappas I, D'Esposito M. Cortical timescales and the modular organization of structural and functional brain networks. Hum Brain Mapp 2024; 45:e26587. [PMID: 38339903 PMCID: PMC10823764 DOI: 10.1002/hbm.26587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
Recent years have seen growing interest in characterizing the properties of regional brain dynamics and their relationship to other features of brain structure and function. In particular, multiple studies have observed regional differences in the "timescale" over which activity fluctuates during periods of quiet rest. In the cerebral cortex, these timescales have been associated with both local circuit properties as well as patterns of inter-regional connectivity, including the extent to which each region exhibits widespread connectivity to other brain areas. In the current study, we build on prior observations of an association between connectivity and dynamics in the cerebral cortex by investigating the relationship between BOLD fMRI timescales and the modular organization of structural and functional brain networks. We characterize network community structure across multiple scales and find that longer timescales are associated with greater within-community functional connectivity and diverse structural connectivity. We also replicate prior observations of a positive correlation between timescales and structural connectivity degree. Finally, we find evidence for preferential functional connectivity between cortical areas with similar timescales. We replicate these findings in an independent dataset. These results contribute to our understanding of functional brain organization and structure-function relationships in the human brain, and support the notion that regional differences in cortical dynamics may in part reflect the topological role of each region within macroscale brain networks.
Collapse
Affiliation(s)
- Daniel J. Lurie
- Department of PsychologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Biomedical Informatics University of Pittsburgh School of Medicine PittsburghPennsylvaniaUSA
| | - Ioannis Pappas
- Department of Neurology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mark D'Esposito
- Department of Psychology and Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
65
|
Jiang LP, Rao RPN. Dynamic predictive coding: A model of hierarchical sequence learning and prediction in the neocortex. PLoS Comput Biol 2024; 20:e1011801. [PMID: 38330098 PMCID: PMC10880975 DOI: 10.1371/journal.pcbi.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/21/2024] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
We introduce dynamic predictive coding, a hierarchical model of spatiotemporal prediction and sequence learning in the neocortex. The model assumes that higher cortical levels modulate the temporal dynamics of lower levels, correcting their predictions of dynamics using prediction errors. As a result, lower levels form representations that encode sequences at shorter timescales (e.g., a single step) while higher levels form representations that encode sequences at longer timescales (e.g., an entire sequence). We tested this model using a two-level neural network, where the top-down modulation creates low-dimensional combinations of a set of learned temporal dynamics to explain input sequences. When trained on natural videos, the lower-level model neurons developed space-time receptive fields similar to those of simple cells in the primary visual cortex while the higher-level responses spanned longer timescales, mimicking temporal response hierarchies in the cortex. Additionally, the network's hierarchical sequence representation exhibited both predictive and postdictive effects resembling those observed in visual motion processing in humans (e.g., in the flash-lag illusion). When coupled with an associative memory emulating the role of the hippocampus, the model allowed episodic memories to be stored and retrieved, supporting cue-triggered recall of an input sequence similar to activity recall in the visual cortex. When extended to three hierarchical levels, the model learned progressively more abstract temporal representations along the hierarchy. Taken together, our results suggest that cortical processing and learning of sequences can be interpreted as dynamic predictive coding based on a hierarchical spatiotemporal generative model of the visual world.
Collapse
Affiliation(s)
- Linxing Preston Jiang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Neurotechnology, University of Washington, Seattle, Washington, United States of America
- Computational Neuroscience Center, University of Washington, Seattle, Washington, United States of America
| | - Rajesh P. N. Rao
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
- Center for Neurotechnology, University of Washington, Seattle, Washington, United States of America
- Computational Neuroscience Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
66
|
Ibanez A, Northoff G. Intrinsic timescales and predictive allostatic interoception in brain health and disease. Neurosci Biobehav Rev 2024; 157:105510. [PMID: 38104789 PMCID: PMC11184903 DOI: 10.1016/j.neubiorev.2023.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The cognitive neuroscience of brain diseases faces challenges in understanding the complex relationship between brain structure and function, the heterogeneity of brain phenotypes, and the lack of dimensional and transnosological explanations. This perspective offers a framework combining the predictive coding theory of allostatic interoceptive overload (PAIO) and the intrinsic neural timescales (INT) theory to provide a more dynamic understanding of brain health in psychiatry and neurology. PAIO integrates allostasis and interoception to assess the interaction between internal patterns and environmental stressors, while INT shows that different brain regions operate on different intrinsic timescales. The allostatic overload can be understood as a failure of INT, which involves a breakdown of proper temporal integration and segregation. This can lead to dimensional disbalances between exteroceptive/interoceptive inputs across brain and whole-body levels (cardiometabolic, cardiovascular, inflammatory, immune). This approach offers new insights, presenting novel perspectives on brain spatiotemporal hierarchies and interactions. By integrating these theories, the paper opens innovative paths for studying brain health dynamics, which can inform future research in brain health and disease.
Collapse
Affiliation(s)
- Agustin Ibanez
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), CA, USA; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Trinity College Dublin, Dublin, Ireland.
| | - Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China; Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, People's Republic of China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
67
|
Luo J, Qin P, Bi Q, Wu K, Gong G. Individual variability in functional connectivity of human auditory cortex. Cereb Cortex 2024; 34:bhae007. [PMID: 38282455 DOI: 10.1093/cercor/bhae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.
Collapse
Affiliation(s)
- Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Peipei Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qiuhui Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
| | - Ke Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
68
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The Primate Cortical LFP Exhibits Multiple Spectral and Temporal Gradients and Widespread Task-Dependence During Visual Short-Term Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577843. [PMID: 38352585 PMCID: PMC10862751 DOI: 10.1101/2024.01.29.577843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3-80 Hz that differ between the two monkeys. The LFP power in each band, as well as the Sample Entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in layer 3 pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
69
|
Pang R, Baker C, Murthy M, Pillow J. Inferring neural dynamics of memory during naturalistic social communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577404. [PMID: 38328156 PMCID: PMC10849655 DOI: 10.1101/2024.01.26.577404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Memory processes in complex behaviors like social communication require forming representations of the past that grow with time. The neural mechanisms that support such continually growing memory remain unknown. We address this gap in the context of fly courtship, a natural social behavior involving the production and perception of long, complex song sequences. To study female memory for male song history in unrestrained courtship, we present 'Natural Continuation' (NC)-a general, simulation-based model comparison procedure to evaluate candidate neural codes for complex stimuli using naturalistic behavioral data. Applying NC to fly courtship revealed strong evidence for an adaptive population mechanism for how female auditory neural dynamics could convert long song histories into a rich mnemonic format. Song temporal patterning is continually transformed by heterogeneous nonlinear adaptation dynamics, then integrated into persistent activity, enabling common neural mechanisms to retain continuously unfolding information over long periods and yielding state-of-the-art predictions of female courtship behavior. At a population level this coding model produces multi-dimensional advection-diffusion-like responses that separate songs over a continuum of timescales and can be linearly transformed into flexible output signals, illustrating its potential to create a generic, scalable mnemonic format for extended input signals poised to drive complex behavioral responses. This work thus shows how naturalistic behavior can directly inform neural population coding models, revealing here a novel process for memory formation.
Collapse
Affiliation(s)
- Rich Pang
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton, NJ and New York, NY, USA
| | - Christa Baker
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Present address: Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | | |
Collapse
|
70
|
Wang L, Zhou X, Zeng F, Cao M, Zuo S, Yang J, Kusunoki M, Wang H, Zhou YD, Chen A, Kwok SC. Mixed Selectivity Coding of Content-Temporal Detail by Dorsomedial Posterior Parietal Neurons. J Neurosci 2024; 44:e1677232023. [PMID: 37985178 PMCID: PMC10860630 DOI: 10.1523/jneurosci.1677-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
The dorsomedial posterior parietal cortex (dmPPC) is part of a higher-cognition network implicated in elaborate processes underpinning memory formation, recollection, episode reconstruction, and temporal information processing. Neural coding for complex episodic processing is however under-documented. Here, we recorded extracellular neural activities from three male rhesus macaques (Macaca mulatta) and revealed a set of neural codes of "neuroethogram" in the primate parietal cortex. Analyzing neural responses in macaque dmPPC to naturalistic videos, we discovered several groups of neurons that are sensitive to different categories of ethogram items, low-level sensory features, and saccadic eye movement. We also discovered that the processing of category and feature information by these neurons is sustained by the accumulation of temporal information over a long timescale of up to 30 s, corroborating its reported long temporal receptive windows. We performed an additional behavioral experiment with additional two male rhesus macaques and found that saccade-related activities could not account for the mixed neuronal responses elicited by the video stimuli. We further observed monkeys' scan paths and gaze consistency are modulated by video content. Taken altogether, these neural findings explain how dmPPC weaves fabrics of ongoing experiences together in real time. The high dimensionality of neural representations should motivate us to shift the focus of attention from pure selectivity neurons to mixed selectivity neurons, especially in increasingly complex naturalistic task designs.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan 215316, Jiangsu, China
| | - Xufeng Zhou
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan 215316, Jiangsu, China
| | - Fu Zeng
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Mingfeng Cao
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan 215316, Jiangsu, China
- Whiting School of Engineering, department of biomedical engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Shuzhen Zuo
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Jie Yang
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Makoto Kusunoki
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Yong-di Zhou
- School of Psychology, Shenzhen University, Shenzhen 518052, China
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland 21218
| | - Aihua Chen
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan 215316, Jiangsu, China
- Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| |
Collapse
|
71
|
Wang M, G'Sell M, Castellano JF, Richardson RM, Ghuman A. A week in the life of the human brain: stable states punctuated by chaotic transitions. RESEARCH SQUARE 2024:rs.3.rs-2752903. [PMID: 37034705 PMCID: PMC10081438 DOI: 10.21203/rs.3.rs-2752903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Many important neurocognitive states, such as performing natural activities and fluctuations of arousal, shift over minutes-to-hours in the real-world. We harnessed 3-12 days of continuous multi-electrode intracranial recordings in twenty humans during natural behavior (socializing, using digital devices, sleeping, etc.) to study real-world neurodynamics. Applying deep learning with dynamical systems approaches revealed that brain networks formed consistent stable states that predicted behavior and physiology. Changes in behavior were associated with bursts of rapid neural fluctuations where brain networks chaotically explored many configurations before settling into new states. These trajectories traversed an hourglass-shaped structure anchored around a set of networks that slowly tracked levels of outward awareness related to wake-sleep stages, and a central attractor corresponding to default mode network activation. These findings indicate ways our brains use rapid, chaotic transitions that coalesce into neurocognitive states slowly fluctuating around a stabilizing central equilibrium to balance flexibility and stability during real-world behavior.
Collapse
|
72
|
Trepka E, Spitmaan M, Qi XL, Constantinidis C, Soltani A. Training-Dependent Gradients of Timescales of Neural Dynamics in the Primate Prefrontal Cortex and Their Contributions to Working Memory. J Neurosci 2024; 44:e2442212023. [PMID: 37973375 PMCID: PMC10866190 DOI: 10.1523/jneurosci.2442-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Cortical neurons exhibit multiple timescales related to dynamics of spontaneous fluctuations (intrinsic timescales) and response to task events (seasonal timescales) in addition to selectivity to task-relevant signals. These timescales increase systematically across the cortical hierarchy, for example, from parietal to prefrontal and cingulate cortex, pointing to their role in cortical computations. It is currently unknown whether these timescales are inherent properties of neurons and/or depend on training in a specific task and if the latter, how their modulations contribute to task performance. To address these questions, we analyzed single-cell recordings within five subregions of the prefrontal cortex (PFC) of male macaques before and after training on a working-memory task. We found fine-grained but opposite gradients of intrinsic and seasonal timescales that mainly appeared after training. Intrinsic timescales decreased whereas seasonal timescales increased from posterior to anterior subregions within both dorsal and ventral PFC. Moreover, training was accompanied by increases in proportions of neurons that exhibited intrinsic and seasonal timescales. These effects were comparable to the emergence of response selectivity due to training. Finally, task selectivity accompanied opposite neural dynamics such that neurons with task-relevant selectivity exhibited longer intrinsic and shorter seasonal timescales. Notably, neurons with longer intrinsic and shorter seasonal timescales exhibited superior population-level coding, but these advantages extended to the delay period mainly after training. Together, our results provide evidence for plastic, fine-grained gradients of timescales within PFC that can influence both single-cell and population coding, pointing to the importance of these timescales in understanding cognition.
Collapse
Affiliation(s)
- Ethan Trepka
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
- Neurosciences Program, Stanford University, Stanford 94305, California
| | - Mehran Spitmaan
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem 27157, North Carolina
| | | | - Alireza Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, New Hampshire
| |
Collapse
|
73
|
Kim I, Kupers ER, Lerma-Usabiaga G, Grill-Spector K. Characterizing Spatiotemporal Population Receptive Fields in Human Visual Cortex with fMRI. J Neurosci 2024; 44:e0803232023. [PMID: 37963768 PMCID: PMC10866195 DOI: 10.1523/jneurosci.0803-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time-varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants (both females and males). We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (1) from early to later areas within a visual stream, spatial and temporal windows of pRFs progressively increase in size and show greater compressive nonlinearities, (2) later visual areas show diverging spatial and temporal windows across streams, and (3) within early visual areas (V1-V3), both spatial and temporal windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses using fMRI.
Collapse
Affiliation(s)
- Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, 94305
| | - Eline R Kupers
- Department of Psychology, Stanford University, Stanford, CA, 94305
| | - Garikoitz Lerma-Usabiaga
- BCBL. Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
- IKERBASQUE. Basque Foundation for Science, 48009 Bilbao, Spain
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305
| |
Collapse
|
74
|
Shipp S. Computational components of visual predictive coding circuitry. Front Neural Circuits 2024; 17:1254009. [PMID: 38259953 PMCID: PMC10800426 DOI: 10.3389/fncir.2023.1254009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
If a full visual percept can be said to be a 'hypothesis', so too can a neural 'prediction' - although the latter addresses one particular component of image content (such as 3-dimensional organisation, the interplay between lighting and surface colour, the future trajectory of moving objects, and so on). And, because processing is hierarchical, predictions generated at one level are conveyed in a backward direction to a lower level, seeking to predict, in fact, the neural activity at that prior stage of processing, and learning from errors signalled in the opposite direction. This is the essence of 'predictive coding', at once an algorithm for information processing and a theoretical basis for the nature of operations performed by the cerebral cortex. Neural models for the implementation of predictive coding invoke specific functional classes of neuron for generating, transmitting and receiving predictions, and for producing reciprocal error signals. Also a third general class, 'precision' neurons, tasked with regulating the magnitude of error signals contingent upon the confidence placed upon the prediction, i.e., the reliability and behavioural utility of the sensory data that it predicts. So, what is the ultimate source of a 'prediction'? The answer is multifactorial: knowledge of the current environmental context and the immediate past, allied to memory and lifetime experience of the way of the world, doubtless fine-tuned by evolutionary history too. There are, in consequence, numerous potential avenues for experimenters seeking to manipulate subjects' expectation, and examine the neural signals elicited by surprising, and less surprising visual stimuli. This review focuses upon the predictive physiology of mouse and monkey visual cortex, summarising and commenting on evidence to date, and placing it in the context of the broader field. It is concluded that predictive coding has a firm grounding in basic neuroscience and that, unsurprisingly, there remains much to learn.
Collapse
Affiliation(s)
- Stewart Shipp
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
75
|
Ding X, Froudist-Walsh S, Jaramillo J, Jiang J, Wang XJ. Cell type-specific connectome predicts distributed working memory activity in the mouse brain. eLife 2024; 13:e85442. [PMID: 38174734 PMCID: PMC10807864 DOI: 10.7554/elife.85442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Recent advances in connectomics and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the multiregional mouse brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for interareal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous attractor states, which are self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.
Collapse
Affiliation(s)
- Xingyu Ding
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of BristolBristolUnited Kingdom
| | - Jorge Jaramillo
- Center for Neural Science, New York UniversityNew YorkUnited States
- Campus Institute for Dynamics of Biological Networks, University of GöttingenGöttingenGermany
| | - Junjie Jiang
- Center for Neural Science, New York UniversityNew YorkUnited States
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education,Institute of Health and Rehabilitation Science,School of Life Science and Technology, Research Center for Brain-inspired Intelligence, Xi’an Jiaotong UniversityXi'anChina
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
76
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
77
|
Brice Azangue A, Megam Ngouonkadi EB, Kabong Nono M, Fotsin HB, Sone Ekonde M, Yemele D. Stability and synchronization in neural network with delayed synaptic connections. CHAOS (WOODBURY, N.Y.) 2024; 34:013117. [PMID: 38215223 DOI: 10.1063/5.0175408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
In this paper, we investigate the stability of the synchronous state in a complex network using the master stability function technique. We use the extended Hindmarsh-Rose neuronal model including time delayed electrical, chemical, and hybrid couplings. We find the corresponding master stability equation that describes the whole dynamics for each coupling mode. From the maximum Lyapunov exponent, we deduce the stability state for each coupling mode. We observe that for electrical coupling, there exists a mixing between stable and unstable states. For a good setting of some system parameters, the position and the size of unstable areas can be modified. For chemical coupling, we observe difficulties in having a stable area in the complex plane. For hybrid coupling, we observe a stable behavior in the whole system compared to the case where these couplings are considered separately. The obtained results for each coupling mode help to analyze the stability state of some network topologies by using the corresponding eigenvalues. We observe that using electrical coupling can involve a full or partial stability of the system. In the case of chemical coupling, unstable states are observed whereas in the case of hybrid interactions a full stability of the network is obtained. Temporal analysis of the global synchronization is also done for each coupling mode, and the results show that when the network is stable, the synchronization is globally observed, while in the case when it is unstable, its nodes are not globally synchronized.
Collapse
Affiliation(s)
- A Brice Azangue
- Research Unit of Condensed Matter, Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon
| | - E B Megam Ngouonkadi
- Research Unit of Condensed Matter, Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon
- Department of Electrical and Electronic Engineering, College of Technology (COT), University of Buea, P.O. Box 63 Buea, Cameroon
| | - M Kabong Nono
- Research Unit of Condensed Matter, Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon
| | - H B Fotsin
- Research Unit of Condensed Matter, Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon
| | - M Sone Ekonde
- Department of Electrical and Electronic Engineering, College of Technology (COT), University of Buea, P.O. Box 63 Buea, Cameroon
| | - D Yemele
- Research Unit of Mechanics and Modeling of Physical Systems, Department of Physics, Faculty of Sciences, University of Dschang, P.O. Box 067 Dschang, Cameroon
| |
Collapse
|
78
|
van der Molen T, Spaeth A, Chini M, Bartram J, Dendukuri A, Zhang Z, Bhaskaran-Nair K, Blauvelt LJ, Petzold LR, Hansma PK, Teodorescu M, Hierlemann A, Hengen KB, Hanganu-Opatz IL, Kosik KS, Sharf T. Protosequences in human cortical organoids model intrinsic states in the developing cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.29.573646. [PMID: 38234832 PMCID: PMC10793448 DOI: 10.1101/2023.12.29.573646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Neuronal firing sequences are thought to be the basic building blocks of neural coding and information broadcasting within the brain. However, when sequences emerge during neurodevelopment remains unknown. We demonstrate that structured firing sequences are present in spontaneous activity of human brain organoids and ex vivo neonatal brain slices from the murine somatosensory cortex. We observed a balance between temporally rigid and flexible firing patterns that are emergent phenomena in human brain organoids and early postnatal murine somatosensory cortex, but not in primary dissociated cortical cultures. Our findings suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by an innate preconfigured architecture established during neurogenesis. These findings highlight the potential for brain organoids to further explore how exogenous inputs can be used to refine neuronal circuits and enable new studies into the genetic mechanisms that govern assembly of functional circuitry during early human brain development.
Collapse
Affiliation(s)
- Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex Spaeth
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Julian Bartram
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Aditya Dendukuri
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zongren Zhang
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Kiran Bhaskaran-Nair
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lon J. Blauvelt
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Linda R. Petzold
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Paul K. Hansma
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - Mircea Teodorescu
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland
| | - Keith B. Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ileana L. Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tal Sharf
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Institute for the Biology of Stem Cells, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
79
|
Lin XX, Nieder A, Jacob SN. The neuronal implementation of representational geometry in primate prefrontal cortex. SCIENCE ADVANCES 2023; 9:eadh8685. [PMID: 38091404 PMCID: PMC10848744 DOI: 10.1126/sciadv.adh8685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Modern neuroscience has seen the rise of a population-doctrine that represents cognitive variables using geometrical structures in activity space. Representational geometry does not, however, account for how individual neurons implement these representations. Leveraging the principle of sparse coding, we present a framework to dissect representational geometry into biologically interpretable components that retain links to single neurons. Applied to extracellular recordings from the primate prefrontal cortex in a working memory task with interference, the identified components revealed disentangled and sequential memory representations including the recovery of memory content after distraction, signals hidden to conventional analyses. Each component was contributed by small subpopulations of neurons with distinct spiking properties and response dynamics. Modeling showed that such sparse implementations are supported by recurrently connected circuits as in prefrontal cortex. The perspective of neuronal implementation links representational geometries to their cellular constituents, providing mechanistic insights into how neural systems encode and process information.
Collapse
Affiliation(s)
- Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Germany
| | | | - Simon N. Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
80
|
Stern M, Istrate N, Mazzucato L. A reservoir of timescales emerges in recurrent circuits with heterogeneous neural assemblies. eLife 2023; 12:e86552. [PMID: 38084779 PMCID: PMC10810607 DOI: 10.7554/elife.86552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024] Open
Abstract
The temporal activity of many physical and biological systems, from complex networks to neural circuits, exhibits fluctuations simultaneously varying over a large range of timescales. Long-tailed distributions of intrinsic timescales have been observed across neurons simultaneously recorded within the same cortical circuit. The mechanisms leading to this striking temporal heterogeneity are yet unknown. Here, we show that neural circuits, endowed with heterogeneous neural assemblies of different sizes, naturally generate multiple timescales of activity spanning several orders of magnitude. We develop an analytical theory using rate networks, supported by simulations of spiking networks with cell-type specific connectivity, to explain how neural timescales depend on assembly size and show that our model can naturally explain the long-tailed timescale distribution observed in the awake primate cortex. When driving recurrent networks of heterogeneous neural assemblies by a time-dependent broadband input, we found that large and small assemblies preferentially entrain slow and fast spectral components of the input, respectively. Our results suggest that heterogeneous assemblies can provide a biologically plausible mechanism for neural circuits to demix complex temporal input signals by transforming temporal into spatial neural codes via frequency-selective neural assemblies.
Collapse
Affiliation(s)
- Merav Stern
- Institute of Neuroscience, University of OregonEugeneUnited States
- Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicolae Istrate
- Institute of Neuroscience, University of OregonEugeneUnited States
- Departments of Physics, University of OregonEugeneUnited States
| | - Luca Mazzucato
- Institute of Neuroscience, University of OregonEugeneUnited States
- Departments of Physics, University of OregonEugeneUnited States
- Mathematics and Biology, University of OregonEugeneUnited States
| |
Collapse
|
81
|
Griffa A, Mach M, Dedelley J, Gutierrez-Barragan D, Gozzi A, Allali G, Grandjean J, Van De Ville D, Amico E. Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice. Nat Commun 2023; 14:8216. [PMID: 38081838 PMCID: PMC10713651 DOI: 10.1038/s41467-023-43971-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.
Collapse
Affiliation(s)
- Alessandra Griffa
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - Mathieu Mach
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Julien Dedelley
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
82
|
Medel V, Irani M, Crossley N, Ossandón T, Boncompte G. Complexity and 1/f slope jointly reflect brain states. Sci Rep 2023; 13:21700. [PMID: 38065976 PMCID: PMC10709649 DOI: 10.1038/s41598-023-47316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Characterization of brain states is essential for understanding its functioning in the absence of external stimuli. Brain states differ on their balance between excitation and inhibition, and on the diversity of their activity patterns. These can be respectively indexed by 1/f slope and Lempel-Ziv complexity (LZc). However, whether and how these two brain state properties relate remain elusive. Here we analyzed the relation between 1/f slope and LZc with two in-silico approaches and in both rat EEG and monkey ECoG data. We contrasted resting state with propofol anesthesia, which directly modulates the excitation-inhibition balance. We found convergent results among simulated and empirical data, showing a strong, inverse and non trivial monotonic relation between 1/f slope and complexity, consistent at both ECoG and EEG scales. We hypothesize that differentially entropic regimes could underlie the link between the excitation-inhibition balance and the vastness of the repertoire of brain systems.
Collapse
Affiliation(s)
- Vicente Medel
- Latin American Health Brain Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Martín Irani
- Department of Psychology, University of Illinois Urbana-Champaign, IL, USA
| | - Nicolás Crossley
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás Ossandón
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Gonzalo Boncompte
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
- División de Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
83
|
Bazinet V, Hansen JY, Misic B. Towards a biologically annotated brain connectome. Nat Rev Neurosci 2023; 24:747-760. [PMID: 37848663 DOI: 10.1038/s41583-023-00752-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
The brain is a network of interleaved neural circuits. In modern connectomics, brain connectivity is typically encoded as a network of nodes and edges, abstracting away the rich biological detail of local neuronal populations. Yet biological annotations for network nodes - such as gene expression, cytoarchitecture, neurotransmitter receptors or intrinsic dynamics - can be readily measured and overlaid on network models. Here we review how connectomes can be represented and analysed as annotated networks. Annotated connectomes allow us to reconceptualize architectural features of networks and to relate the connection patterns of brain regions to their underlying biology. Emerging work demonstrates that annotated connectomes help to make more veridical models of brain network formation, neural dynamics and disease propagation. Finally, annotations can be used to infer entirely new inter-regional relationships and to construct new types of network that complement existing connectome representations. In summary, biologically annotated connectomes offer a compelling way to study neural wiring in concert with local biological features.
Collapse
Affiliation(s)
- Vincent Bazinet
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
84
|
Klar P, Çatal Y, Fogel S, Jocham G, Langner R, Owen AM, Northoff G. Auditory inputs modulate intrinsic neuronal timescales during sleep. Commun Biol 2023; 6:1180. [PMID: 37985812 PMCID: PMC10661171 DOI: 10.1038/s42003-023-05566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have demonstrated that intrinsic neuronal timescales (INT) undergo modulation by external stimulation during consciousness. It remains unclear if INT keep the ability for significant stimulus-induced modulation during primary unconscious states, such as sleep. This fMRI analysis addresses this question via a dataset that comprises an awake resting-state plus rest and stimulus states during sleep. We analyzed INT measured via temporal autocorrelation supported by median frequency (MF) in the frequency-domain. Our results were replicated using a biophysical model. There were two main findings: (1) INT prolonged while MF decreased from the awake resting-state to the N2 resting-state, and (2) INT shortened while MF increased during the auditory stimulus in sleep. The biophysical model supported these results by demonstrating prolonged INT in slowed neuronal populations that simulate the sleep resting-state compared to an awake state. Conversely, under sine wave input simulating the stimulus state during sleep, the model's regions yielded shortened INT that returned to the awake resting-state level. Our results highlight that INT preserve reactivity to stimuli in states of unconsciousness like sleep, enhancing our understanding of unconscious brain dynamics and their reactivity to stimuli.
Collapse
Affiliation(s)
- Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Room 6435, Ottawa, ON, K1Z 7K4, Canada
| | - Stuart Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, K1Z 7K4, Ottawa, ON, Canada
| | - Gerhard Jocham
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adrian M Owen
- Departments of Physiology and Pharmacology and Psychology, Western University, London, ON, N6A 5B7, Canada
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Room 6435, Ottawa, ON, K1Z 7K4, Canada
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, Zhejiang Province, 310013, China
| |
Collapse
|
85
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
86
|
Xu Y, Guo H, Zheng R, Wei Y, Wen B, Fang K, Zhang Y, Cheng J, Han S. Decreased intrinsic neural timescales in obsessive compulsive disorder and two distinct subtypes revealed by heterogeneity through discriminative analysis. J Affect Disord 2023; 340:667-674. [PMID: 37543114 DOI: 10.1016/j.jad.2023.07.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND OCD is featured as the destruction of information storage and processing. The cognition of neurobiological and clinical heterogeneity is in suspense and poorly studied. METHODS Ninety-nine patients and matched HCs(n = 104) were recruited and underwent resting-state functional MRI scans. We applied INT to evaluate altered local neural dynamics representing the ability of information integration. Moreover, considering OCD was a highly heterogeneous disorder, we investigated putative OCD subtypes from INT using a novel semi-supervised machine learning, named HYDRA. RESULTS Compared with HCs, patients with OCD showed decreased INTs in extensive brain regions, including bilateral cerebellum and precuneus, STG/MTG and PCC, hippocampus in DMN; right IFG/MFG/SFG, SPL and bilateral angular gyrus in CEN and insula, SMA in SN. Moreover, many other regions involved in visual processing also had disrupted dynamics of local neural organization, consisting of bilateral CUN, LING and fusiform gyrus and occipital lobe. HYDRA divided patients into two distinct neuroanatomical subtypes from INT. Subtype 1 showed decreased INTs in distributed networks, while subtype 2 presented increased in several common regions which were also found to be decreased in subtype 1, such as STG, IPL, postcentral gyrus and left insula, supramarginal gyrus. CONCLUSION This study showed distinct abnormalities from the perspective of dynamics of local neural organization in OCD. Such alteration and dimensional approach may provide a new insight into the prior traditional cognition of this disorder and to some extent do favor of more precise diagnosis and treatment response in the future.
Collapse
Affiliation(s)
- Yinhuan Xu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huirong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Shaoqiang Han
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
87
|
Goekoop R, de Kleijn R. Hierarchical network structure as the source of hierarchical dynamics (power-law frequency spectra) in living and non-living systems: How state-trait continua (body plans, personalities) emerge from first principles in biophysics. Neurosci Biobehav Rev 2023; 154:105402. [PMID: 37741517 DOI: 10.1016/j.neubiorev.2023.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Living systems are hierarchical control systems that display a small world network structure. In such structures, many smaller clusters are nested within fewer larger ones, producing a fractal-like structure with a 'power-law' cluster size distribution (a mereology). Just like their structure, the dynamics of living systems shows fractal-like qualities: the timeseries of inner message passing and overt behavior contain high frequencies or 'states' (treble) that are nested within lower frequencies or 'traits' (bass), producing a power-law frequency spectrum that is known as a 'state-trait continuum' in the behavioral sciences. Here, we argue that the power-law dynamics of living systems results from their power-law network structure: organisms 'vertically encode' the deep spatiotemporal structure of their (anticipated) environments, to the effect that many small clusters near the base of the hierarchy produce high frequency signal changes and fewer larger clusters at its top produce ultra-low frequencies. Such ultra-low frequencies exert a tonic regulatory pressure that produces morphological as well as behavioral traits (i.e., body plans and personalities). Nested-modular structure causes higher frequencies to be embedded within lower frequencies, producing a power-law state-trait continuum. At the heart of such dynamics lies the need for efficient energy dissipation through networks of coupled oscillators, which also governs the dynamics of non-living systems (e.q., earthquakes, stock market fluctuations). Since hierarchical structure produces hierarchical dynamics, the development and collapse of hierarchical structure (e.g., during maturation and disease) should leave specific traces in system dynamics (shifts in lower frequencies, i.e. morphological and behavioral traits) that may serve as early warning signs to system failure. The applications of this idea range from (bio)physics and phylogenesis to ontogenesis and clinical medicine.
Collapse
Affiliation(s)
- R Goekoop
- Free University Amsterdam, Department of Behavioral and Movement Sciences, Parnassia Academy, Parnassia Group, PsyQ, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512VA The Hague, the Netherlands.
| | - R de Kleijn
- Faculty of Social and Behavioral Sciences, Department of Cognitive Psychology, Pieter de la Courtgebouw, Postbus 9555, 2300 RB Leiden, the Netherlands
| |
Collapse
|
88
|
Velarde OM, Makse HA, Parra LC. Architecture of the brain's visual system enhances network stability and performance through layers, delays, and feedback. PLoS Comput Biol 2023; 19:e1011078. [PMID: 37948463 PMCID: PMC10664920 DOI: 10.1371/journal.pcbi.1011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/22/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
In the visual system of primates, image information propagates across successive cortical areas, and there is also local feedback within an area and long-range feedback across areas. Recent findings suggest that the resulting temporal dynamics of neural activity are crucial in several vision tasks. In contrast, artificial neural network models of vision are typically feedforward and do not capitalize on the benefits of temporal dynamics, partly due to concerns about stability and computational costs. In this study, we focus on recurrent networks with feedback connections for visual tasks with static input corresponding to a single fixation. We demonstrate mathematically that a network's dynamics can be stabilized by four key features of biological networks: layer-ordered structure, temporal delays between layers, longer distance feedback across layers, and nonlinear neuronal responses. Conversely, when feedback has a fixed distance, one can omit delays in feedforward connections to achieve more efficient artificial implementations. We also evaluated the effect of feedback connections on object detection and classification performance using standard benchmarks, specifically the COCO and CIFAR10 datasets. Our findings indicate that feedback connections improved the detection of small objects, and classification performance became more robust to noise. We found that performance increased with the temporal dynamics, not unlike what is observed in core vision of primates. These results suggest that delays and layered organization are crucial features for stability and performance in both biological and artificial recurrent neural networks.
Collapse
Affiliation(s)
- Osvaldo Matias Velarde
- Biomedical Engineering Department, The City College of New York, New York, New York, United States of America
| | - Hernán A. Makse
- Levich Institute and Physics Department, The City College of New York, New York, New York, United States of America
| | - Lucas C. Parra
- Biomedical Engineering Department, The City College of New York, New York, New York, United States of America
| |
Collapse
|
89
|
Imani E, Radkani S, Hashemi A, Harati A, Pourreza H, Moazami Goudarzi M. Distributed Coding of Evidence Accumulation across the Mouse Brain Using Microcircuits with a Diversity of Timescales. eNeuro 2023; 10:ENEURO.0282-23.2023. [PMID: 37863657 PMCID: PMC10626503 DOI: 10.1523/eneuro.0282-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
The gradual accumulation of noisy evidence for or against options is the main step in the perceptual decision-making process. Using brain-wide electrophysiological recording in mice (Steinmetz et al., 2019), we examined neural correlates of evidence accumulation across brain areas. We demonstrated that the neurons with drift-diffusion model (DDM)-like firing rate activity (i.e., evidence-sensitive ramping firing rate) were distributed across the brain. Exploring the underlying neural mechanism of evidence accumulation for the DDM-like neurons revealed different accumulation mechanisms (i.e., single and race) both within and across the brain areas. Our findings support the hypothesis that evidence accumulation is happening through multiple integration mechanisms in the brain. We further explored the timescale of the integration process in the single and race accumulator models. The results demonstrated that the accumulator microcircuits within each brain area had distinct properties in terms of their integration timescale, which were organized hierarchically across the brain. These findings support the existence of evidence accumulation over multiple timescales. Besides the variability of integration timescale across the brain, a heterogeneity of timescales was observed within each brain area as well. We demonstrated that this variability reflected the diversity of microcircuit parameters, such that accumulators with longer integration timescales had higher recurrent excitation strength.
Collapse
Affiliation(s)
- Elaheh Imani
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Setayesh Radkani
- Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Ahad Harati
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hamidreza Pourreza
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | | |
Collapse
|
90
|
Baracchini G, Zhou Y, da Silva Castanheira J, Hansen JY, Rieck J, Turner GR, Grady CL, Misic B, Nomi J, Uddin LQ, Spreng RN. The biological role of local and global fMRI BOLD signal variability in human brain organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563476. [PMID: 37961684 PMCID: PMC10634715 DOI: 10.1101/2023.10.22.563476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Variability drives the organization and behavior of complex systems, including the human brain. Understanding the variability of brain signals is thus necessary to broaden our window into brain function and behavior. Few empirical investigations of macroscale brain signal variability have yet been undertaken, given the difficulty in separating biological sources of variance from artefactual noise. Here, we characterize the temporal variability of the most predominant macroscale brain signal, the fMRI BOLD signal, and systematically investigate its statistical, topographical and neurobiological properties. We contrast fMRI acquisition protocols, and integrate across histology, microstructure, transcriptomics, neurotransmitter receptor and metabolic data, fMRI static connectivity, and empirical and simulated magnetoencephalography data. We show that BOLD signal variability represents a spatially heterogeneous, central property of multi-scale multi-modal brain organization, distinct from noise. Our work establishes the biological relevance of BOLD signal variability and provides a lens on brain stochasticity across spatial and temporal scales.
Collapse
Affiliation(s)
- Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Yigu Zhou
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason da Silva Castanheira
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - Cheryl L. Grady
- Rotman Research Institute at Baycrest, and Department of Psychiatry and Psychology, University of Toronto, Toronto, ON, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jason Nomi
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
91
|
Li X, Wang S. Simple and complex cells revisited: toward a selectivity-invariance model of object recognition. Front Comput Neurosci 2023; 17:1282828. [PMID: 37905187 PMCID: PMC10613527 DOI: 10.3389/fncom.2023.1282828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
This paper presents a theoretical perspective on modeling ventral stream processing by revisiting the computational abstraction of simple and complex cells. In parallel to David Marr's vision theory, we organize the new perspective into three levels. At the computational level, we abstract simple and complex cells into space partitioning and composition in a topological space based on the redundancy exploitation hypothesis of Horace Barlow. At the algorithmic level, we present a hierarchical extension of sparse coding by exploiting the manifold constraint in high-dimensional space (i.e., the blessing of dimensionality). The resulting over-parameterized models for object recognition differ from existing hierarchical models by disentangling the objectives of selectivity and invariance computation. It is possible to interpret our hierarchical construction as a computational implementation of cortically local subspace untangling for object recognition and face representation, which are closely related to exemplar-based and axis-based coding in the medial temporal lobe. At the implementation level, we briefly discuss two possible implementations based on asymmetric sparse autoencoders and divergent spiking neural networks.
Collapse
Affiliation(s)
- Xin Li
- Department of Computer Science, University at Albany, Albany, NY, United States
| | - Shuo Wang
- Department of Radiology, Washington University at St. Louis, St. Louis, MO, United States
| |
Collapse
|
92
|
Pham TQ, Matsui T, Chikazoe J. Evaluation of the Hierarchical Correspondence between the Human Brain and Artificial Neural Networks: A Review. BIOLOGY 2023; 12:1330. [PMID: 37887040 PMCID: PMC10604784 DOI: 10.3390/biology12101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Artificial neural networks (ANNs) that are heavily inspired by the human brain now achieve human-level performance across multiple task domains. ANNs have thus drawn attention in neuroscience, raising the possibility of providing a framework for understanding the information encoded in the human brain. However, the correspondence between ANNs and the brain cannot be measured directly. They differ in outputs and substrates, neurons vastly outnumber their ANN analogs (i.e., nodes), and the key algorithm responsible for most of modern ANN training (i.e., backpropagation) is likely absent from the brain. Neuroscientists have thus taken a variety of approaches to examine the similarity between the brain and ANNs at multiple levels of their information hierarchy. This review provides an overview of the currently available approaches and their limitations for evaluating brain-ANN correspondence.
Collapse
Affiliation(s)
| | - Teppei Matsui
- Graduate School of Brain Science, Doshisha University, Kyoto 610-0321, Japan
| | | |
Collapse
|
93
|
Markicevic M, Sturman O, Bohacek J, Rudin M, Zerbi V, Fulcher BD, Wenderoth N. Neuromodulation of striatal D1 cells shapes BOLD fluctuations in anatomically connected thalamic and cortical regions. eLife 2023; 12:e78620. [PMID: 37824184 PMCID: PMC10569790 DOI: 10.7554/elife.78620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Understanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm). We characterize changes in both the BOLD dynamics of individual cortical and subcortical brain areas, and patterns of inter-regional coupling (functional connectivity) between pairs of areas. Using a classification approach based on a large and diverse set of time-series properties, we found that CPdm neuromodulation alters BOLD dynamics within thalamic subregions that project back to dorsomedial striatum. In the cortex, changes in local dynamics were strongest in unimodal regions (which process information from a single sensory modality) and weakened along a hierarchical gradient towards transmodal regions. In contrast, a decrease in functional connectivity was observed only for cortico-striatal connections after D1 excitation. Our results show that targeted cellular-level manipulations affect local BOLD dynamics at the macroscale, such as by making BOLD dynamics more predictable over time by increasing its self-correlation structure. This contributes to ongoing attempts to understand the influence of structure-function relationships in shaping inter-regional communication at subcortical and cortical levels.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale UniversityNew HavenUnited States
| | - Oliver Sturman
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, HEST, ETH ZurichZurichSwitzerland
| | - Markus Rudin
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- Institute for Biomedical Engineering, University and ETH ZurichZurichSwitzerland
| | - Valerio Zerbi
- Neuro-X Institute, School of Engineering (STI), EPFLLausanneSwitzerland
- CIBM Centre for Biomedical ImagingLausanneSwitzerland
| | - Ben D Fulcher
- School of Physics, The University of SydneyCamperdownAustralia
| | - Nicole Wenderoth
- Neural Control of Movement Lab, HEST, ETH ZürichZurichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE)SingaporeSingapore
| |
Collapse
|
94
|
Oldham S, Ball G. A phylogenetically-conserved axis of thalamocortical connectivity in the human brain. Nat Commun 2023; 14:6032. [PMID: 37758726 PMCID: PMC10533558 DOI: 10.1038/s41467-023-41722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The thalamus enables key sensory, motor, emotive, and cognitive processes via connections to the cortex. These projection patterns are traditionally considered to originate from discrete thalamic nuclei, however recent work showing gradients of molecular and connectivity features in the thalamus suggests the organisation of thalamocortical connections occurs along a continuous dimension. By performing a joint decomposition of densely sampled gene expression and non-invasive diffusion tractography in the adult human thalamus, we define a principal axis of genetic and connectomic variation along a medial-lateral thalamic gradient. Projections along this axis correspond to an anterior-posterior cortical pattern and are aligned with electrophysiological properties of the cortex. The medial-lateral axis demonstrates phylogenetic conservation, reflects transitions in neuronal subtypes, and shows associations with neurodevelopment and common brain disorders. This study provides evidence for a supra-nuclear axis of thalamocortical organisation characterised by a graded transition in molecular properties and anatomical connectivity.
Collapse
Affiliation(s)
- Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
95
|
Shafiei G, Fulcher BD, Voytek B, Satterthwaite TD, Baillet S, Misic B. Neurophysiological signatures of cortical micro-architecture. Nat Commun 2023; 14:6000. [PMID: 37752115 PMCID: PMC10522715 DOI: 10.1038/s41467-023-41689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Systematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown. Here we extensively profile regional neurophysiological dynamics across the human brain by estimating over 6800 time-series features from the resting state magnetoencephalography (MEG) signal. We then map regional time-series profiles to a comprehensive multi-modal, multi-scale atlas of cortical micro-architecture, including microstructure, metabolism, neurotransmitter receptors, cell types and laminar differentiation. We find that the dominant axis of neurophysiological dynamics reflects characteristics of power spectrum density and linear correlation structure of the signal, emphasizing the importance of conventional features of electromagnetic dynamics while identifying additional informative features that have traditionally received less attention. Moreover, spatial variation in neurophysiological dynamics is co-localized with multiple micro-architectural features, including gene expression gradients, intracortical myelin, neurotransmitter receptors and transporters, and oxygen and glucose metabolism. Collectively, this work opens new avenues for studying the anatomical basis of neural activity.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ben D Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
96
|
Brucklacher M, Bohté SM, Mejias JF, Pennartz CMA. Local minimization of prediction errors drives learning of invariant object representations in a generative network model of visual perception. Front Comput Neurosci 2023; 17:1207361. [PMID: 37818157 PMCID: PMC10561268 DOI: 10.3389/fncom.2023.1207361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
The ventral visual processing hierarchy of the cortex needs to fulfill at least two key functions: perceived objects must be mapped to high-level representations invariantly of the precise viewing conditions, and a generative model must be learned that allows, for instance, to fill in occluded information guided by visual experience. Here, we show how a multilayered predictive coding network can learn to recognize objects from the bottom up and to generate specific representations via a top-down pathway through a single learning rule: the local minimization of prediction errors. Trained on sequences of continuously transformed objects, neurons in the highest network area become tuned to object identity invariant of precise position, comparable to inferotemporal neurons in macaques. Drawing on this, the dynamic properties of invariant object representations reproduce experimentally observed hierarchies of timescales from low to high levels of the ventral processing stream. The predicted faster decorrelation of error-neuron activity compared to representation neurons is of relevance for the experimental search for neural correlates of prediction errors. Lastly, the generative capacity of the network is confirmed by reconstructing specific object images, robust to partial occlusion of the inputs. By learning invariance from temporal continuity within a generative model, the approach generalizes the predictive coding framework to dynamic inputs in a more biologically plausible way than self-supervised networks with non-local error-backpropagation. This was achieved simply by shifting the training paradigm to dynamic inputs, with little change in architecture and learning rule from static input-reconstructing Hebbian predictive coding networks.
Collapse
Affiliation(s)
- Matthias Brucklacher
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sander M. Bohté
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Machine Learning Group, Centrum Wiskunde & Informatica, Amsterdam, Netherlands
| | - Jorge F. Mejias
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
97
|
Wu S, Huang C, Snyder A, Smith M, Doiron B, Yu B. Automated customization of large-scale spiking network models to neuronal population activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558920. [PMID: 37790533 PMCID: PMC10542160 DOI: 10.1101/2023.09.21.558920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding brain function is facilitated by constructing computational models that accurately reproduce aspects of brain activity. Networks of spiking neurons capture the underlying biophysics of neuronal circuits, yet the dependence of their activity on model parameters is notoriously complex. As a result, heuristic methods have been used to configure spiking network models, which can lead to an inability to discover activity regimes complex enough to match large-scale neuronal recordings. Here we propose an automatic procedure, Spiking Network Optimization using Population Statistics (SNOPS), to customize spiking network models that reproduce the population-wide covariability of large-scale neuronal recordings. We first confirmed that SNOPS accurately recovers simulated neural activity statistics. Then, we applied SNOPS to recordings in macaque visual and prefrontal cortices and discovered previously unknown limitations of spiking network models. Taken together, SNOPS can guide the development of network models and thereby enable deeper insight into how networks of neurons give rise to brain function.
Collapse
Affiliation(s)
- Shenghao Wu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Snyder
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Matthew Smith
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Brent Doiron
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Department of Statistics, University of Chicago, Chicago, IL, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Byron Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
98
|
Banaie Boroujeni K, Womelsdorf T. Routing states transition during oscillatory bursts and attentional selection. Neuron 2023; 111:2929-2944.e11. [PMID: 37463578 PMCID: PMC10529654 DOI: 10.1016/j.neuron.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
Brain-wide information routing relies on the spatio-temporal dynamics of neural activity, but it remains unclear how routing states emerge at fast spiking timescales and relate to slower activity dynamics during cognitive processes. Here, we show that localized spiking events participate in directional routing states with spiking activity in distant brain areas that dynamically switch or amplify states during oscillatory bursts, attentional selection, and decision-making. Modeling and neural recordings from lateral prefrontal cortex (LPFC), anterior cingulate cortex (ACC), and striatum of nonhuman primates revealed that cross-regional routing states arise within 20 ms following individual neuron spikes, with LPFC spikes leading the activity in ACC and striatum. The baseline routing state amplified during LPFC beta bursts between LPFC and striatum and switched direction during ACC theta/alpha bursts between ACC and LPFC. Selective attention amplified theta-/alpha-band-specific lead ensembles in ACC, while decision-making increased the lead of ACC and LPFC spikes to the striatum.
Collapse
Affiliation(s)
- Kianoush Banaie Boroujeni
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
99
|
Elorette C, Fujimoto A, Stoll FM, Fujimoto SH, Fleysher L, Bienkowska N, Russ BE, Rudebeck PH. The neural basis of resting-state fMRI functional connectivity in fronto-limbic circuits revealed by chemogenetic manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545778. [PMID: 37745436 PMCID: PMC10515745 DOI: 10.1101/2023.06.21.545778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the macaque amygdala and activated them with a highly selective and potent DREADD agonist, deschloroclozapine. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Interestingly, activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-disciplinary approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.
Collapse
Affiliation(s)
- Catherine Elorette
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Atsushi Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Frederic M. Stoll
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Satoka H. Fujimoto
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Lazar Fleysher
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Niranjana Bienkowska
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| | - Brian E. Russ
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962
- Department of Psychiatry, New York University at Langone, One, 8, Park Ave, New York, NY 10016
| | - Peter H. Rudebeck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
100
|
Boven E, Cerminara NL. Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions. Front Syst Neurosci 2023; 17:1211530. [PMID: 37745783 PMCID: PMC10512466 DOI: 10.3389/fnsys.2023.1211530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Performing successful adaptive behaviour relies on our ability to process a wide range of temporal intervals with certain precision. Studies on the role of the cerebellum in temporal information processing have adopted the dogma that the cerebellum is involved in sub-second processing. However, emerging evidence shows that the cerebellum might be involved in suprasecond temporal processing as well. Here we review the reciprocal loops between cerebellum and cerebral cortex and provide a theoretical account of cerebro-cerebellar interactions with a focus on how cerebellar output can modulate cerebral processing during learning of complex sequences. Finally, we propose that while the ability of the cerebellum to support millisecond timescales might be intrinsic to cerebellar circuitry, the ability to support supra-second timescales might result from cerebellar interactions with other brain regions, such as the prefrontal cortex.
Collapse
Affiliation(s)
- Ellen Boven
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Neural and Machine Learning Group, Bristol Computational Neuroscience Unit, Intelligent Systems Labs, School of Engineering Mathematics and Technology, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Nadia L. Cerminara
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|