51
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
52
|
Cravedi KD, May MD, Abettan JA, Huckleberry KA, Trettel SG, Vuong CV, Altman DE, Gauchan S, Shansky RM, Matson LM, Sousa JC, Lowery-Gionta EG, Moore NLT. Response and recovery of endocrine, behavioral, and neuronal morphology outcomes after different traumatic stressor exposures in male rats. Psychoneuroendocrinology 2021; 133:105394. [PMID: 34474197 DOI: 10.1016/j.psyneuen.2021.105394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Preclinical models of organismal response to traumatic stress (threat of death or serious injury) can be monitored using neuroendocrine, behavioral, and structural metrics. While many rodent models of traumatic stress have provided a glimpse into select components of the physiological response to acute and chronic stressors, few studies have directly examined the potential differences between stressors and their potential outcomes. To address this gap, we conducted a multi-level comparison of the immediate and longer-term effects of two types of acute traumatic stressors. Adult male rats were exposed to either underwater trauma (UWT), predator exposure (PE), or control procedural handling conditions. Over the next 7 days, yoked cohorts underwent either serial blood sampling for neuroendocrine evaluation across the circadian cycle, or repeated behavioral testing in the elevated plus maze. In addition, a subset of brains from the latter cohort were assessed for dendritic spine changes in the prefrontal cortex and basolateral amygdala. We observed stressor-dependent patterns of response and recovery across all measures, with divergence between endocrine responses despite similar behavioral outcomes. These results demonstrate that different stressors elicit unique behavioral, neuroendocrine, and neuro-structural response profiles and suggest that specific stress models can be used to model desired responses for specific preclinical applications, such as evaluations of underlying mechanisms or therapeutic candidates.
Collapse
Affiliation(s)
- Kevin D Cravedi
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Matthew D May
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jordan A Abettan
- Laboratory of Neuroanatomy and Behavior, Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Kylie A Huckleberry
- Laboratory of Neuroanatomy and Behavior, Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Sean G Trettel
- Laboratory of Neuroanatomy and Behavior, Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Chau V Vuong
- Drug Metabolism and Distribution Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Daniel E Altman
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sangeeta Gauchan
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rebecca M Shansky
- Laboratory of Neuroanatomy and Behavior, Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Liana M Matson
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jason C Sousa
- Drug Metabolism and Distribution Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Emily G Lowery-Gionta
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Nicole L T Moore
- Performance Assessment and Chemical Evaluation (PACE) Laboratory, Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
53
|
Enduring glucocorticoid-evoked exacerbation of synaptic plasticity disruption in male rats modelling early Alzheimer's disease amyloidosis. Neuropsychopharmacology 2021; 46:2170-2179. [PMID: 34188184 PMCID: PMC8505492 DOI: 10.1038/s41386-021-01056-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Synaptic dysfunction is a likely proximate cause of subtle cognitive impairment in early Alzheimer's disease. Soluble oligomers are the most synaptotoxic forms of amyloid ß-protein (Aß) and mediate synaptic plasticity disruption in Alzheimer's disease amyloidosis. Because the presence and extent of cortisol excess in prodromal Alzheimer's disease predicts the onset of cognitive symptoms we hypothesised that corticosteroids would exacerbate the inhibition of hippocampal synaptic long-term potentiation in a rat model of Alzheimer's disease amyloidosis. In a longitudinal experimental design using freely behaving pre-plaque McGill-R-Thy1-APP male rats, three injections of corticosterone or the glucocorticoid methylprednisolone profoundly disrupted long-term potentiation induced by strong conditioning stimulation for at least 2 months. The same treatments had a transient or no detectible detrimental effect on synaptic plasticity in wild-type littermates. Moreover, corticosterone-mediated cognitive dysfunction, as assessed in a novel object recognition test, was more persistent in the transgenic animals. Evidence for the involvement of pro-inflammatory mechanisms was provided by the ability of the selective the NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome inhibitor Mcc950 to reverse the synaptic plasticity deficit in corticosterone-treated transgenic animals. The marked prolongation of the synaptic plasticity disrupting effects of brief corticosteroid excess substantiates a causal role for hypothalamic-pituitary-adrenal axis dysregulation in early Alzheimer's disease.
Collapse
|
54
|
Kumar A, Arya H, Tamta K, Maurya RC. Acute stress-induced neuronal plasticity in the corticoid complex of 15-day-old chick, Gallus domesticus. J Anat 2021; 239:869-891. [PMID: 34159582 PMCID: PMC8450486 DOI: 10.1111/joa.13483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/01/2022] Open
Abstract
Several studies conducted on chicken have shown that a single stress exposure may impair or improve memory as well as learning processes. However, to date, stress effects on neuronal morphology are poorly investigated wherefore it was of interest to evaluate this further in chicks. Thus, the present study aims to investigate the role of single acute stress (AS) of 24 h food and water deprivation in neuronal plasticity in terms of spine density of the corticoid complex (CC) in 15-day-old chick, Gallus domesticus, by using three neurohistological techniques: Cresyl Violet, Golgi Colonnier, and Golgi Cox technique. The dorsolateral surface of the cerebral hemisphere is occupied by CC which can be differentiated into two subfields: an intermediate corticoid (CI) subfield (arranged in layers) and a dorsolateral corticoid (CDL) subfield. Based on different criteria such as soma shape, dendritic branching pattern, and dendritic spine density, two main moderately spinous groups of neuronal cells were observed in the CC, namely, projection neurons (comprising of multipolar and pyramidal neurons) and stellate neurons. In the present study, the stellate neurons have shown a significant decrease as well as an increase in their spine density in both CI and CDL subfields, whereas the multipolar neurons had shown a significant increase in their spine density in the CDL region only. The present study shows that AS induces neuronal plasticity in terms of spine density in both CI and CDL neurons. The morphological changes in the form of decreased dendritic branches due to stress have been observed in the CI region in comparison to CDL region, which could be linked to more effect of stress in this region. The avian CDL corresponds to the entorhinal cortex of mammals on the basis of neuronal morphology and bidirectional connections between adjacent areas. The projection neurons increase their branches and also their spine number to cope with the stress effects, while the stellate neurons show contrasting effect in their spine density. Therefore, this study will establish that slight modifications in natural stimuli or environmental changes faced by the animal may affect their dorsolateral forebrain which shows neuronal plasticity that help in the development of an adaptive capacity of the animal to survive under changing environmental conditions.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Zoology (DST‐FIST Sponsored)Kumaun UniversityAlmoraIndia
| | - Hemlata Arya
- Department of Zoology (DST‐FIST Sponsored)Kumaun UniversityAlmoraIndia
| | - Kavita Tamta
- Department of Zoology (DST‐FIST Sponsored)Kumaun UniversityAlmoraIndia
| | | |
Collapse
|
55
|
Mishra P, Narayanan R. Stable continual learning through structured multiscale plasticity manifolds. Curr Opin Neurobiol 2021; 70:51-63. [PMID: 34416674 PMCID: PMC7611638 DOI: 10.1016/j.conb.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Biological plasticity is ubiquitous. How does the brain navigate this complex plasticity space, where any component can seemingly change, in adapting to an ever-changing environment? We build a systematic case that stable continuous learning is achieved by structured rules that enforce multiple, but not all, components to change together in specific directions. This rule-based low-dimensional plasticity manifold of permitted plasticity combinations emerges from cell type-specific molecular signaling and triggers cascading impacts that span multiple scales. These multiscale plasticity manifolds form the basis for behavioral learning and are dynamic entities that are altered by neuromodulation, metaplasticity, and pathology. We explore the strong links between heterogeneities, degeneracy, and plasticity manifolds and emphasize the need to incorporate plasticity manifolds into learning-theoretical frameworks and experimental designs.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
56
|
Jacobs B, Rally H, Doyle C, O'Brien L, Tennison M, Marino L. Putative neural consequences of captivity for elephants and cetaceans. Rev Neurosci 2021; 33:439-465. [PMID: 34534428 DOI: 10.1515/revneuro-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - Heather Rally
- Foundation to Support Animal Protection, Norfolk, VA, 23510, USA
| | - Catherine Doyle
- Performing Animal Welfare Society, P.O. Box 849, Galt, CA, 95632, USA
| | - Lester O'Brien
- Palladium Elephant Consulting Inc., 2408 Pinewood Dr. SE, Calgary, AB, T2B1S4, Canada
| | - Mackenzie Tennison
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Lori Marino
- Whale Sanctuary Project, Kanab, UT, 84741, USA
| |
Collapse
|
57
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
58
|
Garcia-Keller C, Carter JS, Kruyer A, Kearns AM, Hopkins JL, Hodebourg R, Kalivas PW, Reichel CM. Behavioral and accumbens synaptic plasticity induced by cues associated with restraint stress. Neuropsychopharmacology 2021; 46:1848-1856. [PMID: 34226657 PMCID: PMC8357931 DOI: 10.1038/s41386-021-01074-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Exposure to acute stress can increase vulnerability to develop or express many psychiatric disorders, including post-traumatic stress disorder. We hypothesized that stress-induced psychiatric vulnerability is associated with enduring neuroplasticity in the nucleus accumbens core because stress exposure can alter drug addiction-related behaviors that are associated with accumbens synaptic plasticity. We used a single 2-h stress session and 3 weeks later exposed male and female rats to stress-conditioned odors in a modified defensive burying task, and quantified both active and avoidant coping strategies. We measured corticosterone, dendritic spine and astrocyte morphology in accumbens, and examined reward sensitivity using a sucrose two-bottle choice and operant sucrose self-administration. Exposure to stress odor increased burying (active coping) and immobility (avoidant coping) in the defensive burying task in female and male rats. Systemic corticosterone was transiently increased by both ongoing acute restraint stress and stress-conditioned odors. Three weeks after administering acute restraint stress, we observed increased dendritic spine density and head diameter, and decreased synaptic association with astroglia and the astroglial glutamate transporter, GLT-1. Exposure to conditioned stress further increased head diameter without affecting spine density or astroglial morphology, and this increase by conditioned stress was correlated with burying behavior. Finally, we found that stress-exposed females have a preference for sweet solutions and higher motivation to seek sucrose than stressed male rats. We conclude that acute stress produced enduring plasticity in accumbens postsynapses and associated astroglia. Moreover, conditioned stress odors induced active behavioral coping strategies that were correlated with dendritic spine morphology.
Collapse
Affiliation(s)
| | - Jordan S Carter
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Angela M Kearns
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jordan L Hopkins
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
59
|
Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:667-679. [PMID: 34426872 DOI: 10.1007/s00359-021-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to test whether Cynopterus sphinx distress calls influence olfactory learning and memory in conspecifics. Bats were exposed to distress calls/playbacks (PBs) of distress calls/modified calls and were then trained to novel odors. Bats exposed to distress calls/PBs made significantly fewer feeding attempts and bouts of PBs exposed to modified calls, which significantly induced the expression of c-Fos in the caudomedial neostriatum (NCM) and the amygdala compared to bats exposed to modified calls and trained controls. However, the expression of c-Fos in the hippocampus was not significantly different between the experimental groups. Further, protein phosphatase-1 (PP-1) expression was significantly lower, and the expression levels of E1A homologue of CREB-binding protein (CBP) (P300), brain-derived neurotrophic factor (BDNF) and its tyrosine kinase B1 (TrkB1) receptor were significantly higher in the hippocampus of control/bats exposed to modified calls compared to distress calls/PBs of distress call-exposed bats. Exposure to the call possibly alters the reciprocal interaction between the amygdala and the hippocampus, accordingly regulating the expression levels of PP1, P300 and BDNF and its receptor TrkB1 following training to the novel odor. Thus, the learning and memory consolidation processes were disrupted and showed fewer feeding attempts and bouts. This model may be helpful for understanding the contributions of stressful social communications to human disorders.
Collapse
|
60
|
Podlesek A, Komidar L, Kavcic V. The Relationship Between Perceived Stress and Subjective Cognitive Decline During the COVID-19 Epidemic. Front Psychol 2021; 12:647971. [PMID: 34421707 PMCID: PMC8374330 DOI: 10.3389/fpsyg.2021.647971] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
During the outbreak of the COVID-19 epidemic, fear of disease and its consequences, recommended lifestyle changes, and severe restrictions set by governments acted as stressors and affected people's mood, emotions, mental health, and wellbeing. Many studies conducted during this crisis focused on affective and physiological responses to stress, but few studies examined how the crisis affected cognition. The present cross-sectional study examined the relationship between physiological, affective, and cognitive responses to the epidemic. In an online survey conducted at the height of the first wave of the epidemic in Slovenia (April 15-25, 2020), 830 Slovenian residents aged 18-85 years reported the effects of stressors (confinement, problems at home, problems at work, lack of necessities, and increased workload), experienced emotions, generalized anxiety, perceived stress, changes in health, fatigue and sleep quality, and perceived changes in cognition during the epidemic. Risk factors for stress (neuroticism, vulnerability, general health, gender, and age) were also recorded. We hypothesized that stressors and stress risk factors will be related to subjective cognitive decline, with negative emotions, generalized anxiety, perceived stress, and physical symptoms acting as mediator variables. On average, the results showed a mild subjective cognitive decline during the epidemic. In structural equation modeling, 34% of its variance was predicted by the mediator variables, with negative emotions and physical symptoms having the largest contribution. Stress risk factors were predictably related to the four mediator variables. Among the stressors, confinement showed the strongest effect on the four mediator variables, implying the importance of thoughtful communication about necessary restrictive measures during emergency circumstances. The results of this study indicate that the possibility of altered cognitive function should be considered when planning work and study activities during the epidemic.
Collapse
Affiliation(s)
- Anja Podlesek
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Komidar
- Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, MI, United States
- International Institute of Applied Gerontology, Ljubljana, Slovenia
| |
Collapse
|
61
|
Güven B, Çilliler AE. Headache in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Behav 2021; 121:108081. [PMID: 34062448 DOI: 10.1016/j.yebeh.2021.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It is remarkable that epilepsy and migraine are similar diseases with many parallel clinical features, as well as sharing common pathophysiological mechanisms. However, the pathogenetic role of hippocampal sclerosis (HS) in epilepsy and headache coexistence has not been clarified. In this study, we aimed to investigate the frequency of headache/migraine and the relationship between headache and HS lateralizations in patients with mesial temporal lobe epilepsy (MTLE), accompanied by HS. METHODS Consecutive patients with mesial temporal lobe epilepsy with hippocampal sclerosis (HS-MTLE) followed up in epilepsy outpatient clinic were included in this study, with their demographic and clinical characteristics, HS lateralization, and side (unilateral-right-left, bilateral), which were recorded. Using the questionnaires, the type of headache [migraine, tension headache (TTH)] was determined. Patients in whom migraine and TTH could not be completely separated were recruited for the unclassified group. The temporal relationship of headache and seizures (peri-ictal and/or interictal), pain lateralization, and side (unilateral-right-left, bilateral, unilateral + bilateral) were likewise determined. RESULTS There were 56 patients (30 females, 26 males; mean age 36.9 ± 12.1 years; mean epilepsy duration 19.3 ± 12.5 years) included in the study. Thirty-one patients (55.4%) stated they had a headache: of these, eighteen (32.1%) had migraine and 9 (16.1%) had TTH. Migraine accounted for 58.1% of headaches and TTHs was 29%. Headache was unilateral in 15 patients, and bilateral or bilateral + unilateral in 16 patients. Of patients with migraine, pain was unilateral in 10, and bilateral or bilateral + unilateral in 8. HS was right-sided in 24 patients, left-sided in 30 patients, and bilateral in 2 patients. In patients with right-sided HS, it was an ipsilateral headache; bilateral headache was found to be more common in patients with left-sided HS (p = 0.029). No relationship was found between the lateralization of the headache and the side of HS in patients with migraine. CONCLUSION The results of our study showed that approximately half the patients with HS-MTLE did have a headache, with one third noting migraine type headache; this highlighted that HS may play a pathogenetic role in the development of headache, especially migraine, in patients with epilepsy. Further comprehensive studies will enable us to understand whether accompanying headache, especially migraine attacks in patients with epilepsy, can be determinant for HS-MTLE, as well as if it has a lateralizing value for HS.
Collapse
Affiliation(s)
- Bülent Güven
- Ankara Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Neurology, University of Health Sciences, Turkey.
| | - Aslı Ece Çilliler
- Ankara Dışkapı Yıldırım Beyazıt Training and Research Hospital, Department of Neurology, University of Health Sciences, Turkey.
| |
Collapse
|
62
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
63
|
Tomar A, Polygalov D, McHugh TJ. Differential Impact of Acute and Chronic Stress on CA1 Spatial Coding and Gamma Oscillations. Front Behav Neurosci 2021; 15:710725. [PMID: 34354574 PMCID: PMC8329706 DOI: 10.3389/fnbeh.2021.710725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic and acute stress differentially affect behavior as well as the structural integrity of the hippocampus, a key brain region involved in cognition and memory. However, it remains unclear if and how the facilitatory effects of acute stress on hippocampal information coding are disrupted as the stress becomes chronic. To examine this, we compared the impact of acute and chronic stress on neural activity in the CA1 subregion of male mice subjected to a chronic immobilization stress (CIS) paradigm. We observed that following first exposure to stress (acute stress), the spatial information encoded in the hippocampus sharpened, and the neurons became increasingly tuned to the underlying theta oscillations in the local field potential (LFP). However, following repeated exposure to the same stress (chronic stress), spatial tuning was poorer and the power of both the slow-gamma (30–50 Hz) and fast-gamma (55–90 Hz) oscillations, which correlate with excitatory inputs into the region, decreased. These results support the idea that acute and chronic stress differentially affect neural computations carried out by hippocampal circuits and suggest that acute stress may improve cognitive processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Denis Polygalov
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
64
|
Schnakenberg P, Hahn L, Stickel S, Stickeler E, Habel U, Eickhoff SB, Chechko N, Dukart J. Examining early structural and functional brain alterations in postpartum depression through multimodal neuroimaging. Sci Rep 2021; 11:13551. [PMID: 34193913 PMCID: PMC8245412 DOI: 10.1038/s41598-021-92882-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
Postpartum depression (PPD) affects approximately 1 in 10 women after childbirth. A thorough understanding of a preexisting vulnerability to PPD will likely aid the early detection and treatment of PPD. Using a within-sample association, the study examined whether the brain's structural and functional alterations predict the onset of depression. 157 euthymic postpartum women were subjected to a multimodal MRI scan within the first 6 days of childbirth and were followed up for 12 weeks. Based on a clinical interview 12 weeks postpartum, participants were classified as mentally healthy or having either PPD or adjustment disorder (AD). Voxel-based morphometry and resting-state functional connectivity comparisons were performed between the three groups. 13.4% of women in our study developed PPD (n = 21) and 12.1% (n = 19) adjustment disorder (AD). The risk factors for PPD were a psychiatric history and the experience and severity of baby blues and the history of premenstrual syndrome. Despite the different risk profiles, no differences between the PPD, AD and control group were apparent based on structural and functional neuroimaging data immediately after childbirth. At 12 weeks postpartum, a significant association was observed between Integrated Local Correlation (LCor) and the Edinburgh Postnatal Depression Score (EPDS). Our findings do not support the notion that the brain's structural and resting-state functional alterations, if present, can be used as an early biomarker of PPD or AD. However, effects may become apparent if continuous measures of symptom severity are chosen.
Collapse
Affiliation(s)
- Patricia Schnakenberg
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany. .,Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany. .,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany.
| | - Lisa Hahn
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Susanne Stickel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany
| | - Elmar Stickeler
- Department of Gynecology and Obstetrics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Neuroscience and Medicine, JARA Institute Brain Structure Function Relationship (INM-10), Research Centre Jülich, Jülich, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
65
|
Wu J, Han M, He Y, Xie X, Song J, Geng X. The efficacy of repetitive transcranial magnetic stimulation (rTMS) for young individuals with high-level perceived stress: study protocol for a randomized sham-controlled trial. Trials 2021; 22:365. [PMID: 34034790 PMCID: PMC8145821 DOI: 10.1186/s13063-021-05308-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Background High level of perceived stress may result in negative effects both psychologically and physically on individuals and may predispose onset of mental disorders such as depression, anxiety, and posttraumatic stress disorder. However, there is no suitable intervention for it. Repetitive transcranial magnetic stimulation (rTMS) studies have shown its therapeutic efficacy in treatment resistant patients with stress-related disorders. Here we describe an exploratory study protocol to investigate the effect of the intervention for the individuals with high level of stress. Method This is a single blinded, randomized sham-controlled trial, targeting at young healthy adults aging from 18 to 24 years old. Forty eligible volunteers will be recruited and randomly divided into active and sham rTMS group. All subjects will take a set of neuropsychological and biological assessments and MRI scanning before and right after the intervention. During the interventional period, 12-session stimulations will be performed in 4 weeks with three sessions per week. The primary outcome will detect the difference of Chinese 14-item perceived stress scales between active and sham rTMS groups after intervention. Secondary outcomes will examine the differences of other affective measurements, level of cortisol, and MRI-derived neural functional measures between the two groups after intervention. Discussion This trial aims to examine the effect of the 12-session rTMS intervention on individuals with high level of perceived stress. Positive or negative findings from any of the outcome measures would further our understanding of the efficacy of the stimulation and its neural impact. If effective, it would provide an evidence for a new treatment for high perceived stress. Trial registration Chinese Clinical Trial Registry (ChiCTR1900027662). Registered on 23 November 2019. And all items of the WHO Trial Registry Data set can be found within the protocol. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05308-3.
Collapse
Affiliation(s)
- Jingsong Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengyu Han
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youze He
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoting Xie
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jian Song
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiujuan Geng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, 4F, Hui Yeung Shing Building, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
66
|
Sakai Y, Li H, Inaba H, Funayama Y, Ishimori E, Kawatake-Kuno A, Yamagata H, Seki T, Hobara T, Nakagawa S, Watanabe Y, Tomita S, Murai T, Uchida S. Gene-environment interactions mediate stress susceptibility and resilience through the CaMKIIβ/TARPγ-8/AMPAR pathway. iScience 2021; 24:102504. [PMID: 34113835 PMCID: PMC8170005 DOI: 10.1016/j.isci.2021.102504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023] Open
Abstract
Although stressful events predispose individuals to psychiatric disorders, such as depression, not all people who undergo a stressful life experience become depressed, suggesting that gene-environment interactions (GxE) determine depression risk. The ventral hippocampus (vHPC) plays key roles in motivation, sociability, anhedonia, despair-like behaviors, anxiety, sleep, and feeding, pointing to the involvement of this brain region in depression. However, the molecular mechanisms underlying the cross talk between the vHPC and GxE in shaping behavioral susceptibility and resilience to chronic stress remain elusive. Here, we show that Ca2+/calmodulin-dependent protein kinase IIβ (CaMKIIβ) activity in the vHPC is differentially modulated in GxE mouse models of depression susceptibility and resilience, and that CaMKIIβ-mediated TARPγ-8 phosphorylation enhances the expression of AMPA receptor subunit GluA1 in the postsynaptic sites to enable stress resilience. We present previously missing molecular mechanisms underlying chronic stress-elicited behavioral changes, providing strategies for preventing and treating stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Yusuke Sakai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Funayama
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Erina Ishimori
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomoe Seki
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Teruyuki Hobara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshifumi Watanabe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
67
|
Expression of ghrelin or growth hormone secretagogue receptor in the brain of postpartum stress mice. Neuroreport 2021; 32:678-685. [PMID: 33913930 DOI: 10.1097/wnr.0000000000001633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Postpartum depression is one of the most common mental diseases that occur in women after childbirth; this disorder is extremely painful for women and represents a major burden on the society. Therefore, we designed this study to explore the possible material basis of the disease, and provide potential novel antidepressants therapy using a mouse model. We established a postpartum immobilization stress model. Maternal body weight changes and food intake were recorded for half a month after delivery, and levels of ghrelin and its receptor, growth hormone secretagogue receptor (GHSR) were measured. The mice in the immobilization stress group showed stress activity as well as low body weight and low feeding status. Ghrelin expression was elevated in blood whereas ghrelin or GHSR expression decreased in the hippocampus and prefrontal cortex of the immobilization stress mice, and the number of ghrelin-active and GHSR cells reduced.
Collapse
|
68
|
Whiting SB, Wass SV, Green S, Thomas MSC. Stress and Learning in Pupils: Neuroscience Evidence and its Relevance for Teachers. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2021; 15:177-188. [PMID: 34239601 PMCID: PMC8248342 DOI: 10.1111/mbe.12282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of how stress affects primary school children's attention and learning has developed rapidly. We know that children experience differing levels of stressors (factors that cause stress) in their environments, and that this can influence how they respond to new stressors when they occur in educational contexts. Here, we review evidence showing that stress can increase children's attention and learning capacities in some circumstances but hinder them in others. We show how children differ in their attention and learning styles, dependent on stress levels: for example, more highly stressed children may be more distracted by superficial features and may find it harder to engage in planning and voluntary control. We review intervention research on stress management techniques in children, concentrating on psychological techniques (such as mindfulness and stress reappraisal), physiological techniques (such as breathing exercises) and environmental factors (such as reducing noise). At the current time, raising teachers' awareness of pupils' differing stress responses will be an important step in accommodating the differing needs of children in their classrooms.
Collapse
Affiliation(s)
- Sue B Whiting
- Department of Psychological Sciences Birkbeck, University of London, London, UK
| | - Sam V Wass
- School of Psychology University of East London, London, UK
| | - Simon Green
- Department of Psychological Sciences Birkbeck, University of London, London, UK
| | - Michael S C Thomas
- Department of Psychological Sciences Birkbeck, University of London, London, UK
- Centre for Educational Neuroscience Birkbeck, University of London, London, UK
| |
Collapse
|
69
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
70
|
Tomar A, Polygalov D, Chattarji S, McHugh TJ. Stress enhances hippocampal neuronal synchrony and alters ripple-spike interaction. Neurobiol Stress 2021; 14:100327. [PMID: 33937446 PMCID: PMC8079661 DOI: 10.1016/j.ynstr.2021.100327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Adverse effects of chronic stress include anxiety, depression, and memory deficits. Some of these stress-induced behavioural deficits are mediated by impaired hippocampal function. Much of our current understanding about how stress affects the hippocampus has been derived from post-mortem analyses of brain slices at fixed time points. Consequently, neural signatures of an ongoing stressful experiences in the intact brain of awake animals and their links to later hippocampal dysfunction remain poorly understood. Further, no information is available on the impact of stress on sharp-wave ripples (SPW-Rs), high frequency oscillation transients crucial for memory consolidation. Here, we used in vivo tetrode recordings to analyze the dynamic impact of 10 days of immobilization stress on neural activity in area CA1 of mice. While there was a net decrease in pyramidal cell activity in stressed animals, a greater fraction of CA1 spikes occurred specifically during sharp-wave ripples, resulting in an increase in neuronal synchrony. After repeated stress some of these alterations were visible during rest even in the absence of stress. These findings offer new insights into stress-induced changes in ripple-spike interactions and mechanisms through which chronic stress may interfere with subsequent information processing.
Collapse
Affiliation(s)
- Anupratap Tomar
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0021, Japan
| | - Denis Polygalov
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0021, Japan
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, EH89XD, UK
| | - Thomas J McHugh
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0021, Japan
| |
Collapse
|
71
|
Lv QY, Chen MM, Li Y, Yu Y, Liao H. Brain circuit dysfunction in specific symptoms of depression. Eur J Neurosci 2021; 55:2393-2403. [PMID: 33818849 DOI: 10.1111/ejn.15221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Since the depressive disorder manifests complex and diverse symptoms clinically, its pathological mechanism and therapeutic options are difficult to determine. In recent years, the advent of optogenetics, chemogenetics and viral tracing techniques, along with the well-established rodent model of depression, has led to a shift in the focus of depression research from single molecules to neural circuits. In virtue of the powerful tools above, psychiatric disorder such as depression could be well related to the disfunction of brain's connection. Moreover, compelling studies also support that the diversity of depressive behaviour could be involved with the discrete changes in a distinct circuit of the brain. Therefore, summarising the differential changes of the neural circuits in mice with depression-like behaviour may provide a better understanding of the causal relationships between neural circuit and depressive behaviour. Here, we focus on the changes in the neural circuitry underlying various depression-like phenotypes, including motivation, despair, social avoidance and comorbid sequelae, which may provide an explanation to circuit-specific discrepancy in depression-like behaviour.
Collapse
Affiliation(s)
- Qun Y Lv
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Ming M Chen
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yang Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Hong Liao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
72
|
Schnakenberg P, Jo HG, Stickel S, Habel U, Eickhoff SB, Brodkin ES, Goecke TW, Votinov M, Chechko N. The early postpartum period - Differences between women with and without a history of depression. J Psychiatr Res 2021; 136:109-116. [PMID: 33588224 DOI: 10.1016/j.jpsychires.2021.01.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/08/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Depression is a highly recurrent disorder. When in remission, it affords an important opportunity to understand the state-independent neurobiological alterations, as well as the socio-demographic characteristics, that likely contribute to the recurrence of major depressive disorder (MDD). The present study examined 110 euthymic women in their early postpartum period. A comparison was made between participants with (n = 20) and without (n = 90) a history of MDD by means of a multimodal approach including an fMRI experiment, assessment of hair cortisol concentration (HCC) and a clinical anamnestic interview. Women with a personal history of MDD were found to have decreased resting-state functional connectivity (RSFC) between the lateral parietal cortex (LPC) and the posterior cingulate cortex (PCC), and their Edinburgh Postnatal Depression Scale (EPDS) scores were significantly higher shortly after childbirth. More often than not, these women also had a family history of MDD. While women with no history of depression showed a negative association between hair cortisol concentration (HCC) and gray matter volume (GMV) in the medial orbitofrontal cortex (mOFC), the opposite trend was seen in women with a history of depression. This implies that women with remitted depression show distinctive neural phenotypes with subclinical residual symptoms, which likely predispose them to later depressive episodes.
Collapse
Affiliation(s)
- Patricia Schnakenberg
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.
| | - Han-Gue Jo
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany; School of Computer, Information and Communication Engineering, Kunsan National University, Gunsan, South Korea
| | - Susanne Stickel
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Natalia Chechko
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
73
|
HUZARD D, RAPPENEAU V, MEIJER OC, TOUMA C, ARANGO-LIEVANO M, GARABEDIAN MJ, JEANNETEAU F. Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress 2021; 24:130-153. [PMID: 32755268 PMCID: PMC7907260 DOI: 10.1080/10253890.2020.1806226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The diversity of actions of the glucocorticoid stress hormones among individuals and within organs, tissues and cells is shaped by age, gender, genetics, metabolism, and the quantity of exposure. However, such factors cannot explain the heterogeneity of responses in the brain within cells of the same lineage, or similar tissue environment, or in the same individual. Here, we argue that the stress response is continuously updated by synchronized neural activity on large-scale brain networks. This occurs at the molecular, cellular and behavioral levels by crosstalk communication between activity-dependent and glucocorticoid signaling pathways, which updates the diversity of responses based on prior experience. Such a Bayesian process determines adaptation to the demands of the body and external world. We propose a framework for understanding how the diversity of glucocorticoid actions throughout brain networks is essential for supporting optimal health, while its disruption may contribute to the pathophysiology of stress-related disorders, such as major depression, and resistance to therapeutic treatments.
Collapse
Affiliation(s)
- Damien HUZARD
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Virginie RAPPENEAU
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Onno C. MEIJER
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Chadi TOUMA
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Margarita ARANGO-LIEVANO
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Freddy JEANNETEAU
- Department of Neuroscience and Physiology, University of Montpellier, CNRS, INSERM, Institut de Génomique Fonctionnelle, Montpellier, France
- Corresponding author:
| |
Collapse
|
74
|
Tanner JJ, Johnson AJ, Terry EL, Cardoso J, Garvan C, Staud R, Deutsch G, Deshpande H, Lai S, Addison A, Redden D, Goodin BR, Price CC, Fillingim RB, Sibille KT. Resilience, pain, and the brain: Relationships differ by sociodemographics. J Neurosci Res 2021; 99:1207-1235. [PMID: 33606287 DOI: 10.1002/jnr.24790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/23/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
Chronic musculoskeletal (MSK) pain is disabling to individuals and burdensome to society. A relationship between telomere length and resilience was reported in individuals with consideration for chronic pain intensity. While chronic pain associates with brain changes, little is known regarding the neurobiological interface of resilience. In a group of individuals with chronic MSK pain, we examined the relationships between a previously investigated resilience index, clinical pain and functioning measures, and pain-related brain structures, with consideration for sex and ethnicity/race. A cross-sectional analysis of 166 non-Hispanic Black and non-Hispanic White adults, 45-85 years of age with pain ≥ 1 body site (s) over the past 3 months was completed. Measures of clinical pain and functioning, biobehavioral and psychosocial resilience, and structural MRI were completed. Our findings indicate higher levels of resilience associate with lower levels of clinical pain and functional limitations. Significant associations between resilience, ethnicity/race, and/or sex, and pain-related brain gray matter structure were demonstrated in the right amygdaloid complex, bilateral thalamus, and postcentral gyrus. Our findings provide compelling evidence that in order to decipher the neurobiological code of chronic pain and related protective factors, it will be important to improve how chronic pain is phenotyped; to include an equal representation of females in studies including analyses stratifying by sex, and to consider other sociodemographic factors.
Collapse
Affiliation(s)
- Jared J Tanner
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Alisa J Johnson
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Ellen L Terry
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Josue Cardoso
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Cynthia Garvan
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roland Staud
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Georg Deutsch
- Department of Radiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA
| | - Hrishikesh Deshpande
- Department of Radiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA
| | - Song Lai
- Department of Radiation Oncology & CTSI Human Imaging Core, University of Florida, Gainesville, FL, USA
| | - Adriana Addison
- Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- Department of Anesthesiology, University of Alabama, Birmingham Medical Center, Birmingham, AL, USA.,Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catherine C Price
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.,Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Kimberly T Sibille
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Aging and Geriatric Research, College of Medicine, UF Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
75
|
Wang JL, Wang Y, Sun W, Yu Y, Wei N, Du R, Yang Y, Liang T, Wang XL, Ou CH, Chen J. Spinophilin modulates pain through suppressing dendritic spine morphogenesis via negative control of Rac1-ERK signaling in rat spinal dorsal horn. Neurobiol Dis 2021; 152:105302. [PMID: 33609640 DOI: 10.1016/j.nbd.2021.105302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/07/2021] [Accepted: 02/14/2021] [Indexed: 01/07/2023] Open
Abstract
Both spinophilin (SPN, also known as neurabin 2) and Rac1 (a member of Rho GTPase family) are believed to play key roles in dendritic spine (DS) remodeling and spinal nociception. However, how SPN interacts with Rac1 in the above process is unknown. Here, we first demonstrated natural existence of SPN-protein phosphatase 1-Rac1 complex in the spinal dorsal horn (DH) neurons by both double immunofluorescent labeling and co-immunoprecipitation, then the effects of SPN over-expression and down-regulation on mechanical and thermal pain sensitivity, GTP-bound Rac1-ERK signaling activity, and spinal DS density were studied. Over-expression of SPN in spinal neurons by intra-DH pAAV-CMV-SPN-3FLAG could block both mechanical and thermal pain hypersensitivity induced by intraplantar bee venom injection, however it had no effect on the basal pain sensitivity. Over-expression of SPN also resulted in a significant decrease in GTP-Rac1-ERK activities, relative to naive and irrelevant control (pAAV-MCS). In sharp contrast, knockdown of SPN in spinal neurons by intra-DH pAAV-CAG-eGFP-U6-shRNA[SPN] produced both pain hypersensitivity and dramatic elevation of GTP-Rac1-ERK activities, relative to naive and irrelevant control (pAAV-shRNA [NC]). Moreover, knockdown of SPN resulted in increase in DS density while over-expression of it had no such effect. Collectively, SPN is likely to serve as a regulator of Rac1 signaling to suppress DS morphogenesis via negative control of GTP-bound Rac1-ERK activities at postsynaptic component in rat DH neurons wherein both mechanical and thermal pain sensitivity are controlled.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Na Wei
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China
| | - Ce-Hua Ou
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, PR China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, Shaanxi Province, PR China; Key Laboratory of Brain Stress and Behavior, People's Liberation Army, Xi'an 710038, PR China.
| |
Collapse
|
76
|
Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, Huang Z, Zhang Y. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A 2021; 118:e2019409118. [PMID: 33526688 PMCID: PMC8017726 DOI: 10.1073/pnas.2019409118] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic stress is one of the most critical factors in the onset of depressive disorders; hence, environmental factors such as psychosocial stress are commonly used to induce depressive-like traits in animal models of depression. Ventral CA1 (vCA1) in hippocampus and basal lateral amygdala (BLA) are critical sites during chronic stress-induced alterations in depressive subjects; however, the underlying neural mechanisms remain unclear. Here we employed chronic unpredictable mild stress (CUMS) to model depression in mice and found that the activity of the posterior BLA to vCA1 (pBLA-vCA1) innervation was markedly reduced. Mice subjected to CUMS showed reduction in dendritic complexity, spine density, and synaptosomal AMPA receptors (AMPARs). Stimulation of pBLA-vCA1 innervation via chemogenetics or administration of cannabidiol (CBD) could reverse CUMS-induced synaptosomal AMPAR decrease and efficiently alleviate depressive-like behaviors in mice. These findings demonstrate a critical role for AMPARs and CBD modulation of pBLA-vCA1 innervation in CUMS-induced depressive-like behaviors.
Collapse
Affiliation(s)
- Hui Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chenyang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Jinpeng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Xiaochen Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Mingyue Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 100083 Beijing, People's Republic of China
| | - Rong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Zhuo Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China;
| |
Collapse
|
77
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. Resilience to stress and sex-specific remodeling of microglia and neuronal morphology in a rat model of anxiety and anhedonia. Neurobiol Stress 2021; 14:100302. [PMID: 33614864 PMCID: PMC7879043 DOI: 10.1016/j.ynstr.2021.100302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Prenatal exposure to stress or glucocorticoids (GC) is associated with the appearance of psychiatric diseases later in life. Microglia, the immune cells of the brain, are altered in stress-related disorders. Synthetic GC such as dexamethasone (DEX) are commonly prescribed in case of preterm risk labour in order to promote fetal lung maturation. Recently, we reported long-lasting differences in microglia morphology in a model of in utero exposure to DEX (iuDEX), that presents an anxious phenotype. However, it is still unclear if stress differentially affects iuDEX males and females. In this work, we evaluated how iuDEX animals of both sexes cope with chronic mild stress for 2 weeks. We evaluated emotional behavior and microglia and neuronal morphology in the dorsal hippocampus (dHIP) and nucleus accumbens (NAc), two brain regions involved in emotion-related disorders. We report that males and females prenatally exposed to DEX have better performance in anxiety- and depression-related behavioral tests after chronic stress exposure in adulthood than non-exposed animals. Interestingly, iuDEX animals present sex-dependent changes in microglia morphology in the dHIP (hypertrophy in females) and in the NAc (atrophy in females and hypertrophy in males). After chronic stress, these cells undergo sex-specific morphological remodeling. Paralleled to these alterations in cytoarchitecture of microglia, we report inter-regional differences in dendritic morphology in a sex-specific manner. iuDEX females present fewer complex neurons in the NAc, whereas iuDEX males presented less complex neuronal morphology in the dHIP. Interestingly, these alterations were modified by stress exposure. Our work shows that stressful events during pregnancy can exert a preserved sex-specific effect in adulthood. Although the role of the observed cellular remodeling is still unknown, sex-specific differences in microglia plasticity induced by long-term stress exposure may anticipate differences in drug efficacy in the context of stress-induced anxiety- or depression-related behaviors. iuDEX induces anxiety- and depression-related behavioral in both sexes. iuDEX induces sex dependent fine structural alterations in neurons and microglia morphology in the dHIP and in the NAc. uCMS in combination to iuDEX normalize the behavior as well the morphology of neurons in the NAc. Stressful events during pregnancy can exert a preserved sex-specific effect in adulthood.
Collapse
Affiliation(s)
- Rita Gaspar
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F Ambrósio
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's -PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina A Gomes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
78
|
Li WC, Chao HT, Lin MW, Shen HD, Chen LF, Hsieh JC. Neuroprotective effect of Val variant of BDNF Val66Met polymorphism on hippocampus is modulated by the severity of menstrual pain. NEUROIMAGE-CLINICAL 2021; 30:102576. [PMID: 33561695 PMCID: PMC7873439 DOI: 10.1016/j.nicl.2021.102576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Primary dysmenorrhea (PDM) refers to menstrual pain of which the pathological cause(s) are unknown. This study examined the associations among BDNF Val66Met polymorphisms, menstrual pain severity, and hippocampal volume among young PDM subjects. We recruited 115 PDM subjects, including severe cases (n = 66) and moderate cases (n = 44), and 117 young females (aged 20-30 years) as a control group (CON) for BDNF Val66Met genotyping and MRI examination. The assessment of hippocampal volume involved analysis at various anatomical resolutions, i.e., whole hippocampal volume, hippocampal subfields, and voxel-based morphometry (VBM) volumetric analysis. Two-way ANOVA analyses with planned contrasts and Bonferroni correction were conducted for the assessment of hippocampal volume. Linear regression was used to test for BDNF Val66Met Val allele dosage-dependent effects. We observed no main effects of group, genotype, or group-genotype interactions on bilateral whole hippocampal volumes. Significant interactions between PDM severity and BDNF Val66Met genotype were observed in the right whole hippocampus, subiculum, and molecular layer. Post-hoc analysis revealed that the average hippocampal volume of Val/Val moderate PDM subjects was greater than that of Val/Val severe PDM subjects. Note that right hippocampal volume was greater in the Val/Val group than in the Met/Met group, particularly in the right posterior hippocampal region. Dosage effect analysis revealed a positive dosage-dependent relationship between the Val allele and volume of the right whole hippocampus, subiculum, molecular layer, and VBM-defined right posterior hippocampal region in the moderate PDM subgroup only. These findings indicate that Val/Val PDM subjects are resistant to intermittent moderate pain-related stress, whereas Met carrier PDM subjects are susceptible. When confronted with years of repeated PDM stress, the hippocampus can undergo differential structural changes in accordance with the BDNF genotype and pain severity. This triad study on PDM (i.e., combining genotype with endophenotype imaging results and clinical phenotypes), underscores the potential neurobiological consequences of PDM, which may prefigure in neuroimaging abnormalities associated with various chronic pain disorders. Our results provide evidence for Val allele dosage-dependent protective effects on the hippocampal structure; however, in cases of the Val variant, these effects were modulated in accordance with the severity of menstrual pain.
Collapse
Affiliation(s)
- Wei-Chi Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Horng-Der Shen
- Laboratory of Microbiology, Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jen-Chuen Hsieh
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
79
|
Gupta K, Chattarji S. Sex differences in the delayed impact of acute stress on the amygdala. Neurobiol Stress 2021; 14:100292. [PMID: 33490316 PMCID: PMC7807162 DOI: 10.1016/j.ynstr.2020.100292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
There is accumulating evidence that stress triggers specific temporal patterns of morphological plasticity in the amygdala, a brain area that plays a pivotal role in the debilitating emotional symptoms of stress-related psychiatric disorders. Acute immobilization stress is known to cause a delayed increase in the density of dendritic spines on principal neurons in the basolateral amygdala (BLA) of rats. These neuronal changes are also accompanied by a delayed enhancement in anxiety-like behavior. However, these earlier studies used male rats, and the delayed behavioral and synaptic effects of acute stress on the BLA of female rats remain unexplored. Here, using whole-cell recordings in rat brain slices, we find that a single exposure to 2-h immobilization stress leads to an increase, 10 days later, in the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded from lateral amygdala (LA) principal neurons in male rats. Further, acute stress also causes a reduction in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in LA neurons 10 days after acute stress. In striking contrast, excitatory and inhibitory synaptic transmission in the LA of female rats does not exhibit any delayed change despite exposure to the same acute stress. Finally, we examined the functional impact of these contrasting synaptic changes at the behavioral level. Male rats exhibit a delayed increase in anxiety-like behavior on the elevated plus-maze 10 days after acute stress. However, the same stress does not lead to a delayed anxiogenic effect in female rats. Together, these results demonstrate that the delayed modulation of the balance of synaptic excitation and inhibition in the amygdala, as well as anxiety-like behavior, differ between males and females. These findings provide a framework, across biological scales, for analyzing how affective symptoms of stress disorders vary between the sexes.
Collapse
Affiliation(s)
- Kanika Gupta
- National Centre for Biological Sciences, Bangalore, 560065, India
| | | |
Collapse
|
80
|
Yang YJ, Chen CN, Zhan JQ, Liu QS, Liu Y, Jiang SZ, Wei B. Decreased Plasma Hydrogen Sulfide Level Is Associated With the Severity of Depression in Patients With Depressive Disorder. Front Psychiatry 2021; 12:765664. [PMID: 34858235 PMCID: PMC8631961 DOI: 10.3389/fpsyt.2021.765664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence has suggested a dysfunction of synaptic plasticity in the pathophysiology of depression. Hydrogen sulfide (H2S), an endogenous gasotransmitter that regulates synaptic plasticity, has been demonstrated to contribute to depressive-like behaviors in rodents. The current study investigated the relationship between plasma H2S levels and the depressive symptoms in patients with depression. Forty-seven depressed patients and 51 healthy individuals were recruited in this study. The 17-item Hamilton Depression Rating Scale (HAMD-17) was used to evaluate depressive symptoms for all subjects and the reversed-phase high-performance liquid chromatography (RP-HPLC) was used to measure plasmaH2S levels. We found that plasma H2S levels were significantly lower in patients with depression relative to healthy individuals (P < 0.001). Compared with healthy controls (1.02 ± 0.34 μmol/L), the plasma H2S level significantly decreased in patients with mild depression (0.84 ± 0.28 μmol/L), with moderate depression (0.62 ± 0.21μmol/L), and with severe depression (0.38 ± 0.18 μmol/L). Correlation analysis revealed that plasma H2S levels were significantly negatively correlated with the HAMD-17 scores in patients (r = -0.484, P = 0.001). Multivariate linear regression analysis showed that plasma H2S was an independent contributor to the HAMD-17 score in patients (B = -0.360, t = -2.550, P = 0.015). Collectively, these results suggest that decreased H2S is involved in the pathophysiology of depression, and plasma H2S might be a potential indicator for depression severity.
Collapse
Affiliation(s)
- Yuan-Jian Yang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| | - Chun-Nuan Chen
- Department of Neurology, The Second Clinical Medical College, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| | - Qiao-Sheng Liu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| | - Yun Liu
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Shu-Zhen Jiang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Clinical Research Center on Mental Disorders, Nanchang, China
| |
Collapse
|
81
|
Cannady R, Nguyen T, Padula AE, Rinker JA, Lopez MF, Becker HC, Woodward JJ, Mulholland PJ. Interaction of chronic intermittent ethanol and repeated stress on structural and functional plasticity in the mouse medial prefrontal cortex. Neuropharmacology 2021; 182:108396. [PMID: 33181147 PMCID: PMC7942177 DOI: 10.1016/j.neuropharm.2020.108396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 01/27/2023]
Abstract
Stress is a risk factor that plays a considerable role in the development and maintenance of alcohol (ethanol) abuse and relapse. Preclinical studies examining ethanol-stress interactions have demonstrated elevated ethanol drinking, cognitive deficits, and negative affective behaviors in mice. However, the neural adaptations in prefrontal cortical regions that drive these aberrant behaviors produced by ethanol-stress interactions are unknown. In this study, male C57BL/6J mice were exposed to chronic intermittent ethanol (CIE) and repeated forced swim stress (FSS). After two cycles of CIE x FSS, brain slices containing the prelimbic (PrL) and infralimbic (IfL) cortex were prepared for analysis of adaptations in dendritic spines and synaptic plasticity. In the PrL cortex, total spine density was increased in mice exposed to CIE. Immediately following induction of long-term potentiation (LTP), the fEPSP slope was increased in the PrL of CIE x FSS treated mice, indicative of a presynaptic adaptation on post-tetanic potentiation (PTP). In the IfL cortex, CIE exposure regardless of FSS experience resulted in an increase in spine density. FSS alone or when combined with CIE exposure increased PTP following LTP induction. Repeated FSS episodes increased IfL cortical paired-pulse facilitation, a second measure of presynaptic plasticity. In summary, CIE exposure resulted in structural adaptations while repeated stress exposure drove metaplastic changes in presynaptic function, demonstrating distinct morphological and functional changes in PrL and IfL cortical neurons. Thus, the structural and functional adaptations may be one mechanism underlying the development of excessive drinking and cognitive deficits associated with ethanol-stress interactions.
Collapse
Affiliation(s)
- Reginald Cannady
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA; Department of Biology, College of Science and Technology, North Carolina Agricultural & Technical State University, 1601 East Market Street, Barnes Hall 215, Greensboro, NC, 27411, USA
| | - Tiffany Nguyen
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Jennifer A Rinker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Marcelo F Lopez
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Howard C Becker
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA.
| |
Collapse
|
82
|
Brain circuits at risk in psychiatric diseases and pharmacological pathways. Therapie 2020; 76:75-86. [PMID: 33358639 DOI: 10.1016/j.therap.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
The multiple brain circuits involved in psychiatric diseases may appear daunting, but we prefer to concentrate on a select few, with a particular sensitivity to stress and neurodevelopmental issues, with a clear pharmacotherapy. This review is structured around 1. the key circuits, their role in health and disease, and the neurotransmitters maintaining them, 2. The influence of upbringing, stress, chronobiology, inflammation and infection, 3. The genetic and epigenetic influence on these circuits, particularly regarding copy number variants and neuronal plasticity, 4. The use and abuse of pharmacological agents with the particular risks of stress and chronobiology at critical periods. A major emphasis is placed on the links between hippocampus, prefrontal cortex and amygdala/periaqueductal grey which control specific aspects of cognition, mood, pain and even violence. Some of the research findings were from the innovative medicine initiative (IMI) NEWMEDS, a 22M€ academic/industrial consortium on the brain circuits critical for psychiatric disease.
Collapse
|
83
|
Yasmin F, Patel S. "Corting" stress: post-stress corticosterone administration prevents delayed-onset biobehavioral consequences. Neuropsychopharmacology 2020; 45:2135-2136. [PMID: 32782348 PMCID: PMC7784983 DOI: 10.1038/s41386-020-00796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Farhana Yasmin
- grid.412807.80000 0004 1936 9916Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
84
|
Short predictable stress promotes resistance to anxiety behavior and increases dendritic spines in prefrontal cortex and hippocampus. Brain Res 2020; 1746:147020. [DOI: 10.1016/j.brainres.2020.147020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
85
|
Xiao Q, Xu X, Tu J. Chronic optogenetic manipulation of basolateral amygdala astrocytes rescues stress-induced anxiety. Biochem Biophys Res Commun 2020; 533:657-664. [PMID: 33019977 DOI: 10.1016/j.bbrc.2020.09.106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Chronic exposure to stressors can disrupt normal brain function and induce anxiety-like behavior and neurobiological alterations in the basolateral amygdala (BLA). Here, we showed that unpredictable chronic mild stress (UCMS) induced anxiety-like behavior, lowered glutamatergic neuronal activity and reactive astrocytes in the BLA. Using optogenetic tools, we found that activation of BLA glutamatergic neurons did not rescue anxiety-like behavior in stressed mice. In contrast, however, optogenetic activation of the BLA astrocytes relieved stress-induced anxiety, and, interestingly, chronic optogenetic manipulation fully restored the UCMS-induced behavioral and neurobiological dysfunctions, including anxiety-like behavior, lower c-Fos expression in the BLA, S100 overexpression in the BLA, and higher serum corticosterone concentration. Thus, our findings suggest that chronic manipulation of BLA astrocytes is a potential therapeutic intervention target for pathological anxiety.
Collapse
Affiliation(s)
- Qian Xiao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xirong Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Tu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
86
|
Nahmoud I, Vasquez JG, Cho H, Dennis-Tiwary T, Likhtik E. Salient safety conditioning improves novel discrimination learning. Behav Brain Res 2020; 397:112907. [PMID: 32956774 DOI: 10.1016/j.bbr.2020.112907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Generalized fear is one purported mechanism of anxiety that is a target of clinical and basic research. Impaired fear discrimination has been primarily examined from the perspective of increased fear learning, rather than how learning about non-threatening stimuli affects fear discrimination. To address this question, we tested how three Safety Conditioning protocols with varied levels of salience allocated to the safety cue compared to classic Fear Conditioning in their impact on subsequent innate anxiety, and differential fear learning of new aversive and neutral cues. Using a high anxiety strain of mice (129SvEv, Taconic), we show that Fear Conditioned animals show little exploration of the anxiogenic center of an open field 24 h later, and poor discrimination during new differential conditioning 7 days later. Three groups of mice underwent Safety Conditioning, (i) the safety tone was unpaired with a shock, (ii) the safety tone was unpaired with the shock and co-terminated with a house light signaling the end of the safety period, and (iii) the safety tone was unpaired with the shock and its beginning co-occurred with a house light, signaling the start of a safety period. Mice from all Safety Conditioning groups showed higher levels of open field exploration than the Fear Conditioned mice 24 h after training. Furthermore, Safety Conditioned animals showed improved discrimination learning of a novel non-threat, with the Salient Beginning safety conditioned group performing best. These findings indicate that high anxiety animals benefit from salient safety training to improve exploration and discrimination of new non-threating stimuli.
Collapse
Affiliation(s)
- I Nahmoud
- Chemistry Dept., Hunter College, CUNY, New York, NY, United States
| | - J Ganay Vasquez
- Chemistry Dept., Hunter College, CUNY, New York, NY, United States
| | - H Cho
- Department of Psychology, The Graduate Center, CUNY, NY, United States; Psychology Dept., Hunter College, CUNY, New York, NY, United States
| | - T Dennis-Tiwary
- Department of Psychology, The Graduate Center, CUNY, NY, United States; Psychology Dept., Hunter College, CUNY, New York, NY, United States
| | - E Likhtik
- Biology Dept., Hunter College, CUNY, New York, NY, United States; Program in Biology, The Graduate Center, CUNY, NY, United States.
| |
Collapse
|
87
|
Neuropharmacological Effects of Mesaconitine: Evidence from Molecular and Cellular Basis of Neural Circuit. Neural Plast 2020; 2020:8814531. [PMID: 32904549 PMCID: PMC7456483 DOI: 10.1155/2020/8814531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Mesaconitine (MA), a diester-diterpenoid alkaloid in aconite roots, is considered to be one of the most important bioactive ingredients. In this review, we summarized its neuropharmacological effects, including analgesic effects and antiepileptiform effects. Mesaconitine can act on the central noradrenergic system and the serotonin system; behaving like the norepinephrine reuptake inhibitors and tricyclic antidepressants that increase norepinephrine levels in stress-induced depression. Therefore, the possible perspectives for future studies on the depression of MA were also discussed as well. The pharmacological effect of MA on depression is worthy of further study.
Collapse
|
88
|
Androwski RJ, Asad N, Wood JG, Hofer A, Locke S, Smith CM, Rose B, Schroeder NE. Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues. PLoS Genet 2020; 16:e1009029. [PMID: 32997655 PMCID: PMC7549815 DOI: 10.1371/journal.pgen.1009029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/12/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Stress-induced changes to the dendritic architecture of neurons have been demonstrated in numerous mammalian and invertebrate systems. Remodeling of dendrites varies tremendously among neuron types. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover an identical receptive field during reproductive development. Using time-course imaging, we show that branching between these two neuron types is highly coordinated. Furthermore, we find that the IL2 and FLP arbors have a similar dendritic architecture and use an identical downstream effector complex to control branching; however, regulation of this complex differs between stress-induced IL2 branching and FLP branching during reproductive development. We demonstrate that the unfolded protein response (UPR) sensor IRE-1, required for localization of the complex in FLP branching, is dispensable for IL2 branching at standard cultivation temperatures. Exposure of ire-1 mutants to elevated temperatures results in defective IL2 branching, thereby demonstrating a previously unknown genotype by environment interaction within the UPR. We find that the FOXO homolog, DAF-16, is required cell-autonomously to control arborization during stress-induced arborization. Likewise, several aspects of the dauer formation pathway are necessary for the neuron to remodel, including the phosphatase PTEN/DAF-18 and Cytochrome P450/DAF-9. Finally, we find that the TOR associated protein, RAPTOR/DAF-15 regulates mutually exclusive branching of the IL2 and FLP dendrites. DAF-15 promotes IL2 branching during dauer and inhibits precocious FLP growth. Together, our results shed light on molecular processes that regulate stress-mediated remodeling of dendrites across neuron classes.
Collapse
Affiliation(s)
- Rebecca J. Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nadeem Asad
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Janet G. Wood
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Allison Hofer
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Steven Locke
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cassandra M. Smith
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Becky Rose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nathan E. Schroeder
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
89
|
Fox ME, Figueiredo A, Menken MS, Lobo MK. Dendritic spine density is increased on nucleus accumbens D2 neurons after chronic social defeat. Sci Rep 2020; 10:12393. [PMID: 32709968 PMCID: PMC7381630 DOI: 10.1038/s41598-020-69339-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Stress alters the structure and function of brain reward circuitry and is an important risk factor for developing depression. In the nucleus accumbens (NAc), structural and physiological plasticity of medium spiny neurons (MSNs) have been linked to increased stress-related and depression-like behaviors. NAc MSNs have opposing roles in driving stress-related behaviors that is dependent on their dopamine receptor expression. After chronic social defeat stress, NAc MSNs exhibit increased dendritic spine density. However, it remains unclear if the dendritic spine plasticity is MSN subtype specific. Here we use viral labeling to characterize dendritic spine morphology specifically in dopamine D2 receptor expressing MSNs (D2-MSNs). After chronic social defeat, D2-MSNs exhibit increased spine density that is correlated with enhanced social avoidance behavior. Together, our data indicate dendritic spine plasticity is MSN subtype specific, improving our understanding of structural plasticity after chronic stress.
Collapse
Affiliation(s)
- Megan E Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Building, Rm 265, Baltimore, MD, 21201, USA
| | - Antonio Figueiredo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Building, Rm 265, Baltimore, MD, 21201, USA
| | - Miriam S Menken
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Building, Rm 265, Baltimore, MD, 21201, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Building, Rm 265, Baltimore, MD, 21201, USA.
| |
Collapse
|
90
|
Revisiting the Stress Concept: Implications for Affective Disorders. J Neurosci 2020; 40:12-21. [PMID: 31896560 DOI: 10.1523/jneurosci.0733-19.2019] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.
Collapse
|
91
|
Rivera P, Tovar R, Ramírez-López MT, Navarro JA, Vargas A, Suárez J, de Fonseca FR. Sex-Specific Anxiety and Prefrontal Cortex Glutamatergic Dysregulation Are Long-Term Consequences of Pre-and Postnatal Exposure to Hypercaloric Diet in a Rat Model. Nutrients 2020; 12:nu12061829. [PMID: 32575416 PMCID: PMC7353464 DOI: 10.3390/nu12061829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Both maternal and early life malnutrition can cause long-term behavioral changes in the offspring, which depends on the caloric availability and the timing of the exposure. Here we investigated in a rat model whether a high-caloric palatable diet given to the mother and/or to the offspring during the perinatal and/or postnatal period might dysregulate emotional behavior and prefrontal cortex function in the offspring at adult age. To this end, we examined both anxiety responses and the mRNA/protein expression of glutamatergic, GABAergic and endocannabinoid signaling pathways in the prefrontal cortex of adult offspring. Male animals born from mothers fed the palatable diet, and who continued with this diet after weaning, exhibited anxiety associated with an overexpression of the mRNA of Grin1, Gria1 and Grm5 glutamate receptors in the prefrontal cortex. In addition, these animals had a reduced expression of the endocannabinoid system, the main inhibitory retrograde input to glutamate synapses, reflected in a decrease of the Cnr1 receptor and the Nape-pld enzyme. In conclusion, a hypercaloric maternal diet induces sex-dependent anxiety, associated with alterations in both glutamatergic and cannabinoid signaling in the prefrontal cortex, which are accentuated with the continuation of the palatable diet during the life of the offspring.
Collapse
Affiliation(s)
- Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
- Correspondence: (P.R.); (F.R.d.F.); Tel.: +34-952-614-012 (P.R. & F.R.d.F.)
| | - Rubén Tovar
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - María Teresa Ramírez-López
- Hospital Universitario de Getafe, Servicio de Ginecología y Obstetricia, 28905 Getafe, Spain;
- Departamento de Enfermería, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, 29010 Málaga, Spain; (R.T.); (J.A.N.); (A.V.); (J.S.)
- Correspondence: (P.R.); (F.R.d.F.); Tel.: +34-952-614-012 (P.R. & F.R.d.F.)
| |
Collapse
|
92
|
Fronk GE, Sant'Ana SJ, Kaye JT, Curtin JJ. Stress Allostasis in Substance Use Disorders: Promise, Progress, and Emerging Priorities in Clinical Research. Annu Rev Clin Psychol 2020; 16:401-430. [PMID: 32040338 PMCID: PMC7259491 DOI: 10.1146/annurev-clinpsy-102419-125016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinicians and researchers alike have long believed that stressors play a pivotal etiologic role in risk, maintenance, and/or relapse of alcohol and other substance use disorders (SUDs). Numerous seminal and contemporary theories on SUD etiology posit that stressors may motivate drug use and that individuals who use drugs chronically may display altered responses to stressors. We use foundational basic stress biology research as a lens through which to evaluate critically the available evidence to support these key stress-SUD theses in humans. Additionally, we examine the field's success to date in targeting stressors and stress allostasis in treatments for SUDs. We conclude with our recommendations for how best to advance our understanding of the relationship between stressors and drug use, and we discuss clinical implications for treatment development.
Collapse
Affiliation(s)
- Gaylen E Fronk
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| | - Sarah J Sant'Ana
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| | - Jesse T Kaye
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA;
- Center for Tobacco Research and Intervention, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53711, USA
| | - John J Curtin
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
93
|
Rusconi F, Battaglioli E, Venturin M. Psychiatric Disorders and lncRNAs: A Synaptic Match. Int J Mol Sci 2020; 21:ijms21093030. [PMID: 32344798 PMCID: PMC7246907 DOI: 10.3390/ijms21093030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders represent a heterogeneous class of multifactorial mental diseases whose origin entails a pathogenic integration of genetic and environmental influences. Incidence of these pathologies is dangerously high, as more than 20% of the Western population is affected. Despite the diverse origins of specific molecular dysfunctions, these pathologies entail disruption of fine synaptic regulation, which is fundamental to behavioral adaptation to the environment. The synapses, as functional units of cognition, represent major evolutionary targets. Consistently, fine synaptic tuning occurs at several levels, involving a novel class of molecular regulators known as long non-coding RNAs (lncRNAs). Non-coding RNAs operate mainly in mammals as epigenetic modifiers and enhancers of proteome diversity. The prominent evolutionary expansion of the gene number of lncRNAs in mammals, particularly in primates and humans, and their preferential neuronal expression does represent a driving force that enhanced the layering of synaptic control mechanisms. In the last few years, remarkable alterations of the expression of lncRNAs have been reported in psychiatric conditions such as schizophrenia, autism, and depression, suggesting unprecedented mechanistic insights into disruption of fine synaptic tuning underlying severe behavioral manifestations of psychosis. In this review, we integrate literature data from rodent pathological models and human evidence that proposes the biology of lncRNAs as a promising field of neuropsychiatric investigation.
Collapse
Affiliation(s)
- Francesco Rusconi
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| | | | - Marco Venturin
- Correspondence: (F.R.); (M.V.); Tel.: +39-02-503-30445 (F.R.); +39-02-503-30443 (M.V.)
| |
Collapse
|
94
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
95
|
Longaretti A, Forastieri C, Gabaglio M, Rubino T, Battaglioli E, Rusconi F. Termination of acute stress response by the endocannabinoid system is regulated through lysine-specific demethylase 1-mediated transcriptional repression of 2-AG hydrolases ABHD6 and MAGL. J Neurochem 2020; 155:98-110. [PMID: 32141088 DOI: 10.1111/jnc.15000] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 02/02/2023]
Abstract
Acute environmental stress rarely implies long-lasting neurophysiological and behavioral alterations. On the contrary, chronic stress exerts a potent toxic effect at the glutamatergic synapse whose altered physiology has been recognized as a core trait of neuropsychiatric disorders. The endocannabinoid system (ECS) plays an important role in the homeostatic response to acute stress. In particular, stress induces synthesis of endocannabinoid (eCB) 2-arachidonyl glycerol (2-AG). 2-AG stimulates presynaptic cannabinoid 1 (CB1) receptor contributing to stress response termination through inhibition of glutamate release, restraining thereafter anxiety arousal. We employ mouse models of stress response coupled to gene expression analyses, unravelling that in response to acute psychosocial stress in the mouse hippocampus, ECS-mediated synaptic modulation is enhanced via transcriptional repression of two enzymes involved in 2-AG degradation: α/β-hydrolase domain containing 6 (ABHD6) and monoacylglycerol lipase (MAGL). Such a process is orchestrated by the epigenetic corepressor LSD1 who directly interacts with promoter regulatory regions of Abhd6 and Magl. Remarkably, negative transcriptional control of Abhd6 and Magl is lost in the hippocampus upon chronic psychosocial stress, possibly contributing to trauma-induced drift of synapse physiology toward uncontrolled glutamate transmission. We previously showed that in mice lysine-specific demethylase 1 (LSD1) increases its hippocampal expression in response to psychosocial stress preventing excessive consolidation of anxiety-related plasticity. In this work, we unravel a nodal epigenetic modulation of eCB turn over, shedding new light on the molecular substrate of converging stress-terminating effects displayed by ECS and LSD1.
Collapse
Affiliation(s)
- Alessandra Longaretti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, MI, Italy
| | - Chiara Forastieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, MI, Italy
| | - Marina Gabaglio
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Busto Arsizio, VA, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Busto Arsizio, VA, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, MI, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, MI, Italy
| |
Collapse
|
96
|
Miao Z, Wang Y, Sun Z. The Relationships Between Stress, Mental Disorders, and Epigenetic Regulation of BDNF. Int J Mol Sci 2020; 21:ijms21041375. [PMID: 32085670 PMCID: PMC7073021 DOI: 10.3390/ijms21041375] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a critical member of the neurotrophic family, plays an important role in multiple stress-related mental disorders. Although alterations in BDNF in multiple brain regions of individuals experiencing stress have been demonstrated in previous studies, it appears that a set of elements are involved in the complex regulation. In this review, we summarize the specific brain regions with altered BDNF expression during stress exposure. How various environmental factors, including both physical and psychological stress, affect the expression of BDNF in specific brain regions are further summarized. Moreover, epigenetic regulation of BDNF, including DNA methylation, histone modification, and noncoding RNA, in response to diverse types of stress, as well as sex differences in the sensitivity of BDNF to the stress response, is also summarized. Clarification of the underlying role of BDNF in the stress process will promote our understanding of the pathology of stress-linked mental disorders and provide a potent target for the future treatment of stress-related illness.
Collapse
Affiliation(s)
- Zhuang Miao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
97
|
Involvement of Isoorientin in the Antidepressant Bioactivity of a Flavonoid-Rich Extract from Passiflora edulis f. flavicarpa Leaves. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43450-020-00003-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
98
|
Reduced left amygdala volume in patients with dissociative seizures (psychogenic nonepileptic seizures). Seizure 2020; 75:43-48. [DOI: 10.1016/j.seizure.2019.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 01/20/2023] Open
|
99
|
Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala. Proc Natl Acad Sci U S A 2019; 117:650-655. [PMID: 31843894 DOI: 10.1073/pnas.1910322116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects. Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling. Stress also reduced N-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress. Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density. Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.
Collapse
|
100
|
Merz EC, Desai PM, Maskus EA, Melvin SA, Rehman R, Torres SD, Meyer J, He X, Noble KG. Socioeconomic Disparities in Chronic Physiologic Stress Are Associated With Brain Structure in Children. Biol Psychiatry 2019; 86:921-929. [PMID: 31409452 PMCID: PMC6874729 DOI: 10.1016/j.biopsych.2019.05.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Socioeconomic factors have been consistently linked with the structure of children's hippocampus and anterior cingulate cortex (ACC). Chronic stress-as indexed by hair cortisol concentration-may represent an important mechanism underlying these associations. Here, we examined associations between hair cortisol and children's hippocampal and ACC structure, including across hippocampal subfields, and whether hair cortisol mediated associations between socioeconomic background (family income-to-needs ratio, parental education) and the structure of these brain regions. METHODS Participants were 5- to 9-year-old children (N = 94; 61% female) from socioeconomically diverse families. Parents and children provided hair samples that were assayed for cortisol. High-resolution, T1-weighted magnetic resonance imaging scans were acquired, and FreeSurfer 6.0 was used to compute hippocampal volume and rostral and caudal ACC thickness and surface area (n = 37 with both child hair cortisol and magnetic resonance imaging data; n = 41 with both parent hair cortisol and magnetic resonance imaging data). RESULTS Higher hair cortisol concentration was significantly associated with smaller CA3 and dentate gyrus hippocampal subfield volumes but not with CA1 or subiculum volume. Higher hair cortisol was also associated with greater caudal ACC thickness. Hair cortisol significantly mediated associations between parental education level and CA3 and dentate gyrus volumes; lower parental education level was associated with higher hair cortisol, which in turn was associated with smaller volume in these subfields. CONCLUSIONS These findings point to chronic physiologic stress as a potential mechanism through which lower parental education level leads to reduced hippocampal volume. Hair cortisol concentration may be an informative biomarker leading to more effective prevention and intervention strategies aimed at childhood socioeconomic disadvantage.
Collapse
Affiliation(s)
- Emily C Merz
- Teachers College, Columbia University, New York, New York
| | - Pooja M Desai
- Teachers College, Columbia University, New York, New York
| | | | | | - Rehan Rehman
- Teachers College, Columbia University, New York, New York
| | - Sarah D Torres
- Teachers College, Columbia University, New York, New York
| | | | - Xiaofu He
- Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|